ON THE EXISTENCE OF A COMPLEMENT FOR A FINITE SIMPLE GROUP IN ITS AUTOMORPHISM GROUP

A. LUCCHINI, F. MENEGAZZO, AND M. MORIGI

Abstract

In this paper we determine all finite simple groups G for which the automorphism group Aut G splits over $G=\operatorname{Inn} G$.

The theory of group extensions, and, in particular, the study of conditions which force the splitting of a given extension or class of extensions, is one of the themes with which the name of Reinhold Baer is associated. The present article gives a concrete, very special instance of this type of study: we examine the automorphism groups of the finite non abelian simple groups to determine those groups G for which Aut G splits over G, where we identify G with the inner automorphism group Inn G. For such groups, the structure of the complement for $\operatorname{Inn} G$ in the automorphism group Aut G is of course well known: the complement is isomorphic to the outer automorphism group Out G (see [2]).

The question we are considering is very natural and easily stated; yet, it seems that only very partial results are known (see [6], [7]).

In fact, this is a problem on simple groups of Lie type, since the remaining cases are easily dealt with. Indeed, if $n \geq 5, n \neq 6, \operatorname{Sym}(n)=\operatorname{Aut}(\operatorname{Alt}(n))$ always splits over $\operatorname{Alt}(n)$, while $\operatorname{Alt}(6) \cong \operatorname{PSL}(2,9)$ has no complement in Aut(Alt(6)). Similarly, all automorphism groups of the sporadic simple groups split over their socle: if G is a sporadic group, then either Aut $G=\operatorname{Inn} G$ or Inn G has index 2 in Aut G, and in each case there exists a conjugacy class of non-inner involutions in Aut G (see [2]).

On the other hand, the behaviour of groups of Lie type is not so uniform; it depends on the type of the group and on some arithmetical conditions involving the cardinality of the field and the rank of the group. The following theorem collects our results.

[^0]TheOrem. Let G be a simple group of Lie type over a finite field with $q=p^{m}$ elements, p prime, and denote by d the order of the abelian group \hat{H} / H, where \hat{H} is the group of diagonal automorphisms of G and H is the subgroup of \hat{H} consisting of those diagonal automorphisms which are inner. (The values of d for untwisted and twisted groups are given in the tables in Sections 3 and 4.) Then Aut G splits over G if and only if one of the following conditions holds:
(1) G is untwisted, not of type $D_{l}(q)$, and $\left(\frac{q-1}{d}, d, m\right)=1$;
(2) $G=D_{l}(q)$ and $\left(\frac{q^{l}-1}{d}, d, m\right)=1$;
(3) G is twisted, not of type ${ }^{2} D_{l}(q)$, and $\left(\frac{q+1}{d}, d, m\right)=1$;
(4) $G={ }^{2} D_{l}(q)$ and either l is odd or $p=2$.

The paper is divided into four sections. In Sections 1 and 2 we study the groups $A_{n}(q)$ and ${ }^{2} A_{n}(q)$, respectively, using their natural projective representations; in Sections 3 and 4 we consider the remaining untwisted (respectively twisted) groups of Lie type.

1. The special linear groups

Let $\mathrm{F}=\mathrm{F}_{q}$ be the finite field with q elements, where $q=p^{m}$ for some prime number p. We fix a generator λ of the multiplicative group of the field F^{*}. As usual, $\mathrm{GL}(n, q)$ (resp. $\mathrm{SL}(n, q)$) will denote the general (resp. special) linear group of degree n over the field F_{q}. In the following we will identify F^{*} with the subgroup of $\mathrm{GL}(n, q)$ consisting of scalar matrices, and let $\operatorname{PGL}(n, q)=\mathrm{GL}(n, q) / \mathrm{F}^{*}, \operatorname{PSL}(n, q)=\mathrm{SL}(n, q) \mathrm{F}^{*} / \mathrm{F}^{*}$. For an element $g \in \operatorname{GL}(n, q)$ its image in $\operatorname{PGL}(n, q)$ will be denoted with \bar{g}. Also, as usual, $\operatorname{det}(g)$ will denote the determinant of a matrix g.

Throughout this section, we will consider $G=A_{n-1}(q)=\operatorname{PSL}(n, q)$, for n and q fixed. Let ϕ be the Frobenius automorphism of F , defined by $a^{\phi}=$ a^{p} (using the exponential notation for automorphisms). Then ϕ induces an automorphism of $\operatorname{GL}(n, q)$ of order m, which will also be denoted by ϕ, given by $\left(a_{i j}\right)^{\phi}=\left(a_{i j}^{p}\right)$ for $i, j=1, \ldots, n$.

Let $\iota: \mathrm{GL}(n, q) \rightarrow \operatorname{GL}(n, q)$ be the automorphism defined by $g^{\iota}=\left(g^{\top}\right)^{-1}$, where g^{\top} denotes the transpose matrix of g.

Both ϕ and ι induce automorphisms $\bar{\phi}$ and $\bar{\iota}$ of $\operatorname{PGL}(n, q) . \bar{\phi}$ generates the group of field automorphisms, $\bar{\iota}$ is the product of the graph automorphism and an inner automorphism if $n \geq 3$, and it is an inner automorphism if $n=2$. As G is simple, we may also identify G with $\operatorname{Inn} G \leq$ Aut G.

We have the sequence of normal subgroups

$$
\mathrm{SL}(n, q) \leq \mathrm{GL}(n, q) \leq \Gamma \mathrm{L}(n, q)=\mathrm{GL}(n, q)\langle\phi\rangle \leq \Gamma \mathrm{L}(n, q)\langle\iota\rangle
$$

Taking quotients modulo the scalar matrices we obtain

$$
G \leq \operatorname{PGL}(n, q) \leq \operatorname{P\Gamma L}(n, q)=\operatorname{PGL}(n, q)\langle\bar{\phi}\rangle \leq \operatorname{Aut} G=\operatorname{P\Gamma L}(n, q)\langle\bar{\iota}\rangle .
$$

Also, $\operatorname{PGL}(n, q) / G$ is cyclic of order $d=(n, q-1)$ and $\bar{\phi}$ acts on it as the p-th power. We want to prove that G has a complement in Aut G if and only if $\left(\frac{q-1}{d}, d, m\right)=1$. Letting t be the product of all prime factors of d dividing $\frac{q-1}{d}$, counting multiplicities, this is equivalent to proving that G has a complement in Aut G if and only if $(t, m)=1$.

Lemma 1.1.

(i) $\langle\bar{g}\rangle$ is a complement for $\operatorname{PSL}(n, q)$ in $\operatorname{PGL}(n, q)$ if and only if $\operatorname{det}(g)=$ λ^{u}, with $(u, d)=1$ and $g^{d} \in \mathrm{~F}^{*}$.
(ii) Assume that G has a complement \bar{C} in $\operatorname{P\Gamma L}(n, q)$. Then it is possible to choose $g \in \mathrm{GL}(n, q)$ and $h \in \mathrm{SL}(n, q)$ such that $\bar{C}=\langle\bar{g}, \bar{\phi} \bar{h}\rangle$, $\operatorname{det}(g)=\lambda,|\bar{g}|=d$ and $\bar{g}^{\bar{\phi} \bar{h}}=\bar{g}^{p}$.

Proof. (i) Suppose that $\operatorname{det}(g)=\lambda^{u}$. Then \bar{g} generates $\operatorname{PGL}(n, q)$ modulo $\operatorname{PSL}(n, q)$ if and only if λ^{u} generates F^{*} modulo $\left(\mathrm{F}^{*}\right)^{n}$, that is, if and only if $(u, d)=1$. Therefore $\langle\bar{g}\rangle$ is a complement if and only if we have that $\bar{g}^{d}=1$, that is, $g^{d} \in \mathrm{~F}^{*}$.
(ii) Choose g such that $\langle\bar{g}\rangle=\bar{C} \cap G$. As \bar{g} generates $\operatorname{PGL}(n, q)$ modulo $\operatorname{PSL}(n, q)$, we have that $\operatorname{det}(g)=\lambda^{u}$ with $(u, d)=(u, n, q-1)=1$. Let $r, s, v \in \mathbb{Z}$ be such that $r u+s n+v(q-1)=1$. Then $\operatorname{det}\left(\lambda^{s} g^{r}\right)=\lambda$ and we may replace g by $\lambda^{s} g^{r}$. The remaining statements follow from the fact that the projection $\pi: \bar{C} \rightarrow\langle\bar{g}, \bar{\phi}\rangle G / G$ is an isomorphism.

Lemma 1.2. Assume that G has a complement in $\operatorname{P\Gamma L}(n, q)$. Then $(m, t)=1$.

Proof. Let g, h be as in Lemma 1.1 (ii), so that $g^{d}=\lambda^{\alpha} \in \mathrm{F}^{*}$. Taking the determinant of both sides we have that $\lambda^{d}=\operatorname{det}(g)^{d}=\left(\lambda^{\alpha}\right)^{n}$. So $d \equiv \alpha n$ $\bmod q-1$, that is, $1 \equiv \alpha(n / d) \bmod (q-1) / d$ and thus $\left(\alpha, \frac{q-1}{d}\right)=1$. It follows that $(\alpha, t)=1$.

We may view ϕh as a ring automorphism of the $\operatorname{ring} \operatorname{Mat}(n, q)$ of $n \times n$ matrices with entries in F. As $\bar{g}^{\bar{\phi} \bar{h}}=\bar{g}^{p}$, we have that $g^{\phi h}=(g z)^{p}$ for some $z \in \mathrm{~F}^{*}$, so ϕh normalizes the subring $\mathrm{F}[g]$ of $\operatorname{Mat}(n, q)$ (where, as usual, F is identified with the ring of scalar matrices). Now the map $\pi: \mathrm{F}[g] \rightarrow \mathrm{F}[g]$, defined by $v^{\pi}=v^{p}$ is also a ring automorphism of $\mathrm{F}[g]$, and $\phi h \pi^{-1}$ is a ring automorphism which centralizes F. So $\lambda^{\alpha}=g^{d}=\left(g^{d}\right)^{\phi h \pi^{-1}}=\left(g^{\phi h \pi^{-1}}\right)^{d}=$ $(g z)^{d}=\lambda^{\alpha} z^{d}$ and $z^{d}=1$. Thus we may assume that $z=\lambda^{\beta(q-1) / d}$ for some integer β. It is easy to see that $g^{(\phi h)^{i}}=g^{p^{i}} z^{i p^{i}}$ for each natural number i. As $(\phi h)^{m}$ is a scalar matrix, we obtain that $g=g^{(\phi h)^{m}}=g^{p^{m}} z^{m p^{m}}=g^{q} z^{m q}=$ $g^{q} z^{m}$, so $g^{q-1}=z^{-m}$. As $g^{q-1}=g^{d \frac{q-1}{d}}=\lambda^{\alpha \frac{q-1}{d}}$, we have that $\alpha \frac{q-1}{d} \equiv$ $-(m \beta) \frac{(q-1)}{d} \bmod q-1$. It follows that $\alpha \equiv-\beta m \bmod d$, so $(m, t) \mid(\alpha, t)=1$, as we wanted to prove.

We now seek a complement for G in $\operatorname{P\Gamma L}(n, q)$. If $n=2$, we find $g \in$ $\mathrm{GL}(n, q)$ such that $\operatorname{det}(g)=\lambda, g^{d} \in \mathrm{~F}^{*}$, and $\langle g\rangle$ is normalized by ϕ; if $n \geq 3$, we find a matrix g with the above properties and such that $\langle g\rangle$ is normalized by ιu, for a suitable matrix $u \in \operatorname{GL}(n, q)$ such that $(\iota u)^{2}=1$ and ιu commutes with ϕ.

LEMmA 1.3. Let $d=t l, d_{1} \mid d, d_{1}=t_{1} l_{1}$, where $t_{1}=\left(d_{1}, t\right)$. There exist $v_{1}, \ldots, v_{n / t_{1}} \in \mathrm{~F}$ and $u \in \mathbb{Z}$ such that $\left(u, t_{1}\right)=1, v_{j}^{l_{1}}=1$ for $j=1, \ldots, n / t_{1}$, and

$$
\prod_{j=1}^{n / t_{1}}(-1)^{t_{1}-1} \lambda^{u} v_{j}=\lambda^{d / d_{1}}
$$

Proof. Assume that a prime r divides $\frac{q-1}{l}=\frac{q-1}{d} \frac{d}{l}=\frac{q-1}{d} t$. Then r divides $\frac{q-1}{d}$, so r divides neither l, as $\left(\frac{q-1}{d}, l\right)=1$, nor $\frac{n}{d}$, as $\left(\frac{n}{d}, \frac{q-1}{d}\right)=$ 1. It follows that $\left(\frac{q-1}{l}, \frac{n}{t}\right)=\left(\frac{q-1}{l}, l \frac{n}{d}\right)=1$. Thus we have $\left(\frac{q-1}{l_{1}}, \frac{n}{t_{1}}\right)=$ $\left(\frac{q-1}{l} \frac{l}{l_{1}}, \frac{n}{t} \frac{t}{t_{1}}\right) \left\lvert\,\left(\frac{q-1}{l}, \frac{n}{t}\right) \frac{l}{l_{1}} \frac{t}{t_{1}}=\frac{d}{d_{1}}\right.$.

We now distinguish two cases. If t_{1} is odd or $\frac{n}{t_{1}}$ is even, we take $u, y \in \mathbb{Z}$ such that $y \frac{q-1}{l_{1}}+u \frac{n}{t_{1}}=\frac{d}{d_{1}}$. Note that, by dividing both sides by $\frac{d}{d_{1}}$, we get $y \frac{q-1}{d} t_{1}+u \frac{n}{d} l_{1}=1$, so $\left(u, t_{1}\right)=1$.

