ON THE STRUCTURE OF THE GROUP OF AUTOPROJECTIVITIES OF A LOCALLY FINITE MODULAR p-GROUP OF FINITE EXPONENT

M. COSTANTINI AND G. ZACHER
Dedicated in memory of Reinhold Baer on the occasion of his 100 th birthday

Abstract

In the description of the group of lattice automorphisms of modular groups, certain locally finite modular p-groups of finite exponent play a basic role. In the present paper significant structural properties of the group of autoprojectivities of such groups are investigated and placed in evidence.

1. Introduction

Given a group G, let $P(G)$ be the group of autoprojectivities of G and $P A(G)$ be the subgroup of autoprojectivities induced by group automorphisms. In two seminal papers on projectivities of abelian groups, R. Baer [B], [B1] proved the following basic facts: (1) Every modular locally finite nonHamiltonian p-group is projective to an abelian group. (2) $P(G)=P A(G)$ if G is either a non-periodic abelian group of torsion free rank greater than 1 , or an abelian torsion group where each primary component G_{p} has the following property: if G_{p} contains an element of order p^{n}, then it contains at least three independent elements of this order. On the other hand, simple examples show that if these conditions are not satisfied, we may have $P(G) \neq P A(G)$.

In a series of more recent papers ([GM], [Ho], [C], [CHZ], [CZ] and [CZ1]), the rather complex problem of describing the structure of $P(G)$, with G a modular group, has been investigated, covering also the cases left open by Baer's work. As a result of these studies, it turns out that a fundamental role is played by a certain subgroup of the group of autoprojectivities of an (n, s)-group M, i.e., of an abelian p-group $M=H \oplus C$, where $H=\langle a\rangle \oplus\langle b\rangle$ with $|a|=|b|=p^{n}$ and $\exp C=p^{s}, 0<s<n$.

[^0]The structural properties we are interested in are mainly those of the following subgroup of $P(M)$:

$$
\Gamma(M)=\left\{\rho \in R(M)|\rho| \Omega_{s+1}(M) / p^{s} \Omega_{s+1}(M)=1\right\}
$$

where $R(M)=\left\{\rho \in P(M)\left|H^{\rho}=H, \rho\right| \Omega_{s}(M)=1\right\}$, with $P(M)=$ $P A(M) \cdot R(M)$. Given (a, b), we know [CHZ] that there exists a well defined monomorphism j of $R(M)$ into $L=P R\left(R_{n}\right) \times P R\left(p R_{n}\right) \times \mathcal{U}\left(R_{n} / p^{s} R_{n}\right)$, where $R_{n} \cong \mathbb{Z} / p^{n} \mathbb{Z}$ and $P R(X)$ denotes the group of automorphisms of the partially ordered set $\mathcal{R}(X)$ of all cosets of the group X (see [S, 9.4]). More precisely,

$$
\Psi_{n, s}=\Gamma(M)^{j} \leq \Phi_{n, s}=R(M)^{j}
$$

where $R(M)^{j}$ is the subgroup of elements $(\sigma, \tau,[\mu])$ in L satisfying the following conditions:
(a) $i \sigma \equiv i, i \tau \equiv i \bmod p^{s} R_{n}$.
(b) $j \equiv i \bmod p^{f} R_{n} \Rightarrow j \sigma-i \sigma \equiv(j-i) \mu^{f}, j \tau-i \tau \equiv(j-i) \mu^{f} \bmod$ $p^{s+f} R_{n}$, for $0 \leq f \leq n-s$, with $\mu \in \mathcal{U}\left(R_{n}\right), \mu \equiv 1 \bmod p^{s-1} R_{n}$.
We shall freely make use of these identifications via j.
This paper is divided into five sections. In Section 2 we collect, for easy reference, several results established in [CHZ] and [CZ] with regard to the groups $R(M)$ and $\Gamma(M)$. In Section 3 we determine the center of $\Gamma(M)$ relative to an (n, s)-group M, while in Section 4 the derived and the Frattini subgroups of $\Gamma(M)$ are characterized. In Section 5 we give a recursive construction of the elements of $R(M)$ and we study the action of $R(M)$ on $\Gamma(M)$. Finally, in Section 6 we give the exact nilpotent class of $\Gamma(M)$, even in the more general situation of a proper (n, m, s)-group (see Section 6 for the definition), and obtain bounds for the class of $R(M)$, a p-group when $s \geq 2$ or $s=1$ and $p=2$ (see [CZ, Theorem A and Proposition 1.3]).

For notation and terminology we shall refer mainly to $[\mathrm{R}],[\mathrm{S}],[\mathrm{CHZ}]$ and [CZ]. We denote by cl X the class of a nilpotent group X, while $C_{p^{n}}$ stands for a cyclic group of order p^{n}. Whenever convenient, we shall identify R_{n} with the interval $0 \leq t<p^{n}$ of the ordered set \mathbb{N}, and $p R_{n}$ with the interval $\left[0, p^{n}\right)$ of $p \mathbb{N}$. For $\xi \in R_{n}$ and $0 \leq t \leq n-1$, the coset $\xi+p^{t+1} R_{n}$ of R_{n} will be denoted by $\bar{\xi}_{t}$.

2. Preliminaries

Given the (n, s)-group $M=H \oplus C$, for $0 \leq i<p$, set

$$
\begin{aligned}
\tilde{S}_{i, n} & =\left\{\sigma\left|i+p R_{n}\right|(\sigma, \tau,[\mu]) \in \Phi_{n, s}\right\}, \\
S_{i, n} & =\left\{\sigma\left|i+p R_{n}\right|(\sigma, \tau,[1]) \in \Psi_{n, s}\right\} .
\end{aligned}
$$

Then

$$
\begin{align*}
& \Phi_{n, s} \cong D\left(\tilde{S}_{i, n}^{p+1}\right) \Psi_{n, s},\left|\tilde{S}_{i, n}: S_{i, n}\right|=p \\
& \Psi_{n, s} \cong S_{i, n}^{p+1}, \tilde{S}_{i, n} \unlhd \Phi_{n, s} \tag{2.1}
\end{align*}
$$

moreover,

$$
\left|\tilde{S}_{i, n}: S_{i, n}\right|= \begin{cases}p-1 & \text { if } s=1 \\ p & \text { if } s \geq 2\end{cases}
$$

(See [CZ, Section 2].) Geometrically the group $S_{0, n}$ may be viewed as a group of automorphisms of a tree, with root in $\left\langle p^{n-1} a\right\rangle$, that is dual-isomorphic to the partially ordered set $\mathcal{R}\left(p R_{n}\right)=\left\{\bar{\xi}_{t} \mid \xi \in p R_{n}, 0 \leq t \leq n-1, \subseteq\right\}$.

An element $\sigma \in S_{i, n}$ is called an elementary transformation on $i+p R_{n}$ if there exists ξ in R_{n}, an integer t with $0 \leq t \leq n-s-1$ and z in $p^{t} R_{n}$ such that

$$
\sigma\left|\bar{\xi}_{t}: x \mapsto x+z p^{s}, \quad \sigma\right| i+p R_{n} \backslash \bar{\xi}_{t}=1
$$

We shall denote σ by $\sigma_{\xi, z, t}$. Given $z=i_{0}+i_{1} p+\cdots+i_{\gamma} p^{\gamma}$ in R_{n}, define $v(z)=\gamma$ if $i_{\gamma} \neq 0, v(0)=0$ and, for $z \neq 0, w(z)=\max \left\{\ell \mid z \in p^{\ell} R_{n}\right\}$; set $\sigma_{\xi, t}:=\sigma_{\xi, p^{t}, t}$ and $\sigma_{\xi}:=\sigma_{\xi, v(\xi)}$. Assume $\sigma_{\xi, z, t} \neq 1$. Then:

$$
\begin{align*}
& \sigma_{\xi, z, t}=\sigma_{\xi^{\prime}, t^{\prime}, z^{\prime}} \Longleftrightarrow \xi^{\prime} \equiv \xi \quad p^{t+1} R_{n}, z^{\prime} \equiv z \bmod p^{n-s} R_{n}, t^{\prime}=t \tag{2.2}\\
& \left|\sigma_{\xi, z, t}\right|=p^{n-s-w(z)} \leq p^{n-s-t}=\left|\sigma_{\xi, t}\right| ; \\
& \sigma_{\xi, z, t}^{-1} \sigma_{\xi^{\prime}, z^{\prime}, t^{\prime}} \sigma_{\xi, z, t}=\sigma_{\xi^{\prime}} \sigma_{\xi, z, t, z^{\prime}, t^{\prime}} \text { if either } \bar{\xi} \cap \overline{\xi^{\prime}}=\emptyset \text { or }{\overline{\xi^{\prime}}}^{\prime} \subseteq \bar{\xi}_{t} ; \\
& {\left[\sigma_{\xi^{\prime}, z^{\prime}, t^{\prime}}, \sigma_{\xi, z, t}\right]=1 \text { if }{\overline{\xi^{\prime}}}_{t^{\prime}} \cap \bar{\xi}_{t}=\emptyset, \text { or }{\overline{\xi^{\prime}}}_{t^{\prime}} \subseteq \bar{\xi}_{t} \text { and } t^{\prime}-w(z)<s ;} \\
& \text { for } \sigma_{\xi^{\prime}, z^{\prime}, t^{\prime}} \neq 1,1 \neq\left[\sigma_{\xi^{\prime}, z^{\prime}, t^{\prime}}, \sigma_{\xi, z, t}\right]=\left[\sigma_{\xi^{\prime}, z^{\prime}, t^{\prime}}, \sigma_{0}^{z}\right] \text { if }{\overline{\xi^{\prime}}}_{t^{\prime}} \subseteq \bar{\xi}_{t} \text { and } \\
& t^{\prime}-w(z) \geq s .
\end{align*}
$$

