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BAER’S EXTENSION EQUIVALENCE

PAUL HILL AND CHARLES MEGIBBEN

This paper is dedicated to the memory of Reinhold Baer

Abstract. We revisit Reinhold Baer’s work on equivalent extensions,

which can be considered as a forerunner of the authors’ series of equiv-
alence theorems. Our focus is on a paper entitled Extension Types of

Abelian Groups published by Baer in 1949. In this paper, the main
results were for a rather restrictive class of extensions called little ex-

tensions, but the notion of two extensions of A by B being equivalent

given there are generally applicable. Our theme here is that Baer’s vi-
sion and understanding of extensions placed him much ahead of the time

in which he studied the subject in the 1930’s and ’40’s.

1. Introduction

As is universally recognized, Reinhold Baer left a large footprint on abelian
groups. His interests and investigations were widely based ranging from tor-
sion (primary) groups to torsion-free and mixed groups. For a brief synopsis
of his contributions to abelian groups, see for example [3]. Although Baer
covered the subject broadly as well as deeply, few, if any, topics in abelian
groups were of greater interest to Baer than the extension of one abelian group
by another. The special case where the extension is an extension of a torsion
group by a torsion-free group is noteworthy. The problem of characterizing
the torsion-free groups B for which there is only one extension of each torsion
group A by B was posed by Baer and solved by P. Griffith. This problem in
a more general context is discussed by Griffith elsewhere in this volume.

In our revisit of Baer’s 1949 paper entitled Extension Types of Abelian
Groups [1], it is remarkable to what extent we find that Baer had already
laid the foundation conceptually for our later work on equivalence theorems
[5], [6], [7], [8], [10], [11], [12]. It was suggested in [9] that J. Erdos was the
first to prove an equivalence theorem of this type, but clearly Baer’s work [1]
preceded that of Erdos [2]. Moreover, in Appendix II of [1], Baer introduces
the notion of the equivalence of two extensions H ⊆ G and H ′ ⊆ G′ being
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manifested by an isomorphism from G onto G′ that is induced by a prescribed
isomorphism from G/H onto G′/H ′. Although Baer only obtained results for
an equivalence of this type for finite groups, the idea would prove very valuable
to the present authors in [11], [12], and elsewhere.

Unless stated otherwise, all groups herein are assumed to be abelian.

Definition 1. Two subgroups H and H ′ of G are said to be equivalent
if there is an automorphism of G that maps H onto H ′. Likewise, the ex-
tensions G and G′ of a common subgroup H are equivalent if there exists an
isomorphism of G onto G′ that induces the identity map on H.

This equivalence relation enables us to identify extensions that are distinct
in Ext(B,A) but are structurally the same. For example, if C(n) denotes
the cyclic group of order n and p is a prime, then Ext(C(p), C(p)) contains
p elements, but structurally speaking there are only two extensions of C(p)
by C(p), one of which is the split extension and the other is the natural
embedding of C(p) in C(p2).

As we shall demonstrate, the equivalence of extensions is closely related
to the property of being able to extend maps. In turn, being able to extend
maps rests on what we shall call a local extension (of maps) theorem.

Definition 2. By a local extension theorem we mean a result which states
(under suitable hypotheses) that a map from a subgroup H of G into a group
G′ that either preserves or does not decrease heights, as computed in G and
G′, can be extended to a map of like kind to any finitely generated extension
K of H in G.

Our treatment and philosophy, both here and heretofore, depart from that
of Baer [1] in regards to local extensions (of maps). Let us emphasize though
that this pertains only to the means rather than the end itself. Indeed, as
we have already indicated, Baer’s pioneering work on equivalent extensions
has served as a model for us. Returning to the means, however, we note
that Baer did not establish nor use a local extension theorem in [1]. Instead,
he employs a result of N. Steenrod [13] concerning inverse limits of compact
spaces. Consequently, Baer was restricted to what he called little extensions
in proving results such as the following theorem and corollary. First, we define
what a little extension is as well as what we shall call a slim extension, which
is slightly more general.

