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p-GROUPS OF MAXIMAL CLASS AS AUTOMORPHISM
GROUPS

GIOVANNI CUTOLO, HOWARD SMITH, AND JAMES WIEGOLD

Abstract. We classify the (finite) p-groups of maximal class that are
isomorphic to the full automorphism group of a (finite or infinite) group.

The only such p-groups are the nonabelian groups of order 8 and 3-groups
in a certain family, whose structure is fully described. Up to isomor-

phism there is exactly one such 3-group for each even nilpotency class
greater than 2, and none for other classes.

Of several kinds of groups it is known that they cannot be isomorphic
to the full automorphism group of any group. The easiest and best-known
example probably is that of finite nontrivial cyclic groups of odd order. Other
examples include the symmetric group of degree 6 and the alternating groups
of degree different from 1, 2 or 8. Among infinite groups the nontrivial free
groups [2], the periodic nilpotent groups of infinite exponent [13], and the finite
extensions of nontrivial periodic divisible abelian groups [1] also share this
property. By contrast, every group is isomorphic to the outer automorphism
group OutG = AutG/ InnG of a suitable group G, as was first proved by
Matumoto [10].

In this paper we consider finite p-groups of maximal class. The smallest
such groups, those of order 8, are isomorphic to full automorphism groups
of groups. Indeed, the dihedral group D8 is isomorphic to AutG if G ' D8

or G ' C2 × C4 (and for no other groups), while the quaternion group Q8 is
isomorphic to the automorphism group of a torsion-free abelian group (see [6],
p. 272, Example 3). We shall prove that not many other p-groups of maximal
class occur as full automorphism groups.

Theorem. If p is a prime, a p-group A of maximal class is isomorphic
to the full automorphism group AutG of a group G if and only if one of the
following cases occurs:

(1) p = 2 and A ' D8, in which case G ' D8 or G ' C4 × C2.
(2) p = 2 and A ' Q8, in which case G is torsion-free abelian.
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(3) p = 3 and there exists an integer n greater than 1 such that A is
isomorphic to

Xn = 〈x, y, t | x3n = y3n = 1, [x, y] = t3 = x3n−1
,

xt = x−2y−3, yt = xy〉.

In this case G is infinite of nilpotency class 3.
In each of the three cases the nilpotency class of A is even, and G has cyclic
derived subgroup.

As a consequence, this shows that—up to isomorphism—D8 is the only
p-group of maximal class that is isomorphic to the full automorphism group
of a finite group.

For every integer n > 1 the group Xn has order 32n+1 and class 2n, and
is metabelian, like every 3-group of maximal class. Hence there exists no
group G such that AutG is a p-group of maximal class c if p > 3 or c is odd.
Still with reference to case (3), much more detail on the structure of G and A
is given in Theorem 2.11, whose proof takes up the whole of Section 2. One
of the features is that |OutG| = 3, regardless of the integer n. An alternative
description of the groups Xn as semidirect products is given in the comments
following the same Theorem 2.11.

Our results can be compared with those of Fournelle, [4] and [5], who
shows—among other things—which dihedral or generalized quaternion groups
are isomorphic to the full automorphism group of an infinite group. Contrast-
ing with our results, we also recall that many finite p-groups occur as the full
automorphism group of a finite p-group, as shown by U. Martin [9]—see also
the discussion on this point in [8].

1. Preliminary results

We start with a rather obvious remark:

Lemma 1.1. Let L be an abelian nontrivial torsion-free group such that
AutL is periodic, and let n be a positive integer. Then L/Ln has exponent n.

Proof. We argue by induction on n. If n = 1 there is nothing to prove.
Let p be a prime divisor of n and let m = n/p. Then exp(L/Lm) = m by
induction. Also, L ' Lm and Ln = (Lm)p. If Ln = Lm then the mapping:
x ∈ Lm 7→ xp ∈ Lm would be an automorphism of infinite order, which
is impossible since AutLm ' AutL is periodic. Thus Ln < Lm, so that
exp(L/Ln) = n. �

If a group G has finite automorphism group then G/Z(G) ' InnG is also
finite. Hence G′ is finite and the set torG of all periodic elements of G is a
subgroup of G (containing G′). A theorem due to Nagrebeckĭı ([11], also see
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[12], Theorem 3.1) states that torG is finite—still under the hypothesis that
AutG is finite. If AutG is also a p-group then G is clearly nilpotent, because
G/Z(G) is, and we are going to show that torG is a p-group as well, if G is
infinite. We first record as a lemma a very special case of a theorem of Hallett
and Hirsch describing the possible structure of the automorphism group of an
abelian torsion-free group with finitely many automorphisms.

Lemma 1.2 (Hallett-Hirsch; see [6], Theorem 116.1). Let L be an abelian
torsion-free group such that AutL is finite, and let p be a prime. If Γ is
a p-subgroup of AutL then either Γ is an elementary abelian 3-group, or Γ
embeds in a direct product of copies of Q8.

If H and K are normal subgroups of the group G, and H ≤ K, then the
group of the automorphisms of G that act trivially on both G/H and K is
isomorphic to the group of derivations Der

(
G/K,CH(K)

)
—an isomorphism

being obtained by mapping every such automorphism α to the derivation given
by xK 7→ [x, α]. We will make frequent use of this well-known fact to produce
automorphisms of G, particularly in the special case when CH(K) is contained
in Z(G), in which case Der

(
G/K,CH(K)

)
= Hom

(
G/K,H ∩ Z(G)

)
.

Lemma 1.3. Let G be an infinite group such that AutG is a finite p-group
for some prime p. Then T := torG is a finite p-group. Moreover:

(i) The factor TZ(G)/T has a quotient of exponent exactly n, for every
n ∈ N.

