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THE BAER SPLITTING PROBLEM IN THE TWENTYFIRST
CENTURY

PHILLIP GRIFFITH

Abstract. The Baer splitting problem from the 1930s is revisited, after
which, using current knowledge about maximal Cohen-Macaulay mod-

ules, the structure of Baer modules over regular integral domains of
higher Krull dimension is explored. In particular, the countably gener-
ated ones in the local case are shown to be free.

1. Introduction

Reinhold Baer was a pioneer in the study of mixed abelian groups. In [2] he
began to untangle the mystery of what conditions are necessary/sufficient in
order for a mixed abelian group to split, that is, when its subgroup of torsion
elements should be a direct summand. The general problem of recognizing
when an extension of abelian groups 0 → T → M → G → 0 is split, where
T is torsion and G is torsion-free, remains a thorny issue to this day. Of
course one can determine the existence of nonsplit extensions by computing
the abelian group structure of Ext1

Z
(G,T ) in special cases.

Baer’s early research in the subject centered around finding necessary and
sufficient conditions so that “universal” splitting occurs. For example, Baer
[2] characterized the structure of torsion abelian groups T so that 0 → T →
M → G→ 0 would always split regardless of the structure of the torsion-free
abelian group G. He found, as did Fomin [6], that such groups T are direct
sums B ⊕ D, where B is bounded (i.e., nB = 0 for some n > 0) and D is
divisible. The corresponding problem for torsion-free abelian groups proved
to be a bit more difficult. In [2] Baer managed to show that such a torsion-free
abelian group G is necessarily free when it is countable. Rotman [23] referred
to such groups as “Baer groups”. In Rotman’s homological formulation, Baer
groups were those groups G such that Ext1

Z
(G,T ) = 0 for all torsion groups

T .
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As it turns out, in the summer of 1967 I was in a rather lucky position
to attack this problem. My advisor Paul Hill and his former Ph.D. student,
Charles Megibben, had been successfully using a technique which they called
the “back and forth method” (see [13]). I. Kaplansky viewed this set theoretic
technique as being derived from “counting principles” of Cantor. Kaplansky
had successfully applied a version of this principle in his famous article [17] on
projective modules. In essence this technique could be used to establish that
certain properties (usually related to countability) of members in a family
would carry over to the direct sum of the family. In my case the family
consisted of countable abelian groups {Mi}i∈I (the size of the index set did
not matter) such that

(†) Mi/Ti ∼= Q (rational numbers), where Ti is the torsion subgroup of
Mi, and

(††) each non-zero torsion-free subgroup of Mi is isomorphic to Z (inte-
gers).

The “method” employed by Hill and Megibben could be used to argue
that each torsion-free subgroup of the direct sum

∐
i∈IMi is free as well.

With T =
∐
i∈I Ti and M =

∐
i∈IMi it was then a simple matter to choose

an index set I sufficiently large so that a “Baer group” G would embed into
M/T , and then use the property Ext1

Z
(G,T ) = 0 in order to lift the embedding

G ↪→ M/T to an embedding G ↪→ M , thus establishing G must be free (see
[9] for details).

Returning to the countable case of Baer groups for the moment, one sees
that “modern” proofs that countable Baer groups are free (see [8, Chapter
6]) are a by-product of Baer’s investigation [3] into the structure of homoge-
neous separable abelian groups. In the final analysis, a countable torsion-free
abelian group is free provided this is the case for each of its subgroups of finite
rank. Applying this same circle of ideas to countably generated modules over
the (complete) p-adic integers Ẑ(p) led H. Prüfer [25] (see also Kaplansky’s
monograph [16, p 48] and Rotman’s article [22]) to conclude that countably
generated “reduced” (= separated in the p-adic topology) Ẑ(p)-modules are
free. The work of Raynaud and Gruson [21] in 1971 suggested one might ex-
pect generalizations of results on torsion-free modules over DVR’s (“discrete
valuation rings”) to hold over regular local rings of higher Krull dimension,
e.g., over rings of the form V [[X1, . . . , Xn]], where V is a field or DVR. For
a regular local ring R and faithfully flat R-module F , Raynaud and Gruson
[21, 3.1.3] proved that R̂ ⊗R F is R̂-free if and only if F is R-free (here R̂
denotes the completion of R with respect to the maximal ideal topology). For
Krull dimR = 1, i.e., when R is a DVR, this statement follows from the fact
that Baer modules (as defined above) are necessarily free (see the remarks
in Section 2 after Proposition 2.1). In addition Raynaud and Gruson ob-
served [21, 3.1.5] that countably generated pure submodules of free modules
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are again free, thus suggesting the uncomplicated nature of countably gener-
ated torsion-free modules. To emphasize this point I will establish in Theorem
4.3 a generalization of Prüfer’s theorem [25] for complete regular local rings.
In turn this result will be used to prove that countably generated “Baer mod-
ules” for regular local rings in higher Krull dimension are necessarily free
(Theorem 4.5). Throughout the remainder of this article a Baer module C
over a (regular) domain R is one that has the property ExtjR(C, T ) = 0, for
all torsion R-modules T and all j > 0.