Definition 3. An extension G of H is called a little extension if: (1)
G/H is torsion, and (2) for each relevant prime p of the torsion group G/H
the p-primary subgroup of G is a finite group plus a divisible group of finite
rank.
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We remark that little extensions may be more general than they first ap-
pear. For example, any free resolution of a torsion group represents a little
extension. More generally, if

0→ A→ B → C → 0

is a short exact sequence with B torsion-free and C torsion, then B is a little
extension of A. The following is a modest generalization of a little extension.

Definition 4. An extension G of H is called a slim extension if: (1) G/H
is torsion, and (2′) for each relevant prime p of the torsion group G/H the
p-primary subgroup of G is a bounded group plus a divisible group.

Theorem 1 (Baer, [1]). Suppose that G is a little extension of its subgroup
H. Then any homomorphism from H into G that does not decrease heights
computed in G is induced by an endomorphism of G.

Corollary 1 (Baer, [1]). If G is a little extension of its subgroup H and
H is pure in G, then the extension splits.

The preceding theorem serves as a basis for the numerous results in [1]
concerning little extensions. This result leads not only to a classification of
equivalent extensions of H by G, but also to a classification of equivalent types
of extensions.

Definition 5. Suppose that G and G′ are extensions of H. If there exists
a homomorphism from G into G′ that leaves the elements of H fixed, then
the extension G′ of H is said to have type greater than or equal to that of the
extension G of H. The types of the two extensions are equivalent (or equal)
if each has type greater than or equal to the other.

By proving a local equivalence theorem instead of relying on Steenrod’s [13]
result cited earlier on inverse limits of compact spaces, we are able to provide
an alternate approach to the aforementioned results of Baer and at the same
time generalize his results to slim extensions.

2. The local extension theorem

We begin this section with a version of a local extension theorem that first
appeared in [4] for primary groups, but the proof is essentially the same for
the more general version.

Theorem 2 (Hill, [4]). Suppose that p is a prime and that the subgroup
H of G is nice with respect to p-heights. If x is an element of G and px is
contained in H, then any map from H into a group G′ that does not decrease
heights, as computed in G and G′, can be extended to a map from K = 〈H,x〉
into G′ that does not decrease heights.
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The hypothesis of the next theorem is modelled after our definition of a
slim extension.

Theorem 3. Let H be a subgroup of G and let K be a finitely generated
extension of H in G. Suppose that φ is a homomorphism from H into a
group G′ that does not decrease heights computed in G and G′, respectively.
Assume (i) G/H is torsion, and (ii) for each relevant prime p of G/H that
the p-primary subgroup of G′ is a bounded group plus a divisible group. Then
φ can be extended to a homomorphism from K into G′ that does not decrease
heights computed in G and G′.

Proof. Observe that if H, G, and G′ satisfy the hypotheses (i) and (ii),
then so do H ′, G, and G′ for any subgroup H ′ of G containing H. Therefore,
since G/H is torsion, it suffices to prove the theorem for the case that K/H
has order p for some prime p. Thus, let K = 〈H,x〉, where px ∈ H.

To show that φ can be extended to a homomorphism from K into G′ that
does not decrease heights, we distinguish two cases. All heights are computed
in G and G′ as the case may be.

Case I: H is nice in G with respect to p-heights. In this case, an application
of the preceding theorem yields the desired result.

Case II: H is not nice in G with respect to p-heights. Since p is a relevant
prime for G/H, by hypothesis the reduced part of the p-primary subgroup of
G′ is bounded by pm for some positive integer m. Since H is not nice in G
with respect to p-heights, there is some element in the coset x + H that has
p-height greater than m. Without loss of generality, we may assume that x
has p-height greater than m. Thus the p-height of px is at least m + 2. By
assumption, φ does not decrease heights. Therefore the p-height of φ(px) is
at least m + 2, so there exists y ∈ pm+1G′ for which py = φ(px). We claim
that we can extend φ by mapping x onto y, and that this extension does not
decrease heights. The verification of the first claim is routine. To verify the
second claim, we need to show that if h ∈ H, then the height of φ(x + h) is
greater than or equal to the height of x + h. Since the q-height of x is the
same as the q-height of px for any prime q different from p and since φ does
not decrease q-heights when restricted to H, it suffices to prove that the above
extension of φ does not decrease p-heights.