Since the groups $S_{i, n}$ for $0 \leq i<p$ are all isomorphic, we usually deal only with $S_{0, n}$. One has:
$S_{0, n}=\left\langle\sigma_{\xi, t} \mid \xi \in J_{0}=\left[0, p^{n-s}\right), 0 \leq t \leq n-s-1\right\rangle, \exp S_{0, n}=$ $p^{n-s},\left|S_{0, n}\right|=p^{p^{n-s-1}+\cdots+p+1}$ and $S_{0, n}=\prod_{\xi \in J_{0}} \Delta_{\xi}$, with ξ in increasing (or decreasing) order, where $\Delta_{\xi}=\left\langle\sigma_{\xi}\right\rangle$. For $\sigma \in S_{0, n}$, its components in Δ_{ξ} are uniquely determined. The derived length of $S_{0, n}$ is q, where $s q<n \leq(q+1) s$.
(2.4) For $\xi, \eta \in J_{0}$, if $\bar{\eta}_{v(\eta)} \subseteq \bar{\xi}_{v(\xi)}$ and $v(\eta)-v(\xi) \geq s$, then $\left|\sigma_{\eta}^{\Delta \xi}\right|=$ $p^{v(\eta)-v(\xi)-s+1}$ and $1 \neq \sigma_{\xi}^{p^{n-s-v(\xi)-1}} \in \mathcal{C}\left(\sigma_{\eta}\right) ; \xi<\eta$ implies $\xi \sigma_{\eta}=$ $\xi, \eta \sigma_{\xi}=\eta+p^{s+v(\xi)}$.

From (2.3) and (2.4) it follows that $S_{0, n}$ acts transitively on $p R_{n}$ only if $s=1$; otherwise its action splits into p^{s-1} orbits $\left\{\xi+p^{s} R_{n} \mid \xi \in\left[0, p^{s}\right)\right\}$, each of length p^{n-s}. Since for $\xi \in p R_{n}$ and $t<t^{\prime}, \xi+p^{t+1} R_{n}=\dot{\bigcup}_{0 \leq k<p^{t^{\prime}-t}} \xi+$
$k p^{t+1}+p^{t^{\prime}+1} R_{n}$, we get

$$
\begin{equation*}
\sigma_{\xi, t}^{p^{t^{\prime}-t}}=\prod_{0 \leq k<p^{t^{\prime}-t}} \sigma_{\xi+k p^{t+1}, t^{\prime}} \tag{2.5}
\end{equation*}
$$

We recall from [CZ, 1.2] that, in view of the restriction map from $\Gamma(M)$ to $\Gamma\left(\Omega_{k}(M)\right)$, we have:
(2.6) There exists an epimorphism $\varphi: S_{0, n} \rightarrow S_{0, k}$ such that if $\rho: R_{n} \rightarrow$ R_{k} is the canonical epimorphism, then $\sigma_{\xi}^{\varphi}=\sigma_{\xi \rho}$ for $\xi \in p R_{n}$.

3. The center of $\Gamma(M)$

We may restrict ourselves to $G:=S_{0, n}$. Since, by (2.2), G is abelian for $n \leq 2 s$, we shall assume $n>2 s$. By (2.3) and (2.4), for $\xi \in J_{0}$ the set $\prod_{\xi<\eta} \Delta_{\eta}$ is the pointwise stabilizer $G_{[0, \xi]}$ of the points of the closed interval $[0, \xi]$ in J_{0}; hence

$$
\begin{equation*}
G=G_{[0, \xi]}\left(\prod_{\eta \in[0, \xi]} \Delta_{\eta}\right) \quad \text { with } \eta \text { in decreasing order. } \tag{3.1}
\end{equation*}
$$

Take $\eta \in p R_{n}$, so $\eta=\xi+k p^{s}, \xi \in\left[0, p^{s}\right)$, and for $\rho \in G_{\left[0, p^{s}-p\right]} \cap \mathcal{C}\left(\sigma_{0}\right)$ we get $\eta \rho=\left(\left(\eta \sigma_{0}^{-k}\right) \rho\right) \sigma_{0}^{k}=\eta$, i.e., $\rho=1$. Therefore from (3.1) and (2.4) it follows that $Z(G) \leq \mathcal{C}\left(\sigma_{0}\right) \leq \Delta_{0} \times \Delta_{p} \times \cdots \times \Delta_{p^{s}-p}$.

Let $\xi \in\left[0, p^{s}\right)$. We note that $\sigma_{\xi}^{p^{r}} \in \Omega_{s}\left(\Delta_{\xi}\right)$ if and only if $n-2 s-v(\xi) \leq$ r. Now take $\eta \in p R_{n}$. If $\bar{\eta}_{v(\eta)} \cap \bar{\xi}_{v(\xi)}=\emptyset$ or $\bar{\xi}_{v(\xi)}$, then $\left[\sigma_{\eta}, \sigma_{\xi}\right]=1$; if $\bar{\eta}_{v(\eta)} \cap \bar{\xi}_{v(\xi)}=\bar{\eta}_{v(\eta)}$ then

$$
\sigma_{\xi}^{-p^{n-2 s-v(\xi)}} \sigma_{\eta} \sigma_{\xi}^{p^{n-2 s-v(\xi)}}=\sigma_{\eta+p^{n-2 s-v(\xi)+s-v(\xi)}}=\sigma_{\eta+p^{n-s}}=\sigma_{\eta}
$$

In conclusion we have

$$
\begin{equation*}
\operatorname{Dr}_{\xi \in\left[0, p^{s}\right)} \Omega_{s}\left(\Delta_{\xi}\right) \leq Z(G) \leq \operatorname{Dr}_{\xi \in\left[0, p^{s}\right)} \Delta_{\xi} \tag{3.2}
\end{equation*}
$$

PROPOSITION 3.1. $Z(G)=\operatorname{Dr}_{\xi \in\left[0, p^{s}\right)} \Omega_{s}\left(\Delta_{\xi}\right), Z(\Gamma(M)) \cong(Z(G))^{p+1}$.
Proof. Let z be in $Z(G)$. By (3.2) $z=\prod_{\xi \in\left[0, p^{s}\right)} \sigma_{\xi}^{z_{\xi}}$. Assume that for $\xi_{0} \in$ $\left[0, p^{s}\right), \sigma_{\xi_{0}}^{z_{\xi_{0}}} \notin \Omega_{s}\left(\Delta_{\xi_{0}}\right)$, while for $\xi<\xi_{0}, \sigma_{\xi}^{z_{\xi}} \in \Omega_{s}\left(\Delta_{\xi}\right)$. By $(3.2), \prod_{\xi<\xi_{0}} \sigma_{\xi}^{z_{\xi}} \in$ $Z(G)$; for $\xi>\xi_{0}, \bar{\xi}_{0 n-s-1} \cap \bar{\xi}_{v(\xi)}=\emptyset$, and hence $\left[\sigma_{\xi_{0}, n-s-1}, \sigma_{\xi_{0}}^{z \xi_{0}}\right]=1$ which means $\xi_{0}+z_{\xi_{0}} p^{s+v\left(\xi_{0}\right)} \equiv \xi_{0} \bmod p^{n-s} R_{n}$, i.e., $\sigma_{\xi_{0}}^{z_{\xi_{0}}} \in \Omega_{s}\left(\Delta_{\xi_{0}}\right)$, a contradiction. Using (2.1) one obtains the result.

From Proposition 3.1 and (2.2) it follows that

$$
Z(G) \cong \begin{cases}C_{p^{s}}^{p^{s-1}} & \text { if } n \geq 3 s-1 \\ C_{p^{s-2 s}}^{p^{s}} \times C_{p^{s-1}}^{\left(p^{n-2 s+1}-p^{n-2 s}\right)} \times \cdots \times C_{p^{n-2 s+1}}^{\left(p^{s}-p^{s-1}\right)} & \text { if } 2 s+1 \leq n \leq 3 s-2\end{cases}
$$

One of our aims is to determine the nilpotent class of G. For $s=1$ we can already give an answer to this question:

Proposition 3.2. If $s=1$, the nilpotent class of $\Gamma(M)$ is p^{n-2}, with the factors of the lower central series all of exponent p.

Proof. For $s=1, G$ is a transitive permutation group on $p R_{n}$. Now (2.3) shows that the order of G equals that of a Sylow p-subgroup of $\operatorname{Sym} p^{n-1}$. It is well known that such a group is isomorphic to $\underbrace{C_{p} \swarrow C_{p} \curlyvee \cdots \curlyvee C_{p}}_{n-1}$, which has nilpotent class p^{n-2}, with the factors of the lower central series all of exponent p (see $[\mathrm{K}],[\mathrm{Hu}, \mathrm{III} .15 .3])$.