Having attempted to provide a brief historical perspective regarding the
Baer splitting problem and having hinted at modern developments in the
theory of torsion-free modules over local rings, I will offer a survey of what
can be said about the Baer splitting problem when one replaces the ring
of integers Z by a regular domain. As I have suggested in the preceding
discussion there are sufficient results available at the time of this writing so
that one can resolve the general problem (in the local case) to the point Baer
had come in his 1936 article [2] for the ring of integers.

Terminology and background material that perhaps will facilitate the ease
at which one digests the upcoming discussion may be found in Fuchs’ vol-
umes [7], [8] on abelian groups, Rotman’s book [24] on homological algebra
and either of the graduate texts by Atyah-MacDonald [1] or Matsumura [19]
for a standard treatment of commutative algebra (especially the chapters on
flatness and completion). In addition I recommend that some knowledge of
Warfield’s article [26], and perhaps my paper [12, Section 3], on purity would
be helpful.

2. Reductions of the general Baer problem

Let R be a regular integral domain; so RP is a regular local ring for each
P ∈ SpecR. If one takes the position that Baer modules as defined in the
Introduction must surely turn out to be projective, then one may reduce
to the case pdC ≤ 1 whenever R has finite Krull dimension. This is an
immediate consequence of the general fact that pd C ≤ dimR (see [21, 3.2.6
(p. 84)]) and the observation that syzygies of Baer modules are again Baer
modules. In actual fact a much stronger result is true which was noticed by
I. Kaplansky [18] in 1962 (an article that was a tribute to Reinhold Baer’s
sixtieth birthday). Using a simple but clever homological argument Kaplansky
showed that a Baer module C satisfies pdC ≤ 1 for any integral domain R.
I repeat his argument below.

Proposition 2.1 (Kaplansky). Let R be an integral domain and let C be
a Baer module. Then pd C ≤ 1.

Proof. It suffices to argue that Ext2
R(C,M) = 0 for any R-module M . For

such an R-module M , let the short exact sequence 0 → M → E → T →
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0 represent an embedding of M into its injective envelope E. Then T is
necessarily a torsion module. From the long exact sequence for Ext

0 = Ext1
R(C, T ) −→ Ext2

R(C,M) −→ Ext2
R(C,E) = 0

one concludes Ext2
R(C,M) = 0. �

Corollary 2.2. With the notation as above, an R-module C is a Baer
module if and only if Ext1

R(C, T ) = 0 for all torsion R-modules T .

Our second reduction of this section is to notice that being a Baer module
localizes, that is, one may begin with an analysis in the context of a local
domain R. Since the modules involved are not necessarily finitely generated,
the claim perhaps needs a formal argument.

Proposition 2.3. Let R be an integral domain and let C be an R-module.
If Ext1

R(C, T ) = 0 for all torsion modules T , then the same is true for CP
over RP .