Concerned now only with p-heights, we need to show that if h ∈ H, then
y + φ(h) has p-height greater than or equal to that of x + h. Clearly, if the
p-height of h does not exceed m, then the p-height of x+h is equal to that of h
because the p-height of x is greater than m. Further, the p-height of y+φ(h)
is greater than or equal to that of h, so the desired result holds. Finally, we
consider the case where the p-height of h exceeds m. In this case, we lose
control of the p-height of x+ h. However, we are saved by the fact that there
is no jump in p-heights when we pass from y + φ(h) to p(y + φ(h)); this is
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because the reduced part of the p-primary subgroup of G′ is bounded by pm.
It now follows that if x + h has p-height equal to α > m, then p(x + h) and
consequently p(y + φ(h)) has p-height greater than or equal to α+ 1. Hence,
y + φ(h) must have p-height greater than or equal to α due to the fact that
there are no jumps in p-heights in G′ at this level. This demonstrates that
our extension of φ to K still does not decrease heights, and the proof of the
theorem is completed. �

Since the hypothetical properties of the preceding theorem are inductive,
repeated applications of the theorem yield the following corollaries for slim
(and, in particular, little) extensions. The original map in each of these corol-
laries is the identity on H. It should be noted that the hypotheses imply that
the identity on H does not decrease heights when considered as a partial map
of G into G′.

Corollary 2. Suppose that G and G′ are slim extensions of a common
subgroup H. Then there exists a homomorphism φ from G into G′ that induces
the identity on H if (and only if) H ∩ pnG ⊆ H ∩ pnG′ for each (relevant)
prime p and positive integer n.

Corollary 3. A pure subgroup always splits out of a slim extension.

3. The relation of the Baer invariants to the relative Ulm
invariants

LetG be an extension of its subgroupH. For an arbitrary but fixed prime p,
let Hv denote H when considered as a valuated group obtained by computing
the p-heights of elements of H in the containing group G. Denoting H ∩ pαG
simply by H(α), we see that

dim
(
H(α)[p]

/
H(α+ 1)[p]

)
is the αth Ulm invariant of the valuated group Hv. It is hereinafter denoted
by Uα(Hv).

Baer [1] calls a descending chain Hn of subgroups of H a p-Loewy chain of
H provided that H0 = H and

Hi ⊇ Hi+1 ⊇ pHi.

Thus, the chain of subgroups H(α), defined above, is a p-Loewy chain of H
associated to the extension G of H. If p ranges over the (relevant) primes
of G/H, then this collection of p-Loewy chains of H yields a Loewy chain of
H. Baer shows in [1] that the little extension types of a given group H are
in one-to-one correspondence with certain Loewy chains of H and that this
correspondence preserves order. If p is a relevant prime of G/H for a little
extension G of H, then the Ulm invariants of the p-primary subgroup of G
are all finite. Obviously, the Ulm invariants of the valuated group Hv are
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intimately related to the p-Loewy chain of subgroups H(α). The following
cardinal number is also closely related to this p-Loewy chain:

dim
((
pH(α) ∩ pα+2G

)/
pH(α+ 1)

)
.

Definition 6. The preceding number is called the Baer invariant associ-
ated to an extension G of H and is denoted by Bα(G,H); if the prime p is
not clear from the context, it is denoted by Bα(G,H)p.

Clearly, equivalent extensions have the same Baer invariants.
For a finite ordinal α, Baer established the following lemma in [1]. The

lemma will be helpful in verifying our formula that relates the Baer invariants
to the relative Ulm invariants. Since the proof of the lemma is routine, it is
omitted.

Lemma 1.
(
pH(α)∩pα+2G

)/
pH(α+1) ∼=

(
H(α)+pα+1G

)
[p]
/(
H(α)[p]+

pα+1G[p]
)
.

Although Baer’s paper [1] was about twenty years prior to the introduction
of the relative Ulm invariants in [4], the theorem and corollary that follow once
again provide evidence of Baer’s insight and vision by showing that he was, in
effect, indirectly considering the relative Ulm invariants, at least in the case
where the Ulm invariants are finite.

