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ON THE STRUCTURE OF THE GROUP OF
AUTOPROJECTIVITIES OF A LOCALLY FINITE

MODULAR p-GROUP OF FINITE EXPONENT

M. COSTANTINI AND G. ZACHER

Dedicated in memory of Reinhold Baer on the occasion of his 100th birthday

Abstract. In the description of the group of lattice automorphisms of

modular groups, certain locally finite modular p-groups of finite expo-
nent play a basic role. In the present paper significant structural prop-
erties of the group of autoprojectivities of such groups are investigated
and placed in evidence.

1. Introduction

Given a group G, let P (G) be the group of autoprojectivities of G and
PA(G) be the subgroup of autoprojectivities induced by group automor-
phisms. In two seminal papers on projectivities of abelian groups, R. Baer [B],
[B1] proved the following basic facts: (1) Every modular locally finite non-
Hamiltonian p-group is projective to an abelian group. (2) P (G) = PA(G) if
G is either a non-periodic abelian group of torsion free rank greater than 1, or
an abelian torsion group where each primary component Gp has the following
property: if Gp contains an element of order pn, then it contains at least three
independent elements of this order. On the other hand, simple examples show
that if these conditions are not satisfied, we may have P (G) 6= PA(G).

In a series of more recent papers ([GM], [Ho], [C], [CHZ], [CZ] and [CZ1]),
the rather complex problem of describing the structure of P (G), with G a
modular group, has been investigated, covering also the cases left open by
Baer’s work. As a result of these studies, it turns out that a fundamental
role is played by a certain subgroup of the group of autoprojectivities of an
(n, s)-group M , i.e., of an abelian p-group M = H ⊕ C, where H = 〈a〉 ⊕ 〈b〉
with | a | = | b | = pn and expC = ps, 0 < s < n.
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The structural properties we are interested in are mainly those of the fol-
lowing subgroup of P (M):

Γ(M) = {ρ ∈ R(M) | ρ|Ωs+1(M)/psΩs+1(M) = 1},

where R(M) = {ρ ∈ P (M) | Hρ = H, ρ|Ωs(M) = 1}, with P (M) =
PA(M) · R(M). Given (a, b), we know [CHZ] that there exists a well de-
fined monomorphism j of R(M) into L = PR(Rn)×PR(pRn)×U(Rn/psRn),
where Rn ∼= Z/pnZ and PR(X) denotes the group of automorphisms of the
partially ordered set R(X) of all cosets of the group X (see [S, 9.4]). More
precisely,

Ψn,s = Γ(M)j ≤ Φn,s = R(M)j ,

where R(M)j is the subgroup of elements (σ, τ, [µ]) in L satisfying the follow-
ing conditions:

(a) iσ ≡ i, iτ ≡ i mod psRn.
(b) j ≡ i mod pfRn ⇒ jσ − iσ ≡ (j − i)µf , jτ − iτ ≡ (j − i)µf mod

ps+fRn, for 0 ≤ f ≤ n− s, with µ ∈ U(Rn), µ ≡ 1 mod ps−1Rn.

We shall freely make use of these identifications via j.
This paper is divided into five sections. In Section 2 we collect, for easy

reference, several results established in [CHZ] and [CZ] with regard to the
groupsR(M) and Γ(M). In Section 3 we determine the center of Γ(M) relative
to an (n, s)-group M , while in Section 4 the derived and the Frattini subgroups
of Γ(M) are characterized. In Section 5 we give a recursive construction of
the elements of R(M) and we study the action of R(M) on Γ(M). Finally, in
Section 6 we give the exact nilpotent class of Γ(M), even in the more general
situation of a proper (n,m, s)-group (see Section 6 for the definition), and
obtain bounds for the class of R(M), a p-group when s ≥ 2 or s = 1 and
p = 2 (see [CZ, Theorem A and Proposition 1.3]).

For notation and terminology we shall refer mainly to [R], [S], [CHZ] and
[CZ]. We denote by clX the class of a nilpotent group X, while Cpn stands
for a cyclic group of order pn. Whenever convenient, we shall identify Rn
with the interval 0 ≤ t < pn of the ordered set N, and pRn with the interval
[0, pn) of pN. For ξ ∈ Rn and 0 ≤ t ≤ n− 1, the coset ξ + pt+1Rn of Rn will
be denoted by ξt.

2. Preliminaries

Given the (n, s)-group M = H ⊕ C, for 0 ≤ i < p, set

S̃i,n = {σ|i+ pRn | (σ, τ, [µ]) ∈ Φn,s},
Si,n = {σ|i+ pRn | (σ, τ, [1]) ∈ Ψn,s}.
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Then

(2.1)
Φn,s ∼= D(S̃p+1

i,n )Ψn,s, | S̃i,n : Si,n | = p,

Ψn,s
∼= Sp+1

i,n , S̃i,n E Φn,s;

moreover,

| S̃i,n : Si,n | =

{
p− 1 if s = 1,
p if s ≥ 2.

(See [CZ, Section 2].) Geometrically the group S0,n may be viewed as a group
of automorphisms of a tree, with root in 〈pn−1a〉, that is dual-isomorphic to
the partially ordered set R(pRn) = {ξt | ξ ∈ pRn, 0 ≤ t ≤ n− 1, ⊆}.

An element σ ∈ Si,n is called an elementary transformation on i + pRn if
there exists ξ in Rn, an integer t with 0 ≤ t ≤ n − s − 1 and z in ptRn such
that

σ|ξt : x 7→ x+ zps, σ|i+ pRn \ ξt = 1.