Proof. The key observation here is that a torsion RP -module T is also
torsion as an R-module. Hence, for any extension 0→ T → E → CP → over
RP , one obtains the R-commutative pullback diagram

0 // T // E′

��

// C

��

// 0

0 // T // E // CP // 0

in which E′ = T ⊕C since Ext1
R(C, T ) = 0. It follows that E = T ⊕CP since

E′P = E, that is, the top row localizes to the bottom row. �

I will make yet a further reduction as a consequence of some fairly deep
results of Raynaud and Gruson [21, pp. 80–84] on faithfully flat and projective
modules. This can be motivated by looking at the case in which dimR = 1,
i.e., the case in which R is a DVR. Let C be an R-module such that R̂⊗R C
is free as an R̂-module. If T is any torsion R-module, then one observes that
R̂ ⊗R T ∼= T since T is already a direct limit of R̂-torsion modules (keep in
mind that R is a DVR here). Thus, given any extension 0→ T → E → C → 0
one may apply the functor R̂⊗� and obtain the commutative diagram

0 // T // E

��

// C

��

// 0

0 // T // R̂⊗ E // R̂⊗ C // 0.
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The bottom row splits since R̂ ⊗ C is assumed R̂-free. This yields a commu-
tative triangle

0 // T // E

��~
~

~
~

T

which implies the original extension 0 → T → E → C → 0 is necessarily
R-split. It follows that C is a Baer module for R; so C is R-free according to
[9]. Raynaud and Gruson [21, 3.1.3] establish a higher dimensional analogue
and more general version of this result. They show, if R is any local ring and
if C is any R-module such that the completion R̂ has the property R̂ ⊗ C is
R̂-free, then C is necessarily R-free.

From the above observations one can reduce the general Baer problem for
regular domains as follows.

Remark 2.4. Let R be a regular domain and let C be a Baer module.
(a) If one can verify that C is necessarily free in case R is local and pd C ≤

1, then one obtains that, at the very least, Baer modules over a regular domain
are locally free.

(b) If R is local and one can show that R̂ ⊗R C is R̂-free then one may
conclude that C is R-free (Raynaud and Gruson [21, 3.1.3]). The reason that
one cannot simply reduce to case (a) above is that, in general R̂ has more
torsion modules than R, that is, there are prime ideals in Spec R̂ which are not
the completion of prime ideals in SpecR. If Baer modules were defined only
in terms of the maximal ideals of a regular ring then the “general” problem
would reduce to the complete regular local case.

I wish to record a final observation/reduction in the case of modules of pro-
jective dimension ≤ 1. Although this reduction has no subsequent application,
it seems worthy of note.

Proposition 2.5. Let R be an integral domain and C an R-module. Then
C is a Baer module if and only if Ext1

R(C,
∐
i∈I R/xiR) = 0 for all direct sums∐

i∈I R/xiR in which xi 6= 0 for each i ∈ I.

Proof. Of course C is a Baer module precisely when Ext1
R(C, T ) = 0 for

each torsion R-module T . However, each torsion module is a homomorphic
image of a torsion module of the form

∐
i∈I R/xiR. Since ExtjR(C, �) ≡ 0 for

j ≥ 2, the result follows. �

3. Flatness and other properties of Baer modules

In this section I will tackle the property of flatness for Baer modules. It
should be noted that in the same article [18] cited in Section 2, I. Kaplansky
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provides a very elegant and short argument which settles the issue over general
integral domains. Kaplansky makes efficient use of a standard duality formula
that is derived from properties of the “circle group” over Z. At the risk of
overworking the reader I will take a slightly more circuitous route since I
believe the “local” criteria for flatness provided in Theorem 3.1 might be
of independent interest. In case (R,m, k) is a local ring and C is an R-
module that is flat locally on the punctured spectrum, SpecR − m, then
perhaps somewhat surprisingly the flatness of C depends on the vanishing
of finitely many ExtiR(C, k). After achieving the flatness of Baer modules
in Corollary 3.2, I close this section by establishing that Baer modules over
regular domains are faithfully flat in a very strong fashion (see Theorem 3.3).

Theorem 3.1. Let (R,m, k) be a local ring of dimension n and let C
be an R-module that is flat locally on SpecR − m. If ExtjR(C, k) = 0, for
1 ≤ j ≤ n+ 1, then C is necessarily flat.