The equivalence theorems referred to in the Introduction involve the ex-
tension of a height-preserving map φ : H → H ′ where H and H ′ are fixed
subgroups of the abelian groups G and G′, respectively. The desired isomor-
phism between G and G′ that extends φ is generally constructed via a local
extension theorem, and the cardinal numbers

dim
(
pαG[p]

/
(H + pα+1G) ∩ pαG[p]

)
,

for relevant primes p and ordinals α, play a crucial role in the local extension
process.

Definition 7. The preceding number is called the αth relative Ulm in-
variant of G with respect to the subgroup H and is denoted by Uα(G,H); if
the prime p is not clear from the context, it is denoted by Uα(G,H)p.

For a fixed prime p, let Uα(G) and Uα(G,H), respectively, denote the αth

Ulm invariant of G and the αth relative Ulm invariant of G with respect to a
subgroup H. Recall that Uα(Hv) denotes the αth Ulm invariants of H when
considered as a valuated group obtained by taking the p-heights computed in
G of the elements of H.

Theorem 4. Let H be a subgroup of G. Then, for each ordinal α,

Uα(G) = Bα(G,H) + Uα(G,H) + Uα(Hv).
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Proof. As before, let H(α) denote H ∩ pαG. Note that

dim
(
(H(α)[p]+pα+1G[p])

/
pα+1G[p]

)
= dim

(
H(α)[p]

/
H(α+1)[p] = Uα(Hv).

Also, the preceding lemma yields

Bα(G,H) = dim
(
(H(α) + pα+1G

)
[p])
/

(H(α)[p] + pα+1G[p])
)
.

For simplicity of notation, set

A = dim
(
pαG[p]/pα+1G[p]

)
= Uα(G),

B = dim
(
(H(α) + pα+1G)[p]

/
pα+1G[p]

)
,

C = dim
(
(H(α)[p] + pα+1G[p])

/
pα+1G[p]

)
.

Using the relations established above, we conclude that B = Bα(G,H) + C,
and that C = Uα(Hv). Hence, B = Bα(G,H) +Uα(Hv). Moreover, Uα(G) =
Uα(G,H) +B. Therefore,

Uα(G) = Bα(G,H) + Uα(G,H) + Uα(Hv). �

Corollary 4. Let p be an arbitrary but fixed prime. Suppose that H is
a subgroup of G and that the p-Ulm invariants of G are finite, as they are for
a little extension and a relevant prime p of G/H. If the Ulm invariants of G
and of the valuated group Hv are known, then the relative Ulm invariants of
G with respect to H can be computed from the Baer invariants.

4. Baer’s construction

For readers for whom Baer’s notion of a p-Loewy chain Hn of H has little
appeal, it may help to observe that these are simply valuations in disguise.
Indeed if we define a function vp : H → ω∪{∞} by vp(x) = sup{n : x ∈ Hn},
then the following properties are satisfied: (a) vp(x+ y) ≥ min{vp(x), vp(y)},
(b) vp(px) > vp(x) where ∞ >∞, and (c) vp(nx) = vp(x) when p - n. Notice
that vp(x) = ∞ if and only if x ∈ H∞ =

⋂
n<ωHn. Conversely, given a

function vp : H → ω ∪ {∞} satisfying these conditions, the subgroups Hn=
{x ∈ H : v(x) ≥ n} form a p-Loewy chain of H. Indeed when constructing a
p-Loewy chain Hn in a given group, it is useful to first define a p-valuation.
Also notice that the fact that H∞ = {x ∈ H : vp(x) = ∞} need not be 0
explains the existence of nonzero divisible p-groups in slim extensions of H
even when the latter is reduced.

Baer establishes in [1] a remarkable embedding theorem of a p-valuated
group H in a group G where G/H is a p-group and the given valuation on H
is induced by the p-height function on G.