(ii) If T 6= 1 then G/Gp
n

is finite, for every n ∈ N.
(iii) Aut(G/T ) is finite.
(iv) If p > 3 then AutG acts trivially on G/T .

Proof. By [12], Corollary 5.4, Z := Z(G) also has finite automorphism
group. Let S = torZ = T ∩ Z. Since S is finite by Nagrebeckĭı’s theorem,
Z = S × L for some torsion-free subgroup L. Then AutL embeds in AutZ,
hence it is finite as well. Now Lemma 1.1 shows that exp(L/Ln) = n for
every n ∈ N. As L ' Z/S ' TZ/T this proves (i). Now, suppose that T has
nontrivial q-component Tq for some prime q 6= p. Then Tq ≤ Z, since G/Z
is a p-group. From (i) and since G is nilpotent it follows that Hom(G/S, Tq)
is a non-trivial q-group. But this group embeds in AutG, as Tq ≤ S ≤ Z, a
contradiction. Therefore T is a p-group, as required.

Suppose that T 6= 1. Then S = T ∩ Z 6= 1. But Hom(G/S, S) embeds
in AutG, hence it is finite and so G/G′GpS is finite. Therefore G/Gp is finite.
Part (ii) follows.

To prove (iii) we may assume that T 6= 1. Let B = Aut(G/T ), and let
N = NB(TZ/T ). Since TZ ≥ Gp

n

for some n ∈ N, it follows from (ii) that
|B : N | is finite. Also, Aut

(
TZ/T

)
' Aut

(
Z/S

)
is finite, as we have shown

in proving (i), so N/CN (TZ/T ) is finite. Clearly N/CN (G/TZ) is finite too.
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Now CN (TZ/T ) ∩ CN (G/TZ) ' Hom
(
G/TZ, TZ/T

)
, and the latter is the

trivial group, as G/TZ is finite and TZ/T is torsion-free. Thus B is finite, as
required. Also, we may apply Lemma 1.2 to G/T now, and we immediately
get (iv). �

It will be crucial for our proofs that the groups that we consider have many
characteristic subgroups.

Lemma 1.4. Let G be group such that AutG is a finite p-group for some
prime p. Let F = U/V be a characteristic section of G of order pn for some
n ∈ N. Then there is a composition series between U and V each term of
which is characteristic in G. Also, the nilpotency class of AutG/CAutG(F )
is less than n.

Proof. Let X = F o A. The first statement follows immediately from the
fact that X is a finite p-group. The series in the statement has length n and is
stabilized by AutG, hence AutG/CAutG(F ) has class n− 1 at most (see [7],
Satz III.2.9). �

We will also make use of some extension theory.

Lemma 1.5. Let G be a group and let G′ ≤ C ≤ Z(G). If Ext
(
(G/C), C

)
= 0 then G has an automorphism that centralizes C and acts like inversion
on G/C.

Proof. Let Q = G/C. Let ∆ be the cohomology class of the central exten-
sion C ↪→ G� Q. If α ∈ AutC and β ∈ AutQ, then there exists γ ∈ AutG
inducing α on C and β on Q if and only if ∆α∗ = β∗∆, with reference to the
natural actions of AutC and AutQ on H2(Q,C) (see [16], Proposition II.4.3);
here C is viewed as a trivial Q-module. In the case that we are dealing with,
α = 1 and β = −1, so ∆α∗ = ∆ and we have only to check that β∗ leaves ∆
invariant to prove our statement. The Universal Coefficients Theorem (see
[15], 11.4.18) yields a natural exact sequence Ext(Q,C) � H2(Q,C) �
Hom

(
M(Q), C

)
, where M(Q) is the Schur multiplier of Q, hence a natural

isomorphism H2(Q,C) ' Hom
(
M(Q), C

)
, since Ext(Q,C) = 0 by hypothe-

sis. Furthermore M(Q) ' Q∧Q = (Q⊗Q)/D, where D = 〈x⊗x | x ∈ Q〉 (see
[15], 11.4.16). Thus ∆ corresponds to a homomorphism in Hom(Q ⊗ Q,C)
whose kernel contains D, or, equivalently, to a bilinear map from Q×Q to C
which maps the diagonal subgroup to the identity of C. This map is precisely
the commutator map f , defined by (xC, yC) 7→ [x, y] for all x, y ∈ G (see
[16], Proposition II.5.4, or p. 109). Similarly β∗∆ corresponds to the map
(xC, yC) ∈ Q × Q 7→

(
(xC)β , (yC)β

)
= [x−1, y−1] ∈ C. Since G has nilpo-

tency class 2 (at most) then [x−1, y−1] = [x, y] for all x, y ∈ G; thus this latter
map is f and ∆ = β∗∆, as we had to prove. �



p-GROUPS OF MAXIMAL CLASS AS AUTOMORPHISM GROUPS 145

Finally we state the following lemma for ease of reference. Its proof follows
from standard calculations and we omit it.

Lemma 1.6. Let G be a nilpotent group of class 3, and let p be an odd
prime. Suppose that G′ is a finite p-group and that γ3(G) has exponent p. Let
q = exp

(
G′/γ3(G)

)
. Then, for all x, y ∈ G:

(i) [xkp, y] = [x, y]kp, for all k ∈ Z.
(ii) (xy)pq = xpqypq.

2. Necessity

The aim of this section is to prove that the only p-groups of maximal class
that can occur as full automorphism groups of groups are those listed in the
Theorem in the introduction—that they actually occur will be shown in the
next section.

If the automorphism group of a group G is non-abelian of order 8 then
it is easy to check that G must be as required in cases (1) and (2) of the
Theorem—for instance this follows from [3], [4] and [5]. Thus we shall not
need to consider this case any further.