We shall denote σ by σξ,z,t. Given z = i0 + i1p + · · · + iγp
γ in Rn, define

v(z) = γ if iγ 6= 0, v(0) = 0 and, for z 6= 0, w(z) = max{` | z ∈ p`Rn}; set
σξ,t := σξ,pt,t and σξ := σξ,v(ξ). Assume σξ,z,t 6= 1. Then:

(2.2) σξ,z,t = σξ′,t′,z′ ⇐⇒ ξ′ ≡ ξ pt+1Rn, z
′ ≡ z mod pn−sRn, t′ = t;

|σξ,z,t | = pn−s−w(z) ≤ pn−s−t = |σξ,t |;
σ−1
ξ,z,tσξ′,z′,t′σξ,z,t = σξ′σξ,z,t,z′,t′ if either ξ ∩ ξ′ = ∅ or ξ′t′ ⊆ ξt;

[σξ′,z′,t′ , σξ,z,t] = 1 if ξ′t′ ∩ ξt = ∅, or ξ′t′ ⊆ ξt and t′−w(z) < s;
for σξ′,z′,t′ 6= 1, 1 6= [σξ′,z′,t′ , σξ,z,t] = [σξ′,z′,t′ , σz0 ] if ξ′t′ ⊆ ξt and
t′ − w(z) ≥ s.

Since the groups Si,n for 0 ≤ i < p are all isomorphic, we usually deal only
with S0,n. One has:

(2.3) S0,n = 〈σξ,t | ξ ∈ J0 = [0, pn−s), 0 ≤ t ≤ n − s − 1〉, expS0,n =
pn−s, | S0,n | = pp

n−s−1+···+p+1 and S0,n =
∏
ξ∈J0

∆ξ, with ξ in
increasing (or decreasing) order, where ∆ξ = 〈σξ〉. For σ ∈ S0,n,
its components in ∆ξ are uniquely determined. The derived length
of S0,n is q, where sq < n ≤ (q + 1)s.

(2.4) For ξ, η ∈ J0, if ηv(η) ⊆ ξv(ξ) and v(η) − v(ξ) ≥ s, then | σ∆ξ
η | =

pv(η)−v(ξ)−s+1 and 1 6= σp
n−s−v(ξ)−1

ξ ∈ C(ση); ξ < η implies ξση =
ξ, ησξ = η + ps+v(ξ).

From (2.3) and (2.4) it follows that S0,n acts transitively on pRn only if s = 1;
otherwise its action splits into ps−1 orbits {ξ + psRn | ξ ∈ [0, ps)}, each of
length pn−s. Since for ξ ∈ pRn and t < t′, ξ + pt+1Rn =

⋃̇
0≤k<pt′−tξ +
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kpt+1 + pt
′+1Rn, we get

(2.5) σp
t′−t

ξ,t =
∏

0≤k<pt′−t
σξ+kpt+1,t′ .

We recall from [CZ, 1.2] that, in view of the restriction map from Γ(M) to
Γ(Ωk(M)), we have:

(2.6) There exists an epimorphism ϕ : S0,n → S0,k such that if ρ : Rn →
Rk is the canonical epimorphism, then σϕξ = σξρ for ξ ∈ pRn.

3. The center of Γ(M)

We may restrict ourselves to G := S0,n. Since, by (2.2), G is abelian for
n ≤ 2s, we shall assume n > 2s. By (2.3) and (2.4), for ξ ∈ J0 the set∏
ξ<η ∆η is the pointwise stabilizer G[0,ξ] of the points of the closed interval

[0, ξ] in J0; hence

(3.1) G = G[0,ξ](
∏

η∈[0,ξ]

∆η) with η in decreasing order.

Take η ∈ pRn, so η = ξ+ kps, ξ ∈ [0, ps), and for ρ ∈ G[0,ps−p] ∩ C(σ0) we get
ηρ = ((ησ−k0 )ρ)σk0 = η, i.e., ρ = 1. Therefore from (3.1) and (2.4) it follows
that Z(G) ≤ C(σ0) ≤ ∆0 ×∆p × · · · ×∆ps−p.

Let ξ ∈ [0, ps). We note that σp
r

ξ ∈ Ωs(∆ξ) if and only if n − 2s − v(ξ) ≤
r. Now take η ∈ pRn. If ηv(η) ∩ ξv(ξ) = ∅ or ξv(ξ), then [ση, σξ] = 1; if
ηv(η) ∩ ξv(ξ) = ηv(η) then

σ−p
n−2s−v(ξ)

ξ σησ
pn−2s−v(ξ)

ξ = ση+pn−2s−v(ξ)+s−v(ξ) = ση+pn−s = ση.

In conclusion we have

(3.2) Dr
ξ∈[0,ps)

Ωs(∆ξ) ≤ Z(G) ≤ Dr
ξ∈[0,ps)

∆ξ.

Proposition 3.1. Z(G) = Dr
ξ∈[0,ps)

Ωs(∆ξ), Z(Γ(M)) ∼= (Z(G))p+1.

Proof. Let z be in Z(G). By (3.2) z =
∏
ξ∈[0,ps) σ

zξ
ξ . Assume that for ξ0 ∈

[0, ps), σzξ0ξ0
6∈ Ωs(∆ξ0), while for ξ < ξ0, σzξξ ∈ Ωs(∆ξ). By (3.2),

∏
ξ<ξ0

σ
zξ
ξ ∈

Z(G); for ξ > ξ0, ξ0n−s−1 ∩ ξv(ξ) = ∅, and hence [σξ0,n−s−1, σ
zξ0
ξ0

] = 1 which
means ξ0+zξ0p

s+v(ξ0) ≡ ξ0 mod pn−sRn, i.e., σzξ0ξ0
∈ Ωs(∆ξ0), a contradiction.

Using (2.1) one obtains the result. �

From Proposition 3.1 and (2.2) it follows that

Z(G) ∼=

{
Cp

s−1

ps if n ≥ 3s− 1,

Cp
n−2s

ps × C(pn−2s+1−pn−2s)
ps−1 × · · · × C(ps−ps−1)

pn−2s+1 if 2s+ 1 ≤ n ≤ 3s− 2.



AUTOPROJECTIVITIES OF MODULAR GROUPS 117

One of our aims is to determine the nilpotent class of G. For s = 1 we can
already give an answer to this question:

Proposition 3.2. If s = 1, the nilpotent class of Γ(M) is pn−2, with the
factors of the lower central series all of exponent p.