Theorem 5 (Baer, [1]). If Hn is a p-Loewy chain of H, then there exists
an extension G of H with the following properties:

(i) Hn = H ∩ pnG for each nonnegative integer n.
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(ii) G[p] = H[p]⊕X0⊕X1⊕· · ·Xn⊕· · · where Xn
∼= (pHn∩Hn+2)/pHn+1

for each n.
(iii) G/H is a p-group.

If the p-Loewy chain of H is trivial in the sense that Hn = pnH for all n <
ω, then pHn∩Hn+2/pHn+1 = 0 for all n and therefore in Baer’s construction,
G[p] = H[p] and H ∩pnG = pnH for all n < ω. These two conditions coupled
with the fact that G/H is a p-group imply that G = H.

Not being aware of the significance of the relative Ulm invariants, Baer not
surprisingly fails to note one of the most striking aspects of the extension G
of H given in Theorem 5; namely, that all the Ulm invariants of G relative to
H vanish, including the invariant

U∞(G,H) = dim
(
p∞G[p]/(H ∩ p∞G[p])

)
.

Theorem 6. Given a p-Loewy chain Hn of H, there exists an extension
G of H with G/H a p-group,H ∩ pnG = Hn for all n < ω and Uα(G,H) = 0
for α =∞ and for all α < ω. In particular, Un(G) = Un(Hv) +Bn(G,H) for
all n < ω.

Proof. We require a closer look at Baer’s construction. First we note that
G is obtained as the ascending union of groups Gn where G1[p] = H[p],
pnGn = Hn, pn−1Gn∩H = Hn−1 and Gn+1[p]/Gn[p] ∼= (pHn−1∩Hn+1)/pHn

for all positive integers n. Moreover, the construction of the subgroups Xn−1

is quite explicit. Starting with a fixed basis B of pHn−1 ∩Hn+1 modulo pHn,
generators of Gn+1 are selected among which there corresponds to each b ∈ B
an element b′ subject to the relation pn+1b′ = b. Then the basis for Xn−1

consists of all elements b∗ = pnb′ − pn−1b′′ where b′′ is any element of Gn
satisfying pnb′′ = b — recall that, by choice, b ∈ pHn−1 ⊆ Hn = pnGn.

The verification that Un−1(G,H) = 0 for all positive integers n hinges on
observing that all the basis elements b∗ = pnb′ − pn−1b′′ for Xn−1 may be
selected with pn−1b′′ ∈ H. To see that this is possible, recall that b ∈ pHn−1

and consequently we may write b = pw where w ∈ Hn−1 = pn−1Gn ∩ H.
Therefore there is a z ∈ Gn with pn−1z = w ∈ H and so pnz = pw = b.
Taking b′′ = z yields the desired conclusion. It is now clear that Xn−1 ⊆
(H + pnG) ∩ pn−1G[p].

More generally,
⊕

i≥nXi ⊆ H + pn+1G for all nonnegative integers n and
consequently Un(G,H) = 0 will follow once we establish that

pnG[p] = Hn[p]⊕Xn ⊕Xn+1 ⊕ · · ·
holds for all n. Proceeding by induction, assume that pn−1G[p] = Hn−1[p]⊕
Xn−1 ⊕Xn ⊕ · · · and choose a subgroup Yn−1 of H[p] such that Hn−1[p] =
Yn−1 ⊕Hn[p]. Then, since Hn[p] ⊆ pnG, the desired direct decomposition of
pnG[p] will follow once we show that (Yn−1⊕Xn−1)∩pnG = 0. Suppose then
that y+ x ∈ pnG where y ∈ Yn−1 and x ∈ Xn−1. From the description above
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of a basis for Xn−1, we have a representation x =
∑
b∈B tb(p

nb′ − pn−1b′′)
where almost all the tb are zero. Thus y−

∑
b∈B tbp

n−1b′′ is in H ∩pnG = Hn

and since py = 0, ∑
b∈B

tbb = p

(∑
b∈B

tbp
n−1b′′ − y

)
∈ pHn.

But in view of the fact that B is a basis for pHn−1 ∩Hn+2 modulo pHn, each
tb is divisible by p and therefore y+ x = y ∈ Yn−1 ∩ pnG = Yn−1 ∩Hn[p] = 0,
as desired.