For the sake of brevity, we fix some notation and hypotheses that will be
in effect throughout the whole section.

Thus we let G be a group and p be a prime, and assume that A := AutG
is a p-group of maximal class c. We shall further assume that |A| > 8. Then
we shall prove that p = 3 and A is isomorphic to one of the groups Xn defined
in the introduction, for some integer n > 1, hence c = 2n. We shall also
gain information on the structure of G. Coming back to notation, we set
Z := Z(G), T = torG and S = torZ = Z ∩ T , which is consistent with the
usage in Lemma 1.3.

To start with, observe that Lemma 1.2 shows that G cannot be torsion-free
abelian, for otherwise A ' Q8. Hence T 6= 1 and so S 6= 1. Next, we see
that if G is finite then we may always assume that G is p-group (as usual, Gπ
denotes the π-component of G):

Lemma 2.1. If G is finite then |Gp′ | ≤ 2 and A ' AutGp.

Proof. Let q be a prime divisor of |G| different from p. Then AutGq is
isomorphic to a direct factor of A. Hence it is a p-group. It follows easily that
either p 6= 2 and |Gq| = 2 or p = 2 and |Gq| = q. In this latter case AutGq is
abelian and nontrivial. On the other hand, A has no nontrivial abelian direct
factor, since it has maximal class. The lemma follows. �

We shall often use the fact that the normal structure of groups of maximal
class is very restricted to obtain information on characteristic subgroups of G.
A first instance is the next lemma.
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Lemma 2.2. There are two subgroups N and M of G such that:
(i) M is the only characteristic subgroup of index p in G.
(ii) N is the only characteristic subgroup of order p in G.
(iii) Z(A) = CA(M) ∩ CA(G/N).

For every n ∈ N the quotient G
/

[G,A]Gp
n

is cyclic.

Proof. Lemma 1.4 and the fact that S 6= 1 ensure the existence of a char-
acteristic subgroup N of order p in G; the existence of M is proved similarly,
because G/Gp is finite and non-trivial (by Lemma 1.3 if G is infinite, and
by Lemma 2.1 if G is finite). If N � M then G = N ×M , which is impos-
sible since M is characteristic in G and Hom(M,N) 6= 0. Hence N ≤ M .
Now, Γ := CA(M) ∩ CA(G/N) C A, and Γ ' Hom(G/M,N) ' Cp, because
N ≤ Z(G). Hence Γ = Z(A). Thus Z(A) centralizes every characteristic
subgroup of index p in G. If there were another such subgroup, say M∗,
then Z(A) would centralize MM∗ = G, which is impossible. This proves
the uniqueness of M . Similarly, [G,Z(A)] is contained in every characteristic
subgroup of order p of G, and this proves the uniqueness of N . Parts (i)–(iii)
are proved.

Finally, all subgroups of G containing [G,A] are characteristic, so only
one of them (namely M) has index p. From this we deduce the remaining
claim. �

From now on, by N and M we will always mean the subgroups introduced
in the previous lemma.

Lemma 2.3. G is not abelian.

Proof. If G is abelian then the inverting automorphism g 7→ g−1 belongs
to Z(A) and so centralizes M and G/N . Therefore expM = exp(G/N) = 2.
Hence either G ' C4 × E or G ' E, where E is elementary abelian. Since
AutE embeds in A then AutE is a p-group, hence |E| ≤ 2. Thus G ' C4×C2

and A ' D8, a contradiction. �

Lemma 2.4. InnG < A. Moreover:
(i) The characteristic subgroups H of G containing Z form a chain and

a composition series between Z and G.
(ii) M = Z[G,A].

Proof. We have | InnG| ≥ p2 by Lemma 2.3. If InnG = A then the group
AutcG = CA(InnG) of all central automorphisms of G would be Z(A), which
has order p. However, Hom(G/Z, S) can be embedded in AutcG, and since
S 6= 1 we also have |AutcG| ≥ p2. Thus InnG < A. Now, let ϕ be the natural
isomorphism from G/Z to InnG. If H is a subgroup of G containing Z, then
H is characteristic in G if and only if (H/Z)ϕ C A. The subgroups of InnG
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that are normal in A form a chain, because A has maximal class. This and
Lemma 1.4 prove (i). Two characteristic subgroups lying between Z and G
are K = Z[G,A] and F = ZG′Gp. Since G/Z is not cyclic by Lemma 2.3
the factor G/F is also not cyclic, while G/K is cyclic by Lemma 2.2. Thus
K � F and so F < K, which implies that K has index p, because G/F has
exponent p. Lemma 2.2 (i) yields K = M , that is (ii). �

Lemma 2.5. Assume that the class c of A is greater than 2. Then
CA
(
Z2(A)

)
is a maximal subgroup of A. Moreover:

(i) Both InnG and AutcG contain Z2(A) and are contained in
CA
(
Z2(A)

)
.

(ii) If A has an abelian maximal subgroup B then B = CA
(
Z2(A)

)
and G

has nilpotency class 2.

Proof. Since c > 2 andA has maximal class, |Z2(A)| = p2 and CA
(
Z2(A)

)
l

A. (Here, as elsewhere, the symbol ‘l’ means ‘is a maximal subgroup of’.)
As in the proof for Lemma 2.4 both InnG and AutcG have order at least p2,
hence Z2(A) ≤ InnG and Z2(A) ≤ AutcG. Also, [InnG,AutcG] = 1, so
InnG ∩ AutcG ≤ Z(InnG) ∩ Z(AutcG) and (i) holds. If B is as in (ii) then
Z2(A) ≤ B because B l A. Since B is abelian, B = CA

(
Z2(A)

)
. Thus

InnG ≤ B by (i), so that G/Z is abelian (but G is not by Lemma 2.3). �

Lemma 2.6. p > 2.