4. The derived and the Frattini subgroups of $\Gamma(M)$

Since G is abelian for $n \leq 2 s$, unless otherwise stated, we shall assume $n>2 s$. If ξ, η are different elements in $\left[0, p^{t+1}\right), 0 \leq t \leq n-s-1$, then $\bar{\xi}_{t} \cap \bar{\eta}_{t}=\emptyset$; it follows from (2.2) and (2.3) that

$$
\begin{align*}
& X_{t}:=\left\langle\sigma_{\xi, t} \mid \xi \in p R_{n}\right\rangle=\prod_{\xi \in\left[0, p^{t+1}\right)}\left\langle\sigma_{\xi, t}\right\rangle \cong\left(C_{p^{n-s-t}}\right)^{p^{t}} \tag{4.1}\\
& G=X_{0} X_{1} \cdots X_{n-s-1}
\end{align*}
$$

Using (2.2), for $s \leq t^{\prime}-t$, we get $1 \neq\left[X_{t^{\prime}}, X_{t}\right] \leq\left[X_{t^{\prime}}, \sigma_{0}\right] \leq X_{t^{\prime}}$; hence

$$
\begin{equation*}
X_{t^{\prime}} \cdots X_{t} \unlhd X_{t^{\prime}} \cdots X_{t} \cdots X_{0} \tag{4.2}
\end{equation*}
$$

in particular, $X_{n-s-1} \cdots X_{t} \unlhd G$. Set $Y_{t}:=\left[X_{t}, \prod_{k=t}^{0} X_{k}\right]$; then by (4.1) and [Hu, III.1.10a], $\left[X_{t}, \sigma_{0}\right] \leq Y_{t}=\prod_{k=t}^{0}\left[X_{t}, X_{k}\right] \leq\left[X_{t}, \sigma_{0}\right]$, i.e.,

$$
\begin{align*}
& Y_{t}=\left[X_{t}, \sigma_{0}\right]=\left\langle X_{t}, \sigma_{0}\right\rangle^{\prime} \text { and is different from } 1 \text { if } t \geq s ; \text { also } \tag{4.3}\\
& \mathcal{N}\left(Y_{t}\right) \geq X_{t} \cdots X_{0} \text {; in particular, } \mathcal{N}\left(Y_{t}\right) \geq Y_{t} \cdots Y_{s}
\end{align*}
$$

Let $s \leq t \leq t^{\prime}$ and for $\sigma_{\eta, t^{\prime}}, \sigma_{\xi, t}$ assume that $\left[\sigma_{\xi, t}, \sigma_{0}\right]^{\sigma_{\eta, t^{\prime}}} \neq\left[\sigma_{\xi, t}, \sigma_{0}\right]$, so that $t^{\prime}-t \geq s$. Since $\bar{\xi}_{t} \cap \overline{\xi+p^{s}}{ }_{t}=\emptyset$ (because $s \leq t$), either $\bar{\eta}_{t}=\bar{\xi}_{t}$ or $\bar{\eta}_{t}=\overline{\xi+p^{s}}{ }_{t}$. In the first case,

$$
\left[\sigma_{\eta, t}, \sigma_{0}\right]^{\sigma_{\eta, t^{\prime}}}=\left(\sigma_{\eta, t}^{-1}\right)^{\sigma_{\eta, t^{\prime}}} \sigma_{\xi+p^{s}, t}=\left[\sigma_{\eta, t^{\prime}}, \sigma_{\eta, t}\right] \sigma_{\eta, t}^{-1} \sigma_{\eta+p^{s}, t} \in Y_{t^{\prime}} Y_{t} \leq\left[G, \sigma_{0}\right]
$$

while in the second case

$$
\left[\sigma_{\xi+p^{s}, t}, \sigma_{0}\right]^{\sigma_{\xi+p^{s}, t^{\prime}}}=\left[\sigma_{\eta, t^{\prime}}, \sigma_{\eta, t}\right] \sigma_{\eta, t}^{-1} \sigma_{\eta+p^{s}, t} \in Y_{t^{\prime}} Y_{t} \leq\left[G, \sigma_{0}\right]
$$

Hence, with (4.3), one concludes:
$\mathcal{N}\left(Y_{t^{\prime}} Y_{t^{\prime}-1} \cdots Y_{t}\right) \geq X_{t^{\prime}} X_{t^{\prime}-1} \cdots X_{0}$ for $s \leq t \leq t^{\prime} \leq n-s-1$; in particular, $Y_{n-s-1} \cdots Y_{t} \unlhd G$.
We may now prove:
Proposition 4.1. $G^{\prime}=Y_{n-s-1} \cdots Y_{s+1} Y_{s}=\left[G, \sigma_{0}\right]$.

Proof. We have $S:=Y_{n-s-1} \cdots Y_{s+1} Y_{s} \leq G^{\prime}$ and $S \unlhd G$ by (4.4). But the group G / S is abelian since $\left[\sigma_{\xi^{\prime}, z^{\prime}, t^{\prime}}, \sigma_{\xi, z, t}\right] \in S$, so that $S=G^{\prime}$. Moreover, by (4.3), $G^{\prime}=\prod_{k=s}^{n-s-1}\left[X_{k}, \sigma_{0}\right] \leq\left[G, \sigma_{0}\right] \leq G^{\prime}$.

Since $\left\langle\sigma_{0}\right\rangle \leq \mathcal{N}\left(X_{t}\right)$ for any $0 \leq t \leq n-s-1$, we may consider X_{t} as a $\left\langle\sigma_{0}\right\rangle$-module, which is non-trivial as soon as $t \geq s$. One has

$$
\begin{align*}
X_{\xi, t} & :=\left\langle\sigma_{\xi, t}\right\rangle^{\left\langle\sigma_{0}\right\rangle}=\prod_{0 \leq k<p^{t-s+1}}\left\langle\sigma_{\xi+k p^{s}, t}\right\rangle \cong\left(C_{p^{n-s-t}}\right)^{p^{t-s+1}} \tag{4.5}\\
X_{t} & =\operatorname{Dr}_{\xi \in\left[0, p^{s}\right)} X_{\xi, t}, \quad \operatorname{cl}\left\langle X_{t}, \sigma_{0}\right\rangle=\operatorname{cl}\left\langle X_{\xi, t}, \sigma_{0}\right\rangle
\end{align*}
$$

If $0 \leq t<t^{\prime} \leq n-s-1$, using (2.5), we have

$$
\begin{align*}
& X_{t} \cap X_{t^{\prime}}=X_{t}^{p^{t^{\prime}-t}}=X_{t} \cap\left(X_{t^{\prime}} \cdots X_{n-s-1}\right), \\
& X_{t} \cap\left\langle\sigma_{0}\right\rangle=\left\langle\sigma_{0}^{p^{t}}\right\rangle, \quad X_{\xi, t} \cap\left\langle\sigma_{0}\right\rangle= \begin{cases}\left\langle\sigma_{0}^{p^{t}}\right\rangle & \text { if } s=1 \\
1 & \text { if } s \geq 2\end{cases} \tag{4.6}
\end{align*}
$$

From (4.6) and (2.3) it follows that

$$
\begin{equation*}
\left|X_{t} \cdots X_{n-s-1}\right|=\prod_{k=t}^{n-s-1}\left|X_{k}\right| /\left|X_{k}^{p}\right|=\prod_{k=t}^{n-s-1} p^{p^{k}}=p^{p^{n-s-1}+\cdots+p^{t}} \tag{4.7}
\end{equation*}
$$

Set $H=\left\langle X_{\xi, t}, \sigma_{0}\right\rangle, t \geq s$ and $x_{k}=\sigma_{\xi+k p^{s}, t}, 0 \leq k<p^{t-s+1}$. Then $N:=$ $X_{\xi, t}=\operatorname{Dr}_{k}\left\langle x_{k}\right\rangle=\left\langle x_{k}\right\rangle^{\left\langle\sigma_{0}\right\rangle}, x_{k}^{\sigma_{0}}=x_{k+1}, \mathcal{C}_{\left\langle\sigma_{0}\right\rangle}\left(x_{k}\right)=\left\langle\sigma_{0}^{r}\right\rangle, r=p^{t-s+1}$ and $H=\left\langle x_{k}, \sigma_{0}\right\rangle$. Hence:

$$
\begin{align*}
& H^{\prime}=\left[N, \sigma_{0}\right]=\left\langle\left[x_{0}, \sigma_{0}\right], \ldots,\left[x_{r}, \sigma_{0}\right]\right\rangle=\left\{x_{0}^{m_{0}} \cdots x_{r}^{m_{r}} \mid m_{0}+\right. \tag{4.8}\\
& \left.\left.\cdots+m_{r} \equiv 0 \bmod p^{n-s-t} R_{n}\right\}, H /\left\langle\sigma_{0}^{r}\right\rangle \cong C_{p^{n-s-t}}\right\rangle C_{r}, \sigma_{0}^{r} \in \\
& Z(H), N=H^{\prime} \times\left\langle x_{0}, \ldots, x_{r}\right\rangle, H^{\prime} \cong\left(C_{p^{n-s-t}}\right)^{r-1}, \text { and }\left|Y_{t}\right|= \\
& \left|\prod_{\xi \in\left[0, p^{s}\right)}\left[X_{\xi, t}, \sigma_{0}\right]\right|=\left(p^{n-s-t}\right)^{p^{t}-p^{s-1}} .
\end{align*}
$$

Moreover:

$$
\begin{equation*}
\text { For } t \geq s \geq 2, \operatorname{cl}\left\langle X_{t}, \sigma_{0}\right\rangle=(n-s+t)\left(p^{t-s+1}-p^{t-s}\right) ; \text { in particular, } \tag{4.9}
\end{equation*}
$$ $\operatorname{cl}\left\langle X_{n-s-1}, \sigma_{0}\right\rangle=p^{n-2 s}$.

In fact, $\left[X_{t}, \sigma_{0}\right]=\prod_{\xi \in\left[0, p^{s}\right)}\left[X_{\xi, t}, \sigma_{0}\right]$, so $\operatorname{cl}\left\langle X_{t}, \sigma_{0}\right\rangle=\operatorname{cl} H$. We have $H^{\prime} \cap$ $\left\langle\sigma_{0}\right\rangle=1$; hence if $g_{i} \in H,\left[g_{1}, \ldots, g_{m}\right] \in H^{\prime}$ for $m \geq 2$, so that $\left[g_{1}, \ldots, g_{m}\right]=1$ if and only if $\left[g_{1}, \ldots, g_{m}\right] \in\left\langle\sigma_{0}^{r}\right\rangle$. Therefore the class of H equals that of $H /\left\langle\sigma_{0}^{r}\right\rangle$, i.e., the class of $C_{p^{n-s-t}}\left\{C_{p^{t-s+1}}\right.$. Using now [L, 5.1], one gets (4.9).