Finally, by part (ii) of Theorem 5, p∞G[p] ⊆ H[p], and consequently we
also have U∞(G,H) = 0. �

5. An existence theorem for slim extensions

We begin with a simple observation about slim extensions.

Theorem 7. Suppose G is a slim extension of H and let P consist of the
relevant primes of the torsion group G/H. Then for each p ∈ P, the reduced
part of the p-primary subgroup of H is bounded and the subgroups Hp

n =
H∩pnG form a nontrivial p-Loewy chain of H with (pHp

n∩H
p
n+2)/pHp

n+1 = 0
for almost all n < ω.

Proof. By Definition 4, the reduced part of the p-primary subgroup of G
is bounded when p ∈ P. This implies that H has the same property and
furthermore that Un(G)p = 0 for almost all n < ω when p ∈ P. But then

dim
(
(pHp

n ∩H
p
n+2)/pHp

n+1

)
= dim

(
(pHp

n ∩ pn+2G)/pHp
n+1

)
= Bn(G,H)p = 0

for almost all n < ω. �

Applying Baer’s construction in Theorem 5, we readily see that the con-
ditions satisfied by H in the preceding theorem are also sufficient for the
existence of a slim extension G of H.

Theorem 8. Let P be a set of primes and H an abelian group with a
nontrivial p-Loewy chain Hp

n for each prime p ∈ P. Then there exists a slim
extension G of H with P the set of relevant primes of the torsion group G/H
if and only if, for each prime p ∈ P, (1) the reduced part of the p-primary
subgroup of H is bounded and (2) (pHp

n ∩ H
p
n+2)/pHp

n+1 = 0 for almost all
n < ω. Moreover, when these conditions are satisfied, G can be constructed
with Uα(G,H)p = 0 for α =∞ and for all α < ω.

Proof. For each p ∈ P, let Gp be the extension of H as given in Theorem
5 and observe, by the hypotheses on H and by part (ii) of Theorem 5, that
Gp is a slim extension of H with Gp/H a p-group. Furthermore, Theorem 6
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implies that Uα(G,H)p = 0 for α =∞ and for all α < ω. Finally, the “free”
sum over H of all these Gp with p ∈ P yields the desired slim extension G of
H. �

6. The equivalence criterion for slim extensions

Exploiting the relative Ulm invariants and the technique of local extensions,
we establish an equivalence criterion for slim extensions sharper than the one
given by Baer [1] for little extensions.

Theorem 9. Let G and G′ be slim extensions of H and H ′, respectively,
where the Ulm invariants of G relative to H are equal to the Ulm invariants
of G′ relative to H ′. If φ : H → H ′ is an isomorphism and K is a finite
extension of H in G, then there is a subgroup K ′ of G′ and a height-preserving
isomorphism ψ : K → K ′ that extends φ. Moreover, the Ulm invariants of G
relative to K are equal to the Ulm invariants of G′ relative to K ′.

Proof. As in the proof of Theorem 3, it suffices to consider the case where
K = 〈H,x〉 and px ∈ H for some prime p. To show that φ can be extended
to a height-preserving isomorphism ψ, we distinguish two cases. All heights,
of course, are computed in G and G′ as the case may be.

Case I: H is nice in G with respect to p-heights. As in Proposition 2.4
of Hill [4], if x has finite p-height then the equality of the relative Ulm in-
variants allows us to select an x′ ∈ G′ with the same p-height and such that
φ(px) = px′. We then need only take ψ(x) = x′. In case x has p-height ∞,
we require the hypothesis that U∞(G,H) = U∞(G′,H ′). Indeed a routine
argument shows that the equality of these invariants implies the existence of
an isomorphism θ : Dp → D′p with θ |H ∩Dp = φ |H ∩Dp where Dp and D′p
are the maximal divisible subgroups of the p-primary subgroups of G and G′,
respectively. In this special case, we take x′ = θ(x). That the Ulm invariants
of G relative to K equal the Ulm invariants of G′ relative to K ′ is as in Hill
[4].