Proof. Assume that p = 2. As |A| > 8 we have c > 2. Every 2-group
of maximal class has a cyclic maximal subgroup ([7], Satz III.11.9), hence
Lemma 2.5 shows that InnG is cyclic. This is impossible by Lemma 2.3. �

An obvious consequence is that no automorphism of G induces the inverting
automorphism on any section of G of exponent greater than 2.

Lemma 2.7. If G is infinite, then TCG(T ) ≤ M < G. In particular,
Z < TZ < G.

Proof. Suppose that T ≤ Z. As G′ ≤ T we may apply Lemma 1.5 to pro-
duce an automorphism of G inducing the inversion on G/T , a contradiction.
Hence T � Z and CG(T ) < G. Lemma 2.4 (i) yields CG(T ) ≤ M . Parts (i)
and (ii) of Lemma 1.3 show that T is contained in a proper characteristic
subgroup K of G such that G/K is a finite p-group. Thus T ≤ K ≤ M by
Lemmas 1.4 and 2.2 (i). Hence TCG(T ) ≤M . �

Lemma 2.8. Let L be an abelian normal subgroup with a complement in G.
Then |L| ≤ 2.

Proof. We have G = L o K for some K ≤ G. Then G has an automor-
phism α that centralizes K and induces the inversion on L. As p > 2, we
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have α = 1, so that expL ≤ 2. But p > 2, hence |L| ≤ 2 by Lemmas 1.3
and 2.1. �

Lemma 2.9.

∣∣G/Z∣∣ > p2 and c > 2.

Proof. Suppose that
∣∣G/Z∣∣ = p2. Then G has class 2. If G is finite we

may assume that it is a p-group by Lemma 2.1. Then the mapping α given
by x 7→ xp+1 is an automorphism of G lying in Z(A), so that [M,α] = 1 by
Lemma 2.2. Hence Z has exponent p. A theorem by Faudree [3] shows that
|G| ≤ |A| = pc+1; hence |G| = pc+1 by Lemma 1.4. Therefore |Z| = pc−1

and
∣∣Hom(G/Z,Z)

∣∣ = p2(c−1). Now, Hom(G/Z,Z) embeds in AutcG, thus
2(c − 1) ≤ c and c ≤ 2. So |G| = p3, whence G has a complemented normal
subgroup of order p2, contradicting Lemma 2.8. If G is infinite Lemma 2.7
shows that G/Z =

(
TZ/Z

)
×
(
V/Z

)
for some V ≤ G, and Z is maximal

in both TZ and V . Hence T and V are abelian. Since S = torV is finite,
V = S × K and so G = T o K for a suitable K ≤ V , but this is excluded
by Lemma 2.8 again. Thus

∣∣G/Z∣∣ > p2. Finally, if c = 2 then |A| = p3 and
Lemma 2.4 yields

∣∣G/Z∣∣ ≤ p2, a contradiction. �

Lemma 2.10.

(i) Z(A) = CA(M).
(ii) Z(M) = CG(M) and

∣∣Z(M)/Z
∣∣ = p.

(iii) M is not abelian, neither is [G,A].
(iv)

∣∣G/Z∣∣ > p3.

Proof. We know from Lemma 2.2 that Z(A) = CA(M) ∩ CA(G/N). Since
A has maximal class, if a normal subgroup of A different from A′ is the inter-
section of two normal subgroups of A then it must be one of the two. We have
Z(A) 6= A′ because c > 2, hence Z(A) is one of CA(M) and CA(G/N). Now,
Γ := CA(Z) ∩ CA(G/N) C A, and Γ ' Hom(G/Z,N). This group has order
greater than p, as G/Z is not cyclic; hence Z(A) < Γ ≤ CA(G/N). There-
fore Z(A) = CA(M), i.e., (i) holds. Since Z(A) ≤ InnG we also have that
Z(A) = CInnG(M) ' CG(M)/Z. On the other hand, CG(M) is characteristic
in G, hence Lemma 2.4 (i) shows that CG(M) ≤ M , so CG(M) = Z(M).
Thus (ii) is also proved. Next, if M were abelian then

∣∣G/Z∣∣ = p2 by (ii), in
contradiction to Lemma 2.9. As M = Z[G,A] by Lemma 2.4, neither is [G,A]
abelian, and we have (iii). Finally, |G/Z| =

∣∣G/M ∣∣∣∣M/Z(M)
∣∣∣∣Z(M)/Z

∣∣ ≥
pp2p = p4. �

We are now in position to describe the structure of A and, to a large extent,
that of G.
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Theorem 2.11. Let p be a prime and G be a group such that A = AutG
is a finite p-group of maximal class and |A| > 8. Let T = torG and let M be
as in Lemma 2.2. Then G is a central product HL, where:

(g.i) H =
(
〈c〉×〈u〉

)
o〈v〉, where u and v have infinite order, c has order 3n

for some integer n > 1, and the following relations hold: c = [u, v]
and [c, v] = c3

n−1
.

(g.ii) L = G3n ' Gab is a torsion-free abelian group with finite automor-
phism group. Thus L is characteristic in G.

(g.iii) T = G′ = H ′ = 〈c〉 and
∣∣γ3(G)

∣∣ = 3, so that G has nilpotency class 3.
Also, M = CG(G′), and G/H is 3-divisible.

Moreover, p = 3 and A has the following structure:
∣∣A/ InnG

∣∣ = 3 and:
(a.i) InnG = 〈ũ〉 o 〈ṽ〉, where ũ and ṽ, the inner automorphisms of G

induced by u and v, respectively, both have order 3n, and [ũ, ṽ] =
ũ3n−1

.
(a.ii) A = (InnG)〈ϕ〉, where ϕ is an automorphism that centralizes G′ and

such that vϕ = uv and uϕ = u−2v−3z for some z ∈ Z such that
zϕ = z, and ϕ3 = [ũ, ṽ], the inner automorphisms of G induced by c.