We are going to evaluate the order of G^{\prime}. By (4.3),

$$
Y_{t}=\left\langle\left[\sigma_{\xi, t}, \sigma_{0}\right]=\sigma_{\xi, t}^{-1} \sigma_{\xi+p^{s}, t} \mid \xi \in\left[0, p^{t+1}\right)\right\rangle
$$

and since by (2.5)

$$
\sigma_{\xi, t}^{-p} \sigma_{\xi+p^{s}, t}^{p}=\prod_{k=0}^{p-1} \sigma_{\xi+k p^{t+1}, t+1}^{-1} \sigma_{\xi+p^{s}+k p^{t+1}, t+1}
$$

we have, similarly to (4.6), that $Y_{t}^{p}=Y_{t} \cap Y_{t+1}=Y_{t} \cap\left(Y_{t+1} \cdots Y_{n-s-1}\right)$. But now, with the help of Proposition 4.1 and (4.8), we obtain

$$
\begin{align*}
\left|G^{\prime}\right| & =\left|\prod_{t=s}^{n-s-1} Y_{t}\right|=\prod_{t=s}^{n-s-1}\left|Y_{t}\right| /\left|Y_{t}^{p}\right| \tag{4.10}\\
& =\prod_{t=s}^{n-s-1} p^{p^{t}-p^{s-1}}=p^{p^{s}+\cdots+p^{n-s-1}-(n-2 s) p^{s-1}} .
\end{align*}
$$

Proposition 4.2. Given $\xi \in\left[p^{s}, p^{n-s}\right)$, set $\Lambda_{\xi}=\left\langle\left[\sigma_{\xi}, \sigma_{0}\right]\right\rangle$. Then

$$
G^{\prime}=\prod_{\xi \in\left[p^{s}, p^{n-s}\right)} \Lambda_{\xi}
$$

with ξ in increasing or decreasing order. For a given element $g \in G^{\prime}$, its components in Λ_{ξ} are uniquely determined.

Proof. Set $\rho_{\xi}=\left[\sigma_{\xi}, \sigma_{0}\right]$; then $\Lambda_{\xi}=\left\langle\rho_{\xi}\right\rangle$ and for $\xi \in\left[p^{t}, p^{t+1}\right)$ we have $\left|\rho_{\xi}\right|=p^{n-s-t}$. Using (4.10) we get

$$
\begin{align*}
\prod_{\xi \in\left[p^{s}, p^{n-s}\right)}\left|\Lambda_{\xi}\right| & =\prod_{s \leq t \leq n-s-1} p^{(n-s-t)\left(p^{t}-p^{t-1}\right)} \tag{*}\\
& =p^{p^{s}+\cdots+p^{n-s-1}-(n-2 s) p^{s-1}}=\left|G^{\prime}\right|
\end{align*}
$$

Note that for η, ξ in $\left[p^{s}, p^{n-s}\right)$ and $\eta<\xi$ we have $\eta\left[\sigma_{\xi}^{z_{\xi}}, \sigma_{0}\right]=\eta$ and $\xi\left[\sigma_{\xi}^{z_{\xi}}, \sigma_{0}\right]=\xi-z_{\xi} p^{s+v(\xi)}$, so that from $\prod_{\xi} \rho_{\xi}^{z_{\xi}}=\prod_{\xi} \rho_{\xi}^{z_{\xi}^{\prime}}$ one has $z_{\xi} \equiv$ $z_{\xi}^{\prime} \bmod p^{n-s} R_{n}$, i.e., $\rho_{\xi}^{z_{\xi}}=\rho_{\xi}^{z_{\xi}^{\prime}}$. This and (*) imply $G^{\prime}=\prod_{\xi \in\left[p^{s}, p^{n-s}\right)} \Lambda_{\xi}$, with ξ in increasing or decreasing order.

Our next goal will be to determine the structure of G / G^{\prime}.
Lemma 4.3. For any ξ in $p R_{n}$ the following holds:
(i) If $s-1 \leq t \leq n-s-1$, then $\sigma_{\xi, t}^{p} \in G^{\prime}$.
(ii) If $0 \leq t \leq s-1$, then $\sigma_{\xi, t}^{p^{s-t}} \in G^{\prime}$.

Proof. (i) Since $\left|\sigma_{\xi, n-s-1}\right|=p, \sigma_{\xi, n-s-1}^{p}=1 \in G^{\prime}$. Now we use induction on t. By (2.5), $\sigma_{\xi, t-1}^{p}=\sigma_{\xi, t} \cdots \sigma_{\xi+(p-1) p^{t}, t}$ and, by (4.8),

$$
\tau=\sigma_{\xi, t}^{1-p} \sigma_{\xi+p^{t}, t}, \cdots \sigma_{\xi+(p-1) p^{t}, t} \in\left(\left\langle\sigma_{\xi, t}, \sigma_{0}^{p^{t-s}}\right\rangle\right)^{\prime}
$$

and hence also $\sigma_{\xi, t-1}^{p}=\sigma_{\xi, t}^{p} \tau \in G^{\prime}$.
(ii) By (i), $\sigma_{\xi, s-1}^{p} \in G^{\prime}$. By induction on t,

$$
\sigma_{\xi, t-1}^{p^{s-(t-1)}}=\left(\sigma_{\xi, t-1}^{p}\right)^{p^{s-t}}=\sigma_{\xi, t}^{p^{s-t}} \cdots \sigma_{\xi+(p-1) p^{t}, t}^{p^{s-t}} \in G^{\prime}
$$

By (2.6) we have the epimorphism φ of G onto the abelian group $S_{0,2 s}$. Thus, if $S=\operatorname{ker} \varphi$, we have $G / S=\left\langle\sigma_{0} S\right\rangle \times \cdots \times\left\langle\sigma_{p^{s}-p} S\right\rangle$, where $\left|\sigma_{\xi} S\right|=p^{s-t}$ for $\xi \in\left[p^{t}, p^{t+1}\right), 0 \leq t<s$. Since, by Lemma 4.3, $\sigma_{\xi}^{p^{s-v(\xi)}} \in G^{\prime}$ if $\xi \in\left[0, p^{s}\right)$ and $\sigma_{\xi}^{p} \in G^{\prime}$ if $\xi \in\left[p^{s}, p^{n-s}\right)$, we conclude that

$$
\begin{equation*}
G / G^{\prime}=\operatorname{Dr}_{\xi \in\left[0, p^{s}\right)}\left\langle\sigma_{\xi} G^{\prime}\right\rangle \times E, \tag{4.11}
\end{equation*}
$$

where $\left|\sigma_{\xi} G^{\prime}\right|=p^{s-v(\xi)}$ and E is an elementary abelian p-group. In particular, $\exp G / G^{\prime}=p^{s}$. We can now describe the structure of G / G^{\prime}.

Theorem 4.4. Given the group $G=S_{0, n}$, we have:
(i) If $n \leq 2 s, G=\operatorname{Dr}_{\xi \in\left[0, p^{n-s}\right)}\left\langle\sigma_{\xi}\right\rangle \cong C_{p^{n-s}} \times \operatorname{Dr}_{1 \leq t<n-s}\left(C_{p^{n-s-t}}\right)^{p^{t}-t^{t-1}}$.
(ii) If $n>2 s, G / G^{\prime} \cong C_{p^{s}} \times \operatorname{Dr}_{1 \leq t<s}\left(C_{p^{s-t}}\right)^{p^{t}-t^{t-1}} \times\left(C_{p}\right)^{(n-2 s) p^{s-1}}$.

Proof. (i) This is the case when G is abelian, and the conclusion follows from (2.2) and (2.3).
(ii) By (4.11), $\left|G / G^{\prime}\right|=|E| p^{s} \prod_{1<t<s} p^{(s-t)\left(p^{t}-p^{t-1}\right)}$. Since for $\xi \in$ $\left[p^{s}, p^{n-s}\right),\left|\Lambda_{\xi}\right|=\left|\Delta_{\xi}\right|$, from Proposition 4.2 it follows that $\left|G / G^{\prime}\right|=$ $\prod_{\xi \in\left[0, p^{s}\right)}\left|\Delta_{\xi}\right|$. We also know that $\left|\Delta_{\xi}\right|=p^{n-s-t}$ for $\xi \in\left[p^{t}, p^{t+1}\right)$. Hence

$$
\left|G / G^{\prime}\right|=p^{n-s} \prod_{1 \leq t<s} p^{(n-s-t)\left(p^{t}-p^{t-1}\right)}
$$

and thus $|E|=p^{(n-2 s) p^{s-1}}$ and $E \cong C_{p}^{(n-2 s) p^{s-1}}$.
Finally, we deal with the Frattini subgroup of G. From Theorem 4.4 it follows that

$$
G / \Phi(G) \cong \begin{cases}\left(C_{p}\right)^{p^{n-s-1}} & \text { if } n \leq 2 s \tag{4.12}\\ \left(C_{p}\right)^{(n-2 s+1) p^{s-1}} & \text { if } n>2 s\end{cases}
$$

Next we determine a minimal generating set, the situation being clear in the case $n \leq 2 s$, for $\Phi(G)=G^{p}=\underset{\xi \in\left[0, p^{n-s-1}\right)}{\operatorname{Dr}}\left\langle\sigma_{\xi}\right\rangle^{p}$ and the set $\left\{\sigma_{\xi} \mid \xi \in\left[0, p^{n-s}\right)\right\}$ is what we are looking for. In the case $n>2 s$ we introduce

$$
\begin{aligned}
I & =\left\{(\xi, t) \mid \xi \in\left[0, p^{s}\right), s \leq t<n-s\right\} \\
X & =\left\{\sigma_{\xi} \mid \xi \in\left[0, p^{s}\right)\right\} \dot{\cup}\left\{\sigma_{\xi, t} \mid(\xi, t) \in I\right\} .
\end{aligned}
$$

Proposition 4.5. If $n>2 s$, then:
(i) X is a minimal generating set for G.
(ii) $G / G^{\prime}=\operatorname{Dr}_{\xi \in\left[0, p^{s}\right)}\left\langle\sigma_{\xi} G^{\prime}\right\rangle \times \operatorname{Dr}_{(\xi, t) \in I}\left\langle\sigma_{\xi, t} G^{\prime}\right\rangle$.
(iii) $G / \Phi(G)=\operatorname{Dr}_{\xi \in\left[0, p^{s}\right)}\left\langle\sigma_{\xi} \Phi\right\rangle \times \operatorname{Dr}_{(\xi, t) \in I}\left\langle\sigma_{\xi, t} \Phi\right\rangle$.
(iv) $\Phi(G) / G^{\prime}=\operatorname{Dr}_{\xi \in\left[0, p^{s-1}\right)}\left\langle\sigma_{\xi}^{p} G^{\prime}\right\rangle$.