If t_{1} is even and $\frac{n}{t_{1}}$ is odd, then $\left.\frac{d}{d_{1}} \right\rvert\, \frac{q-1}{2}$, so we may take $u, y \in \mathbb{Z}$ such that $y \frac{q-1}{l_{1}}+u \frac{n}{t_{1}}=\frac{d}{d_{1}}+\frac{q-1}{2}$. Again, dividing by $\frac{d}{d_{1}}$, we get $y \frac{q-1}{d} t_{1}+u \frac{n}{d} l_{1}=$ $1+\frac{q-1}{d} \frac{d_{1}}{2}$, so $\left(u, t_{1}\right)=1$, because every prime dividing t_{1} divides also $\frac{q-1}{d}$.

In both cases u has the desired properties, and taking $v_{1}=\lambda^{y \frac{q-1}{l_{1}}}, v_{j}=1$ for $j \neq 1$, we have

$$
\prod_{j=1}^{n / t_{1}}(-1)^{t_{1}-1} \lambda^{u} v_{j}=(-1)^{\left(t_{1}-1\right) n / t_{1}} \lambda^{u \frac{n}{t_{1}}+y^{\frac{q-1}{l_{1}}}}=\lambda^{d / d_{1}}
$$

We now describe a construction which will be used in the sequel.
LEMMA 1.4. Let $d_{1}=t_{1} l_{1}$ be as above. Take $u \in \mathbb{Z}$ and $v_{1}, \ldots, v_{n / t_{1}} \in \mathrm{~F}$ such that $v_{j}^{l_{1}}=1$ for every $j=1, \ldots, n / t_{1}$, and $\prod_{j=1}^{n / t_{1}}(-1)^{t_{1}-1} \lambda^{u} v_{j}=\lambda^{d / d_{1}}$. Then there exists a matrix $g \in \mathrm{GL}(n, q)$ such that $g^{d_{1}} \in \mathrm{~F}^{*}$ and $\operatorname{det}(g)=$ $\lambda^{d / d_{1}}$.

Proof. Note that Lemma 1.3 ensures the existence of u and $v_{1}, \ldots, v_{n / t_{1}}$ with the required properties. Let $j \in\left\{1, \ldots, n / t_{1}\right\}, c=\lambda^{u}$ and $c_{j}=c v_{j}$. Consider the commutative ring $V_{j}=\mathrm{F}\left[w_{j}\right]$, where w_{j} has minimal polynomial $x^{t_{1}}-c_{j}$ over F , that is, $\mathrm{F}\left[w_{j}\right]$ is isomorphic to the quotient of the polynomial ring $\mathrm{F}[x]$ over the ideal $\left(x^{t_{1}}-c_{j}\right)$. Then V_{j} is a vector space of dimension t_{1} over F and a basis is $\left\{1, w_{j}, w_{j}^{2}, \ldots, w_{j}^{t_{1}-1}\right\}$. We have that w_{j} acts on V_{j} via
right multiplication, and the matrix associated to this endomorphism with respect to the fixed basis is

$$
g_{j}=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & & 0 \\
\vdots & & & \ddots & 0 \\
0 & 0 & 0 & & 1 \\
c_{j} & 0 & \ldots & 0 & 0
\end{array}\right)
$$

Note that $\operatorname{det}\left(g_{j}\right)=(-1)^{t_{1}-1} \lambda^{u} v_{j}$.
Also $g_{j}^{d_{1}}=\left(g_{j}^{t_{1}}\right)^{l_{1}}=\left(c_{j}\right)^{l_{1}}=\left(c v_{j}\right)^{l_{1}}=c^{l_{1}}$. Let $V=\oplus_{j=1}^{n / t_{1}} V_{j}$ and let g be the matrix

$$
g=\left(\begin{array}{ccc}
g_{1} & & \\
& \ddots & \\
& & g_{n / t_{1}}
\end{array}\right)
$$

then $g^{d_{1}}=c^{l_{1}} \in \mathrm{~F}^{*}$ and $\operatorname{det}(g)=\prod_{j=1}^{n / t_{1}}(-1)^{t_{1}-1} \lambda^{u} v_{j}=\lambda^{d / d_{1}}$, as required.

Proposition 1.5. $\operatorname{PSL}(n, q)$ is complemented in $\operatorname{PGL}(n, q)$.
Proof. Take $v_{1}, \ldots, v_{n / t} \in \mathrm{~F}$ and $u \in \mathbb{Z}$ as in Lemma 1.3, with $d_{1}=d$, and let g be the matrix constructed in Lemma 1.4. Then $\langle\bar{g}\rangle$ is the required complement.

We will also need the following observation:
Observation 1.6. Consider the polynomial $x^{s}-c$, where $c \in \mathrm{~F}$ and $s \mid q-1$. If $c=\lambda^{u}$, where $(u, s)=1$, then $x^{s}-c$ is irreducible in $\mathrm{F}[x]$.

Lemma 1.7. Let $\mathrm{F}[w]$ be a field, where w has minimal polynomial $x^{s}-c$ over F and $s \mid q-1$. Assume also that $(s, m)=1$ and let $k \in \mathbb{N}$ be such that $m k \equiv-1 \bmod s$. Let $\pi: \mathrm{F}[w] \rightarrow \mathrm{F}[w]$ be the map defined by $v^{\pi}=v^{p}$. Then $\psi=\pi^{m k+1}$ is an automorphism of $\mathrm{F}[w]$ of order m such that $a^{\psi}=a^{p}$ for every $a \in \mathrm{~F}$ and $w^{\psi}=(w z)^{p}$, where $z=c^{\left(q^{k}-1\right) / s} \in\langle w\rangle \cap \mathrm{F}^{*}$.

Proof. $\mathrm{F}[w]$ is a field of order $q^{s}=p^{m s}$. Also, $\psi=\pi^{m k+1}$ induces ϕ on F , so m divides the order of ψ. Note that the order of π is $s m$, so if $m k+1=s h$ we have that $\psi^{m}=\pi^{(m k+1) m}=\pi^{s h m}=1$. Hence ψ has order m. Also, $w^{\psi}=w^{\pi^{m k+1}}=\left(w w^{q^{k}-1}\right)^{p}=\left(w c^{\left(q^{k}-1\right) / s}\right)^{p}$, and $z=c^{\left(q^{k}-1\right) / s} \in\langle w\rangle$.

Next, we recall some well-known facts about symmetric bilinear forms. Let K be a field and let $\beta: V \times V \rightarrow K$ be a symmetric non-degenerate bilinear form over a K-vector space V of dimension s. If $f \in \operatorname{End}(V)$ is a linear map, then there exists a unique linear map $f^{\prime} \in \operatorname{End}(V)$ such that $\beta(u f, v)=\beta\left(u, v f^{\prime}\right)$ for every $u, v \in V$. The map f^{\prime} is called the adjoint map
of f with respect to β, and f is said to be self-adjoint if $f^{\prime}=f$. Take a basis $\left\{e_{1}, e_{2}, \ldots, e_{s}\right\}$ of V and let A, A^{\prime} and B be the matrices associated to f, f^{\prime} and β with respect to this basis. Then $A^{\prime}=B^{\top} A^{\top}\left(B^{\top}\right)^{-1}$. The following lemma is an exercise in [5, p. 367]:

Lemma 1.8. Let V be a vector space of dimension s over the field K, and let $f \in \operatorname{End}(V)$ be a linear map. Then there exists a symmetric nondegenerate bilinear form β with discriminant $\delta \in\left\{ \pm 1\left(K^{*}\right)^{2}\right\}$ such that f is self-adjoint with respect to β.

Lemma 1.9. Let V be a vector space of dimension s over the field K, and let β be a symmetric non-degenerate bilinear form on V with discriminant δ. If p is odd and $\delta=\left(K^{*}\right)^{2}$ or if $p=2$ and s is odd, then there exists a basis E of V such that the matrix associated to β with respect to E is the identity matrix. If p is odd, -1 is not a square in F and $\delta=-1\left(K^{*}\right)^{2}$, then there exists a basis E of V such that the matrix associated to β with respect to E is the diagonal matrix $B=\operatorname{diag}(-1,1, \ldots, 1)$.

Proof. See [3, pp. 16,20].
In the sequel, if R is an algebra and $w \in R$, the linear map given by right multiplication by w will be denoted by r_{w}.

Lemma 1.10. With the hypotheses and notations of Lemma 1.7, let $V=$ $\mathrm{F}[w]$. There exists a basis $E=\left\{e_{1}, \ldots, e_{s}\right\}$ of V and a matrix $B \in \operatorname{GL}(s, p)$ such that the following hold:
(i) $\iota B \in \operatorname{Aut}(\mathrm{SL}(n, q))$ has order 2 , and it commutes with ϕ.
(ii) The matrix g associated to r_{w} with respect to E is such that $g^{\iota B}=$ g^{-1} and $g^{\phi}=(g z)^{p}$, where $z=c^{\left(q^{k}-1\right) / s} \in\langle g\rangle$. Also, $g^{s}=c$ and $\operatorname{det}(g)=(-1)^{s-1} c$.

Proof. We have that $\mathrm{F}[w]$ is a field of order $q^{s}=p^{m s}$. The field F^{\prime} of fixed points of the automorphism ψ has order p^{s} and we have $\mathrm{F} \cap \mathrm{F}^{\prime}=\mathrm{F}_{p}$, as $(m, s)=1$.

Let $\mathrm{F}^{\prime}=\mathrm{F}_{p}[v]$ and note that $\mathrm{F}[w]=\mathrm{F}[v]$ and that every basis of F^{\prime} over F_{p} is also a basis of $\mathrm{F}[w]$ over F . We may view F^{\prime} as a vector space over F_{p} and consider the linear map $r_{v} \in \operatorname{End}_{\mathrm{F}_{p}}\left(\mathrm{~F}^{\prime}\right)$. By Lemma 1.8 there exists a symmetric non-degenerate bilinear form β on F^{\prime} over F_{p} with discriminant $\delta \in\left\{ \pm 1\left(\mathrm{~F}_{p}^{*}\right)^{2}\right\}$ such that r_{v} is self-adjoint with respect to β. Note that if $p=2$, then s is odd. By Lemma 1.9 we may choose a basis $E=\left\{e_{1}, \ldots, e_{s}\right\}$ of F^{\prime} such that the matrix B associated to β is of the form $B=\operatorname{diag}(\epsilon, 1, \ldots, 1)$, where $\epsilon \in\{ \pm 1\}$. Then the matrix A of r_{v} with respect to this basis satisfies $A^{\top} B=A$.

Now consider $V=\mathrm{F}[v]=\mathrm{F}[w]$. We have that E is a basis for V over F . Also, as $w \in \mathrm{~F}[v], w$ is a linear combination of powers of v, so the matrix g
associated to r_{w} with respect to E is such that $g^{\top B}=g$, that is, $g^{\iota B}=g^{-1}$, as required. Moreover, $B \in \mathrm{GL}\left(s, \mathrm{~F}_{p}\right), B=B^{\top}=B^{-1}$, so that (i) holds.

Next, let $x=\lambda_{1}+\lambda_{2} v+\ldots+\lambda_{s} v^{s-1} \in V$, with $\lambda_{1}, \ldots, \lambda_{s} \in \mathrm{~F}$. As ψ acts trivially on $E \subseteq \mathrm{~F}^{\prime}$, we have $x^{\psi}=\lambda_{1}^{p}+\lambda_{2}^{p} v \ldots+\lambda_{s}^{p} v^{s-1}$, that is, ψ is the semi-linear map associated to the identity matrix and the automorphism ϕ with respect to the basis E. As $w^{\psi}=(z w)^{p}$, the matrix associated to $r_{w^{\psi}}$ is $g^{\phi}=c^{p\left(q^{k}-1\right) / s} g^{p}$, as we wanted to show.

Note that $r_{w^{s}}$ is right multiplication by the scalar c, so $g^{s}=c$ and $x^{s}-c$ is both the minimal polynomial and the characteristic polynomial of g. It follows that $\operatorname{det}(g)=(-1)^{s-1} c$.

Proposition 1.11. Let $d_{1} \mid d, d_{1}=t_{1} l_{1}$, where $t_{1}=\left(d_{1}, t\right)$. Assume that $D \leq \operatorname{PGL}(n, q)$ is such that $G \leq D$ and D / G has order d_{1}. If $\left(m, t_{1}\right)=1$, then G has a complement in $\langle D, \bar{\phi}, \bar{\iota}\rangle$.

Proof. Take $v_{1}, \ldots, v_{n / t_{1}} \in \mathrm{~F}$ and $u \in \mathbb{Z}$ as in Lemma 1.3, and let $c=\lambda^{u}$ and $c_{j}=c v_{j}$. Note that $c_{j}=\lambda^{u+\alpha_{j}(q-1) / l_{1}}$ for some integer α_{j}, and as $\left(u, t_{1}\right)=1$ we have that $\left(u+\alpha_{j} \frac{q-1}{l_{1}}, t_{1}\right)=1$, so by Observation 1.6 the polynomials $x^{t_{1}}-c_{j}$ are irreducible. Now we may apply Lemma 1.10 and find matrices g_{j} and B_{j} such that B_{j} satisfies (i) of Lemma 1.10, $g_{j}^{\iota B_{j}}=g_{j}^{-1}$, $g_{j}^{\phi}=\left(c v_{j}\right)^{p\left(q^{k}-1\right) / t_{1}} g_{j}^{p}$ and $g_{j}^{t_{1}}=c v_{j}$ for $j=1, \ldots, n / t_{1}$. As $l_{1} \left\lvert\, \frac{q^{k}-1}{t_{1}}\right.$, it follows that $v_{j}^{\left(q^{k}-1\right) / t_{1}}=1$, so $g_{j}^{\phi}=c^{p\left(q^{k}-1\right) / t_{1}} g^{p}$. Also, $g_{j}^{d_{1}}=g_{j}^{t_{1} l_{1}}=\left(c v_{j}\right)^{l_{1}}=c^{l_{1}}$. Now consider the matrices

$$
g=\left(\begin{array}{ccc}
g_{1} & & \\
& \ddots & \\
& & g_{n / t_{1}}
\end{array}\right), \quad B=\left(\begin{array}{ccc}
B_{1} & & \\
& \ddots & \\
& & B_{n / t_{1}}
\end{array}\right)
$$

We have that ιB has order 2 and commutes with $\phi, g^{\iota B}=g^{-1}$ and $g^{\phi}=(g z)^{p}$, where $z=c^{\left(q^{k}-1\right) / t_{1}} \in \mathrm{~F}$. Also, $g^{d_{1}}=c^{l_{1}}$ and

$$
\operatorname{det}(g)=\prod_{j=1}^{n / t_{1}} \operatorname{det}\left(g_{j}\right)=\prod_{j=1}^{n / t_{1}}(-1)^{t_{1}-1} \lambda^{u} v_{j}=\lambda^{d / d_{1}}
$$

Then $\bar{C}=\langle\bar{g}, \bar{\phi}, \bar{\iota} \bar{B}\rangle$ is the required complement.
Combining Lemma 1.2 with the special case $d_{1}=d$ of Proposition 1.11 we get:

Theorem 1.12. $\operatorname{PSL}(n, q)$ has a complement in $\operatorname{Aut}(\operatorname{PSL}(n, q))$ if and only if $\left(\frac{q-1}{d}, d, m\right)=1$.