(a.ii′) A = (InnG)o 〈ψ〉, where ψ = ϕṽ has order 3 and its action on InnG
is defined by ũψ = ũ−2+3n−1

ṽ−3 and ṽψ = ũ1+3n−1
ṽ.

(a.iii) A is metabelian of nilpotency class 2n.

Proof. We shall first prove first that T is cyclic. Suppose that this is false.
By Lemma 2.1 we may assume that T is a p-group if G is finite. Then, since
T o A is a p-group and p 6= 2, there exists an A-invariant subgroup P of T
which is isomorphic to Cp × Cp (see, for instance, [7], Hilfssatz III.7.5). Since∣∣PZ/Z∣∣ ≤ p =

∣∣Z(M)/Z
∣∣ (see Lemma 2.10) and by Lemma 2.4 (i) we have

that P ≤ Z(M). By Lemma 2.10 again, Z(A) = CA(M) ∩ CA(G/M) '
Der

(
G/M,Z(M)

)
. Now, the (elementary) description of derivations of cyclic

groups, which is also an easy consequence of the description of the cohomology
of cyclic groups, yields Der

(
G/M,Z(M)

)
' K := ker(1+α+α2 + · · ·+αp−1),

where α is the automorphism of Z(M) induced by conjugation by an element
of G \M . It is straightforward to check that P ≤ K, since α induces on P
an automorphism of order p at most. This is a contradiction, because |K| =
|Z(A)| = p. Hence T is cyclic, and G is therefore infinite. Also, [G,A] � T
by Lemma 2.10 (iii), hence Lemma 1.3 (iv) and Lemma 2.6 show that p = 3.
Another consequence of the fact that T is cyclic is that A/CA(T ) is cyclic, as it
embeds in AutT . Since A has maximal class,

∣∣A/CA(T )
∣∣ ≤ 3. Now, T � Z,

by Lemma 2.7, hence InnG � CA(T ). We may now employ Lemma 2.4
and deduce that InnG and CA(T ) are different maximal subgroups of A.
Thus A′ = InnG ∩ CA(T )l InnG and hence CG(T )lG. By Lemma 2.2 (i),
CG(T ) = M . Moreover, since

∣∣A/CA(T )
∣∣ =

∣∣G/CG(T )
∣∣ = 3 it follows that

[T,A] = [T,G] is the subgroup of T of order 3 and S = T ∩ Z = T 3.
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Our next aim is to prove that G′ = T . Lemma 2.10 (iv) gives |A| > 34.
Then we can apply Satz III.14.17 in [7]1 to show that A is metabelian and
CA
(
Z2(A)

)
is metacyclic. By Lemma 2.5 and Lemma 2.9 it follows that

AutcG has rank 2. Now, G/G′G3 ' Hom(G/G3, S) embeds in AutcG, as
S ≤ G3. Since G/Z is not cyclic it follows that Z ≤ G′G3 and

∣∣G/G′G3
∣∣ = 9.

As TZ < M , because M is not abelian, TZ ≤ G′G3 by Lemma 2.4 (i).
Suppose that G′ < T . Then G′ ≤ T 3. Hence G/T 3 = (T/T 3) × (V/T 3)
for some V ≤ G, and G3 ≤ V . But then T = T ∩ G′G3 = G′(T ∩ G3) ≤
G′(T ∩V ) ≤ T 3, a contradiction. Therefore G′ = T . Also, γ3(G) = [T,G] has
order 3.

Let u ∈ M \ G′G3 and v ∈ G \ M . Set H := 〈u, v〉. Then G = HZ,
because G′G3

l M l G. If c = [u, v] then G′ = 〈c〉G = 〈c〉, because G′

is cyclic. Next, u and v are not periodic, as G′ = T ; since M = CG(G′)
(see above) then [c, u] = 1. From now on let 3n = |G′| and q = 3n−1, the
order of G′/γ3(G). Then γ3(G) = 〈cq〉, hence [c, v] = cεq, where ε ∈ {1,−1}.
Finally, H/G′ is not cyclic, otherwise G/ZG′ would be cyclic and G/Z abelian.
Hence u and v are independent modulo G′, so H =

(
〈c〉×〈u〉)o 〈v〉. We have

already proved that Z ≤ G′G3. Since G = HZ this shows that G/H is
3-divisible. By Lemma 1.6 the mapping g 7→ g3n is an endomorphism of G.
Thus L := G3n ' G/G[3n] = G/G′ is torsion-free. Hence L ∩ G′ = 1 and
L ≤ Z. By Lemma 1.3 (iii), AutL is finite. Also, since G/L is finite by
Lemma 1.3 (ii) and G = HG′G3, we have G = HL.

Thus far we have proved the first part of the statement—that on the struc-
ture of G—apart from the fact that we may choose u and v in such a way
that ε = 1, which will be settled shortly. That p = 3, and InnG l A, so∣∣A/ InnG

∣∣ = 3, has also been shown in the first part of the proof, as well as
the fact that A is metabelian. The previous paragraph contains a description
of InnG ' G/Z, so (a.i) is also proved modulo the choice of ε. In particular,
since | InnG| = 32n and hence |A| = 32n+1 it follows that A has class 2n. This
gives (a.iii).