Proof. For s = 1, G is a transitive permutation group on pRn. Now (2.3)
shows that the order of G equals that of a Sylow p-subgroup of Sym pn−1. It
is well known that such a group is isomorphic to Cp o Cp o · · · o Cp︸ ︷︷ ︸

n−1

, which has

nilpotent class pn−2, with the factors of the lower central series all of exponent
p (see [K], [Hu, III.15.3]). �

4. The derived and the Frattini subgroups of Γ(M)

Since G is abelian for n ≤ 2s, unless otherwise stated, we shall assume
n > 2s. If ξ, η are different elements in [0, pt+1), 0 ≤ t ≤ n − s − 1, then
ξt ∩ ηt = ∅; it follows from (2.2) and (2.3) that

(4.1)
Xt := 〈σξ,t | ξ ∈ pRn〉 =

∏
ξ∈[0,pt+1)

〈σξ,t〉 ∼= (Cpn−s−t)p
t

,

G = X0X1 · · ·Xn−s−1.

Using (2.2), for s ≤ t′ − t, we get 1 6= [Xt′ , Xt] ≤ [Xt′ , σ0] ≤ Xt′ ; hence

(4.2) Xt′ · · ·Xt E Xt′ · · ·Xt · · ·X0;

in particular, Xn−s−1 · · ·Xt E G. Set Yt := [Xt,
∏0
k=tXk]; then by (4.1) and

[Hu, III.1.10a], [Xt, σ0] ≤ Yt =
∏0
k=t[Xt, Xk] ≤ [Xt, σ0], i.e.,

(4.3) Yt = [Xt, σ0] = 〈Xt, σ0〉′ and is different from 1 if t ≥ s; also
N (Yt) ≥ Xt · · ·X0; in particular, N (Yt) ≥ Yt · · ·Ys.

Let s ≤ t ≤ t′ and for ση,t′ , σξ,t assume that [σξ,t, σ0]ση,t′ 6= [σξ,t, σ0], so that
t′−t ≥ s. Since ξt∩ξ + pst = ∅ (because s ≤ t), either ηt = ξt or ηt = ξ + pst.
In the first case,

[ση,t, σ0]ση,t′ = (σ−1
η,t )

ση,t′σξ+ps,t = [ση,t′ , ση,t]σ−1
η,tση+ps,t ∈ Yt′Yt ≤ [G, σ0],

while in the second case

[σξ+ps,t, σ0]σξ+ps,t′ = [ση,t′ , ση,t]σ−1
η,tση+ps,t ∈ Yt′Yt ≤ [G, σ0].

Hence, with (4.3), one concludes:

(4.4) N (Yt′Yt′−1 · · ·Yt) ≥ Xt′Xt′−1 · · ·X0 for s ≤ t ≤ t′ ≤ n − s − 1; in
particular, Yn−s−1 · · ·Yt E G.

We may now prove:

Proposition 4.1. G′ = Yn−s−1 · · ·Ys+1Ys = [G, σ0].
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Proof. We have S := Yn−s−1 · · ·Ys+1Ys ≤ G′ and S E G by (4.4). But the
group G/S is abelian since [σξ′,z′,t′ , σξ,z,t] ∈ S, so that S = G′. Moreover, by
(4.3), G′ =

∏n−s−1
k=s [Xk, σ0] ≤ [G, σ0] ≤ G′. �

Since 〈σ0〉 ≤ N (Xt) for any 0 ≤ t ≤ n − s − 1, we may consider Xt as a
〈σ0〉-module, which is non-trivial as soon as t ≥ s. One has

(4.5)

Xξ,t : = 〈σξ,t〉〈σ0〉 =
∏

0≤k<pt−s+1

〈σξ+kps,t〉 ∼= (Cpn−s−t)p
t−s+1

,

Xt = Dr
ξ∈[0,ps)

Xξ,t, cl〈Xt, σ0〉 = cl〈Xξ,t, σ0〉.

If 0 ≤ t < t′ ≤ n− s− 1, using (2.5), we have

(4.6)

Xt ∩Xt′ = Xpt
′−t

t = Xt ∩ (Xt′ · · ·Xn−s−1),

Xt ∩ 〈σ0〉 = 〈σp
t

0 〉, Xξ,t ∩ 〈σ0〉 =

{
〈σp

t

0 〉 if s = 1,
1 if s ≥ 2.

From (4.6) and (2.3) it follows that

(4.7) |Xt · · ·Xn−s−1 | =
n−s−1∏
k=t

|Xk |/|Xp
k | =

n−s−1∏
k=t

pp
k

= pp
n−s−1+···+pt .

Set H = 〈Xξ,t, σ0〉, t ≥ s and xk = σξ+kps,t, 0 ≤ k < pt−s+1. Then N :=
Xξ,t = Dr

k
〈xk〉 = 〈xk〉〈σ0〉, xσ0

k = xk+1, C〈σ0〉(xk) = 〈σr0〉, r = pt−s+1 and

H = 〈xk, σ0〉. Hence:

(4.8) H ′ = [N,σ0] = 〈[x0, σ0], . . . , [xr, σ0]〉 = {xm0
0 · · ·xmrr | m0 +

· · · + mr ≡ 0 mod pn−s−tRn}, H/〈σr0〉 ∼= Cpn−s−t o Cr, σr0 ∈
Z(H), N = H ′ × 〈x0, . . . , xr〉, H ′ ∼= (Cpn−s−t)r−1, and | Yt | =
|
∏
ξ∈[0,ps)[Xξ,t, σ0] | = (pn−s−t)p

t−ps−1
.

Moreover:

(4.9) For t ≥ s ≥ 2, cl〈Xt, σ0〉 = (n−s+ t)(pt−s+1−pt−s); in particular,
cl〈Xn−s−1, σ0〉 = pn−2s.