2. The unitary groups

In this section, we will consider the group $G={ }^{2} A_{n-1}(q)=\operatorname{PSU}(n, q)$, for n and q fixed.

Let $\mathrm{F}=\mathrm{F}_{q^{2}}$ be the finite field with q^{2} elements, where $q=p^{m}$ for some prime number p. We fix a generator λ of the multiplicative group of the field F^{*}. Then $\mathrm{U}(n, q)$ (resp. $\mathrm{SU}(n, q)$) will denote the general (resp. special) unitary group of degree n, that is, $\mathrm{U}(n, q)=\left\{g \in \operatorname{GL}\left(n, q^{2}\right) \mid g\left(g^{\top}\right)^{\sigma}=1\right\}$, where $\sigma=\phi^{m} \in \operatorname{Aut}\left(\operatorname{GL}\left(n, q^{2}\right)\right)$, and $\mathrm{SU}(n, q)=\{g \in \mathrm{U}(n, q) \mid \operatorname{det}(g)=1\}$. All other notations, unless otherwise specified, are as in the previous section, and as usual F^{*} is identified with the subgroup of $\operatorname{GL}\left(n, q^{2}\right)$ consisting of scalar matrices.

We have the sequence of normal subgroups

$$
\mathrm{SU}(n, q) \leq \mathrm{U}(n, q) \leq \mathrm{U}(n, q)\langle\phi\rangle,
$$

from which, taking images in $\mathrm{U}(n, q)\langle\phi\rangle \mathrm{F}^{*} / \mathrm{F}^{*}$, we obtain the sequence

$$
\operatorname{PSU}(n, q) \leq \operatorname{PU}(n, q) \leq \mathrm{U}(n, q)\langle\phi\rangle \mathrm{F}^{*} / \mathrm{F}^{*}=\operatorname{Aut}(\operatorname{PSU}(n, q)) .
$$

Also, $\mathrm{PU}(n, q) / G$ is cyclic of order $d=(n, q+1)$ and $\bar{\phi}$ acts on it as the p-th power. We want to prove that G has a complement in $\operatorname{Aut} G$ if and only if $\left(\frac{q+1}{d}, d, m\right)=1$. Letting t be the product of all prime factors of d dividing $\frac{q+1}{d}$, counting multiplicities, this is equivalent to proving that G has a complement in $\operatorname{Aut} G$ if and only if $(t, m)=1$.

Lemma 2.1.
(i) If $g \in \mathrm{U}(n, q)$, then $\operatorname{det}(g)^{q+1}=1$.
(ii) $\mathrm{U}(n, q) \cap \mathrm{F}^{*}=\left\{a \in \mathrm{~F}^{*} \mid a^{q+1}=1\right\}$.
(iii) $\langle\bar{g}\rangle$ is a complement for $\operatorname{PSU}(n, q)$ in $\mathrm{PU}(n, q)$ if and only if $\operatorname{det}(g)=$ $\lambda^{(q-1) u}$, with $(u, d)=1$, and $g^{d} \in \mathrm{~F}^{*}$.
(iv) Assume that G has a complement \bar{C} in Aut G. Then it is possible to choose $g \in \mathrm{U}(n, q)$ and $h \in \mathrm{SU}(n, q)$ such that $\bar{C}=\langle\bar{g}, \bar{\phi} \bar{h}\rangle, \bar{g}^{\bar{\phi} \bar{h}}=\bar{g}^{p}$, $\operatorname{det}(g)=\lambda^{(q-1) u}$, with $(u, d)=1$, and $g^{d},(\phi h)^{2 m} \in \mathrm{~F}^{*}$.

Proof. (i) and (ii) follow directly form the definition of $\mathrm{U}(n, q)$. To obtain (iii) and (iv), we note that, by (i), $\operatorname{det}(g)$ is of the form $\lambda^{(q-1) u}$. The proofs are now analogous to those of Lemma 1.1.

Lemma 2.2. Assume that G has a complement in Aut G. Then $(m, t)=1$.
Proof. Let g, h be as in Lemma 2.1 (iv), so that $\operatorname{det}(g)=\lambda^{(q-1) u}$, with $(u, d)=1$, and $g^{d}=\lambda^{\alpha(q-1)} \in \mathrm{U}(n, q) \cap \mathrm{F}^{*}$ for some natural number α (see Lemma 2.1 (ii)). Taking the determinant on both sides, we obtain $\lambda^{d u(q-1)}=$ $\lambda^{\alpha n(q-1)}$, that is, $d u(q-1) \equiv d \alpha \frac{n}{d}(q-1) \bmod \left(q^{2}-1\right)$, and so $u \equiv \alpha \frac{n}{d} \bmod \frac{q+1}{d}$. If r is a prime such that $r \mid t$, then $r \left\lvert\, \frac{q+1}{d}\right.$ and $r \nmid u$, so $r \nmid \alpha$. It follows that $(\alpha, t)=1$.

We may view ϕh as a ring automorphism of the ring $\operatorname{Mat}\left(n, q^{2}\right)$. As $\bar{g}^{\bar{\phi} \bar{h}}=$ \bar{g}^{p}, we have that $g^{\phi h}=(g z)^{p}$ for some $z \in \mathrm{~F}^{*}$, so ϕh normalizes the subring $\mathrm{F}[g]$ of $\operatorname{Mat}\left(n, q^{2}\right)$. Now the map $\pi: \mathrm{F}[g] \rightarrow \mathrm{F}[g]$, defined by $v^{\pi}=v^{p}$, is also a ring automorphism of $\mathrm{F}[g]$, and $\phi h \pi^{-1}$ is ring automorphism which centralizes F. So $\lambda^{\alpha(q-1)}=g^{d}=\left(g^{d}\right)^{\phi h \pi^{-1}}=\left(g^{\phi h \pi^{-1}}\right)^{d}=(g z)^{d}=\lambda^{\alpha(q-1)} z^{d}$ and $z^{d}=1$. Hence we may assume that $z=\lambda^{\beta\left(q^{2}-1\right) / d}$ for some integer β. As $(\phi h)^{2 m}$ is a scalar matrix and $g^{(\phi h)^{i}}=g^{p^{i}} z^{i p^{i}}$ for each natural number i, we obtain that $g=g^{(\phi h)^{2 m}}=g^{q^{2}} z^{2 m}$, so $g^{q^{2}-1}=z^{-2 m}$. Moreover, $g^{q^{2}-1}=g^{d\left(q^{2}-1\right) / d}=$ $\lambda^{\alpha(q-1)\left(q^{2}-1\right) / d}$, so we have $\alpha(q-1) \frac{q^{2}-1}{d} \equiv-(2 m \beta) \frac{q^{2}-1}{d} \bmod q^{2}-1$. It follows that $\alpha(q-1) \equiv-2 \beta m \bmod d$.

Let r be a prime which divides t. If $r=2$, then $p \neq 2$. Both $\frac{q+1}{d}$ and d are even, so $q+1=p^{m}+1 \equiv 0 \bmod 4$ and m is odd. If $r \neq 2$, then $r|d, r| q+1, r \nmid q-1$, and $r \nmid \alpha$ (by what we have just proved), so $r \nmid m$. It follows that $(m, t)=1$, as we wanted to prove.

We now seek a complement for G in Aut G. We find $g, h \in \mathrm{U}(n, q)$ such that $\operatorname{det}(g)=\lambda^{q-1}, g^{d} \in \mathrm{~F}^{*},(\phi h)^{2 m} \in \mathrm{~F}^{*}$ and $\langle g\rangle$ is normalized by ϕh.

LEMmA 2.3. Assume that $d=t l, d_{1} \mid d, d_{1}=t_{1} l_{1}$, where $t_{1}=\left(d_{1}, t\right)$. Then there exist $v_{1}, \ldots, v_{n / t_{1}} \in\left(\mathrm{~F}^{*}\right)^{q-1}$ and $u \in \mathbb{Z}$ such that $v_{j}^{l_{1}}=1$ for $j=1, \ldots, n / t_{1}$ and

$$
\prod_{j=1}^{n / t_{1}}(-1)^{t_{1}-1} \lambda^{u(q-1)} v_{j}=\lambda^{(q-1) d / d_{1}}
$$

Proof. The proof is analogous to that of Lemma 1.3.
Lemma 2.4. Let $d_{1}=t_{1} l_{1}$ as above. Take $u \in \mathbb{Z}$ and $v_{1}, \ldots, v_{n / t_{1}} \in \mathrm{~F}$ such that $v_{j}^{l_{1}}=1$ for every $j=1, \ldots, n / t_{1}$, and $\prod_{j=1}^{n / t_{1}}(-1)^{t_{1}-1} \lambda^{u(q-1)} v_{j}=$ $\lambda^{(q-1) d / d_{1}}$. Then there exists a matrix $g \in \mathrm{U}(n, q)$ such that $g^{d_{1}} \in \mathrm{~F}^{*}$ and $\operatorname{det}(g)=\lambda^{(q-1) d / d_{1}}$.

Proof. Note that Lemma 2.3 ensures the existence of u and $v_{1}, \ldots, v_{n / t_{1}}$ with the required properties. Then construct the matrix g as in Lemma 1.4, using $c=\lambda^{u(q-1)}$ in place of $c=\lambda^{u}$. It is easy to see that $g_{j}\left(g_{j}^{\top}\right)^{\sigma}=$ $\operatorname{diag}\left(1, \ldots, 1, c_{j}^{q+1}\right)=1$, as $c_{j}^{q+1}=\left(\lambda^{u(q-1)} v_{j}\right)^{q+1}=1$, because $l_{1} \mid q+1$. It follows that $g\left(g^{\top}\right)^{\sigma}=1$, so $g \in \mathrm{U}(n, q)$.

Proposition 2.5. $\operatorname{PSU}(n, q)$ is complemented in $\mathrm{PU}(n, q)$.
Proof. Take $v_{1}, \ldots, v_{n / t} \in \mathrm{~F}$ and $u \in \mathbb{Z}$ as in Lemma 2.3, with $d_{1}=d$ and let g be the matrix constructed in Lemma 2.4. Then $\langle\bar{g}\rangle$ is the required complement.

Lemma 2.6. Let $\mathrm{F}[w]$ be a commutative ring, where w has minimal polynomial $x^{t_{1}}-c$ over F (where t_{1} is as in Lemma 2.3), that is, $\mathrm{F}[w]$ is isomorphic to the quotient of the polynomial ring $\mathrm{F}[x]$ over the ideal $\left(x^{t_{1}}-c\right)$. Let $c=\lambda^{u(q-1)}$ and assume also that $\left(t_{1}, u\right)=\left(t_{1}, m\right)=1$. Then $\mathrm{F}[w]$ has a ring automorphism ψ of order $2 m$ such that $a^{\psi}=a^{p}$ for every $a \in \mathrm{~F}$ and $w^{\psi}=(w z)^{p}$, with $z \in\langle c\rangle$. More specifically, we have:
(i) If t_{1} is odd, let $k \in \mathbb{N}$ be such that $2 m k \equiv-1 \bmod t_{1}$. Then $z=$ $c^{\left(q^{2 k}-1\right) / t_{1}} \in\langle w\rangle$.
(ii) If t_{1} is even let $k \in \mathbb{N}$ be such that k is odd and $m k \equiv-1 \bmod t_{1} / 2$. Then $z=c^{\left(q^{2 k}-1\right) /\left(2 t_{1}\right)} \in\langle w\rangle$.

Proof. (i) In this case $\left(t_{1}, 2 m\right)=1$. Note that, as $t_{1} \mid q+1$, we have that $\left(t_{1}, q-1\right)=1$, so by Observation 1.6 the polynomial $x^{t_{1}}-\lambda^{u(q-1)}$ is irreducible. Then the map $\psi=\pi^{2 m k+1}$ constructed in Lemma 1.7 with $s=t_{1}$ and $2 m$ in place of m has the required properties.
(ii) As $\left(m, \frac{t_{1}}{2}\right)=1$, there exist an odd $k \in \mathbb{N}$ and $s \in \mathbb{Z}$ such that $m k+$ $s \frac{t_{1}}{2}+1=0$.

Let $\epsilon=c^{\left(q^{2 k}-1\right) /\left(2 t_{1}\right)}$. As $q^{2} \equiv 1 \bmod t$, it follows that $1+q^{2}+\cdots+q^{2(k-1)} \equiv$ $k \bmod t$. Also, it is clear that $\left(\frac{q-1}{2}, t_{1}\right)=1$, so if $\alpha=u \frac{q-1}{2}\left(1+q^{2}+\cdots+q^{2(k-1)}\right)$ we have that $\left(\alpha, t_{1}\right)=1$. It follows that $\epsilon=\lambda^{(q-1) u\left(q^{2 k}-1\right) /\left(2 t_{1}\right)}=\lambda^{\alpha\left(q^{2}-1\right) / t_{1}}$ has order t_{1}, so $\epsilon^{t_{1} / 2}=-1$.