From now on let us write I for InnG and, for every x ∈ G, let x̃ denote the
inner automorphism of G induced by x. Since CA(G′) � I (see above) we may
choose ϕ ∈ CA(G′) \ I. Then A = I〈ϕ〉. To describe the structure of A we
only need to describe the action of ϕ on G/Z (that is, on I) and work out ϕ3,
a generator of I∩〈ϕ〉. By Hilfssatz III.14.13 of [7] we have ϕ3 ∈ CI(ϕ) = Z(A)
(and ϕ9 = 1). Thus

∣∣{[g̃, ϕ] | g ∈ G
}∣∣ = |I : Z(A)| = |I|/3. Since A′ l I

we have [I, ϕ] ≤ A′ and |A′| = |I|/3. Therefore A′ =
{

[g̃, ϕ] | g ∈ G
}

.
On the other hand, M̃ := {x̃ | x ∈ M} has index p2 in A, as |G : M | =

1Note that in the statement of this theorem, in [7], the hypothesis that the group has
order more than 34 is omitted. However this hypothesis is explicitly used in the proof,

and the example of the standard wreath product of two groups of order 3 shows that it is
actually needed.
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|A : I| = p, thus M̃ = A′. Hence ũ ∈ A′. Therefore there exists y ∈ G such
that ũ−1 = [ỹ−1, ϕ], which means that yϕ = uys for some s ∈ Z. Moreover,
since

∣∣M/G′G3
∣∣ = 3 and so [M,ϕ] ≤ G′G3 (and u /∈ G′G3 by our choice) we

have that y /∈ M . Thus we may redefine v as y and u as us to get vϕ = uv,
together with all the information already obtained (of course c, w and H also
have to be redefined in relation to u and v). We can also make ε = 1. For,

[u−1, v−1] = [u, v−1]−1 = [u, v]v
−1

(1)

= cv
−1

= c[c, v−1] = c[c, v]−1 = c1−εq;

by setting u1 := c−1u−1 and v1 := v−1 we then have v1 ∈ G\M and u1 ∈M \
G′G3, and also [u1, v1] = [c, v] [u−1, v−1] = cεqc1−εq = c and [c, v1] = [c, v]−1.
Hence, if ε = −1, that is [c, v] = c−q, we substitute u1 and v1 for u and v,
respectively, to get [c, v] = cq, i.e., ε = 1. Note that it remains the case that
vϕ = uv after this substitution.

Next, we shall work out uϕ. We have ũϕ = ũiṽj for some integers i and j.
Now, A′/I3 has order 3 and so is centralized by ϕ. Since ũ ∈ A′ and I3 =
〈ũ3, ṽ3〉 then 3 divides j. Furthermore, [vj , u] = [v, u]j by Lemma 1.6 (i), and
this commutator lies in 〈c3〉 ≤ Z; from this and since cϕ = c commutes with
u we have

c = [uϕ, vϕ] = [uivj , uv] = [u, v]i[v, u]j = ci−j .

Therefore i ≡ j + 1 (mod 3n) and ũϕ = ũj+1ṽj . Also, ṽϕ
2

= (ũṽ)ϕ =
ũj+1ṽj ũṽ = ũj+2ṽj+1, because ṽj ≤ I3 ≤ Z(I). Since |I ′| = 3 it also follows
that (ũṽ)j+1 = ũj+1ṽj+1 and so

ṽϕ
3

= (ũj+1ṽj)j+2(ũṽ)j+1 = ũ(j+1)(j+2)ṽj(j+2)ũj+1ṽj+1

= ũ(j+1)(j+3) ṽj(j+3)+1.

But ϕ3 ∈ Z(A), as we said above, hence ṽϕ
3

= ṽ and so ũ(j+1)(j+3) = 1. Then
3n divides (j+1)(j+3). Since 3 divides j it follows that 3n divides j+3. Thus
j ≡ −3 (mod 3n). Hence ũϕ = ũj+1ṽj = ũ−2ṽ−3. Therefore uϕ = u−2v−3z
for some z ∈ Z, as required in (a.ii). To complete the proof for (a.ii) we still
have to compute ϕ3 and check that z is fixed by ϕ.

Since 〈c̃〉 = I ′ C A and
∣∣〈c̃〉∣∣ = 3 (or by Lemma 2.10) we have that Z(A) =

〈c̃〉. Thus ϕ3 ∈ 〈c̃〉, so ϕ3 = c̃λ for some λ ∈ {−1, 0, 1}. (Note that the
three different values for λ give rise to three non-isomorphic groups.) We
have vϕ

3
= uϕ

2
uϕuv and vc

λ

= v[c, v]−λ = vc−λq = c−λqv, thus

(2) uϕ
2
uϕu = c−λq.
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We shall make use of the following rule for calculating cubes in G. Since
[M,G′] = 1, for all x ∈ G and m ∈M ,

(xm)3 = x3mx2
mxm = x3

(
m[m,x2]

)(
m[m,x]

)
m(3)

= x3m3[m,x]2[m,x, x] [m,x]

= x3m3[m,x]3[m,x, x].

As v3 ∈ G3 ≤ Z2(G) and by Lemma 1.6 (i) we have that

(v3u2)2 = v6u4[u2, v3] = c6v6u4.

Also, [u−1, v−1] = c1−q by (1). By using these equalities together with (3)
and Lemma 1.6 (i), and remembering that c3 ∈ Z, we obtain

uϕ
2

=
(
uϕ)−2(vϕ)−3zϕ =

(
v3u2

)2
z−2(v−1u−1)3zϕ

= c6v6u4v−3u−3[u−1, v−1]3[u−1, v−1, v−1]zϕ−2

= c6v3uv3[v3, u]u3v−3u−3c3(1−q)[c1−q, v−1]zϕ−2

= c6v3uv3c−3u3v−3u−3c3[c, v]−1zϕ−2

= c6v3u[v−3, u−3]c−qzϕ−2 = c6v3uc−9c−qzϕ−2 = v3uc−3−qzϕ−2,

hence (2) gives

c−λq = uϕ
2
uϕu = v3uc−3−qzϕ−2u−2v−3zu = [v−3, u]c−3−qzϕ−1 = c−q[z, ϕ].