Proof. In order to get from the vanishing of Ext to the vanishing of Tor it
is necessary to use a duality formula that one can find in Cartan-Eilenberg
[4, p. 120]. This formula asserts that

TorRj (C,M)v ∼= ExtjR(C,Mv)

where ( � )v = HomR( �, E) and where E = E(k), the injective envelope of the
residue field. The duality created by M ←→ Mv is known as Matlis duality
in commutative algebra. When R is complete this duality is a perfect duality
for finitely generated R-modules; in particular, M ∼= Mvv in that case.

Since kv ∼= k, the duality cited above gives that TorRj (C, k) = 0 for 1 ≤
j ≤ n + 1. It follows that TorRj (C,L) = 0, for 1 ≤ j ≤ n + 1 and all finitely
generated R-modules L with dimL = 0 (recall Tor is half exact). I will argue
by induction on dimM = s that TorRj (C,M) = 0, for 1 ≤ j ≤ n+1−s and for
all finitely generated R-modules M of dimension s. Since TorRj is half exact
and since TorRj (C, �)vanishes in dimension zero, I may consider, when passing
by way of induction from dimension s to dimension s+ 1, that dimM = s+ 1
and depth M > 0. This yields a short exact sequence

0→M
x→M → M̄ → 0

where x ∈ m is regular onM . It follows from the induction hypothesis that the
multiplication homomorphism TorRj (C,M) x→ TorRj (C,M) is an isomorphism
for j in the range 1 ≤ j ≤ n+ 1− s−1. However, Ass TorRj (C,M) ⊆ {m}, for
j > 0, since C is flat locally on SpecR−m. So x ∈ m cannot act as an injective
homomorphism should TorRj (C,M) 6= 0. Thus TorRj (C,M) must vanish in
the range 1 ≤ j ≤ n + 1 − s − 1. The induction argument is complete. As
a consequence of the preceding formula one obtains that TorR1 (C,M) = 0 for
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all finitely generated R-modules M . This statement is a standard equivalent
of “being flat”. �

Corollary 3.2. Baer modules are flat over Noetherian integral domains
R.

Proof. This is a local condition. So I may assume (R,m, k) is a local integral
domain of dimension n and that C is a Baer module over R. If C is assumed
not flat I may choose an R and C where dimR is as small as possible for this
occurrence (I’m using that the notion of Baer module “localizes”). Hence C is
flat locally on SpecR−m due to the minimality of dimR. Since ExtiR(C, k) ∼=
TorRj (C, k)v = 0, for j > 0, one achieves a contradiction as a result of Theorem
3.1. �

In the next theorem I argue that C is actually faithfully flat when C 6= 0,
and R is regular.

Theorem 3.3. Let (R,m, k) be a regular local ring of dimension n and
let C be a nonzero Baer module. Then the following properties hold for C.

(i) For any nonzero ideal I, C/IC is a nonzero free R/I-module.
(ii) The module C is faithfully flat.
(iii) For any finitely generated R̂-module M , the R̂-module M ⊗R C is

m̂-separated, where m̂ = mR̂ (i.e., separated in the m̂-adic topology).

Proof. Let x 6= 0 in m. I claim that xC 6= C. Since R is a UFD it suffices
to prove this statement when x = p is a prime element of R. If pC = C it
would follow that the localization C(p) is a Baer module over R(p) (Proposition
2.1). However, pC = C and C R-flat imply that C(p) is isomorphic to a direct
sum of copies of the fraction field of R(p). Since R(p) is a DVR one has from
my argument [9, Lemma 2.1] (modified for DVR) that this statement is false.
Thus xC 6= C for x ∈ m.

If I 6= 0 is an ideal in R one considers a free presentation 0 → K → F →
C → 0, where F is R-free, and the resulting pushout diagram

0 // K

��

// F

��

// C // 0

0 // K/IK // E // C // 0.

The bottom row of the above diagram is split exact since K/IK is necessarily
a torsion R-module. Thus one obtains a commutative triangle

0 // K

��

// F

||yyyyyyyy
// C // 0

K/IK
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which further yields the commutative diagram

0 // K/IK // F/IF

zzuuuuuuuuu
// C/IC // 0

K/IK .