Let $b=\lambda^{u(q-1) / 2}$, so that $b^{2}=c$. Then $x_{1}^{t}-c=\left(x^{t_{1} / 2}-b\right)\left(x^{t_{1} / 2}+b\right)$. Consider the ring $K\left[w_{1}\right]$, where w_{1} has minimal polynomial $x^{t_{1} / 2}-b$. Note that, as $\left(u \frac{q-1}{2}, \frac{t_{1}}{2}\right)=1$ and $\frac{t_{1}}{2} \left\lvert\, \frac{q^{2}-1}{2}\right.$, the polynomials $x^{t_{1} / 2}-b$ and $x^{t_{1} / 2}+b$ are irreducible.

We have that $\left(w_{1} \epsilon\right)^{t_{1} / 2}=-b$ and we may assume that $\mathrm{F}[w]$ is the direct product $\mathrm{F}\left[w_{1}\right] \times \mathrm{F}\left[w_{1} \epsilon\right]=\mathrm{F}\left[w_{1}\right] \times \mathrm{F}\left[w_{1}\right]$, as $\epsilon \in \mathrm{F}$. Moreover, we may assume that $w=\left(w_{1}, w_{1} \epsilon\right)$ and that $\mathrm{F} \leq \mathrm{F}[w]$ is identified with the subfield $\tilde{\mathrm{F}}=$ $\{(a, a) \mid a \in \mathrm{~F}\}$ of the direct product.

Define $\psi: \mathrm{F}[w] \rightarrow \mathrm{F}[w]$ by $\left(a_{1}, a_{2}\right)^{\psi}=\left(a_{2}^{p}, a_{1}^{p^{2 m k+1}}\right)$. For every $a \in \mathrm{~F}$ we have that $(a, a)^{\psi}=\left(a^{p}, a^{p^{2 m k+1}}\right)=\left(a^{p}, a^{p}\right)=(a, a)^{p}$, so that ψ acts on $\tilde{\mathrm{F}}$ as the p-th power π. In particular, the order of ψ is at least $2 m$.

We also have that $\left(a_{1}, a_{2}\right)^{\psi^{2}}=\left(a_{1}^{p^{2 m k+2}}, a_{2}^{p^{2 m k+2}}\right)$, so ψ^{2} stabilizes $\mathrm{F}\left[w_{1}\right]$. Moreover, $\psi^{2 m}=\pi^{(2 m k+2) m}=\pi^{-2 s m t_{1} / 2}$. But $\pi^{2 m t_{1} / 2}$ acts trivially on $\mathrm{F}\left[w_{1}\right]$, so ψ has order $2 m$. Note that

$$
w^{\psi} w^{-p}=\left(w_{1}, w_{1} \epsilon\right)^{\psi}\left(w_{1}, w_{1} \epsilon\right)^{-p}=\left(\epsilon^{p}, w_{1}^{p^{2 m k+1}-p} \epsilon^{-p}\right)=\left(\epsilon, w_{1}^{p^{2 m k}-1} \epsilon^{-1}\right)^{p}
$$

and

$$
w_{1}^{p^{2 m k}-1}=w_{1}^{q^{2 k}-1}=w_{1}^{t_{1}\left(q^{2 k}-1\right) / t_{1}}=c^{\left(q^{2 k}-1\right) / t_{1}}=\epsilon^{2} .
$$

Therefore $w^{\psi} w^{-p}=(\epsilon, \epsilon)^{p}$, that is,

$$
w^{\psi}=(g z)^{p}, \quad z=\left(c^{\left(q^{2 k}-1\right) /\left(2 t_{1}\right)}, c^{\left(q^{2 k}-1\right) /\left(2 t_{1}\right)}\right) \in \tilde{\mathrm{F}} \cap\langle w\rangle .
$$

LEMma 2.7. With the hypotheses and notation of Lemma 2.6, there exist two matrices $g, h \in \mathrm{U}\left(t_{1}, q\right)$ such that $g^{t_{1}}=c, \operatorname{det}(g)=(-1)^{t_{1}-1} c, g^{\phi h}=$ $(g z)^{p}$, where $z=c^{\left(q^{2 k}-1\right) / t_{1}} \in\langle g\rangle$ if t_{1} is odd, and $z=c^{\left(q^{2 k}-1\right) /\left(2 t_{1}\right)} \in\langle g\rangle$ if t_{1} is even. Also, $(\phi h)^{2 m}=1$.

Proof. We have that $E=\left\{1, w, w^{2}, \ldots, w^{t_{1}-1}\right\}$ is a basis of $V=\mathrm{F}[w]$ as a vector space over F . The matrix g associated to r_{w} with respect to E is

$$
g=\left(\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & & 0 \\
\vdots & & & \ddots & 0 \\
0 & 0 & 0 & & 1 \\
c & 0 & & 0 & 0
\end{array}\right)
$$

We have that $g \in \mathrm{U}\left(t_{1}, q\right)$, by the same argument as in Lemma 2.4. Also, $g^{t_{1}}=c$ and $\operatorname{det}(g)=(-1)^{t_{1}-1} c$. Note that ψ is a semilinear map associated with the automorphism ϕ of F . We have that $\left(w^{i}\right)^{\psi}=c^{\alpha_{i}}(w)^{i \sigma}$, where $\sigma \in$ $\operatorname{Sym}\left(t_{1}\right)$. So ψ permutes the subspaces $\mathrm{F} w^{i}$. Let h be the matrix associated to the linear map which acts in the same way as ψ on the given basis. Then h is monomial. Also, $h\left(h^{\top}\right)^{\sigma}$ is a diagonal matrix with all non-zero entries of the form $c^{\alpha_{i}(q+1)}=\lambda^{\alpha_{i} u(q-1)(q+1)}=1$, so $h \in \mathrm{U}\left(t_{1}, q\right)$.

Next, note that the group $\Gamma \mathrm{L}(V)$ of semilinear maps is isomorphic to $\Gamma \mathrm{L}(n, q)$ and, with respect to the chosen basis E, we have that ψ corresponds to ϕh, so $(\phi h)^{2 m}=1$. Also, $\langle\phi h\rangle \cap \mathrm{F}^{*}=1$.

Finally, right multiplication by w^{ψ} is right multiplication by $(w z)^{p}$, so $g^{\phi h}=(g z)^{p}$.

Proposition 2.8. Let $d_{1} \mid d$, $d_{1}=t_{1} l_{1}$, where $t_{1}=\left(d_{1}, t\right)$. Let $D \leq$ $\operatorname{PU}(n, q)$ be such that $G \leq D$ and D / G has order d_{1}. If $\left(m, t_{1}\right)=1$, then G has a complement in $\langle D, \overline{\bar{\phi}}\rangle$.

Proof. Take $v_{1}, \ldots, v_{n / t_{1}} \in \mathrm{~F}$ and $u \in \mathbb{Z}$ as in Lemma 2.3, and let $c=$ $\lambda^{u(q-1)}$ and $c_{j}=c v_{j}$. Note that $c_{j}=\lambda^{u(q-1)+\alpha_{j}\left(q^{2}-1\right) / l_{1}}$ for some integer α_{j}, and as $\left(u, t_{1}\right)=1$ and $t_{1} \left\lvert\, \frac{q^{2}-1}{l_{1}}\right.$, we have that $\left(u+\alpha_{j} \frac{q^{2}-1}{l_{1}}, t_{1}\right)=1$, so the hypotheses of Lemma 2.6 are satisfied. Now we may apply Lemma 2.7 and find matrices $g_{j}, h_{j} \in \mathrm{U}\left(t_{1}, q\right)$ such that $\left(\phi h_{j}\right)^{2 m}=1, g_{j}^{\phi h_{j}}=\left(g_{j} z_{j}\right)^{p}$, with $z_{j} \in\left\langle g_{j}\right\rangle$. If t_{1} is odd, we have

$$
z_{j}=c_{j}^{\left(q^{2 k}-1\right) / t_{1}}=\left(c v_{j}\right)^{\left(q^{2 k}-1\right) / t_{1}}=c^{\left(q^{2 k}-1\right) / t_{1}}
$$

for every $j=1, \ldots n / t_{1}$, as $l_{1} \left\lvert\, \frac{q^{2}-1}{t_{1}}\right.$. If t_{1} is even, we have

$$
z_{j}=c_{j}^{\left(q^{2 k}-1\right) /\left(2 t_{1}\right)}=\left(c v_{j}\right)^{\left(q^{2 k}-1\right) /\left(2 t_{1}\right)}=c^{\left(q^{2 k}-1\right) /\left(2 t_{1}\right)}
$$

for every $j=1, \ldots n / t_{1}$, as $l_{1} \left\lvert\, \frac{q^{2}-1}{2 t_{1}}\right.$ (where l_{1} is odd). Also, $g_{j}^{d_{1}}=g_{j}^{t_{1} l_{1}}=$ $\left(c v_{j}\right)^{l_{1}}=c^{l_{1}}$.

Now consider the matrices

$$
g=\left(\begin{array}{ccc}
g_{1} & & \\
& \ddots & \\
& & g_{n / t_{1}}
\end{array}\right), \quad h=\left(\begin{array}{ccc}
h_{1} & & \\
& \ddots & \\
& & h_{n / t_{1}}
\end{array}\right)
$$

We have that $g, h \in \mathrm{U}(n, q),(\phi h)^{2 m}=1$ and $g^{\phi h}=(g z)^{p}$, where $z \in \mathrm{~F} \cap\langle g\rangle$. Also, $g^{d_{1}}=c^{l_{1}}$ and

$$
\operatorname{det}(g)=\prod_{j=1}^{n / t_{1}} \operatorname{det}\left(g_{j}\right)=\prod_{j=1}^{n / t_{1}}(-1)^{t_{1}-1} \lambda^{u(q-1)} v_{j}=\lambda^{(q-1) d / d_{1}}
$$

Then $\bar{C}=\langle\bar{g}, \bar{\phi} \bar{h}\rangle$ is the required complement.

Combining Lemma 2.2 with the special case $d_{1}=d$ of Proposition 2.8 we get:

Theorem 2.9. $\operatorname{PSU}(n, q)$ has a complement in $\operatorname{Aut}(\operatorname{PSU}(n, q))$ if and only if $\left(\frac{q+1}{d}, d, m\right)=1$.

3. Untwisted groups of Lie type

In the following, we denote by F_{q} the finite field of order $q=p^{m}$, with p a prime and m a positive integer. Moreover, we denote by λ a generator of the multiplicative group of F_{q}. Let Φ be a root system corresponding to a simple Lie algebra L over the complex field \mathbb{C}, and let us consider a fundamental system $\Pi=\left\{a_{1}, \ldots, a_{l}\right\}$ in Φ. For any choice of Π and for any finite field F_{q}, we let $L(q)$ denote the corresponding finite group (where L denotes the type of the group; i.e., $\left.L=A_{l}, B_{l}, C_{l}, D_{l}, E_{6}, E_{7}, E_{8}, F_{4}, G_{2}\right)$.

We assume that for the various possible root systems the elements of Π are labelled in such a way that $(a, a)=2$ and $(a, b)=0$ for each pair of roots in
Π, with the following exceptions:

$$
\begin{aligned}
& A_{l}:\left(a_{i}, a_{i+1}\right)=-1 \text { for } 1 \leq i \leq l-1 ; \\
& B_{l}:\left(a_{1}, a_{1}\right)=1,\left(a_{i}, a_{i+1}\right)=-1 \text { for } 1 \leq i \leq l-1 ; \\
& C_{l}:\left(a_{i}, a_{i}\right)=1,\left(a_{i}, a_{i+1}\right)=-1 / 2 \text { for } 1 \leq i \leq l-2 \\
& \quad\left(a_{l-1}, a_{l-1}\right)=-\left(a_{l-1}, a_{l}\right)=1 ; \\
& D_{l}:\left(a_{1}, a_{3}\right)=\left(a_{i}, a_{i+1}\right)=-1 \text { for } 2 \leq i \leq l-1 \\
& E_{l}:\left(a_{i}, a_{i+1}\right)=\left(a_{l-3}, a_{l}\right)=-1 \text { for } 1 \leq i \leq l-2 \\
& F_{4}:\left(a_{1}, a_{1}\right)=\left(a_{2}, a_{2}\right)=1,\left(a_{1}, a_{2}\right)=-1 / 2 \\
& \quad\left(a_{2}, a_{3}\right)=\left(a_{3}, a_{4}\right)=-1 ; \\
& G_{2}:\left(a_{1}, a_{1}\right)=2 / 3,\left(a_{1}, a_{2}\right)=-1
\end{aligned}
$$

The Chevalley group $L(q)$, viewed as a group of automorphisms of a Lie algebra L_{K} over the field $K=\mathrm{F}_{q}$, obtained from a simple Lie algebra L over the complex field \mathbb{C}, is the group generated by certain automorphisms $x_{r}(t)$, where t runs over F_{q} and r runs over the root system Φ associated to L. For each $r \in \Phi, X_{r}=\left\{x_{r}(t) \mid t \in \mathrm{~F}_{q}\right\}$ is a subgroup of $L(q)$ isomorphic to the additive group of the field. X_{r} is called a root subgroup, and the group $L(q)$ is generated by the root-subgroups $X_{r}, \pm r \in \Pi$. In the following we will use the notations and the terminology introduced in [1].

Let us recall some facts about the automorphism group of $L(q)$.
Any automorphism σ of the field F_{q} induces a field automorphism (also denoted by σ) of $L(q)$, defined by

$$
\left(x_{r}(t)\right)^{\sigma}=x_{r}\left(t^{\sigma}\right)
$$

The set of the field automorphisms of $L(q)$ is a cyclic group of order m generated by the Frobenius automorphism ϕ.