Proof. (i) We have

$$
X^{\left\langle\sigma_{0}\right\rangle}=\left\{\sigma_{\xi, t} \mid \xi \in p R_{n}, 0 \leq t \leq n-s-1\right\},
$$

and hence $\langle X\rangle=G$. But $|X|=(n-2 s+1) p^{s-1}$, so, by (4.12), X is a minimal generating set of G.
(ii) By (i) and (4.11), it is enough to show that $\prod_{(\xi, t) \in I}\left|\sigma_{\xi, t} G^{\prime}\right| \leq|E|$. This follows from $\left|\sigma_{\xi, t} G^{\prime}\right| \leq p$ for $(\xi, t) \in I$, by 4.3 (i), and $|E|=p^{(n-2 s) p^{s-1}}$.
(iii) The statements follow from (4.11) and (4.12).
(iv) Since $\Phi(G)=G^{p} G^{\prime}$, this is a consequence of (4.11).

5. Construction of the elements of $R(M)$ and their action on $\Gamma(M)$

We have $\Phi_{n, s}=\dot{U}_{[\mu]}(\sigma, \tau,[\mu]) \Psi_{n, s}$, with $\Psi_{n, s} \cong\left(S_{0, n}\right)^{p+1}$. According to Section 2 in [CZ], to construct an element of $\Phi_{n, s}$ it is enough to construct an element of $\tilde{S}_{0, n}$. Select $\mu \in \mathcal{U}\left(R_{n}\right)$, with $\mu \equiv 1 \bmod p^{s-1} R_{n}$, and define $\tilde{\sigma}$ in the following way. Let $i=i_{1} p+\cdots+i_{n-s-1} p^{n-s-1}$ be an element of $\left[0, p^{n-s}\right)$ and let j in $p R_{n}$ be such that $j-i \in p^{n-s} R_{n}$. Set

$$
\left\{\begin{array}{l}
i \tilde{\sigma}=i_{1} \mu p+i_{2} \mu^{2} p^{2}+\cdots+i_{n-s-1} \mu^{n-s-1} p^{n-s-1} \tag{*}\\
j \tilde{\sigma}=i \tilde{\sigma}+(j-i) \mu^{n-s}
\end{array}\right.
$$

It is not difficult to check that $\tilde{\sigma} \in P R\left(p R_{n}\right)$, that $j \tilde{\sigma} \equiv j \bmod p^{s} R_{n}$ and that if j, i are in $p R_{n}$ with $j \equiv i \bmod p^{f} R_{n}, 0 \leq f \leq n-s$, then $j \tilde{\sigma}-i \tilde{\sigma} \equiv$ $(j-i) \mu^{f} \bmod p^{f+s} R_{n}$. Therefore $\tilde{\sigma} \in \tilde{S}_{0, n}$, and $\tilde{\sigma} \notin S_{0, n}$ as soon as $[\mu] \neq[1]$.

Considering the elements of the form $\tilde{\sigma} \prod_{\xi \in J_{0}} \sigma_{\xi, z_{\xi}}, \xi \in p R_{n}, z_{\xi} \in p^{v(\xi)} R_{n}$, one gets all the elements of $\tilde{S}_{0, n}$ relative to $[\mu]$.

A recursive procedure to assign, for a given μ, an element $\tilde{\rho}$ of $\tilde{S}_{0, n}$, goes as follows: for $i \in p R_{n}$ set

$$
i \tilde{\rho}=\left\{\begin{array}{lc}
k_{0} p^{s} & \text { if } i=0, \text { with } 0 \leq k_{0}<p^{n-s}, \\
\left(i-p^{t}\right) \tilde{\rho}+\mu^{t} p^{t}+k_{i} p^{s+t} & \text { if } i \in\left[p^{t}, p^{t+1}\right), 1 \leq t \leq n-s-1, \\
& \text { with } 0 \leq k_{i}<p^{n-s-t} .
\end{array}\right.
$$

Finally, if $j \in p R_{n}$ and $j-i \in p^{n-s} R_{n}$ with $i \in\left[0, p^{n-s}\right)$, set

$$
j \tilde{\rho}=i \tilde{\rho}+(j-i) \mu^{n-s} .
$$

Again one may check that $\tilde{\rho} \in \tilde{S}_{0, n}$. We remark that $\tilde{\sigma}$ as in $(*)$ is obtained from the construction of $\tilde{\rho}$ by choosing $k_{i}=0$ for all $i \in\left[0, p^{n-s}\right)$.

In the remaining part of this section we shall investigate the action of $\Phi_{n, s}$ upon $\Psi_{n, s}$. Again we shall study the action by conjugation of $\tilde{S}_{0, n}$ on $S_{0, n}$.

Let $\tilde{\rho} \in \tilde{S}_{0, n}$ be relative to $\mu \in \mathcal{U}\left(R_{n}\right)$. Take $\sigma_{\xi, t} \in X_{t}, 0 \leq t \leq n-s-1$, and consider $\tilde{\rho}^{-1} \sigma_{\xi, t} \tilde{\rho}$. For a given $i \in p R_{n}$, if $i \tilde{\rho}^{-1} \notin \bar{\xi}_{t}$, then $i \tilde{\rho}^{-1} \sigma_{\xi, t} \tilde{\rho}=i$; but $i \tilde{\rho}^{-1} \notin \bar{\xi}_{t}$ is equivalent to $i \notin(\bar{\xi} \tilde{\rho})_{t}$, so we also have $i \sigma_{\xi \tilde{\rho}, \mu^{s+t} p^{t}, t}=i$.

Assume now that $i \tilde{\rho}^{-1} \in \bar{\xi}_{t}$; then $i \tilde{\rho}^{-1} \sigma_{\xi, t} \tilde{\rho}=\left(i \tilde{\rho}^{-1}+p^{s+t}\right) \tilde{\rho} \equiv i+$ $\mu^{s+t} p^{s+t} \bmod p^{2 s+t} R_{n}$. On the other hand, $i \sigma_{\xi \tilde{\rho}, \mu^{s+t} p^{t}, t}=i+\mu^{s+t} p^{s+t}$. It follows that for $\chi=\sigma_{\xi \tilde{\rho}, \mu^{s+t} p^{s+t}, t}^{-1} \tilde{\rho}^{-1} \sigma_{\xi, t} \tilde{\rho}$ and $i \in p R_{n}$ we have $i \chi \equiv$ $i \bmod p^{2 s+t} R_{n}$, i.e., $\chi \in S_{0, n} \cap \operatorname{ker} \varphi_{n-2 s-t}=X_{s+t} \cdots X_{n-s-1}$ if $t<n-2 s$, and $\chi=1$ if $n-2 s \leq t \leq n-s-1$. Equivalently,

$$
\begin{cases}\tilde{\rho}^{-1} \sigma_{\xi, t} \tilde{\rho} \equiv \sigma_{\xi \tilde{\rho}, t}^{\mu^{s+t}} \bmod X_{s+t} \cdots X_{n-s-1} & \text { for } 0 \leq t \leq n-2 s-1 \\ \tilde{\rho}^{-1} \sigma_{\xi, t} \tilde{\rho}=\sigma_{\xi \tilde{\rho}, t}^{\mu+t} & \text { for } n-2 s \leq t \leq n-s-1\end{cases}
$$

Recall that if $n-2 s+1 \leq t \leq n-s-1, s \geq 2$, then $\mu^{s+t} p^{s+t}=p^{s+t}$, so that

$$
\tilde{\rho}^{-1} \sigma_{\xi, t} \tilde{\rho}=\sigma_{\xi \tilde{\rho}, t} \quad \text { for } n-2 s+1 \leq t \leq n-s-1, s \geq 2
$$

From this it follows that if $n<2 s$ then $\tilde{\rho}^{-1} \sigma_{\xi, t} \tilde{\rho}=\sigma_{\xi \tilde{\rho}, t}$ for $0 \leq t \leq n-s-1$, while, for $n=2 s$,

$$
\left\{\begin{array}{l}
\tilde{\rho}^{-1} \sigma_{\xi, t} \tilde{\rho}=\sigma_{\xi \tilde{\rho}, t}, \quad 1 \leq t \leq n-s-1, \tag{5.1}\\
\tilde{\rho}^{-1} \sigma_{\xi, 0} \tilde{\rho}=\sigma_{\xi \tilde{\rho}, 0}^{\mu^{s}}
\end{array}\right.
$$

We are now in the position to determine in which cases $R(M)$ is abelian.
Proposition 5.1. The group $R(M)$ is abelian precisely in the following cases:
(i) $n<2 s$,
(ii) $n=2 s, s \geq 2, p \mid s$,
(iii) $n=2, s=1, p=2$.