Case II. The proof here is exactly as in Case II of Theorem 3, noting that
when φ preserves heights, the p-height of the element y ∈ G′ selected there
equals the p-height of x in G. In this case, the relative Ulm invariants are not
affected. �

As we shall explain below, the following Equivalence Criterion is a conse-
quence of the preceding theorem.

Theorem 10. The slim extensions G and G′ of H are equivalent if and
only if the following two conditions are satisfied:

(i) H ∩ pnG = H ∩ pnG′ for all prime powers pn.
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(ii) The Ulm invariants of G relative to H equal the Ulm invariants of G′

relative to H.

Observe, by Corollary 2, that condition (i) yields maps ψ : G → G′ and
ψ′ : G′ → G that leave the elements of H fixed. But condition (ii) is required
to construct an isomorphism ψ of G onto G′ that induces the identity map φ
on H.

We consider all triples (ψ,K,K ′) where K and K ′ are extensions of H in
G and G′, respectively, and ψ : K → K ′ is a height-preserving isomorphism
that induces the identity map φ on H. We place a further restriction on
the subgroups K and K ′ that will insure that G and G′ are slim extensions
of K and K ′, respectively. Namely, if P is the set of relevant primes for
G/H, we say that K is “closed” provided (G/K)[q] = 0 for all primes q 6∈ P.
The operative facts here are that an ascending chain of “closed” subgroups
is “closed” and M = 〈K,x〉 is “closed” when K is “closed” and px ∈ K for
p ∈ P. In particular, the finitely generated extensions K and K ′ in Theorem 9
are “closed.” Exploiting the symmetry involved in the equality of the relative
Ulm invariants, we map back and forth between G and G′ to insure that
all elements in the two groups are captured in a maximal triple (ψ,G,G′),
yielding thereby the desired isomorphism that leaves the elements of H fixed.

7. Minimal extensions and direct decompositions

Following Baer, we say that an extension G of H is a minimal extension if
G = G1 ⊕G2 with H ⊆ G1 implies G2 = 0. In [1], Baer presents a charming
compactness argument establishing that for each little extension G of H there
exists a direct decomposition G = G1⊕G2 where H ⊆ G1 and G1 is a minimal
extension of H. This suggests that such direct decompositions are an artifact
of Baer’s reliance on [13] to extend maps and leaves the status of minimal
extensions quite mysterious. But, as we shall see below, a little extension G
of H is a minimal extension precisely when the Ulm invariants of G relative
to H vanish and moreover the canonical decomposition G = G1⊕G2 with G1

a minimal extension of H also holds for slim extensions. Of course, we must
rely on structure theory rather than on compactness.

First, we show that if G is a slim extension of H where the Ulm invariants
of G relative to H vanish, then G is a minimal extension of H. Indeed if we
were to have a direct decomposition G = G1⊕G2 where H ⊆ G1 and G2 6= 0,
then there would be some prime p with G2[p] 6= 0 since G/H is a torsion
group. If there were an element x ∈ G2[p] having finite p-height n, then we
would quickly obtain a contradiction to the fact that pnG[p] ⊆ H + pn+1G.
Similarly, if there were a nonzero element x ∈ G2[p] having p-height ∞, this
would contradict the fact that p∞G[p] ⊆ H ∩ p∞G[p]. Conversely, if the slim
extension G of H is a minimal extension, then an inspection of the proof of
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our next theorem will confirm that the Ulm invariants of G relative to H must
vanish.

Theorem 11. If G is a slim extension of H, then there exists a direct
decomposition G = G1 ⊕ G2 where H ⊆ G1, G1 is a minimal extension of
H and G2 is a torsion group with the reduced part of each of its primary
components bounded.