We recall that a symmetry of the Dynkin diagram of $L(q)$ is a permutation ρ of the nodes of the diagram, such that the number of bonds joining nodes i, j is the same as the number of bonds joining nodes $i \rho, j \rho$, for any $i \neq j$. A non trivial symmetry ρ of the Dynkin diagram can be extended to a map of the space $\langle\Phi\rangle$ into itself, which we also denote by ρ. This map yields an outer automorphism ϵ of $L(q) ; \epsilon$ is said to be a graph automorphism of $L(q)$. If $L(q)$ is $A_{l}(q), l \geq 2, D_{l}(q)$ or $E_{6}(q)$, then $\left(x_{r}(t)\right)^{\epsilon}=x_{r \rho}\left(\gamma_{r} t\right)$, where $r \in$ $\Phi, t \in \mathrm{~F}_{q}, \gamma_{r} \in \mathbb{Z}$. Moreover, the γ_{r} can be chosen so that $\gamma_{r}=1$ if $r \in \Pi$, and $\gamma_{r}=-1$ if $-r \in \Pi$.

Let $P=\mathbb{Z} \Phi$ be the additive group generated by the roots in Φ; a homomorphism from P into the multiplicative group F_{q}^{*} will be called an F_{q}-character of P. From each F_{q}-character χ of P arises a diagonal automorphism $h(\chi)$ of $L(q)$ which maps $x_{r}(t)$ to $x_{r}(\chi(r) t)$. The automorphisms of the form $h(\chi)$ form an abelian subgroup \hat{H} of the full automorphism group of $L(q)$. Now consider the additive group Q generated by the fundamental weights $\lambda_{1}, \ldots, \lambda_{l}$.

Any element of P is an integral combination of $\lambda_{1}, \ldots, \lambda_{l}$. (More precisely, $a_{i}=\sum_{1<j<l} A_{j i} \lambda_{j}$, where $\left(A_{i j}\right)$ is the Cartan matrix of L.) Thus P is a subgroup of Q. Every F_{q}-character of Q gives rise to an F_{q}-character of P by restriction. However, an F_{q}-character of P need not be the restriction of some F_{q}-character of Q. More precisely, if an F_{q}-character of P, say χ, can be extended to an F_{q}-character of Q, then the automorphism $h(\chi)$ is inner, and vice versa. In the following we will often apply the above criterion to decide whether a diagonal automorphism $h(\chi)$ is inner; this will be done using the information coming from the Cartan matrix. Namely, if $\chi\left(a_{i}\right)=\lambda^{\alpha_{i}}, 1 \leq i \leq l$, then χ can be extended to a F_{q}-character of Q by setting $\chi\left(\lambda_{i}\right)=\lambda^{\beta_{i}}$ for $1 \leq i \leq l$ if and only the integers $\beta_{1}, \ldots, \beta_{l}$ satisfy the conditions $\alpha_{i} \equiv \sum_{1 \leq j \leq l} A_{j i} \beta_{j} \bmod q-1$ for $1 \leq i \leq l$.

We denote by H the group of the diagonal automorphisms that are inner and by d the order of the abelian group \hat{H} / H. The value of d is given by the following table.

$L(q)$	d
$A_{l}(q)$	$(l+1, q-1)$
$B_{l}(q)$	$(2, q-1)$
$C_{l}(q)$	$(2, q-1)$
$D_{l}(q)$	$\left(4, q^{l}-1\right)$
$E_{6}(q)$	$(3, q-1)$
$E_{7}(q)$	$(2, q-1)$
$E_{8}(q)$	1
$G_{2}(q)$	1
$F_{4}(q)$	1

The main result about the automorphism group of $L(q)$ is as follows:
For each automorphism $\theta \in \operatorname{Aut} L(q)$ there exist an inner automorphism i, a diagonal automorphism h, a field automorphism f and a graph automorphism ϵ, such that $\theta=i h f \epsilon$; moreover,

$$
L(q) \unlhd\langle L(q), \hat{H}\rangle \unlhd\langle L(q), \hat{H}, \phi\rangle \unlhd \operatorname{Aut} L(q)
$$

We will prove the following result:
Theorem 3.1. Suppose that $q=p^{m}$ and let $L(q)$ be an untwisted group of Lie type. Define $\tilde{q}=q^{l}$ if $L=D_{l}$, and $\tilde{q}=q$ otherwise. Then $L(q)$ has a complement in Aut $L(q)$ if and only if the following condition is satisfied:

$$
\begin{equation*}
\left(\frac{\tilde{q}-1}{d}, d, m\right)=1 . \tag{*}
\end{equation*}
$$

We have already proved that this is true for $A_{l}(q) \cong \operatorname{PSL}(l+1, q)$. In this section we discuss the remaining cases.

The subgroup $\langle L(q), \hat{H}\rangle$ of inner-diagonal automorphisms is always complemented in Aut $L(q)$, so we only have to deal with the cases when $d \neq 1$.

We first prove that the condition $(*)$ is necessary in order for $L(q)$ to have a complement.

As had already been noticed by Pandya [6, Lemma 3.5], Lang's Theorem implies the following result.

Lemma 3.2. Suppose that $L(q)$ has a complement X in Aut $L(q)$. Then there exists $g \in L(q)$ such that the Frobenius automorphism ϕ belongs to X^{g}.

Thus, if $L(q)$ has a complement X in Aut $L(q)$, we may assume without loss of generality that $\phi \in X$. In particular, $Y=\langle L(q), \hat{H}\rangle \cap X$ is a subgroup of X isomorphic to \hat{H} / H and normalized by ϕ. We will show that this is possible only if $(\tilde{q}-1 / d, d, m)=1$. To this end we use the Bruhat Decomposition. As is well known, if N is the normalizer of H in $L(q)$, then there exists a homomorphism from N onto the Weyl group W of L, with kernel H. For each $w \in W$ we fix an element $n_{w} \in N$ which maps to w under this homomorphism and such that $\left[n_{w}, \phi\right]=1$. Let $U=\left\langle X_{r} \mid r \in \Pi\right\rangle$ and let U_{w} be the subgroup generated by those root subgroups X_{r} for which r is positive and $r w$ is negative. Each element x of $\langle L(q), \hat{H}\rangle$ has a unique representation in the form $x=u_{1} h(\chi) n_{w} u$, where $u_{1} \in U, h(\chi) \in \hat{H}, w \in W, u \in U_{w}$.

Lemma 3.3. Suppose that $L(q)=B_{l}(q), C_{l}(q)$, or $E_{7}(q)$ and that there exists a complement Y of $L(q)$ in $\langle L(q), \hat{H}\rangle$ normalized by the Frobenius automorphism ϕ. Then ($*$) is satisfied.

Proof. We may assume $d \neq 1$. Hence $d=(q-1,2)=2$ and $q=p^{m}$ with p an odd prime. In this case $Y=\langle x\rangle$, with $|x|=2$. Using the Bruhat Decomposition we may write x in the form $x=u_{1} h(\chi) n_{w} u$ with $u_{1} \in U$ and $u \in U_{w}$. Then

$$
x=x^{\phi}=u_{1}^{\phi} h(\chi)^{\phi} n_{w}^{\phi} u^{\phi}=u_{1}^{\phi} h(\chi)^{\phi} n_{w} u^{\phi} .
$$

Note that $u_{1}^{\phi} \in U$ and $u^{\phi} \in U_{w}$, so by the uniqueness of the representation of x we deduce $h(\chi)^{\phi}=h(\chi)$, and this implies $\chi^{p}=\chi$. Since $x \notin L(q)$, we have $h(\chi) \in \hat{H} \backslash H$, which implies that there exists $1 \leq i \leq l$ with $\chi\left(a_{i}\right)=\lambda^{s}$ for an odd integer s. Therefore $s p \equiv s \bmod q-1$. Hence $(q-1)_{2} \leq(p-1)_{2}$, and this is possible only if m is odd. To conclude the proof, it is enough to notice that if $d=2$, then $(q-1 / d, d, m)=1$ if and only if m is odd.

Lemma 3.4. Suppose that $L(q)=D_{l}(q)$ with l even and that there exists a complement Y of $L(q)$ in $\langle L(q), \hat{H}\rangle$ normalized by the Frobenius automorphism ϕ. Then (*) is satisfied.

Proof. Again we may assume $d \neq 1$. In this case $d=4, \hat{H} / H \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and ϕ centralizes \hat{H} / H. In particular, Y contains an element x of order 2 centralized by ϕ. Arguing as in Lemma 3.3, we deduce that m is odd, and this is equivalent to the condition that $\left(q^{l}-1 / 4,4, m\right)=1$.

Lemma 3.5. Suppose that $L(q)=D_{l}(q)$ with l odd and that there exists a complement Y of $L(q)$ in $\langle L(q), \hat{H}\rangle$ normalized by the Frobenius automorphism ϕ. Then (*) is satisfied.

Proof. Again it is enough to prove that either $d=1$ or m is odd. Assume $d \neq 1$. Then \hat{H} / H is cyclic of order $d \in\{2,4\}$. Let x be a generator of Y. If $[\phi, x]=1$ we may repeat the argument of Lemma 3.3 to deduce that m is odd. So assume that ϕ does not centralize x. This occurs only if $d=4, p \equiv 3 \bmod 4$, and m is even. In this case we take an element $y \in Y$ of order 2 and write y in the form $y=u_{1} h(\chi) n_{w} u$ with $u_{1} \in U$ and $u \in U_{w}$. As ϕ centralizes y, using the uniqueness of this representation, we deduce $\chi^{p}=\chi$. Since $y \notin L(q)$, we have $h(\chi) \in \hat{H} \backslash H$, which implies that there exists $1 \leq i \leq l$ with $\chi\left(a_{i}\right)=\lambda^{s}$, for some integer s not divisible by 4. Therefore $s p \equiv s \bmod q-1$. Hence $(q-1)_{2} \leq(s(p-1))_{2} \leq 4$, but this is impossible, since if $p \equiv 3 \bmod 4$ and m is even, then $q \equiv 1 \bmod 8$.

Lemma 3.6. Suppose that $L(q)=E_{6}(q)$ and that there exists a complement Y of $L(q)$ in $\langle L(q), \hat{H}\rangle$ normalized by the Frobenius automorphism ϕ. Then (*) is satisfied.

Proof. In this case $d=(3, q-1)$ and $(*)$ is equivalent to the condition that either $d=1$ or $(3, m)=1$. Suppose that $d \neq 1 . \hat{H} / H$ is cyclic of order 3. Let x be a generator of Y and write x in the form $x=u_{1} h(\chi) n_{w} u$ with $u_{1} \in U$ and $u \in U_{w}$. Since ϕ^{2} centralizes x, arguing as in the proof of Lemma 3.3 we deduce $h(\chi)^{\phi^{2}}=h(\chi)$, and this implies $\chi^{p^{2}}=\chi$. Since $x \notin L(q)$, we have $h(\chi) \in \hat{H} \backslash H$, which implies that there exists $1 \leq i \leq 6$ with $\chi\left(a_{i}\right)=\lambda^{s}$ for an integer s not divisible by 3 . Therefore $s p^{2} \equiv s \bmod q-1$. Hence $(q-1)_{3} \leq\left(p^{2}-1\right)_{3}$, which implies $(3, m)=1$.

It remains to prove that if $(*)$ is satisfied, then $L(q)$ has a complement in Aut $L(q)$. As we have already noticed, $\langle L(q), \hat{H}\rangle$ is always complemented in Aut $L(q)$, so we only have to consider the case when $d \neq 1$.

We first recall the following useful result (see [1, Theorem 7.2.2]):
LEMMA 3.7. If $n \in N$ and n maps to w under the natural homomorphism from N onto W, then $h(\chi)^{n}=h\left(\chi^{w}\right)$, where $\chi^{w}(r)=\chi(r w)$ for each $r \in \Phi$.

For any $r \in \Phi$ let w_{r} be the reflection in the hyperplane orthogonal to r and let $n_{r}=x_{r}(1) x_{-r}(-1) x_{r}(1)$. Then $n_{r} \in N$ and n_{r} maps to w_{r} under the
natural homomorphism from N onto W. In the following we write w_{i}, n_{i} in place of $w_{a_{i}}, n_{a_{i}}$, for any $a_{i} \in \Pi$.

Lemma 3.8. If $L(q)=B_{l}(q)$ and $(*)$ is satisfied, then there is a complement X of $L(q)$ in Aut $L(q)$.

Proof. We may assume $d=2$ (in which case $L(q)$ has no graph automorphism). Let μ be a generator of the 2 -Sylow subgroup of F_{q}^{*} and define χ by $\chi\left(a_{1}\right)=\mu, \chi\left(a_{2}\right)=\mu^{-1}$, and $\chi\left(a_{i}\right)=1$ for $i>2$. Consider the element $x=h(\chi) n_{1}$. We have $n_{1}^{2}=h_{1}(-1)=1$ (see [4, p. 20]), $\chi^{w_{1}}\left(a_{1}\right)=$ $\chi\left(a_{1} w_{1}\right)=\chi\left(-a_{1}\right)=\mu^{-1}$ and $\chi^{w_{1}}\left(a_{2}\right)=\chi\left(a_{1} w_{1}\right)=\chi\left(2 a_{1}+a_{2}\right)=\mu$. Hence $x^{2}=h(\chi) h(\chi)^{n_{1}}=h(\chi) h\left(\chi^{w_{1}}\right)=1$. Moreover, since $(*)$ is satisfied, we have $(q-1)_{2}=(p-1)_{2}$, so $\mu^{p}=\mu$ and $[x, \phi]=1$. We claim that $x \notin L(q)$. Indeed, if $x \in L(q)$, then $h(\chi) \in H$, and χ could be extended to an $\mathrm{F}_{q^{-}}$ character of Q; as $2 \lambda_{1}=l a_{1}+(l-1) a_{2}+\cdots+a_{l}$, we would then have $\chi\left(\lambda_{1}\right)^{2}=\chi\left(l a_{1}+(l-1) a_{2}\right)=\mu \in \mathrm{F}_{q}^{2}$, a contradiction. But then $X=\langle x, \phi\rangle$ is a complement for $L(q)$ in Aut $L(q)$.