The top row is exact since C is flat (Corollary 3.2). It follows that the top
row is split exact, i.e., C/IC is R/IR-free. Moreover, I 6= 0 implies there is
x 6= 0 in I. If I = (x) one gets that C/xC is R/xR-free and nonzero (my
initial argument above). But then C̄ 6= JC̄ where J = I/(x) and C̄ = C/xC;
so IC 6= C even when I properly contains x. This proves (i) and together
with 3.2 also proves (ii).

In order to verify part (iii) I consider the induced homomorphism

C
σ→
∏
x6=0

C/xC

where x ranges over the nonzero elements of the maximal ideal m. The R-
submodule Kerσ is easily shown to be uniquely x-divisible for each x 6= 0
(recall C is flat). Hence C = Kerσ ⊕ C ′, where Kerσ is a vector space over
the fraction field of R. The initial argument in this proof gives that Kerσ = 0
since such a module cannot be a Baer module.

If M is an R-module that is m-separated and x-torsion (i.e., xM = 0), then
M ⊗R C ∼= M ⊗R C/xC ∼=

∐
M since C/xC is necessarily R/xR-free. Now

let M be a finitely generated R̂-module and let T = the R-torsion submodule
of M . One sees that T is an R̂-module as well, and as such, T is a finitely
generated R̂-module. It follows there is x 6= 0 in R with the property xT = 0.
From above T ⊗R C ∼=

∐
T ; in particular T ⊗R C is m-separated. Therefore

the short exact sequence (recall C is flat)

0→ T ⊗R C →M ⊗R C →M/T ⊗R C → 0

reduces the question of m-separation to the module M/T ⊗R C as follows.
For each x ∈ m, x 6= 0, one has that applying the functor R/xR ⊗ � to the
short exact sequence 0 → T ⊗ C → M ⊗ C → M/T ⊗ C → 0 yields a short
exact sequence “modulo” x since M/T ⊗C is R-torsion-free. It follows there
is a commutative diagram

T ⊗ C

α

��

// // M ⊗ C

σ

��

// // M/T ⊗ C

β

��∏
x(T ⊗ C)/x(T ⊗ C) // //∏

x(M ⊗ C)/x(M ⊗ C) // // ∏
x(M/T ⊗ C)/x(M/T ⊗ C)

Since Kerα = 0 (by the argument above) one gets Kerσ ⊆ Kerβ. Thus, since
it suffices to show Kerσ = 0, one may assume T = 0 and that M is R-torsion
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free. Since C is R-flat one has that M ⊗R C is also R-torsion-free. I now
return to the outset of this discussion and consider the map

M ⊗R C
σ→
∏
x

(M ⊗R C)/x(M ⊗R C).

As above, one obtains that Kerσ is uniquely x-divisible for each x ∈ m − 0,
and if Kerσ 6= 0, then M ⊗R C contains the fraction field KR of R as an
R-direct summand. Let p be any prime ideal of height one in SpecR. Then

(M ⊗ C)p
∼= Mp ⊗ Cp

∼=
∐

Mp

since Cp is necessarily Rp-free. (Recall Baer modules over DVR are known
to be free.) The module Mp

∼= S−1M is a finitely generated S−1R̂-module,
where S = R − p. The ring S−1R̂ is a regular domain of positive (Krull)
dimension since dimS−1R = 1. It follows that S−1M has no uniquely π-
divisible submodule where p = (π). So KR cannot be an R-summand of∐
Mp. �

There are nonfree modules over regular local rings which have the char-
acteristics of the conclusions of Theorem 3.3; however I suspect they are not
Baer modules.

Example 3.4. Let R be a regular local ring with fraction field KR such
that pdKR ≥ 2 (see B. L. Osofsky [20, 6.5] for the existence of such regular
local rings). Let C be a first syzygy for KR, i.e., 0 → C → F → KR → 0 is
exact with F an R-free module. Since KR = IKR for each nonzero R-ideal I,
one has that C/IC ∼= F/IF for all such I (I am using here that KR is R-flat).
Of course C is m-separated in this instance, and if R is complete then one
may argue M ⊗R C ↪→ M ⊗R F for any finitely generated R-module M ; so
parts (i)–(iii) of Theorem 3.3 hold for such an R-module C.