In fact, [Xt, σ0] =
∏
ξ∈[0,ps)[Xξ,t, σ0], so cl〈Xt, σ0〉 = clH. We have H ′ ∩

〈σ0〉 = 1; hence if gi ∈ H, [g1, . . . , gm] ∈ H ′ for m ≥ 2, so that [g1, . . . , gm] = 1
if and only if [g1, . . . , gm] ∈ 〈σr0〉. Therefore the class of H equals that of
H/〈σr0〉, i.e., the class of Cpn−s−t oCpt−s+1 . Using now [L, 5.1], one gets (4.9).

We are going to evaluate the order of G′. By (4.3),

Yt = 〈[σξ,t, σ0] = σ−1
ξ,t σξ+ps,t | ξ ∈ [0, pt+1)〉,
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and since by (2.5)

σ−pξ,t σ
p
ξ+ps,t =

p−1∏
k=0

σ−1
ξ+kpt+1,t+1σξ+ps+kpt+1,t+1,

we have, similarly to (4.6), that Y pt = Yt ∩ Yt+1 = Yt ∩ (Yt+1 · · ·Yn−s−1). But
now, with the help of Proposition 4.1 and (4.8), we obtain

(4.10)

|G′ | =

∣∣∣∣∣
n−s−1∏
t=s

Yt

∣∣∣∣∣ =
n−s−1∏
t=s

|Yt |/|Y pt |

=
n−s−1∏
t=s

pp
t−ps−1

= pp
s+···+pn−s−1−(n−2s)ps−1

.

Proposition 4.2. Given ξ ∈ [ps, pn−s), set Λξ = 〈[σξ, σ0]〉. Then

G′ =
∏

ξ∈[ps,pn−s)

Λξ,

with ξ in increasing or decreasing order. For a given element g ∈ G′, its
components in Λξ are uniquely determined.

Proof. Set ρξ = [σξ, σ0]; then Λξ = 〈ρξ〉 and for ξ ∈ [pt, pt+1) we have
| ρξ | = pn−s−t. Using (4.10) we get

(∗)

∏
ξ∈[ps,pn−s)

|Λξ | =
∏

s≤t≤n−s−1

p(n−s−t)(pt−pt−1)

= pp
s+···+pn−s−1−(n−2s)ps−1

= |G′ |.

Note that for η, ξ in [ps, pn−s) and η < ξ we have η[σzξξ , σ0] = η and

ξ[σzξξ , σ0] = ξ − zξp
s+v(ξ), so that from

∏
ξ ρ

zξ
ξ =

∏
ξ ρ

z′ξ
ξ one has zξ ≡

z′ξ mod pn−sRn, i.e., ρzξξ = ρ
z′ξ
ξ . This and (∗) imply G′ =

∏
ξ∈[ps,pn−s) Λξ,

with ξ in increasing or decreasing order. �

Our next goal will be to determine the structure of G/G′.

Lemma 4.3. For any ξ in pRn the following holds:
(i) If s− 1 ≤ t ≤ n− s− 1, then σpξ,t ∈ G′.
(ii) If 0 ≤ t ≤ s− 1, then σp

s−t

ξ,t ∈ G′.

Proof. (i) Since |σξ,n−s−1 | = p, σpξ,n−s−1 = 1 ∈ G′. Now we use induction
on t. By (2.5), σpξ,t−1 = σξ,t · · ·σξ+(p−1)pt,t and, by (4.8),

τ = σ1−p
ξ,t σξ+pt,t, · · ·σξ+(p−1)pt,t ∈ (〈σξ,t, σp

t−s

0 〉)′,

and hence also σpξ,t−1 = σpξ,tτ ∈ G′.
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(ii) By (i), σpξ,s−1 ∈ G′. By induction on t,

σp
s−(t−1)

ξ,t−1 = (σpξ,t−1)p
s−t

= σp
s−t

ξ,t · · ·σ
ps−t

ξ+(p−1)pt,t ∈ G
′. �

By (2.6) we have the epimorphism ϕ of G onto the abelian group S0,2s.
Thus, if S = kerϕ, we have G/S = 〈σ0S〉×· · ·×〈σps−pS〉, where |σξS | = ps−t

for ξ ∈ [pt, pt+1), 0 ≤ t < s. Since, by Lemma 4.3, σp
s−v(ξ)

ξ ∈ G′ if ξ ∈ [0, ps)
and σpξ ∈ G′ if ξ ∈ [ps, pn−s), we conclude that

(4.11) G/G′ = Dr
ξ∈[0,ps)

〈σξG′〉 × E,

where |σξG′ | = ps−v(ξ) and E is an elementary abelian p-group. In particular,
expG/G′ = ps. We can now describe the structure of G/G′.

Theorem 4.4. Given the group G = S0,n, we have:

(i) If n ≤ 2s, G = Dr
ξ∈[0,pn−s)

〈σξ〉 ∼= Cpn−s × Dr
1≤t<n−s

(Cpn−s−t)p
t−tt−1

.

(ii) If n > 2s, G/G′ ∼= Cps× Dr
1≤t<s

(Cps−t)p
t−tt−1 × (Cp)(n−2s)ps−1

.

Proof. (i) This is the case when G is abelian, and the conclusion follows
from (2.2) and (2.3).

(ii) By (4.11), | G/G′ | = | E | ps
∏

1≤t<s p
(s−t)(pt−pt−1). Since for ξ ∈

[ps, pn−s), | Λξ | = | ∆ξ |, from Proposition 4.2 it follows that | G/G′ | =∏
ξ∈[0,ps) |∆ξ |. We also know that |∆ξ | = pn−s−t for ξ ∈ [pt, pt+1). Hence

|G/G′ | = pn−s
∏

1≤t<s

p(n−s−t)(pt−pt−1),

and thus |E | = p(n−2s)ps−1
and E ∼= C

(n−2s)ps−1

p . �

Finally, we deal with the Frattini subgroup of G. From Theorem 4.4 it
follows that

(4.12) G/Φ(G) ∼=

{
(Cp)p

n−s−1
if n ≤ 2s,

(Cp)(n−2s+1)ps−1
if n > 2s.