Lemma 3.9. If $L(q)=C_{l}(q)$ and $(*)$ is satisfied, then there is a complement X of $L(q)$ in Aut $L(q)$.

Proof. We may assume $d=2$. Let μ be a generator of the 2-Sylow subgroup of F_{q}^{*} and define χ by $\chi\left(a_{i}\right)=\mu$ if $i \equiv 1 \bmod 4, \chi\left(a_{i}\right)=\mu^{-1}$ if $i \equiv 3 \bmod 4$, $\chi\left(a_{i}\right)=1$ if i is even and $i \neq l$, and $\chi\left(a_{l}\right)=\chi\left(a_{l-1}\right)^{-1}$ if l is even. Let $n=n_{1} n_{3} \ldots n_{k}$ with $k=2\left[\frac{l-1}{2}\right]+1$ and consider the element $x=h(\chi) n$. Let $w=w_{1} w_{3} \ldots w_{k}$. Then $\chi^{w}\left(a_{i}\right)=\chi\left(a_{i} w\right)=\chi\left(-a_{i}\right)$ if i is odd, $\chi^{w}\left(a_{i}\right)=$ $\chi\left(a_{i} w\right)=\chi\left(a_{i-1}+a_{i}+a_{i+1}\right)=1$ if i is even and $i \neq l$, and $\chi^{w}\left(a_{l}\right)=\chi\left(a_{l} w\right)=$ $\chi\left(2 a_{l-1}+a_{l}\right)=\chi\left(a_{l}\right)^{-1}$ if l is even. Since $n^{2}=h_{1}(-1) h_{3}(-1) \ldots h_{k}(-1)=1$ (see [4, p. 20]), we have $x^{2}=h(\chi) h(\chi)^{n}=h(\chi) h\left(\chi^{w}\right)=1$. Moreover, since $(*)$ is satisfied, $(q-1)_{2}=(p-1)_{2}$, so $\mu^{p}=\mu$ and $[x, \phi]=1$. We claim that $x \notin L(q)$. Indeed, if $x \in L(q)$, then $h(\chi) \in H$, and χ could be extended to an F_{q}-character of Q; as $2 \lambda_{1}-a_{l} \in\left\langle 2 a_{1}, 2 a_{2}, \ldots, 2 a_{l-1}\right\rangle$ we would then have $\chi\left(a_{l}\right) \equiv \chi\left(\lambda_{1}\right)^{2} \bmod \mathrm{~F}_{q}^{2}$, and hence $\chi\left(a_{l}\right) \in \mathrm{F}_{q}^{2}$, a contradiction. But then $X=\langle x, \phi\rangle$ is a complement for $L(q)$ in Aut $L(q)$.

Lemma 3.10. If $L(q)=E_{7}(q)$ and $(*)$ is satisfied, then there is a complement X of $L(q)$ in Aut $L(q)$.

Proof. We may assume $d=2$. Let μ be a generator of the 2-Sylow subgroup of F_{q}^{*} and define χ by $\chi\left(a_{1}\right)=\chi\left(a_{7}\right)=\mu, \chi\left(a_{3}\right)=\mu^{-1}$, and $\chi\left(a_{i}\right)=1$ otherwise. Let $n=n_{1} n_{3} n_{7}$ and consider the element $x=h(\chi) n$. Let $w=$ $w_{1} w_{3} w_{7}$. Then $\chi^{w}\left(a_{i}\right)=\chi\left(a_{i} w\right)=\chi\left(-a_{i}\right)$ if $i \in\{1,3,7\}, \chi^{w}\left(a_{i}\right)=\chi\left(a_{i} w\right)=$ $\chi\left(a_{i}\right)=1$ if $i \in\{5,6\}, \chi^{w}\left(a_{2}\right)=\chi\left(a_{2} w\right)=\chi\left(a_{1}+a_{2}+a_{3}\right)=1$, and $\chi^{w}\left(a_{4}\right)=$ $\chi\left(a_{4} w\right)=\chi\left(a_{3}+a_{4}+a_{7}\right)=1$. Since $n^{2}=h_{1}(-1) h_{3}(-1) h_{7}(-1)=1$ (see
[4, p. 20]), we have $x^{2}=h(\chi) h(\chi)^{n}=h(\chi) h\left(\chi^{w}\right)=1$. Moreover, since $(*)$ is satisfied, $(q-1)_{2}=(p-1)_{2}$, so $\mu^{p}=\mu$ and $[x, \phi]=1$. We claim that $x \notin L(q)$. Indeed, if $x \in L(q)$, then $h(\chi) \in H$, and χ could be extended to an F_{q}-character of Q; as $2 \lambda_{1}=3 a_{1}+4 a_{2}+5 a_{3}+6 a_{4}+4 a_{5}+2 a_{6}+3 a_{7}$, we would then have $\chi\left(\lambda_{1}\right)^{2}=\chi\left(3 a_{1}+5 a_{3}+3 a_{7}\right)=\mu \in \mathrm{F}_{q}^{2}$, a contradiction. But then $X=\langle x, \phi\rangle$ is a complement for $L(q)$ in Aut $L(q)$.

Lemma 3.11. If $L(q)=E_{6}(q)$ and $(*)$ is satisfied, then there is a complement X of $L(q)$ in Aut $L(q)$.

Proof. We may assume $d=3$. Consider the subgroup $S=\left\langle X_{a_{i}}, X_{-a_{i}}\right|$ $1 \leq i \leq 5\rangle$ of $E_{6}(q)$ and let T be the subgroup of Aut $E_{6}(q)$ consisting of the elements of the form $\operatorname{sh}(\chi)$ with $s \in S$ and $\chi\left(a_{6}\right)=1$. Let $Z=Z(S)$. Then Z is cyclic of order 2 , generated by $z=h_{a_{1}}(-1) h_{a_{3}}(-1) h_{a_{5}}(-1)$. Moreover, $S \cong \mathrm{SL}(6, q) /\langle\omega\rangle$ with ω a primitive 3 rd root of unity in $\mathrm{F}_{q}, S / Z \cong$ $A_{5}(q) \cong \operatorname{PSL}(6, q), T$ normalizes S and acts by conjugation on $S / Z \cong A_{5}(q)$ as the group of the inner-diagonal automorphism of $A_{5}(q)$. We have proved in Proposition 1.11 that if $(*)$ is satisfied, then there exist $g_{1} \in \mathrm{GL}(6, q) \backslash \mathrm{SL}(6, q)$ and $g_{2} \in \operatorname{SL}(6, q)$ such that $\left(\iota g_{2}\right)^{2}=1,\left[\iota g_{2}, \phi\right]=1, \phi$ and ιg_{2} normalize $\left\langle g_{1}\right\rangle$ and $g_{1}^{3} \in Z(\operatorname{SL}(6, q))$. Thus there exist an element $y \in S$, centralized by ϕ and such that $y \epsilon$ has order 2 (where ϵ is the graph automorphism of $L(q)$), and an element $x=\operatorname{sh}(\chi) \in T$ such that $x \notin S, x^{3} \in Z$, and $\langle x\rangle$ is normalized by ϕ and by $y \epsilon$. We claim that $X=\left\langle x^{2}, \phi, y \epsilon\right\rangle$ is a complement for $L(q)$ in Aut $L(q)$. We only have to prove that $x^{2} \notin L(q)$. Since $x \notin S$, we have $\chi\left(a_{1}\right) \chi\left(a_{2}\right)^{-1} \chi\left(a_{4}\right) \chi\left(a_{5}\right)^{-1} \notin \mathrm{~F}_{q}^{3}$. If $x^{2} \in L(q)$, then $h\left(\chi^{2}\right) \in H$, and χ^{2} could be extended to a F_{q}-character $\bar{\chi}$ of Q; as $3 \lambda_{1}=4 a_{1}+5 a_{2}+6 a_{3}+4 a_{4}+2 a_{5}+3 a_{6}$, we would then have $\left(\chi\left(a_{1}\right) \chi\left(a_{2}\right)^{-1} \chi\left(a_{4}\right) \chi\left(a_{5}\right)^{-1}\right)^{2} \equiv \bar{\chi}\left(\lambda_{1}\right)^{3} \bmod \mathrm{~F}_{q}^{3}$, a contradiction.

Lemma 3.12. If $L(q)=D_{l}(q)$ with l even and $(*)$ is satisfied, then there is a complement X of $L(q)$ in $\langle L(q), \hat{H}\rangle$, which is normalized by the Frobenius and the graph automorphisms.

Proof. We may assume $d \neq 1$. In this case $\hat{H} / H \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Moreover, if χ is an F_{q}-character of P with $\chi\left(a_{i}\right)=1$ for $i>4$ then $h(\chi) \in H$ only if $\chi\left(a_{i}\right) \chi\left(a_{j}\right) \in \mathrm{F}_{q}^{2}$ for each $(i, j) \in\{(1,2,4)\}^{2}$. Let μ be a generator of the Sylow 2-subgroup of the multiplicative group of the field F_{q}. For $i \in\{1,2,4\}$ let χ_{i} be the F_{q}-character of P defined by $\chi_{i}\left(a_{3}\right)=\mu^{-1}, \chi_{i}\left(a_{i}\right)=1$, and $\chi_{i}\left(a_{j}\right)=\mu$ if $j \notin\{i, 3\}$. Consider the elements $x_{1}=h\left(\chi_{1}\right) n_{2} n_{4}, x_{2}=h\left(\chi_{2}\right) n_{1} n_{4}$, and $x_{4}=h\left(\chi_{4}\right) n_{1} n_{2}$, It can be easily verified that x_{1}, x_{2}, x_{4} generate a complement X of $L(q)$ in $\langle L(q), \hat{H}\rangle$. Since $(q-1 / 2,2, m)=1,(q-1) /(p-1)$ is odd and $\mu^{\phi}=\mu$. This implies that X is centralized by the field automorphisms. Any graph automorphism ϵ of $D_{l}(q)$ arises from a permutation of the roots a_{1}, a_{2} when $l \neq 4$, and from a permutation of the roots a_{1}, a_{2}, a_{4} when $l=4$. This
automorphism ϵ permutes in the same way the three generators x_{1}, x_{2}, x_{4} of X, so X is normalized by the graph automorphisms.

Lemma 3.13. If $L(q)=D_{l}(q)$ with l odd and $(*)$ is satisfied, then there is a complement X of $L(q)$ in Aut $L(q)$.

Proof. We may assume $d=(4, q-1) \neq 1$. We first deal with the case $d=2$. Consider the subgroup $S=\left\langle X_{a_{i}}, X_{-a_{i}} \mid 1 \leq i \leq 3\right\rangle$ of $D_{l}(q)$ and let T be the subgroup of Aut $D_{l}(q)$ consisting of the elements of the form $\operatorname{sh}(\chi)$ with $s \in S$ and $\chi\left(a_{i}\right)=1$ for $i \geq 4$. Then $S \cong A_{3}(q) \cong \operatorname{PSL}(4, q)$ and T acts by conjugation on S as the group of the inner-diagonal automorphism of S. We have proved in Theorem 1.12 that if $(*)$ is satisfied, then there exists a complement $\langle x\rangle$ of $\operatorname{PSL}(4, q)$ in $\operatorname{PGL}(4, q)$, normalized by ϕ and ι. When we identify $\operatorname{PSL}(4, q)$ with $A_{3}(q)$, the automorphism ι can be written as the product of an inner automorphism centralized by ϕ with the graph automorphism. Note that the graph automorphism ϵ of $D_{l}(q)$ centralizes the root subgroup $X_{a_{i}}, 3 \leq i \leq l$, and acts on T as the graph automorphism of $A_{3}(q)$. Thus there exist an element $y \in S$, centralized by ϕ and such that $y \epsilon$ has order 2 , and an element $x=\operatorname{sh}(\chi) \in T$ of order d modulo S, which generate a subgroup normalized by $y \epsilon$ and ϕ. We claim that $X=\langle x, \phi, y \epsilon\rangle$ is a complement for $L(q)$ in Aut $L(q)$. We only have to prove that $x \notin L(q)$. Since $x \notin S$, we have $\chi\left(a_{1}\right) \chi\left(a_{2}\right) \notin \mathrm{F}_{q}^{2}$. If $x \in L(q)$, then χ could be extended to a F_{q}-character $\bar{\chi}$ of Q; as $4 \lambda_{1} \in a_{1}+a_{2}+2\left\langle a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{l}\right\rangle$, we would then have $\chi\left(a_{1}\right) \chi\left(a_{2}\right) \equiv \bar{\chi}\left(\lambda_{1}\right)^{4} \bmod \mathrm{~F}_{q}^{2}$, which implies $\chi\left(a_{1}\right) \chi\left(a_{2}\right) \in \mathrm{F}_{q}^{2}$, a contradiction.