Proof. If $n>2 s$, then even $\Gamma(M)$ is non-abelian. If $n<2 s, R(M)$ is abelian (see [CZ, 3.2]). So assume $n=2 s$. Then $\Gamma(M)$ is abelian. Suppose first $s \geq 2$. From (5.1) it follows that $R(M)$ is abelian if and only if $\left(1+p^{s-1}\right)^{s} \equiv$ $1 \bmod p^{s} R_{n}$, that is, if and only if $p \mid s$. Finally, assume $s=1$. By [CZ, 1.3], $R(M)$ is abelian if and only if $p=2$, i.e., only when $R(M)=\Gamma(M)$.

6. The nilpotent class of $\Gamma(M)^{1}$

An abelian p-group M is called a $\operatorname{proper}(n, m, s)$-group if $M=H \oplus C$ with $H=\langle a\rangle \oplus\langle b\rangle$, where $p^{n}=|a| \geq|b|=p^{m}, \exp C=p^{s}$ and $1 \leq s<m$. In what follows we are mainly concerned with determining the nilpotent class of $\Gamma(M)$. To this end we embed M in an (n, s)-group $\tilde{M}=\langle a\rangle \oplus\langle\tilde{b}\rangle \oplus C$, so that $b=p^{n-m} \tilde{b}$; we denote by $S(M)$ the stabilizer of M in $\Gamma(\tilde{M})$. By

[^1][CZ, Theorem A] we know that the restriction map $\varphi \mapsto \varphi \mid M$ defines an epimorphism of $S(M)$ onto $\Gamma(M)$, and hence, via j, an epimorphism ρ of $S(M)^{j} \leq \Psi_{n, s}=S_{0, n} \times \cdots \times S_{p-1, n} \times S_{\infty, n}$ onto $\Gamma(M)$, so that $\operatorname{cl} \Gamma(M)=$ $\operatorname{cl} S(M)^{j} / \operatorname{ker} \rho$. If R is any subgroup of $S(M)^{j}$, we shall call $\operatorname{cl}(R / R \cap \operatorname{ker} \rho)$ the class of the action of R on M.

We note that

$$
(\sigma, \tau,[1]) \in S(M)^{j} \Longleftrightarrow\langle a+(0 \sigma) b\rangle \leq H \Longleftrightarrow 0 \sigma \in p^{n-m} R_{n}
$$

In particular, we get

$$
\begin{equation*}
S(M)^{j}=\left(S(M)^{j} \cap S_{0, n}\right) \times S_{1, n} \times \cdots \times S_{p-1, n} \times S_{\infty, n} \tag{6.1}
\end{equation*}
$$

LEMmA 6.1. Let σ be in $S_{0, n}$ and write, in accordance with (2.3), $\sigma=$ $\prod_{\xi \in J_{0}} \sigma_{\xi}^{z \xi}$, with ξ in decreasing order. Then σ lies in $S(M)^{j}$ if and only if $z_{0} p^{s} \in p^{n-m} R_{n}$.

Proof. This follows from the fact that $0 \sigma=0 \sigma_{0}^{z_{0}}$.
Remark 6.1. Using Lemma 6.1 and (2.5), one concludes that $S(M)^{j}$ can be generated by convenient elementary transformations of the form $\sigma_{\xi, t}$, with $\xi \in p R_{n}$ and $t \geq v(\xi)$.

We know that $G=X_{0} X_{1} \cdots X_{n-s-1}$ and $X_{t^{\prime}} \leq \mathcal{N}\left(X_{t}\right), 0 \leq t^{\prime} \leq t$. Let us define

$$
\begin{aligned}
T_{i} & = \begin{cases}X_{i} X_{i+1} \cdots X_{n-s-1} & \text { if } i<n-s \\
1 & \text { if } i=n-s\end{cases} \\
H_{i, k} & =\left\langle\sigma_{\xi, t} \mid \xi \in k p+p^{t+1} R_{n}, i \leq t \leq n-s-1\right\rangle
\end{aligned}
$$

Given $0 \leq k, k^{\prime} \leq p^{i}-1$, the translation $\tau_{k^{\prime}-k}: x \mapsto x+\left(k^{\prime}-k\right) p$ on $p R_{n}$ induces the isomorphism $\tau_{\left(k, k^{\prime}\right)}: H_{i, k} \rightarrow H_{i, k^{\prime}}, \sigma \mapsto \tau_{k^{\prime}-k}^{-1} \sigma \tau_{k^{\prime}-k}$. With the help of (4.2) and (2.2), we have

$$
\begin{equation*}
T_{i} \unlhd G, \quad T_{i}=H_{i, 0} \times \cdots \times H_{i, p^{i}-1}, \quad G=\left\langle\sigma_{0}, T_{1}\right\rangle, \quad \sigma_{0}^{p} \in T_{1} \tag{6.2}
\end{equation*}
$$

We claim that

$$
\begin{equation*}
H_{i, k} \cong S_{0, n-i}, \quad 0 \leq i \leq n-s-1 \tag{6.3}
\end{equation*}
$$

In fact, via obvious identifications, $\gamma_{i}: x \mapsto p^{i} x$ defines an isomorphism of R_{n-i}^{+}onto $p^{i} R_{n}^{+}$. Now the monomorphism given by $\rho_{i}: \sigma_{\xi, t} \mapsto \gamma_{i}^{-1} \sigma_{\xi, t} \gamma_{i}$ defines an isomorphism ρ_{i} of $H_{i, 0}$ onto $S_{0, n-i}$.

It follows from (6.2) that $\mathrm{cl} T_{i}=\mathrm{cl} S_{0, n-i}$. For our computations with elements in $S_{0, n}$ the following formula, established in [L, 3.2], turns out to be useful:
(6.4) Set $\sigma_{h}:=\sigma_{0}^{p^{h}}, 0 \leq h \leq n-s-1$. Then $\left[\sigma_{\xi, t}^{-1},_{r} \sigma_{h}\right]=\prod_{k=0}^{r} \sigma_{\xi+k p^{s+h}, t}^{(-1)^{k}\binom{r}{k}}$.

Lemma 6.2. The nilpotent class of G / T_{1}^{\prime} is less than or equal to p.
Proof. It suffices to show that for $x_{i} \in\left\{\sigma_{0}, \sigma_{\xi, t} \mid \xi \in p R_{n}, 1 \leq t \leq\right.$ $n-s-1\},\left[x_{1}, x_{2}, \ldots, x_{p+1}\right] \in T_{1}^{\prime}$. Since for $x_{i} \neq \sigma_{0}$ we have $x_{i} \in T_{1}$, it is enough to show that $\left[\sigma_{\xi, t}^{-1},{ }_{p} \sigma_{0}\right] \in T_{1}^{\prime}$ as soon as $\xi \in p R_{n}, s \leq t \leq n-s-1$. We have

$$
\left[\sigma_{\xi, t}^{-1},{ }_{p} \sigma_{0}\right]=\prod_{k=0}^{p} \sigma_{\xi+k p^{s}, t}^{(-1)^{k}\binom{p}{k}}
$$

by (6.4). We claim that $\sigma_{\xi+k p^{s}, t}^{(-1)^{k}\binom{p}{k}} \in T_{1}^{\prime}$ for $1 \leq k \leq p-1$. In fact, by (6.2) and (6.3), $T_{1} \cong\left(S_{0, n-1}\right)^{p}$, so the claim follows using Lemma 4.3 for $n-1$ and observing that $p\binom{p}{k}$ for $1 \leq k \leq p-1$.

If p is odd, then $\sigma_{\xi, t}^{-1} \sigma_{\xi+p^{s+1}, t} \in T_{1}^{\prime}$ by (2.2), and we obtain the result. For $p=2$, we have

$$
\sigma_{\xi, t} \sigma_{\xi+2^{s+1}, t}=\sigma_{\xi, t}^{2} \sigma_{\xi, t}^{-1} \sigma_{\xi+2^{s+1}, t} \in T_{1}^{\prime}
$$

by (2.2) and Lemma 4.3 (i).
We remark that the proof shows that $\gamma_{2}\left(T_{1}\right)=\left[G,{ }_{p} \sigma_{0}\right]=\gamma_{p+1}(G)$.
Theorem 6.3. Let $M=H \oplus C$ be an (n, s)-group relative to the prime p. If $s<n \leq 2 s$, then $\operatorname{cl} \Gamma(M)=1$ and $\exp \Gamma(M)=p^{n-s}$. If $2 s<n$, then $\operatorname{cl} \Gamma(M)=p^{n-2 s}, \exp \Gamma(M) / \gamma_{2}(\Gamma(M))=p^{s}$ and $\exp \gamma_{i}(\Gamma(M)) / \gamma_{i+1}(\Gamma(M))=$ p for all $i \geq 2$.

Proof. Since $\Gamma(M) \cong\left(S_{0, n}\right)^{p+1}$, we may restrict our considerations to the group $G=S_{0, n}$ and, by (2.3), to the case $2 s<n$. Finally, by Proposition 3.2 we may assume $s \geq 2$. Let us begin with $n=2 s+1$. Then $G=X_{0} X_{1} \cdots X_{s}$ with $X_{s} \unlhd G$ by (4.2), and $X_{0} X_{1} \cdots X_{s-1}$ is abelian by (2.2). By (4.1), X_{s} is elementary abelian, and $\exp G / G^{\prime}=p^{s}$ by Theorem 4.4 (i).