Next we determine a minimal generating set, the situation being clear in the
case n ≤ 2s, for Φ(G) = Gp = Dr

ξ∈[0,pn−s−1)
〈σξ〉p and the set {σξ | ξ ∈ [0, pn−s)}

is what we are looking for. In the case n > 2s we introduce

I = {(ξ, t) | ξ ∈ [0, ps), s ≤ t < n− s},
X = {σξ | ξ ∈ [0, ps)} ∪̇ {σξ,t | (ξ, t) ∈ I}.

Proposition 4.5. If n > 2s, then:
(i) X is a minimal generating set for G.
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(ii) G/G′ = Dr
ξ∈[0,ps)

〈σξG′〉 × Dr
(ξ,t)∈I

〈σξ,tG′〉.

(iii) G/Φ(G) = Dr
ξ∈[0,ps)

〈σξΦ〉 × Dr
(ξ,t)∈I

〈σξ,tΦ〉.

(iv) Φ(G)/G′ = Dr
ξ∈[0,ps−1)

〈σpξG′〉.

Proof. (i) We have

X〈σ0〉 = {σξ,t | ξ ∈ pRn, 0 ≤ t ≤ n− s− 1},

and hence 〈X〉 = G. But |X | = (n−2s+1)ps−1, so, by (4.12), X is a minimal
generating set of G.

(ii) By (i) and (4.11), it is enough to show that
∏

(ξ,t)∈I | σξ,tG′ | ≤ |E |.
This follows from |σξ,tG′ | ≤ p for (ξ, t) ∈ I, by 4.3 (i), and |E | = p(n−2s)ps−1

.
(iii) The statements follow from (4.11) and (4.12).
(iv) Since Φ(G) = GpG′, this is a consequence of (4.11). �

5. Construction of the elements of R(M) and their action on Γ(M)

We have Φn,s =
⋃̇

[µ](σ, τ, [µ])Ψn,s, with Ψn,s
∼= (S0,n)p+1. According to

Section 2 in [CZ], to construct an element of Φn,s it is enough to construct an
element of S̃0,n. Select µ ∈ U(Rn), with µ ≡ 1 mod ps−1Rn, and define σ̃ in
the following way. Let i = i1p+ · · ·+ in−s−1p

n−s−1 be an element of [0, pn−s)
and let j in pRn be such that j − i ∈ pn−sRn. Set

(∗)

{
iσ̃ = i1µp+ i2µ

2p2 + · · ·+ in−s−1µ
n−s−1pn−s−1,

jσ̃ = iσ̃ + (j − i)µn−s.

It is not difficult to check that σ̃ ∈ PR(pRn), that jσ̃ ≡ j mod psRn and
that if j, i are in pRn with j ≡ i mod pfRn, 0 ≤ f ≤ n − s, then jσ̃ − iσ̃ ≡
(j − i)µf mod pf+sRn. Therefore σ̃ ∈ S̃0,n, and σ̃ 6∈ S0,n as soon as [µ] 6= [1].

Considering the elements of the form σ̃
∏
ξ∈J0

σξ,zξ , ξ ∈ pRn, zξ ∈ pv(ξ)Rn,
one gets all the elements of S̃0,n relative to [µ].

A recursive procedure to assign, for a given µ, an element ρ̃ of S̃0,n, goes
as follows: for i ∈ pRn set

iρ̃ =


k0p

s if i = 0, with 0 ≤ k0 < pn−s,
(i− pt)ρ̃+ µtpt + kip

s+t if i ∈ [pt, pt+1), 1 ≤ t ≤ n− s− 1,
with 0 ≤ ki < pn−s−t.

Finally, if j ∈ pRn and j − i ∈ pn−sRn with i ∈ [0, pn−s), set

jρ̃ = iρ̃+ (j − i)µn−s.

Again one may check that ρ̃ ∈ S̃0,n. We remark that σ̃ as in (∗) is obtained
from the construction of ρ̃ by choosing ki = 0 for all i ∈ [0, pn−s).
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In the remaining part of this section we shall investigate the action of Φn,s
upon Ψn,s. Again we shall study the action by conjugation of S̃0,n on S0,n.

Let ρ̃ ∈ S̃0,n be relative to µ ∈ U(Rn). Take σξ,t ∈ Xt, 0 ≤ t ≤ n− s− 1,
and consider ρ̃−1σξ,tρ̃. For a given i ∈ pRn, if iρ̃−1 6∈ ξt, then iρ̃−1σξ,tρ̃ = i;
but iρ̃−1 6∈ ξt is equivalent to i 6∈ (ξρ̃)t, so we also have iσξρ̃,µs+tpt,t = i.

Assume now that iρ̃−1 ∈ ξt; then iρ̃−1σξ,tρ̃ = (iρ̃−1 + ps+t)ρ̃ ≡ i +
µs+tps+t mod p2s+tRn. On the other hand, iσξρ̃,µs+tpt,t = i + µs+tps+t.
It follows that for χ = σ−1

ξρ̃,µs+tps+t,tρ̃
−1σξ,tρ̃ and i ∈ pRn we have iχ ≡

i mod p2s+tRn, i.e., χ ∈ S0,n ∩ kerϕn−2s−t = Xs+t · · ·Xn−s−1 if t < n − 2s,
and χ = 1 if n− 2s ≤ t ≤ n− s− 1. Equivalently,{

ρ̃−1σξ,tρ̃ ≡ σµ
s+t

ξρ̃,t mod Xs+t · · ·Xn−s−1 for 0 ≤ t ≤ n− 2s− 1,

ρ̃−1σξ,tρ̃ = σµ
s+t

ξρ̃,t for n− 2s ≤ t ≤ n− s− 1.

Recall that if n− 2s+ 1 ≤ t ≤ n− s− 1, s ≥ 2, then µs+tps+t = ps+t, so that

ρ̃−1σξ,tρ̃ = σξρ̃,t for n− 2s+ 1 ≤ t ≤ n− s− 1, s ≥ 2.