Now assume $d=(q-1,4)=4$. Let μ be a generator of the 2-Sylow subgroup of F_{q}^{*} and define χ by $\chi\left(a_{2}\right)=\mu, \chi\left(a_{1}\right)=\chi\left(a_{3}\right)=1, \chi\left(a_{i}\right)=1$ if i is even and $i \neq 2, \chi\left(a_{i}\right)=-\mu^{-1}$ if i is odd, $i>3$ and $i \equiv 1 \bmod 4$, and $\chi\left(a_{i}\right)=-\mu$ if i is odd, $i>3$ and $i \equiv 3 \bmod 4$. Let $n=n_{1} n_{3} n_{2} n_{5} n_{7} \ldots n_{l}$ and consider the element $x=h(\chi) n$. Since $n^{4}=1$, we have $x^{4}=(h(\chi) n)^{4}=$ $h(\chi) h(\chi)^{n} h(\chi)^{n^{2}} h(\chi)^{n^{3}}=h\left(\chi \chi^{w} \chi^{w^{2}} \chi^{w^{3}}\right)$, where $w=w_{1} w_{3} w_{2} w_{5} w_{7} \ldots w_{l}$. But $a_{i}\left(1+w+w^{2}+w^{3}\right)=0$ if i is odd or $i=2, a_{4}\left(1+w+w^{2}+w^{3}\right)=$ $2\left(a_{1}+a_{2}+2 a_{3}+2 a_{4}+a_{5}\right)$ and $a_{i}\left(1+w+w^{2}+w^{3}\right)=2\left(a_{i-1}+2 a_{i}+\right.$ a_{i+1}) if i is even and $i>4$. Hence $\chi \chi^{w} \chi^{w^{2}} \chi^{w^{3}}=1$ and $x^{4}=1$. Moreover, $x^{\epsilon} x=h(\chi)^{\epsilon} n^{\epsilon} h(\chi) n=h(\chi)^{\epsilon} h_{5}(-1) h_{7}(-1) \ldots h_{l}(-1) h(\chi)^{n}=h\left(\bar{\chi} \psi \chi^{w}\right)$, where $\bar{\chi}\left(a_{1}\right)=\chi\left(a_{2}\right), \bar{\chi}\left(a_{2}\right)=\chi\left(a_{1}\right)$, and $\bar{\chi}\left(a_{i}\right)=\chi\left(a_{i}\right)$ otherwise, $\psi\left(a_{4}\right)=$ -1 , and $\psi\left(a_{i}\right)=1$ otherwise. Now,

$$
\begin{aligned}
& \bar{\chi} \psi \chi\left(a_{1}\right)=\chi\left(a_{2}\right) \chi\left(a_{1} w\right)=\chi\left(a_{2}\right) \chi\left(-a_{1}-a_{2}-a_{3}\right)=1, \\
& \bar{\chi} \psi \chi\left(a_{2}\right)=\chi\left(a_{1}\right) \chi\left(a_{2} w\right)=\chi\left(a_{3}\right)=1, \\
& \bar{\chi} \psi \chi\left(a_{3}\right)=\chi\left(a_{3}\right) \chi\left(a_{3} w\right)=\chi\left(a_{1}\right)=1, \\
& \bar{\chi} \psi \chi\left(a_{4}\right)=\chi\left(a_{4}\right) \chi\left(a_{4} w\right)=-\chi\left(a_{2}+a_{3}+a_{4}+a_{5}\right)=1, \\
& \bar{\chi} \psi \chi\left(a_{i}\right)=\chi\left(a_{i}\right) \chi\left(a_{i} w\right)=\chi\left(a_{i}\right) \chi\left(-a_{i}\right)=1 \text { if } i \text { is odd, } i \geq 5,
\end{aligned}
$$

$$
\begin{array}{r}
\bar{\chi} \psi \chi\left(a_{i}\right)=\chi\left(a_{i}\right) \chi\left(a_{i} w\right)=\chi\left(a_{i}\right) \chi\left(a_{i-1}+a_{i}+a_{i+1}\right)=1 \\
\quad \text { if } i \text { is even, } i \geq 6 .
\end{array}
$$

Hence we conclude $x^{\epsilon}=x^{-1}$. Moreover, since $(*)$ is satisfied, we have ($q-$ $1)_{2}=(p-1)_{2}$, so $\mu^{p}=\mu$ and $[x, \phi]=1$. We claim that $x^{2} \notin L(q)$. Since $x^{2} \notin S$, we have $\chi\left(a_{1}\right) \chi\left(a_{2}\right) \notin \mathrm{F}_{q}^{2}$. If $x^{2} \in L(q)$, then χ^{2} could be extended to a F_{q}-character $\bar{\chi}$ of Q; as $4 \lambda_{1} \in a_{1}+a_{2}+2\left\langle a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{l}\right\rangle$, we would then have $\mu^{2}=\chi\left(a_{1}\right)^{2} \chi\left(a_{2}\right)^{2} \equiv \bar{\chi}\left(\lambda_{1}\right)^{4} \bmod \mathrm{~F}_{q}^{4}$, a contradiction. But then $X=\langle x, \phi, \epsilon\rangle$ is a complement for $L(q)$ in Aut $L(q)$.

4. Twisted groups of Lie type

We begin with a short description of the twisted groups. Let $G=L\left(q^{s}\right)$ be a group of Lie type whose Dynkin diagram has a non trivial symmetry ρ of order s. If ϵ is the graph automorphism corresponding to ρ, let us suppose that $L\left(q^{s}\right)$ admits a non trivial field automorphism α such that the automorphism $\sigma=\epsilon \alpha$ satisfies $\sigma^{s}=1$. If such an automorphism σ does exist, the twisted group ${ }^{s} L(q)$ is defined as the subgroup of the group $L\left(q^{s}\right)$ which is fixed elementwise by σ. The structure of ${ }^{s} L(q)$ is very similar to that of a Chevalley group: if Φ is the root-system fixed in $L\left(q^{s}\right)$, the automorphism σ determines a partition of $\Phi=\cup S_{i}$. If R is an element of the partition, we denote by X_{R} the subgroup $\left\langle X_{r} \mid r \in R\right\rangle$ of $L\left(q^{s}\right)$, and by X_{R}^{1} the subgroup $\left\{x \in X_{R}, \mid x^{\sigma}=x\right\}$ of ${ }^{s} L(q)$. The group ${ }^{s} L(q)$ is generated by the groups $X_{S_{i}}^{1}, \Phi=\cup S_{i}$; in fact, the subgroups X_{R}^{1} play the role of the root-subgroups. An element R of the partition which contains a simple root is said to be a simple set. We have $\operatorname{Aut}\left({ }^{s} L(q)\right)=\left\langle{ }^{s} L(q), \hat{H}^{1}, \phi\right\rangle$, where ϕ is the Frobenius automorphism and $\hat{H}^{1}=N_{\hat{H}}\left({ }^{s} L(q)\right)$. Note that $h(\chi) \in \hat{H}^{1}$ if and only if $\chi(r \rho)=\chi(r)^{\alpha}$ for any $s \in \Phi$. Moreover, a diagonal automorphism $h \in \hat{H}^{1}$ is inner if and only if $h \in H^{1}=H \cap^{s} L(q)$. Let d be the order of \hat{H}^{1} / H^{1}. Then $d=1$ except in the following cases:

${ }^{s} L(q)$	d
${ }^{2} A_{l}(q)$	$(l+1, q+1)$
${ }^{2} D_{l}(q)$	$\left(4, q^{l}+1\right)$
${ }^{2} E_{6}(q)$	$(3, q+1)$

We will prove the following result:
Theorem 4.1. Suppose that $q=p^{m}$ and let ${ }^{s} L(q)$ a twisted group of Lie type.
(1) If ${ }^{s} L(q) \neq{ }^{2} D_{l}(q)$, then ${ }^{s} L(q)$ has a complement in Aut ${ }^{s} L(q)$ if and only if $\left(\frac{q+1}{d}, d, m\right)=1$.
(2) If l is odd, then ${ }^{2} D_{l}(q)$ has a complement in Aut ${ }^{2} D_{l}(q)$ for any choice of q.
(3) If l is even, then ${ }^{2} D_{l}(q)$ has a complement in Aut ${ }^{2} D_{l}(q)$ if and only if $d=1$.

We have already shown that this is true for ${ }^{2} A_{l}(q) \cong \operatorname{PSU}(l+1, q)$. When $d=1,\langle\phi\rangle$ is a complement for ${ }^{s} L(q)$ in $\mathrm{Aut}^{s} L(q)$, so we only have to deal with the cases ${ }^{2} D_{l}(q)$ and ${ }^{2} E_{6}(q)$.

Lemma 4.2. If l is odd, there exists a complement X of ${ }^{2} D_{l}(q)$ in Aut ${ }^{2} D_{l}(q)$.

Proof. We may assume $d \neq 1$. First suppose $d=\left(q^{l}+1,4\right)=2$ and note that this implies $\left(\frac{q+1}{2}, 2, m\right)=1$. Consider the simple sets $R_{1}=\left\{a_{1}, a_{2}\right\}$, $R_{2}=\left\{-a_{1},-a_{2}\right\}, R_{3}=\left\{a_{3}\right\}, R_{4}=\left\{-a_{3}\right\}$. Let $S=\left\langle X_{R_{1}}^{1}, X_{R_{2}}^{1}, X_{R_{3}}^{1}, X_{R_{4}}^{1}\right\rangle \leq$ ${ }^{2} D_{l}(q)$ and let T be the subgroup of Aut ${ }^{2} D_{l}(q)$ consisting of the elements of the form $\operatorname{sh}(\chi)$ with $s \in S, h(\chi) \in \hat{H}^{1}$ and $\chi\left(a_{i}\right)=1$ for $i \geq 4$. Then $S \cong{ }^{2} A_{3}(q) \cong \operatorname{PSU}(4, q)$ and T acts by conjugation on S as the group of the inner-diagonal automorphism of S. Since $\left(\frac{q+1}{2}, 2, m\right)=1$, by Theorem 2.9 $\operatorname{PSU}(4, q)$ has a complement in $\operatorname{Aut}(\operatorname{PSU}(4, q))$. Therefore there exist $t=$ $s_{1} h(\chi) \in T$ and $s_{2} \in S$ such that $\langle t\rangle$ is a complement for S in T normalized by $s_{2} \phi$ and $\left|s_{2} \phi\right|=|\phi|$. We claim that $X=\left\langle t, s_{2} \phi\right\rangle$ is a complement for ${ }^{2} D_{l}(q)$ in Aut ${ }^{2} D_{l}(q)$. We only have to prove that $t \not{ }^{2} D_{l}(q)$. Since $t \notin S$, we have $\chi\left(a_{1}\right) \notin\left(\mathrm{F}_{q^{2}}\right)^{2}$. If $t \in{ }^{2} D_{l}(q)$, then χ could be extended to an $\mathrm{F}_{q^{2}}$-character $\bar{\chi}$ of Q satisfying $\bar{\chi}\left(\lambda_{2}\right)=\bar{\chi}\left(\lambda_{1}\right)^{q}$. As $2\left(\lambda_{1}-\lambda_{2}\right)=a_{1}-a_{2}$, we would then have $\bar{\chi}\left(\lambda_{1}\right)^{2(q-1)}=\chi\left(a_{1}\right)^{q-1}$, which implies $\chi\left(a_{1}\right) \in\left(\mathrm{F}_{q^{2}}\right)^{2}$, a contradiction.

Now assume $d=\left(q^{l}+1,4\right)=4$. Let μ be a generator of the 2 -Sylow subgroup of $\mathrm{F}_{q^{2}}^{*}$ and define χ by $\chi\left(a_{1}\right)=\mu, \chi\left(a_{2}\right)=\mu^{q}, \chi\left(a_{3}\right)=-1$, and $\chi\left(a_{i}\right)=1$ otherwise. Let $n=n_{3} n_{1} n_{2} n_{5} n_{7} \ldots n_{l}$ and consider the element $x=$ $h(\chi) n$. Since $[n, \phi]=[n, \epsilon]=1$, we have $x \in{ }^{2} D_{l}(q)$. Arguing as in the proof of Lemma 3.13 it can be shown that $x^{4}=1$. Now let $y=n_{1} n_{2} \phi$. We claim that $x^{y}=x^{-1}$. Indeed, $x^{y} x=(h(\chi) n)^{y} h(\chi) n=h(\chi)^{n_{1} n_{2} \phi} n^{n_{1} n_{2}} h(\chi) n=$ $h\left(\chi^{\phi}\right)^{n_{1} n_{2}} h_{3}(-1) h_{5}(-1) \ldots h_{l}(-1) h(\chi)^{n}=h\left(\left(\chi^{\phi}\right)^{w_{1} w_{2}} \psi \chi^{n}\right)$, where $\psi\left(a_{1}\right)=$ $\psi\left(a_{2}\right)=-1$, and $\psi\left(a_{i}\right)=1$ otherwise, and $w=w_{3} w_{1} w_{2} w_{5} w_{7} \ldots w_{l}$. Let $\bar{\chi}=\left(\chi^{\phi}\right)^{w_{1} w_{2}} \psi \chi^{n}$. Then

$$
\begin{aligned}
& \bar{\chi}\left(a_{1}\right)=-\chi\left(a_{1} w_{1} w_{2}\right)^{p} \chi\left(a_{1} w\right)=-\chi\left(-a_{1}\right)^{p} \chi\left(a_{2}+a_{3}\right)=\mu^{q-p}=1, \\
& \bar{\chi}\left(a_{2}\right)=-\chi\left(a_{2} w_{1} w_{2}\right)^{p} \chi\left(a_{2} w\right)=-\chi\left(-a_{2}\right)^{p} \chi\left(a_{1}+a_{3}\right)=\mu^{1-p q}=1 \text {, } \\
& \bar{\chi}\left(a_{3}\right)=\chi\left(a_{3} w_{1} w_{2}\right)^{p} \chi\left(a_{3} w\right)=\chi\left(a_{1}+a_{2}+a_{3}\right)^{p} \chi\left(-a_{1}-a_{2}-a_{3}\right) \\
& =\mu^{(q+1)(p-1)}=1, \\
& \bar{\chi}\left(a_{4}\right)=\chi\left(a_{4} w_{1} w_{2}\right)^{p} \chi\left(a_{4} w\right)=\chi\left(a_{4}\right)^{p} \chi\left(a_{1}+a_{2}+a_{3}+a_{4}+a_{5}\right) \\
& =-\mu^{q+1}=1, \\
& \bar{\chi}\left(a_{i}\right)=\chi\left(a_{i} w_{1} w_{2}\right)^{p} \chi\left(a_{i} w\right)=\chi\left(a_{i}\right)^{p} \chi\left(-a_{i}\right)=1 \text { if } i \text { is odd, } i \geq 5,
\end{aligned}
$$

$$
\begin{array}{r}
\bar{\chi}\left(a_{i}\right)=\chi\left(a_{i} w_{1} w_{2}\right)^{p} \chi\left(a_{i} w\right)=\chi\left(a_{i}\right)^{p} \chi\left(a_{i-1}+a_{i}+a_{i+1}\right)=1 \\
\text { if } i \text { is even, } i>4 .
\end{array}
$$

We claim that $\left\langle x, n_{1} n_{2} \phi\right\rangle$ is a complement for ${ }^{2} D_{l}(q)$ in $\operatorname{Aut}^{2} D_{l}(q)$. We only have to prove that $x^{2} \not{ }^{2} D_{l}(q)$. If $x^{2} \in{ }^{2} D_{l}(q)$, then χ^{2} could be extended to a $\mathrm{F}_{q^{2}}$-character $\bar{\chi}$ of Q satisfying $\bar{\chi}\left(\lambda_{2}\right)=\bar{\chi}\left(\lambda_{1}\right)^{q}$. As $2\left(\lambda_{1}-\lambda_{2}\right)=a_{1}-a_{2}$, we have $\bar{\chi}\left(\lambda_{1}\right)^{2(q-1)}=\mu^{2(q-1)}$. Moreover, from $\lambda_{1}+\lambda_{2}=\frac{l-1}{2}\left(a_{1}+a_{2}\right)+(l-$ 2) $a_{3}+\cdots+a_{l}$ we deduce $\bar{\chi}\left(\lambda_{1}\right)^{q+1} \in\left(\mathrm{~F}_{q^{2}}\right)^{2(q+1)}$, so

$$
\mu^{\frac{q^{2}-1}{2}}=\mu^{2(q-1) \frac{q+1}{4}}=\bar{\chi}\left(\lambda_{1}\right)^{2(q-1) \frac{q+1}{4}}=1,
$$

which is again a contradiction.
Lemma 4.3. If l is even and q is odd, then ${ }^{2} D_{l}(q)$ has no complement in Aut ${ }^{2} D_{l}(q)$.