Therefore

(4) [z, ϕ] = c(1−λ)q.

Now recall that L ≤ Z and G = LH, hence Z = LZ(H) = LH3n〈c3, w〉 =
L〈c3, w〉; we also recall that w = cu−q. Since w3 ∈ 〈c3〉L we have z =
c3tg3nwµ = c3t+µg3nu−µq for some g ∈ G and integers t ∈ N and µ ∈
{−1, 0, 1}. To compute [z, ϕ] we observe first that from (3) and from

∣∣(G3)′
∣∣ =

|〈c9〉| = q/3 it follows that (v3u2)q = (v9u6[u2, v]9)q/3 = v3nu2q. Also,
Lemma 1.6 (ii) yields [g3n , ϕ] = [g, ϕ]3

n

. Then

[z, ϕ] = [g3nu−µq, ϕ] = [g3n , ϕ] [u−µq, ϕ] = [g, ϕ]3
n

uµq
(
u−2v−3z

)−µq
= [g, ϕ]3

n

uµqvµ3nu2µqz−µq = [g, ϕ]3
n

uµ3nvµ3nc−µ
2qg−µq3

n

uµ
2q2

=
(
[g, ϕ]g−µquµ+µ2q/3vµ

)3n
c−µ

2q.

Since L = G3n is torsion-free, (4) implies that ([g, ϕ]g−µquµ+µ2q/3vµ)3n = 1
and c(1−λ)q = [z, ϕ] = c−µ

2q. Hence [g, ϕ]g−µquµ+µ2q/3vµ ∈ T . Now, [g, ϕ],
g−µq, uµ+µq/3 ∈M and T ≤M , hence vµ ∈M , so µ = 0. Therefore [z, ϕ] = 1
and λ = 1. By definition of λ we have ϕ3 = c̃. Thus (a.ii) is proved.
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Finally, we shall prove that A splits over I and obtain (a.ii′). Since I ′I3 ≤
Z(I) we have

(ϕṽ)3 = ϕ3ṽϕ
2
ṽϕṽ = c̃(ũṽ)ϕṽϕṽ

= c̃ũ−2ṽ−3(ũṽ)2ṽ = c̃ũ−2ṽ−3ũ2ṽ2[ṽ, ũ]ṽ = c̃c̃−1 = 1,

so ψ := ϕṽ has order 3. Also, c̃ = ũq, hence

ũψ =
(
ũ−2ṽ−3

)ṽ = ũ−2[ũ, ṽ]−2ṽ−3 = ũ−2−2q ṽ−3 = ũq−2ṽ−3

ṽψ = (ũṽ)ṽ = ũ[ũ, ṽ]ṽ = ũq+1ṽ,

which proves (a.ii′). �

The description of the group A in (a.ii) makes it clear that A is isomorphic
to the group Xn appearing in the introduction. An alternative presentation
for A is suggested by the semidirect product decomposition in (a.ii′):

A '
〈
x, y, t

∣∣ x3n = y3n = t3 = 1, [x, y] = x3n−1
,

xt = x3n−1−2y−3, yt = x3n−1+1y
〉
.

3. Examples

In this section we shall complete the proof of the Theorem in the intro-
duction, by showing that groups isomorphic to the groups Xn (that is, to
those described as A in Theorem 2.11) actually are realized as the full au-
tomorphism group of some (infinite) group, for every possible choice of the
parameter n.

Let n be an integer greater than 1. As in the previous proof, we set q :=
3n−1. Let H :=

(
〈c〉 × 〈u〉

)
o 〈v〉, where u and v have infinite order and

c has order 3n, and the action of v on 〈c, u〉 is defined by [u, v] = c and
[c, v] = cq. Then H ′ = 〈c〉 and γ3(H) = 〈cq〉 has order 3. Lemma 1.6 may
be applied to check that H3n , 〈c3〉 and cu−q lie in Z(H) (as a matter of fact
they generate Z(H) ), and H/Z(H) is the semidirect product of the images
modulo Z(H) of 〈u〉 and 〈v〉, both of order 3n. Thus

∣∣H/Z(H)
∣∣ = 32n.

For every i ∈ N let pi be a prime congruent to 1 modulo 3n, chosen in such a
way that pi 6= pj if i 6= j. For each i ∈ N the polynomial x3−1 has three roots
in Zpi , hence there exists an integer λi such that λ2

i + λi + 1 ≡ 0 (mod pi).
Let hi := uv1−λi .

Define a sequence (Hi)i∈N0 of groups by letting H0 = H and, for each
i ∈ N, by letting Hi be a central product Hi−1〈zi〉 where zpii = h1−pi

i . This
amalgamation makes sense because h1−pi

i ∈ H3n ≤ Z(H). Let G =
⋃
i∈NHn,

the direct limit of the groups Hi. Clearly G is a central product of H and
〈zi | i ∈ N 〉 ≤ Z(G). Hence G′ = H ′ = 〈c〉 and γ3(G) = γ3(H) = 〈cq〉 ≤
Z(G).
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Lemma 3.1. torG = G′.