From this it follows that if n < 2s then ρ̃−1σξ,tρ̃ = σξρ̃,t for 0 ≤ t ≤ n− s− 1,
while, for n = 2s,

(5.1)

{
ρ̃−1σξ,tρ̃ = σξρ̃,t, 1 ≤ t ≤ n− s− 1,
ρ̃−1σξ,0ρ̃ = σµ

s

ξρ̃,0.

We are now in the position to determine in which cases R(M) is abelian.

Proposition 5.1. The group R(M) is abelian precisely in the following
cases:

(i) n < 2s,
(ii) n = 2s, s ≥ 2, p |s,
(iii) n = 2, s = 1, p = 2.

Proof. If n > 2s, then even Γ(M) is non-abelian. If n < 2s, R(M) is abelian
(see [CZ, 3.2]). So assume n = 2s. Then Γ(M) is abelian. Suppose first
s ≥ 2. From (5.1) it follows that R(M) is abelian if and only if (1 + ps−1)s ≡
1 mod psRn, that is, if and only if p |s. Finally, assume s = 1. By [CZ, 1.3],
R(M) is abelian if and only if p = 2, i.e., only when R(M) = Γ(M). �

6. The nilpotent class of Γ(M)1

An abelian p-group M is called a proper (n,m, s)-group if M = H⊕C with
H = 〈a〉 ⊕ 〈b〉, where pn = | a | ≥ | b | = pm, expC = ps and 1 ≤ s < m.
In what follows we are mainly concerned with determining the nilpotent class
of Γ(M). To this end we embed M in an (n, s)-group M̃ = 〈a〉 ⊕ 〈b̃〉 ⊕ C,
so that b = pn−mb̃; we denote by S(M) the stabilizer of M in Γ(M̃). By

1We are grateful to M. Newell for stimulating discussions on this topic.
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[CZ, Theorem A] we know that the restriction map ϕ 7→ ϕ|M defines an
epimorphism of S(M) onto Γ(M), and hence, via j, an epimorphism ρ of
S(M)j ≤ Ψn,s = S0,n × · · · × Sp−1,n × S∞,n onto Γ(M), so that cl Γ(M) =
clS(M)j/ ker ρ. If R is any subgroup of S(M)j , we shall call cl(R/R ∩ ker ρ)
the class of the action of R on M .

We note that

(σ, τ, [1]) ∈ S(M)j ⇐⇒ 〈a+ (0σ)b〉 ≤ H ⇐⇒ 0σ ∈ pn−mRn.
In particular, we get

(6.1) S(M)j = (S(M)j ∩ S0,n)× S1,n × · · · × Sp−1,n × S∞,n.

Lemma 6.1. Let σ be in S0,n and write, in accordance with (2.3), σ =∏
ξ∈J0

σ
zξ
ξ , with ξ in decreasing order. Then σ lies in S(M)j if and only if

z0p
s ∈ pn−mRn.

Proof. This follows from the fact that 0σ = 0σz00 . �

Remark 6.1. Using Lemma 6.1 and (2.5), one concludes that S(M)j can
be generated by convenient elementary transformations of the form σξ,t, with
ξ ∈ pRn and t ≥ v(ξ).

We know that G = X0X1 · · ·Xn−s−1 and Xt′ ≤ N (Xt), 0 ≤ t′ ≤ t. Let us
define

Ti =

{
XiXi+1 · · ·Xn−s−1 if i < n− s,
1 if i = n− s,

Hi,k = 〈σξ,t | ξ ∈ kp+ pt+1Rn, i ≤ t ≤ n− s− 1〉.

Given 0 ≤ k, k′ ≤ pi − 1, the translation τk′−k : x 7→ x + (k′ − k)p on pRn
induces the isomorphism τ(k,k′) : Hi,k → Hi,k′ , σ 7→ τ−1

k′−kστk′−k. With the
help of (4.2) and (2.2), we have

(6.2) Ti E G, Ti = Hi,0 × · · · ×Hi,pi−1, G = 〈σ0, T1〉, σp0 ∈ T1.

We claim that

(6.3) Hi,k
∼= S0,n−i, 0 ≤ i ≤ n− s− 1.

In fact, via obvious identifications, γi : x 7→ pix defines an isomorphism of
R+
n−i onto piR+

n . Now the monomorphism given by ρi : σξ,t 7→ γ−1
i σξ,tγi

defines an isomorphism ρi of Hi,0 onto S0,n−i.
It follows from (6.2) that clTi = clS0,n−i. For our computations with

elements in S0,n the following formula, established in [L, 3.2], turns out to be
useful:

(6.4) Set σh := σp
h

0 , 0 ≤ h ≤ n− s− 1. Then [σ−1
ξ,t , rσh] =

r∏
k=0

σ
(−1)k(rk)
ξ+kps+h,t

.
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Lemma 6.2. The nilpotent class of G/T ′1 is less than or equal to p.

Proof. It suffices to show that for xi ∈ {σ0, σξ,t | ξ ∈ pRn, 1 ≤ t ≤
n − s − 1}, [x1, x2, . . . , xp+1] ∈ T ′1. Since for xi 6= σ0 we have xi ∈ T1, it is
enough to show that [σ−1

ξ,t , pσ0] ∈ T ′1 as soon as ξ ∈ pRn, s ≤ t ≤ n − s − 1.
We have

[σ−1
ξ,t , pσ0] =

p∏
k=0

σ
(−1)k(pk)
ξ+kps,t ,

by (6.4). We claim that σ
(−1)k(pk)
ξ+kps,t ∈ T ′1 for 1 ≤ k ≤ p − 1. In fact, by (6.2)

and (6.3), T1
∼= (S0,n−1)p, so the claim follows using Lemma 4.3 for n− 1 and

observing that p |
(
p
k

)
for 1 ≤ k ≤ p− 1.

If p is odd, then σ−1
ξ,t σξ+ps+1,t ∈ T ′1 by (2.2), and we obtain the result. For

p = 2, we have
σξ,tσξ+2s+1,t = σ2

ξ,tσ
−1
ξ,t σξ+2s+1,t ∈ T ′1,

by (2.2) and Lemma 4.3 (i). �

We remark that the proof shows that γ2(T1) = [G, pσ0] = γp+1(G).