We shall now use induction on $n \geq 2 s+2$. For $T=T_{1}$, let us consider the series

$$
\begin{equation*}
G=\gamma_{1}(G)>\gamma_{2}(G)>\gamma_{2}(T)>\gamma_{3}(T)>\cdots>\gamma_{c^{\prime}}(T)>1 \tag{*}
\end{equation*}
$$

with $c^{\prime}=\mathrm{cl} T$. Using (6.2) and (6.3) one sees that $(*)$ is a normal series of G and that $T \cong S_{0, n-1}^{p}$. By induction $c^{\prime}=p^{n-1-2 s}, \exp T / \gamma_{2}(T)=p^{s}$ and $\exp \gamma_{i}(T) / \gamma_{i+1}(T)=p$ for $i \geq 2$. By Theorem $4.4(\mathrm{i}), \exp G / \gamma_{2}(G)=p^{s}$, and since $\gamma_{2}(T) \leq \gamma_{2}(G)<T, \gamma_{2}(G) / \gamma_{2}(T)$ is abelian. We have $\sigma_{\xi, t} \in T$ for $1 \leq t \leq n-s-1$ and $\sigma_{0}^{p} \in T$. Applying Lemma 4.3 with n and $n-1$ one gets $\exp \gamma_{2}(G) / \gamma_{2}(T)=p$. Consider now the normal series $(*)$ as a $\left\langle\sigma_{0}\right\rangle$ series. By Lemma 6.2 we may refine the group G / T^{\prime} in at most p steps to a lower $\left\langle\sigma_{0}\right\rangle$-central series with $\gamma_{2}\left(G / \gamma_{2}(T)\right)=G^{\prime} / \gamma_{2}(T)$, because $G=\left\langle\sigma_{0}, T\right\rangle$. Since $\sigma_{0}^{p} \in T$, the elementary abelian p-group $\gamma_{i}(T) / \gamma_{i+1}(T)$, for $i \geq 2$, can be refined in at most p steps to a lower $\left\langle\sigma_{0}\right\rangle$-central series (see [L, 5.1]). In conclusion the normal series $(*)$ can be refined in at most $p \cdot p^{(n-1)-2 s}=p^{n-2 s}$
steps to a $\left\langle\sigma_{0}\right\rangle$-central series of G; call this series $(* *)$. Since for $g \in G$ we have $g=\sigma_{0}^{r} x, x \in T,(* *)$ turns out to be a central series of G. But each term of this series is generated by simple commutators of proper weight. Hence $(* *)$ is the lower central series of G. In it, besides $\exp G / \gamma_{2}(G)=p^{s}$, all other factors are of exponent p. Since $G \geq\left\langle\sigma_{0}, X_{n-s-1}\right\rangle$ and, by (4.9), cl $\left\langle\sigma_{0}, X_{n-s-1}\right\rangle=p^{n-2 s}$, the conclusion follows.

We remark that the proof shows that $\gamma_{i+1}\left(T_{1}\right)=\gamma_{p i+1}(G)$ for $i=1, \ldots$, $p^{n-2 s-1}$.

We describe the last non-trivial term of the lower central series of $\Gamma(M)$.
Corollary 6.4. Let M be an (n, s)-group. Then $\gamma_{c} \Gamma(M)=\Omega(Z(\Gamma(M)))$, where $c=p^{n-2 s}$.

Proof. Again we may restrict ourselves to $G=S_{0, n}$. We already know that $\gamma_{c}(G) \leq \Omega(Z(G))$. In the other direction, by Proposition 4.5

$$
X_{n-s-1}=\operatorname{Dr}_{\xi \in\left[0, p^{s}\right)} X_{\xi, n-s-1}
$$

where

$$
X_{\xi, n-s-1}=\left\langle\sigma_{\xi, n-s-1}\right\rangle^{G}=\left\langle\sigma_{\xi, n-s-1}\right\rangle^{\left\langle\sigma_{0}\right\rangle} \cong C_{p}^{p^{n-2 s}}
$$

It follows that

$$
1 \neq g_{\xi}:=\prod_{0 \leq k<p^{n-2 s}} \sigma_{\xi, n-s-1}^{\sigma_{0}^{k}}=\prod_{0 \leq k<p^{n-2 s}} \sigma_{\xi+k p^{s}, n-s-1} \in \Omega(Z(G))
$$

By order considerations we get $\Omega(Z(G))=\underset{\xi \in\left[0, p^{s}\right)}{\mathrm{Dr}}\left\langle g_{\xi}\right\rangle$ and, by (6.4),

$$
\left[\sigma_{\xi, n-s-1}^{-1}, c-1 \sigma_{0}\right]=\prod_{k=0}^{c-1} \sigma_{\xi+k p^{s}}^{(-1)^{k}\binom{c-1}{k}}=g_{\xi}
$$

since $(-1)^{k}\binom{c-1}{k} \equiv 1 \bmod p$ for $0 \leq k \leq c-1$. Hence $g_{\xi} \in \gamma_{c}(G)$, and we are done.

Given an (n, s)-group $M=H \oplus C$ and a basis (a, b) of H, we introduced in [CHZ] the frame $\mathcal{A}=(\langle a\rangle,\langle b\rangle)$, the unit point $u=\langle a+b\rangle$, and the subgroups

$$
\Gamma_{\mathcal{A}}(M)=\left\{\rho \in \Gamma(M) \mid A^{\rho}=A\right\}, \quad \Gamma_{\mathcal{A}, u}(M)=\left\{\rho \in \Gamma_{\mathcal{A}}(M) \mid u^{\rho}=u\right\}
$$

We are going to prove:
Corollary 6.5. With the above notation we have

$$
\operatorname{cl} \Gamma_{\mathcal{A}}(M)=p^{n-2 s}, \quad \operatorname{cl} \Gamma_{\mathcal{A}, u}(M)= \begin{cases}p^{n-2 s} & \text { if } p \text { is odd } \\ p^{n-1-2 s} & \text { if } p=2\end{cases}
$$

Proof. First we observe that $S_{1, n} \leq \Gamma_{\mathcal{A}}(M)$, and hence $\operatorname{cl} \Gamma_{\mathcal{A}}(M)=p^{n-2 s}$. If p is odd, we have $S_{2, n} \leq \Gamma_{\mathcal{A}, u}(M)$, and hence $\operatorname{cl} \Gamma_{\mathcal{A}, u}(M)=p^{n-2 s}$. Now assume $p=2$. In this case $T_{1}=H_{0} \times H_{1}$, and $H_{1} \leq \Gamma_{\mathcal{A}, u}(M)$, so that $\operatorname{cl} \Gamma_{\mathcal{A}, u}(M) \geq p^{n-1-2 s}$. On the other hand, if we write $\Gamma(M)=S_{0, n} \times S_{1, n} \times$ $S_{\infty, n}$, then it is clear that $\Gamma_{\mathcal{A}, u}(M)=S_{0, n}(0) \times S_{1, n}(1) \times S_{\infty, n}(\infty)$, where $S_{k, n}(k)$ is the stabilizer of k in $S_{k, n}$. Hence $\operatorname{cl} \Gamma_{\mathcal{A}, u}(M)=\operatorname{cl} S_{0, n}(0)$. Finally, $S_{0, n}(0)=\prod_{\eta \in J_{0}, \eta>0} \Delta_{\eta}$ is contained in T_{1}, so that $\operatorname{cl} \Gamma_{\mathcal{A}, u}(M) \leq \operatorname{cl} T_{1}=$ $p^{n-1-2 s}$, and we are done.

We finally give a bound for the nilpotent class of $R(M)$.
Corollary 6.6. Let M be an (n, s)-group with $s \geq 2$. Then

$$
\operatorname{cl} R(M) \leq p^{n-2 s}(s(p-1)+1)
$$

Proof. By a result of P. Hall ([H, Theorem 7]) we have $\operatorname{cl} R(M) \leq$ $\operatorname{cl}\left(R(M) / \Gamma(M)^{\prime}\right) p^{n-2 s}$. Now $R(M) / \Gamma(M)^{\prime}$ embeds in A 乙 C_{p}, where A is abelian of exponent p^{s}. By $[\mathrm{L}, 5.1]$ we get $\operatorname{cl}\left(R(M) / \Gamma(M)^{\prime}\right) \leq s(p-1)+1$, and the proof is complete.

We will now determine the nilpotent class of $\Gamma(M)$, when M is a proper (n, m, s)-group. Recall from (6.1) that $S(M)^{j}=\left(S(M)^{j} \cap S_{0, n}\right) \times S_{1, n} \times$ $\cdots S_{p-1, n} \times S_{\infty, n}$. Set $\rho^{\prime}: \Gamma(\tilde{M})^{j} \rightarrow \Gamma\left(\Omega_{m}(\tilde{M})\right), \varphi^{j} \mapsto \varphi \mid \Omega_{m}(\tilde{M})$. Then, for $k=1, \ldots, p-1, \infty$, we have $\operatorname{ker} \rho \cap S_{k, n}=\operatorname{ker} \rho^{\prime} \cap S_{k, n}$, so that, by Theorem 6.3 , the class of action of $S_{k, n}$ on M is $p^{m-2 s}$. Here, and in the following, we are using the convention that $p^{h}=1$ if $h<0$.