Proof. Let P and the Hp
n be as in Theorem 7 and apply Theorem 8 to

construct a slim extension G′1 of H such that (a) H ∩ pnG′1 = Hp
n for all

p ∈ P and all n < ω and (b) Uα(G′1,H)p = 0 for α = ∞ and for all α <
ω. Thus from the analysis of the Ulm invariants in Section 3, Un(G)p =
Un(Hv)p+Bn(G,H)p+Un(G,H)p and Un(G′1)p = Un(Hv)p+Bn(G′1,H)p for
all n < ω and all p ∈ P. Notice that the invariants Un(Hv)p are the same when
computed in G or in G′ since H ∩pnG = Hp

n = H ∩pnG′1 for all prime powers
pn with p ∈ P. Now choose a torsion group G′2 with Un(G′2)p = Un(G,H)p
for all n < ω and all p ∈ P and observe that G′ = G′1 ⊕ G′2 is still a slim
extension of H. Since clearly H ∩ pnG = Hp

n = H ∩ pnG′ for all prime powers
pn, Theorem 10 applies to yield an isomorphism ψ : G′ → G that leaves the
elements of H fixed. Therefore G = G1⊕G2 where G1 = ψ(G′1), G2 = ψ(G′2)
and obviously, when p ∈ P, Uα(G1,H)p = 0 for α = ∞ and for all α < ω.
That G1 is a minimal extension of H follows from the discussion preceding
the statement of the theorem. �

8. Extension types

Once again, we follow Baer [1] and say that the type of the extension G′

of H is greater than or equal to the type of the extension G of H if there is
a homomorphism from G into G′ that induces the identity map on H. We
denote this by Ext[H < G] ≤ Ext[H < G′]. Obviously, this introduces a
partial order among the extension types of H. If we have two extensions G
and G′ of H and if the type of each extension is greater than or equal to the
other, then the two extensions are said to have equivalent extension types and
we write Ext[H < G] = Ext[H < G′].

The following result was proved by Baer ([1], Theorem 2) for little exten-
sions.

Theorem 12. The following properties of slim extensions G and G′ of H
are equivalent.

(i) Ext[H < G] ≤ Ext[H < G′].
(ii) The height of each element of H computed in G′ is greater than or

equal to its height computed in G.
(iii) There exists a slim extension G′′ of G with the property that

Ext[H < G′′] = Ext[H < G′].
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Proof. That (i) implies (ii) is a trivial consequence of the fact that homo-
morphisms do not decrease heights.

We now want to show that (ii) implies (iii). Thus assume that (ii) holds. Let
T =

⊕
Tp be a torsion group with the property that its p-primary part Tp is a

divisible plus a bounded group. Then G′′ = G′
⊕
T remains a slim extension

of H. Moreover, if Tp is suitably chosen and sufficiently large (to provide the
necessary relative invariants), then the identity on H can be extended to an
isomorphism from G into G′′ since it does not decrease heights computed in
G and G′, respectively. Thus, G′′ can be considered an extension of G. Since
both the inclusion map of G′ into G′′ and the projection map of G′′ onto G′ are
the identity when restricted to H, it follows that Ext[H < G′′] = Ext[H < G′],
and (ii) implies (iii).

Finally, we need to verify that (iii) implies (i). Suppose that Ext[H <
G′′] = Ext[H < G′]. We know, in particular, that there is a homomorphism
φ from G′′ into G′ that induces the identity map on H. By restricting φ to
G, we obtain a homomorphism from G into G′ that remains the identity map
on H, so (i) is an immediate consequence of (iii). �

We conclude with the following clarification of the relationship between
equivalent extensions and equivalent types of extension.

Theorem 13. Suppose that G and G′ are slim extensions of a common
subgroup H. Then Ext[H < G] = Ext[H < G′] if and only if there exists a
torsion group B such that each of its primary subgroups Bp is a divisible plus
a bounded group having the property that G ⊕ B and G′ ⊕ B are equivalent
extensions of H.

Proof. In one direction the proof is trivial. If such a group B exists for
which there is an isomorphism φ from G ⊕ B onto G′ ⊕ B that induces the
identity on H, then certainly there are homomorphisms in both directions
between G and G′ that restrict to the identity map on H.

For the proof in the other direction, suppose that Ext[H < G] = Ext[H <
G′]. Then the elements of H must have the same height in G as in G′. For a
suitable group B satisfying the conditions of the theorem, the Ulm invariants
of G⊕ B relative to H are equal to the Ulm invariants of G′ ⊕ B relative to
H. An application of Theorem 10 establishes the fact that G⊕B and G′⊕B
are equivalent extensions of H. �
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