Theorem 6.3. Let M = H ⊕ C be an (n, s)-group relative to the prime
p. If s < n ≤ 2s, then cl Γ(M) = 1 and exp Γ(M) = pn−s. If 2s < n, then
cl Γ(M) = pn−2s, exp Γ(M)/γ2(Γ(M)) = ps and exp γi(Γ(M))/γi+1(Γ(M)) =
p for all i ≥ 2.

Proof. Since Γ(M) ∼= (S0,n)p+1, we may restrict our considerations to the
group G = S0,n and, by (2.3), to the case 2s < n. Finally, by Proposition 3.2
we may assume s ≥ 2. Let us begin with n = 2s+ 1. Then G = X0X1 · · ·Xs

with Xs E G by (4.2), and X0X1 · · ·Xs−1 is abelian by (2.2). By (4.1), Xs is
elementary abelian, and expG/G′ = ps by Theorem 4.4 (i).

We shall now use induction on n ≥ 2s+ 2. For T = T1, let us consider the
series

(∗) G = γ1(G) > γ2(G) > γ2(T ) > γ3(T ) > · · · > γc′(T ) > 1

with c′ = clT . Using (6.2) and (6.3) one sees that (∗) is a normal series of
G and that T ∼= Sp0,n−1. By induction c′ = pn−1−2s, expT/γ2(T ) = ps and
exp γi(T )/γi+1(T ) = p for i ≥ 2. By Theorem 4.4 (i), expG/γ2(G) = ps,
and since γ2(T ) ≤ γ2(G) < T , γ2(G)/γ2(T ) is abelian. We have σξ,t ∈ T
for 1 ≤ t ≤ n − s − 1 and σp0 ∈ T . Applying Lemma 4.3 with n and n − 1
one gets exp γ2(G)/γ2(T ) = p. Consider now the normal series (∗) as a 〈σ0〉-
series. By Lemma 6.2 we may refine the group G/T ′ in at most p steps to a
lower 〈σ0〉-central series with γ2(G/γ2(T )) = G′/γ2(T ), because G = 〈σ0, T 〉.
Since σp0 ∈ T , the elementary abelian p-group γi(T )/γi+1(T ), for i ≥ 2, can
be refined in at most p steps to a lower 〈σ0〉-central series (see [L, 5.1]). In
conclusion the normal series (∗) can be refined in at most p·p(n−1)−2s = pn−2s
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steps to a 〈σ0〉-central series of G; call this series (∗∗). Since for g ∈ G we have
g = σr0x, x ∈ T , (∗∗) turns out to be a central series ofG. But each term of this
series is generated by simple commutators of proper weight. Hence (∗∗) is the
lower central series of G. In it, besides expG/γ2(G) = ps, all other factors are
of exponent p. Since G ≥ 〈σ0, Xn−s−1〉 and, by (4.9), cl〈σ0, Xn−s−1〉 = pn−2s,
the conclusion follows. �

We remark that the proof shows that γi+1(T1) = γpi+1(G) for i = 1, . . . ,
pn−2s−1.

We describe the last non-trivial term of the lower central series of Γ(M).

Corollary 6.4. Let M be an (n, s)-group. Then γcΓ(M) = Ω(Z(Γ(M))),
where c = pn−2s.

Proof. Again we may restrict ourselves to G = S0,n. We already know that
γc(G) ≤ Ω(Z(G)). In the other direction, by Proposition 4.5

Xn−s−1 = Dr
ξ∈[0,ps)

Xξ,n−s−1,

where
Xξ,n−s−1 = 〈σξ,n−s−1〉G = 〈σξ,n−s−1〉〈σ0〉 ∼= Cp

n−2s

p .

It follows that

1 6= gξ :=
∏

0≤k<pn−2s

σ
σk0
ξ,n−s−1 =

∏
0≤k<pn−2s

σξ+kps,n−s−1 ∈ Ω(Z(G)).

By order considerations we get Ω(Z(G)) = Dr
ξ∈[0,ps)

〈gξ〉 and, by (6.4),

[σ−1
ξ,n−s−1, c−1σ0] =

c−1∏
k=0

σ
(−1)k(c−1

k )
ξ+kps = gξ

since (−1)k
(
c−1
k

)
≡ 1 mod p for 0 ≤ k ≤ c− 1. Hence gξ ∈ γc(G), and we are

done. �

Given an (n, s)-group M = H⊕C and a basis (a, b) of H, we introduced in
[CHZ] the frame A = (〈a〉, 〈b〉), the unit point u = 〈a+ b〉, and the subgroups

ΓA(M) = {ρ ∈ Γ(M) | Aρ = A}, ΓA,u(M) = {ρ ∈ ΓA(M) | uρ = u}.

We are going to prove:

Corollary 6.5. With the above notation we have

cl ΓA(M) = pn−2s, cl ΓA,u(M) =

{
pn−2s if p is odd,
pn−1−2s if p = 2.
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Proof. First we observe that S1,n ≤ ΓA(M), and hence cl ΓA(M) = pn−2s.
If p is odd, we have S2,n ≤ ΓA,u(M), and hence cl ΓA,u(M) = pn−2s. Now
assume p = 2. In this case T1 = H0 × H1, and H1 ≤ ΓA,u(M), so that
cl ΓA,u(M) ≥ pn−1−2s. On the other hand, if we write Γ(M) = S0,n × S1,n ×
S∞,n, then it is clear that ΓA,u(M) = S0,n(0) × S1,n(1) × S∞,n(∞), where
Sk,n(k) is the stabilizer of k in Sk,n. Hence cl ΓA,u(M) = clS0,n(0). Finally,
S0,n(0) =

∏
η∈J0,η>0 ∆η is contained in T1, so that cl ΓA,u(M) ≤ clT1 =

pn−1−2s, and we are done. �

We finally give a bound for the nilpotent class of R(M).

Corollary 6.6. Let M be an (n, s)-group with s ≥ 2. Then

clR(M) ≤ pn−2s(s(p− 1) + 1).