We note that with the help of (6.4) one has

$$
\begin{align*}
& {\left[\sigma_{0, n-s-1}^{-1},{ }_{\left(p^{n-2 s}-1\right)} \sigma_{0}\right] \mid p^{n-s} R_{n} \neq 1,} \tag{6.5a}\\
& {\left[\sigma_{0, n-s-1}^{-1},{ }_{\left(p^{m-s}-1\right)} \sigma_{0}^{p^{n-m-s}}\right] \mid p^{n-s} R_{n} \neq 1 \quad \text { if } n-m>s} \tag{6.5b}
\end{align*}
$$

Proposition 6.7. Let M be a proper (n, m, s)-group relative to the prime p. If $n-m \leq s$, then $\operatorname{cl} \Gamma(M)=p^{n-2 s}$.

Proof. Since $n-m \leq s$, we are in the case $S_{0, n} \leq S(M)^{j}$. If $n \leq 2 s$, $\Gamma(\tilde{M})^{\prime}=1$ by (2.2), so $\Gamma(M)$ is abelian. Assume now that $n>2 s$. Since $\operatorname{cl} \Gamma(M) \leq \operatorname{cl} \Gamma(\tilde{M})=p^{n-2 s}$, the conclusion follows from (6.5a).

It remains to deal with the case $s<n-m$. Here we already observed that $S(M) \cap\left\langle\sigma_{0}\right\rangle=\left\langle\sigma_{0}^{p^{n-m-s}}\right\rangle$. In particular, $G \cap S(M)^{j} \leq T_{1}$ and, since $H_{1, k}$ stabilizes M for every $k=1, \ldots, p-1$, we have more precisely

$$
\begin{equation*}
G \cap S(M)^{j}=\left(H_{1,0} \cap S(M)^{j}\right) \times H_{1,1} \times \cdots \times H_{1, p-1} \tag{6.6}
\end{equation*}
$$

Proposition 6.8. Assume $0 \leq i<k \leq n-s$. Then $\operatorname{cl} T_{i} / T_{k}=p^{k-i-s}$.

Proof. Set $r=n-i$, and let $0 \leq j \leq r$. The restriction map $\Gamma\left(\Omega_{r}(\tilde{M})\right) \rightarrow$ $\Gamma\left(\Omega_{r-j}(\tilde{M})\right)$ induces an epimorphism $\varphi_{j}: S_{0, r} \rightarrow S_{0, r-j}$. Consider the sequence

$$
H_{i, 0} \xrightarrow{\rho_{i}} S_{0, r} \xrightarrow{\varphi_{j}} S_{0, r-j}
$$

Then, by Theorem 6.3, we get

$$
\operatorname{cl} H_{i, 0} / \operatorname{ker} \rho_{i} \varphi_{j}=\operatorname{cl} S_{0, r} / \operatorname{ker} \varphi_{j}=\operatorname{cl} S_{0, r-j}=p^{r-j-2 s}=p^{n-i-j-2 s}
$$

With the help of the relation $\sigma_{p^{i} \eta, t}^{\rho_{i}}=\sigma_{\eta, t-i}$ one checks that

$$
\left(H_{i, 0} / \operatorname{ker} \rho_{i} \varphi_{j}\right)^{p^{i}} \cong \operatorname{Dr}_{0 \leq k<p^{i}} H_{i, k} /\left(\operatorname{ker} \rho_{i} \varphi_{j}\right)^{\tau_{(0, k)}}=T_{i} / T_{n-j-s}
$$

so that $\operatorname{cl} T_{i} / T_{n-j-s}=p^{n-i-j-2 s}$. So for $k=n-j-s$ we have $\operatorname{cl} T_{i} / T_{k}=$ p^{k-i-s}.

We are now in a position to prove the main result of this section.
TheOrem 6.9. Let $M=H \oplus C$ be a proper (n, m, s)-group relative to the prime p. If $n \leq 2 s$, then $\Gamma(M)$ is abelian. If $n>2 s$ the nilpotent class of $\Gamma(M)$ is given by

$$
\operatorname{cl} \Gamma(M)= \begin{cases}p^{n-2 s} & \text { if } n-m \leq s \\ p^{m-s} & \text { if } n-m>s\end{cases}
$$

Proof. By our previous results, it remains to deal with the case $n-m>s$ (which implies $n>2 s$). Since $\operatorname{cl} \Gamma(M)$ is determined by the action of $S(M)^{j}$ on M, by (6.6) we may consider the action of $A:=H_{1,1} \times \cdots \times H_{1, p-1}$ and that of $B:=H_{1,0} \cap S(M)^{j}$ separately. As already pointed out, we have

$$
\begin{equation*}
\operatorname{cl} A / \operatorname{ker} \rho \cap A \leq \operatorname{cl} \Gamma\left(\Omega_{m}(\tilde{M})\right)=p^{m-2 s}<p^{m-s} \tag{6.7}
\end{equation*}
$$

It remains to work out the nilpotent class of the action of B on M. To generate B, according to Remark 6.1, we may restrict ourselves to those $\sigma_{\xi, t} \in H_{1,0}$ with $\xi \in p^{2} R_{n}$ and $v(\xi) \leq t$. Assume $\xi \in p^{i} R_{n} \backslash p^{i+1} R_{n}$, where $2 \leq i \leq$ $n-m-s$. Then $0 \sigma_{\xi, t}=0$, and hence $\sigma_{\xi, t} \in B$, i.e.,

$$
R_{i}:=\left\langle\sigma_{\xi, t} \mid \xi \in p^{i} R_{n} \backslash p^{i+1} R_{n}, t \geq i\right\rangle \leq B
$$

Finally, if $\xi \in p^{n-m-s+1} R_{n}$ and $t \geq n-m-s$, then $0 \sigma_{\xi, t} \in p^{n-m} R_{n}$, so that

$$
R_{0}:=\left\langle\sigma_{\xi, t} \mid \xi \in p^{n-m-s+1} R_{n}, t \geq n-m-s\right\rangle \leq B \cap T_{n-m-s}
$$

in particular, cl $R_{0} \leq p^{m-s}$ by Proposition 6.8.
We obtained $B=\left\langle R_{i} \mid i=2, \ldots, n-m-s, 0\right\rangle$, which is the direct product $R_{2} \times \cdots \times R_{n-m-s} \times R_{0}$ since if $\sigma_{\xi, t} \in R_{i}$ and $\sigma_{\xi^{\prime}, t^{\prime}} \in R_{j}$ with $i \neq j$, then $\xi+p^{t+1} R_{n} \cap \xi^{\prime}+p^{t^{\prime}+1} R_{n}=\emptyset$. For $i=2, \ldots, n-m-s$ set

$$
V_{i}=\left\langle\sigma_{\xi, t} \mid \xi \in p^{i} P_{n} \backslash p^{i+1} R_{n}, t \geq m-s+i\right\rangle
$$

Then $V_{i} \leq \operatorname{ker} \rho \cap R_{i}$, and since R_{i} / V_{i} embeds in T_{i} / T_{m-s+i}, it follows by Proposition 6.8 that $\operatorname{cl} R_{i} / \operatorname{ker} \rho \cap R_{i} \leq p^{m-2 s}$. Thus the nilpotent class of the action of B on M is $\leq p^{m-s}$, from which it follows by (6.7) that $\operatorname{cl} \Gamma(M) \leq$ p^{m-s}. But then we conclude that $\operatorname{cl} \Gamma(M)=p^{m-s}$ by (6.5b).

References

[B] R. Baer, The significance of the system of subgroups for the structure of the group, Amer. J. Math. 61 (1939), 1-44.
[B1] , Crossed isomorphisms, Amer. J. Math. 66 (1944), 341-404.
[C] M. Costantini, The group of autoprojectivities of $S L_{3}\left(\overline{\mathbb{F}}_{p}\right)$ and $P G L_{3}\left(\overline{\mathbb{F}}_{p}\right)$, J. Algebra 171 (1995), 113-151.
[CHZ] M. Costantini, C.H. Holmes, and G. Zacher, A representation theorem for the group of autoprojectivities of an abelian p-group of finite exponent, Ann. Mat. Pura Appl. (4) $\mathbf{1 7 5}$ (1998), 119-140.
[CZ] M. Costantini and G. Zacher, On the group of autoprojectivities of periodic modular groups, J. Group Theory 1 (4) (1998), 369-394.
[CZ1] , On the group of autoprojectivities of a nonperiodic modular group, Geom. Dedicata 85 (2001), 197-216.
[GM] E. Gasparini and C. Metelli, On projectivities of abelian groups of torsionfree rank one, Boll. Un. Mat. Ital. A (6) 3 (1984), 363-371.
[H] P. Hall, Some sufficient conditions for a group to be nilpotent, Illinois J. Math. 2 (1958), 787-801.
[Ho] C.S. Holmes, Automorphisms of the lattice of subgroups of $\mathbb{Z}_{p^{m}} \times \mathbb{Z}_{p^{n}}$, Arch. Math. (Basel) 51 (1988), 491-495.
[Hu] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967.
[K] L. Kaloujnine, La structure des p-groupes de Sylow des groupes symmétriques finis, Ann. Sci. École Norm. Sup. 65 (1948), 239-276.
[L] H. Liebeck, Concerning nilpotent wreath products, Math. Proc. Cambridge Philos. Soc. 58 (1962), 443-451.
[R] D.J.S. Robinson, A course in the theory of groups, Springer-Verlag, New York, 1982.
[S] R. Schmidt, Subgroup lattices of groups, de Gruyter, Berlin, 1994.
Dipartimento di matematica pura ed applicata, Università di Padova, via Belzoni 7, 35131 Padova, Italy

E-mail address: costantini@math.unipd.it
E-mail address: zacher@math.unipd.it

[^0]: Received February 1, 2002.
 2000 Mathematics Subject Classification. 20D30, 20Kxx, 06Cxx.
 The authors are grateful to the MIUR for the financial support during the preparation of this paper.

[^1]: ${ }^{1}$ We are grateful to M . Newell for stimulating discussions on this topic.