4. A generalized Prüfer theorem for countably generated
R̂-modules

In [25] Prüfer showed that a countably generated torsion-free module over
a complete DVR is the direct sum of a torsion free divisible R-module (i.e., a
KR-module where KR denotes the fraction field of R) and a free R-module.
For m-separated countably generated torsion free R-modules, this statement
simply states that they are free. In [11] it was shown, with a mild strength-
ening of the “separation” hypothesis, that one could establish a similar result
for complete regular local rings of any (Krull) dimension. I will include a
proof of this result here since there was an error in that manuscript. As a
corollary one sees that countably generated Baer modules over regular local
rings are free. This was the state of affairs when I became interested in the
Baer Problem for Z about 35 years ago.
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I will begin with some background material concerning the “m-adic” topol-
ogy and its affect on torsion-free (usually flat) modules. In [10], [11] I stud-
ied a particular class of countably generated modules called maximal Cohen-
Macaulay modules, abbreviated “MCM” modules. One can deduce powerful
theorems in commutative algebra when such modules are present. In a land-
mark paper [14] Melvin Hochster established their existence over any local
ring which contains a field. My special interest was to determine when such
modules were free over complete regular local rings. My first observation in
[10] was that MCM modules C over a complete regular local ring R contain
a free R-submodule F such that (i) F is a pure submodule of C and (ii)
F + mnC = C for each n ≥ 1. That is, C must contain a free submodule
which is pure and dense in the m-adic topology on C. I borrowed a definition
from the theory of abelian groups and referred to such submodules as “basic
submodules”. Next I will discuss the affect of such free submodules on the
m-adic closure of submodules of the form IC where I is an ideal.

4.1. I will refer to an R-module C as idealwise separated provided C/IC is
m-adically separated for each ideal I. When I = 0 this requirement amounts
to stipulating that C itself is separated in the m-adic topology. Of course one
observes that free modules are idealwise separated.

To get a feel for how these notions interact let us consider a torsion-free
R-module C having a basic submodule F . In addition I will suppose that C is
a submodule of its completion, i.e., C is itself m-separated. Let c ∈ IĈ ∩C =
IF̂ ∩ C (one notes F̂ = Ĉ since F is pure and dense). Since F is free one
has that the closure of IF in F̂ is IF̂ . So there is a sequence {fn}n=1 in IF

with fn → c in the m-adic topology on F̂ . However, since c is in the closure
of F in the m-adic topology on C, it follows that fn → c in this topology as
well. From this fact one further obtains c − fn = vn ∈ menC where en → ∞
as n → ∞. Since fn ∈ IF ⊆ IC one has c + IC = vn + IC, for each n ≥ 1,
that is, c + IC is in the closure of zero in C/IC. Thus C/IC is m-adically
separated if and only if IĈ ∩ C = IC.

I need to discuss yet one more topic before getting to the main result of
this section.

4.2. An R-module E is called pure injective provided any diagram

M

f

��

� � i // N

E
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where i is a pure monomorphism can be completed to a diagram

M

f

��

� � i // N
h

}}||||||||

E′

such that f = h · i. Warfield [26] made a detailed study of pure injective-
ness and algebraic compactness. In particular, he showed the existence of
pure injective envelopes [26, Proposition 6], and that pure injective envelopes
possess the following important property: If the pure injective map M ↪→ E
represents the pure injective envelope of M and if f : M → E′ is another pure
injective map into a pure injective module E′, then there is an injective map
h : E → E′ such that the triangle

M

f

��

� � i // E
h

~~||||||||

E′

commutes and h(E) is a direct summand of E′. In [12, Section 3] I carried
out some computations a bit further in the context of complete local rings
(R,m, k). It is noted in [12] that HomR(M,N) is pure injective whenever N
is pure injective (e.g., if N is actually an injective R-module). It follows that
any finitely generated R-module M (when R is local and complete) is a pure
injective module since the natural map M → HomR(M,HomR(M,E)) is an
isomorphism, where E is the injective envelope of the residue field k. That
is, a finitely generated module M is naturally isomorphic to its “double dual”
under Matlis duality ( � )v = HomR(�, E). In addition in [12, Proposition 3.9]
I noted that the m-adic closure of the countably infinite direct sum