Proof. By a result of P. Hall ([H, Theorem 7]) we have clR(M) ≤
cl(R(M)/Γ(M)′)pn−2s. Now R(M)/Γ(M)′ embeds in A o Cp, where A is
abelian of exponent ps. By [L, 5.1] we get cl(R(M)/Γ(M)′) ≤ s(p − 1) + 1,
and the proof is complete. �

We will now determine the nilpotent class of Γ(M), when M is a proper
(n,m, s)-group. Recall from (6.1) that S(M)j = (S(M)j ∩ S0,n) × S1,n ×
· · ·Sp−1,n × S∞,n. Set ρ′ : Γ(M̃)j → Γ(Ωm(M̃)), ϕj 7→ ϕ|Ωm(M̃). Then, for
k = 1, . . . , p− 1,∞, we have ker ρ ∩ Sk,n = ker ρ′ ∩ Sk,n, so that, by Theorem
6.3, the class of action of Sk,n on M is pm−2s. Here, and in the following, we
are using the convention that ph = 1 if h < 0.

We note that with the help of (6.4) one has

[σ−1
0,n−s−1, (pn−2s−1)σ0]|pn−sRn 6= 1,(6.5a)

[σ−1
0,n−s−1, (pm−s−1)σ

pn−m−s

0 ]|pn−sRn 6= 1 if n−m > s.(6.5b)

Proposition 6.7. Let M be a proper (n,m, s)-group relative to the prime
p. If n−m ≤ s, then cl Γ(M) = pn−2s.

Proof. Since n − m ≤ s, we are in the case S0,n ≤ S(M)j . If n ≤ 2s,
Γ(M̃)′ = 1 by (2.2), so Γ(M) is abelian. Assume now that n > 2s. Since
cl Γ(M) ≤ cl Γ(M̃) = pn−2s, the conclusion follows from (6.5a). �

It remains to deal with the case s < n−m. Here we already observed that
S(M) ∩ 〈σ0〉 = 〈σp

n−m−s

0 〉. In particular, G ∩ S(M)j ≤ T1 and, since H1,k

stabilizes M for every k = 1, . . . , p− 1, we have more precisely

(6.6) G ∩ S(M)j = (H1,0 ∩ S(M)j)×H1,1 × · · · ×H1,p−1.

Proposition 6.8. Assume 0 ≤ i < k ≤ n− s. Then clTi/Tk = pk−i−s.
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Proof. Set r = n− i, and let 0 ≤ j ≤ r. The restriction map Γ(Ωr(M̃))→
Γ(Ωr−j(M̃)) induces an epimorphism ϕj : S0,r → S0,r−j . Consider the se-
quence

Hi,0
ρi−→ S0,r

ϕj−→ S0,r−j

Then, by Theorem 6.3, we get

clHi,0/ ker ρiϕj = clS0,r/ kerϕj = clS0,r−j = pr−j−2s = pn−i−j−2s.

With the help of the relation σρipiη,t = ση,t−i one checks that

(Hi,0/ ker ρiϕj)p
i ∼= Dr

0≤k<pi
Hi,k/(ker ρiϕj)τ(0,k) = Ti/Tn−j−s,

so that clTi/Tn−j−s = pn−i−j−2s. So for k = n − j − s we have clTi/Tk =
pk−i−s. �

We are now in a position to prove the main result of this section.

Theorem 6.9. Let M = H⊕C be a proper (n,m, s)-group relative to the
prime p. If n ≤ 2s, then Γ(M) is abelian. If n > 2s the nilpotent class of
Γ(M) is given by

cl Γ(M) =

{
pn−2s if n−m ≤ s,
pm−s if n−m > s.

Proof. By our previous results, it remains to deal with the case n−m > s
(which implies n > 2s). Since cl Γ(M) is determined by the action of S(M)j

on M , by (6.6) we may consider the action of A := H1,1 × · · · ×H1,p−1 and
that of B := H1,0 ∩ S(M)j separately. As already pointed out, we have

(6.7) clA/ ker ρ ∩A ≤ cl Γ(Ωm(M̃)) = pm−2s < pm−s.

It remains to work out the nilpotent class of the action of B on M . To generate
B, according to Remark 6.1, we may restrict ourselves to those σξ,t ∈ H1,0

with ξ ∈ p2Rn and v(ξ) ≤ t. Assume ξ ∈ piRn \ pi+1Rn, where 2 ≤ i ≤
n−m− s. Then 0σξ,t = 0, and hence σξ,t ∈ B, i.e.,

Ri := 〈σξ,t | ξ ∈ piRn \ pi+1Rn, t ≥ i〉 ≤ B.

Finally, if ξ ∈ pn−m−s+1Rn and t ≥ n−m− s, then 0σξ,t ∈ pn−mRn, so that

R0 := 〈σξ,t | ξ ∈ pn−m−s+1Rn, t ≥ n−m− s〉 ≤ B ∩ Tn−m−s;

in particular, clR0 ≤ pm−s by Proposition 6.8.
We obtained B = 〈Ri | i = 2, . . . , n−m− s, 0〉, which is the direct product

R2 × · · · × Rn−m−s × R0 since if σξ,t ∈ Ri and σξ′,t′ ∈ Rj with i 6= j, then
ξ + pt+1Rn ∩ ξ′ + pt

′+1Rn = ∅. For i = 2, . . . , n−m− s set

Vi = 〈σξ,t | ξ ∈ piPn \ pi+1Rn, t ≥ m− s+ i〉.



128 M. COSTANTINI AND G. ZACHER

Then Vi ≤ ker ρ ∩ Ri, and since Ri/Vi embeds in Ti/Tm−s+i, it follows by
Proposition 6.8 that clRi/ ker ρ∩Ri ≤ pm−2s. Thus the nilpotent class of the
action of B on M is ≤ pm−s, from which it follows by (6.7) that cl Γ(M) ≤
pm−s. But then we conclude that cl Γ(M) = pm−s by (6.5b). �
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