Proof. Clearly H/G′ is torsion-free and G/H is periodic. For each i ∈ N
the factor 〈zi〉H/H has order pi and is the pi-primary component of G/H.
Thus G/H = Dri∈N〈zi〉H/H. If torG 6= G′ then zih is periodic—of order pi
modulo G′—for some i ∈ N and some h ∈ H. In this case h1−pi

i hpi = zpii h
pi =

(zih)pi ∈ G′. This is impossible, as hi 6∈ G′Hpi . �

Therefore the abelianized factor group Gab is torsion-free of rank 2. A
generating set for Gab is given by {uvG′, v−1G′, hiziG

′ | i ∈ N }; since
(hizi)pi = hi = (uv)v−λi for every i ∈ N this shows that Gab is isomorphic
to the subgroup (Z⊕ Z) + 〈p−1

i (1, λi) | i ∈ N 〉 of Q⊕Q. The automorphism
group of this latter group (and hence that of Gab) is cyclic of order 6 (see [1],
vol. II, p. 272, Example 2). Now we shall see that only the automorphisms
of Gab of order 3 (and the identity) lift to automorphisms of G.

Lemma 3.2. No automorphism of G induces the inversion automorphism
on Gab.

Proof. Suppose that ϕ ∈ AutG and that uϕ ≡ u−1 and vϕ ≡ v−1 (mod G′).
Then, modulo γ3(G) = 〈cq〉 we have cϕ ≡ [u−1, v−1] ≡ c. So cϕ = ccqt for
some integer t. This implies that cqϕ = cq on the one hand, but also that
cqϕ = [c, v]ϕ = [cϕ, vϕ] = [c, v−1] = c−q, a contradiction. �

We may apply Lemma 1.6 (i) to get that [u−2v−3, uv] = [u, v]−2[v, u]−3v =
c−2c3 = c. So H has an automorphism ϕ0 defined by

ϕ0 :


u 7−→ u−2v−3

v 7−→ uv

(c 7−→ c) .

We shall extend ϕ0 to an automorphism of G. To this end, first note2 that
(1−λi)λi = λi−λ2

i ≡ λi+ (1 +λi) = 2λi+ 1 (mod pi) for every i ∈ N, and so

hλiϕ0
i ≡ (u−2v−3)λi(uv)(1−λi)λi

≡ (u−2v−3)λi(uv)2λi+1 ≡ uv1−λi = hi (mod G′Hpi).

Since hi = (zihi)pi ∈ Hpi
i and pi does not divide λi it follows that hϕ0

i ∈
G′Hpi

i . Thus there exist g ∈ Hi and t ∈ N such that zpiϕ0
i = h

(1−pi)ϕ0
i = gpict.

Let ri := gct. By Lemma 1.6 (ii), since pi ≡ 1 (mod 3n) and G3n ≤ Z(G),
the mapping x ∈ G 7→ xpi ∈ G is an endomorphism, hence rpii = gpictpi =
gpict = zpiϕ0

i . Moreover, ri ≡ rpii modulo G3n ≤ Z(G), hence ri ∈ Z(G).

2What follows explains the choice of the integers λi and the elements hi. The point is
that the hi must be eigenvectors for ϕ0 modulo H′Hpi .
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Now suppose that i ∈ N and ϕi−1 is an automorphism of Hi−1 extend-
ing ϕ0. The above discussion shows that ϕi−1 can be extended to an automor-
phism ϕi of Hi = Hi−1〈zi〉 by setting zϕii = ri. A straightforward induction
and direct limit argument now proves the existence of an automorphism ϕ
of G extending ϕ0. Since ϕ does not centralize Gab and |AutGab| = 6, by
Lemma 3.2 we have:

Lemma 3.3.

∣∣AutG/CAutG(Gab)
∣∣ = 3.

Next we have:

Lemma 3.4. CAutG(Gab) = InnG.

Proof. Let Γ = CAutG(Gab) and let ∆ = CAutG( ¯̄G), where ¯̄G = G/γ3(G).
Then ∆ C Γ . Since ∆ ≤ AutcG, then ∆ centralizes G′. Thus ∆ embeds
in Hom

(
Gab, γ3(G)

)
. Since Gab has rank 2 and

∣∣γ3(G)
∣∣ = 3 this group has

order 9. Also, Γ/∆ is isomorphic to a subgroup of Γ1 := CAut Ḡ( ¯̄Gab). As
with the above step, all elements of Γ1 are central automorphisms, and as
such they centralize ¯̄G′. Therefore Γ1 embeds in Hom( ¯̄Gab, ¯̄G′), which has
order q2. Thus |Γ | ≤ 9q2 = 32n = | InnG|. But clearly InnG ≤ Γ , so the
lemma is proved. �

The two previous lemmas show that AutG = (InnG)〈ϕ〉 and that ϕ3 ∈
InnG. Therefore AutG is a finite 3-group. To conclude that AutG has
maximal class it will be enough to show that CInnG(ϕ) has order 3 (see [7],
Satz III.14.23). Let ũ and ṽ be the inner automorphisms of G induced by u
and v respectively. Then H/Z(H) ' InnG = 〈ũ〉 o 〈ṽ〉, where ũ and ṽ have
order 3n and [ũ, ṽ] = ũq. So (InnG)′ is central and has order 3. Assume that
[ũiṽj , ϕ] = 1 for some i, j ∈ Z. Then

ũiṽj = (ũ−2ṽ−3)i(ũṽ)j = ũ−2iṽ−3iũj ṽj ũ−qj(j−1)/2 = ũ−2i+j(1+q(j−1))ṽj−3i,

because j(j−1)/2 ≡ j(1− j) (mod 3). Hence j−3i ≡ j and −2i+j
(
1+q(j−

1)
)
≡ i (mod 3n). It follows that 3i ≡ 0 and j ≡ 0 (mod 3n). This shows

that CInnG(ϕ) = 〈ũq〉. So, this centralizer has order 3, as required. Therefore
AutG is a 3-group of maximal class. By Theorem 2.11, then AutG ' Xn. �

With this last result the proof of the Theorem in the introduction is com-
plete.
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