∐
R in

the corresponding direct product
∏
R represents the pure injective envelope

of
∐
R. Put another way, the pure injective envelope of

∐
R is simply its m-

adic completion. This discussion along with the following remark will be used
as background for my generalization of Prüfer’s theorem that was promised in
the Introduction. Namely, a useful way in which to establish that a countably
generated torsion-free module is actually free is to show that such a module
can be represented as a pure submodule of

∏
R (defined above). This fact is

established in [10, Corollary 1.6] and follows in part from a result of Jensen [15]
which states that countably generated flat modules have projective dimension
≤ 1.

Theorem 4.3. Let (R,m, k) be a complete regular local ring and let C be a
countably generated torsion-free R-module. Then the following are equivalent:

(a) C is R-free.
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(b) C has a basic submodule and is idealwise separated.
(c) C is faithfully flat and idealwise separated.
(d) C is faithfully flat and is isomorphic to a pure submodule of its m-adic

completion.

Proof. (a) =⇒ (b) is obvious. The implication (b) =⇒ (c) follows from
the discussion in 4.1. Let F be a basic submodule of C. Then C ↪→ Ĉ = F̂
represents a pure monomorphism once one knows that C is idealwise separated
(note here that Ĉ is faithfully flat). To see that (c) =⇒ (d) I appeal to a result
of Enochs [5, 3.2.7] that allows one to conclude Ĉ will be a flat R-module.
Once again the discussion surrounding 4.1 gives IĈ ∩ C = IC for each ideal
I in R (C has a basic submodule by [10, Lemma 2.1]). Since Ĉ is flat this
statement is sufficient to conclude C → Ĉ is a pure monomorphism.

In order to argue (d) =⇒ (a) I appeal to [10, Corollary 1.6] in that I will
demonstrate C can be realized as a pure submodule of a countable product∏
R. Since C is countably generated and flat one has a free resolution (see

[15])

0→ F1 → F0 → C → 0

where Fi ∼=
∐
R (countable direct sum) for i = 1, 2. Since C is flat the

short exact sequence above is pure exact. As a result of this, the sequence of
completions is also short exact (the m-adic topology on F1 is the same as that
induced from F0), and one obtains the commutative diagram

0 // F1

��

// F2

��

// C

��

// 0

0 // F̂1
// F̂0

// Ĉ // 0

in which the vertical maps are pure injective. Applying facts from the discus-
sion that precedes the statement of Theorem 4.3 one has that F̂1 → F̂0 splits
since F̂1 is pure injective; the lower sequence is pure exact by Enochs’ result
[5, 3.2.7]. It follows that F̂1 = F̂0 ⊕ Ĉ and that C can be represented as a
pure countably generated submodule of

∏
R. As noted above this statement

carries with it the implication that C is free. �

I end this note with the resolution of the Baer problem over regular local
rings of higher Krull dimension for the countable case. Since my proof [9] for
R = Z depended heavily on the hereditary property of Z, I have not a clue at
this point on how one should approach the general case.

Theorem 4.5. Let R be a regular domain and let C be a countably gen-
erated R-module. If C is a Baer module it must be locally free.
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Proof. From Proposition 2.1 one has that pdR C ≤ 1. By Proposition 2.3
I can reduce to the local case, i.e., I may assume (R,m, k) is a regular local
ring. Let C ′ = R̂ ⊗R C where R̂ denotes the m-adic completion of R. Since
C is necessarily faithfully flat over R by Theorem 3.3(ii), it follows by flat
base-change that C ′ is a countably generated faithfully flat R̂-module. From
Theorem 4.3 it remains to verify that C ′/IC ′ is m-separated for each R̂-ideal
I. However, the isomorphisms

C ′/IC ′ ∼= R̂/I ⊗R̂ C
′ ∼= R̂/I ⊗R̂ R̂⊗R C ∼= R̂/I ⊗R C

together with Theorem 3.3(iii) provide the desired conclusion. �
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