Proof. Assume that X is a complement of ${ }^{2} D_{l}(q)$ in Aut ${ }^{2} D_{l}(q)$. We may assume $X=\langle x, \phi y\rangle$, where $y \in{ }^{2} D_{l}(q)$ and x is an inner-diagonal automorphism of ${ }^{2} D_{l}(q)$ of order 2 , centralized by ϕy. We may write $x=h(\chi) z$, with $z \in{ }^{2} D_{l}(q), \chi\left(a_{1}\right)=\lambda, \chi\left(a_{2}\right)=\lambda^{q}$, and $\chi\left(a_{i}\right)=1$ for $i \geq 3$ (where λ is a generator of $\mathrm{F}_{q^{2}}^{*}$. The inner diagonal automorphism group $\left\langle{ }^{2} D_{l}(q), \hat{H}^{1}\right\rangle$ can be viewed as a subgroup of $\left\langle D_{l}\left(q^{2}\right), \hat{H}\right\rangle$. We claim that $h(\chi) \notin H$. Indeed, if $h(\chi) \in H$, then χ could be extended to an $\mathrm{F}_{q^{2} \text {-character of } Q \text {; as }}$ $2 \lambda_{1} \in a_{1}+\left\langle a_{1}+a_{2}, a_{3}, \ldots, a_{l}\right\rangle$ we would then have $\lambda=\chi\left(a_{1}\right) \in\left(\mathrm{F}_{q^{2}}\right)^{2}$, a contradiction. This implies that $x \notin D_{l}\left(q^{2}\right)$. By Lang's Theorem there exists $g \in D_{l}\left(q^{2}\right)$ with $(\phi y)^{g}=\phi$. In particular, $x^{g} \in\left\langle D_{l}\left(q^{2}\right), \hat{H}\right\rangle \backslash D_{l}\left(q^{2}\right)$ and is centralized by ϕ. Using the Bruhat Decomposition in $D_{l}\left(q^{2}\right)$ we may write x^{g} in the form $x^{g}=u_{1} h\left(\chi_{1}\right) n_{w} u$ with $u_{1} \in U$ and $u \in U_{w}$. Then

$$
x^{g}=\left(x^{g}\right)^{\phi}=u_{1}^{\phi} h\left(\chi_{1}\right)^{\phi} n_{w}^{\phi} u^{\phi}=u_{1}^{\phi} h\left(\chi_{1}\right)^{\phi} n_{w} u^{\phi} .
$$

Note that $u_{1}^{\phi} \in U$ and $u^{\phi} \in U_{w}$, so, by the uniqueness of the representation of x^{g}, we deduce $h\left(\chi_{1}\right)^{\phi}=h\left(\chi_{1}\right)$, and this implies $\chi_{1}^{p}=\chi_{1}$. Since $x^{g} \notin D_{l}\left(q^{2}\right)$, we have $h\left(\chi_{1}\right) \in \hat{H} \backslash H$, which implies that there exists $1 \leq i \leq l$ with $\chi\left(a_{i}\right)=\lambda^{s}$, for an odd integer s. Therefore $s p \equiv s \bmod q^{2}-1$. Hence $\left(q^{2}-1\right)_{2} \leq(p-1)_{2}$, but this is impossible.

Lemma 4.4. If ${ }^{2} E_{6}(q)$ has a complement in $\operatorname{Aut}^{2} E_{6}(q)$, then $\left(\frac{q+1}{d}, d, m\right)$ $=1$.

Proof. In this case $d=(3, q+1)$ and $\left(\frac{q+1}{d}, d, m\right)=1$ is equivalent to the condition that either $d=1$ or $(3, m)=1$. Suppose that $d \neq 1$. Assume that X is a complement of ${ }^{2} E_{6}(q)$ in Aut $^{2} E_{6}(q)$. We may assume $X=\langle x, \phi y\rangle$, where $y \in{ }^{2} E_{6}(q)$ and x is an inner-diagonal automorphism of ${ }^{2} E_{6}(q)$ of order 3 , centralized by $(\phi y)^{2}$. We may write $x=\chi(h) z$, with $z \in{ }^{2} E_{6}(q), \chi\left(a_{1}\right)=\lambda$,
$\chi\left(a_{5}\right)=\lambda^{q}$, and $\chi\left(a_{i}\right)=1$ otherwise (where λ is a generator of $\mathrm{F}_{q^{2}}^{*}$). The inner diagonal automorphism group $\left\langle{ }^{2} E_{6}(q), \hat{H}^{1}\right\rangle$ can be viewed as a subgroup of $\left\langle E_{6}\left(q^{2}\right), \hat{H}\right\rangle$. We claim that $h(\chi) \notin H$. Indeed, if $h(\chi) \in H$, then χ could be extended to an $\mathrm{F}_{q^{2}}$-character of Q; as $3 \lambda_{1}=4 a_{1}+5 a_{2}+6 a_{3}+4 a_{4}+2 a_{5}+3 a_{6}$, we would then have $\chi\left(\lambda_{1}\right)^{3}=\lambda^{4+2 q}$, which implies $\lambda \in\left(\mathrm{F}_{q^{2}}\right)^{3}$, a contradiction. This implies that $x \notin E_{6}\left(q^{2}\right)$. By Lang's Theorem there exists $g \in E_{6}\left(q^{2}\right)$ with $(\phi y)^{g}=\phi$. In particular, $x^{g} \in\left\langle E_{6}\left(q^{2}\right), \hat{H}\right\rangle \backslash E_{6}\left(q^{2}\right)$ and is centralized by ϕ^{2}. Using the Bruhat Decomposition in $E_{6}\left(q^{2}\right)$ we may write x^{g} in the form $x^{g}=u_{1} h\left(\chi_{1}\right) n_{w} u$ with $u_{1} \in U$ and $u \in U_{w}$. Arguing as in the previous lemma we deduce that $h\left(\chi_{1}\right)^{\phi^{2}}=h\left(\chi_{1}\right)$, and this implies $\chi_{1}^{p^{2}}=\chi_{1}$. Since $x^{g} \notin E_{6}\left(q^{2}\right)$, we have $h\left(\chi_{1}\right) \in \hat{H} \backslash H$, which implies that there exists $1 \leq i \leq 6$ with $\chi\left(a_{i}\right)=\lambda^{s}$ for some integer s not divisible by 3 . Therefore $s p^{2} \equiv s \bmod q^{2}-1$. Hence $\left(q^{2}-1\right)_{3} \leq\left(p^{2}-1\right)_{3}$, which implies $(m, 3)=1$ (for otherwise $\left(q^{2}-1\right)_{3}=$ $\left.(q+1)_{3}=(p+1)_{3}\left(1-p+\cdots+p^{m-1}\right)_{3}>(p+1)_{3}=\left(p^{2}-1\right)_{3}\right)$.

Lemma 4.5. If $\left(\frac{q+1}{d}, d, m\right)=1$, then there is a complement of ${ }^{2} E_{6}(q)$ in Aut ${ }^{2} E_{6}(q)$.

Proof. We may assume $d=3$. Consider the simple sets $R_{1}=\left\{a_{1}, a_{5}\right\}$, $R_{2}=\left\{-a_{1},-a_{5}\right\}, R_{3}=\left\{a_{2}, a_{4}\right\}, R_{4}=\left\{-a_{2},-a_{4}\right\}, R_{5}=\left\{a_{3}\right\}, R_{6}=$ $\left\{-a_{3}\right\}$. Let $S=\left\langle X_{R_{i}}^{1} \mid 1 \leq i \leq 6\right\rangle \leq{ }^{2} E_{6}(q)$ and let T be the subgroup of Aut ${ }^{2} E_{6}(q)$ consisting of the elements of form $\operatorname{sh}(\chi)$ with $s \in S, h(\chi) \in \hat{H}^{1}$ and $\chi\left(a_{6}\right)=1$. Let $Z=Z(S)$. Then Z is cyclic of order 2 , generated by $z=h_{a_{1}}(-1) h_{a_{3}}(-1) h_{a_{5}}(-1)$. Moreover, $S \cong \operatorname{SU}(6, q) /\langle\omega\rangle$ with ω a primitive 3rd root of unity in $\mathrm{F}_{q^{2}}, S / Z \cong{ }^{2} A_{5}(q) \cong \operatorname{PSU}(6, q)$, T normalizes S and acts by conjugation on $S / Z \cong A_{5}(q)$ as the group of the innerdiagonal automorphism of $A_{5}(q)$. We have proved in Proposition 2.8 that if $\left(\frac{q+1}{d}, d, m\right)=1$, then there exist $g_{1} \in \mathrm{U}(6, q) \backslash \mathrm{SU}(6, q)$ and $g_{2} \in \mathrm{SU}(6, q)$ such that $\left|\phi g_{2}\right|=|\phi|=2 m, \phi g_{2}$ normalizes $\left\langle g_{1}\right\rangle$ and $g_{1}^{3} \in Z(\operatorname{SL}(6, q))$. Thus there exist an element $y \in S$ and an element $x=\operatorname{sh}(\chi) \in T$ such that $x \notin S, x^{3} \in Z,\langle x\rangle$ is normalized by ϕy and $|\phi y|=|\phi|=2 m$. We claim that $X=\left\langle x^{2}, \phi y\right\rangle$ is a complement for ${ }^{2} E_{6}(q)$ in Aut ${ }^{2} E_{6}(q)$. We only have to prove that $x^{2} \notin L(q)$. Since $x \notin S$, we have $\chi\left(a_{1}\right) \chi\left(a_{2}\right)^{-1} \notin \mathrm{~F}_{q}^{3}$. If $x^{2} \in L(q)$, then $h\left(\chi^{2}\right) \in \hat{H}$, and χ^{2} could be extended to an F_{q}-character $\bar{\chi}$ of Q; as $3 \lambda_{1}=4 a_{1}+5 a_{2}+6 a_{3}+4 a_{4}+2 a_{5}+3 a_{6}$, we would then have $\left(\chi^{2}\left(a_{1}\right) \chi^{2}\left(a_{2}\right)^{-1}\right)^{q-1} \equiv \bar{\chi}\left(\lambda_{1}\right)^{3} \bmod \mathrm{~F}_{q}^{3}$, a contradiction.

References

[1] R.W. Carter, Simple groups of Lie type, Pure and Applied Mathematics, vol. 28, John Wiley \& Sons, London-New York-Sydney, 1972.
[2] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, and R.A. Wilson, Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, Oxford University Press, Eynsham, 1985.
[3] J. Dieudonné La géométrie des groupes classiques, Second edition, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.
[4] D. Gorenstein, R. Lyons, and R. Solomon, The classification of the finite simple groups. Number 3. Part I. Chapter A. Almost simple K-groups, Mathematical Surveys and Monographs, vol. 40.3, American Mathematical Society, Providence, RI, 1998.
[5] N. Jacobson, Basic algebra I, Second edition, W. H. Freeman and Company, New York, 1985.
[6] G.N. Pandya, Algebraic groups and automorphisms of finite simple Chevalley groups, J. Number Theory 6 (1974), 239-247.
[7] , On automorphisms of finite simple Chevalley groups, J. Number Theory 6 (1974), 171-184.
A. Lucchini, Dipartimento di Matematica, Università degli Studi di Brescia, Via Valotti 9, 25133 Brescia, Italy

E-mail address: lucchini@bsing.ing.unibs.it
F. Menegazzo, Dipartimento di Matematica Pura e Applicata, Università di Padova, via Belzoni 7, 35131 Padova, Italy

E-mail address: federico@math.unipd.it
M. Morigi, Dipartimento di Matematica, Università di Bologna, Piazza di Porta S.Donato 5, 40127 Bologna, Italy

E-mail address: mmorigi@dm.unibo.it

[^0]: Received March 8, 2002.
 2000 Mathematics Subject Classification. 20E32, 20D06, 20 F 28.
 This research was supported by MIUR, project Teoria dei gruppi e applicazioni. The third author was supported by the University of Bologna, funds for selected research topics.

