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ESTIMATES OF GREEN FUNCTIONS FOR SOME
PERTURBATIONS OF FRACTIONAL LAPLACIAN

TOMASZ GRZYWNY AND MICHA L RYZNAR

Abstract. Suppose that Yt is a d-dimensional symmetric Lévy process
such that its Lévy measure differs from the Lévy measure of the isotropic
α-stable process (0 < α < 2) by a finite signed measure. For a bounded
Lipschitz open set D we compare the Green functions of the process Y
with those of its stable counterpart, and we prove several comparability
results, both one-sided and two-sided. In particular, assuming an addi-
tional condition about the difference between the densities of the Lévy
measures, namely that it is of the order of |x|−d+% as |x| → 0, where
% > 0, we prove that the Green functions are comparable, provided D
is connected.

These results apply, for example, to the relativistic α-stable process.
The bounds for its Green functions were previously known for d > α and
smooth sets. Here we consider also the one-dimensional case for α ≥ 1,
and we prove that the Green functions for a bounded open interval are
comparable, a case that, to the best of our knowledge, had not been
treated in the literature.

1. Introduction

The purpose of the paper is to study estimates of the Green functions of
bounded open sets of a symmetric Lévy process Yt in Rd. We assume that
its Lévy measure is close in some sense, which we specify later, to the Lévy
measure of the isotropic α-stable process. From the point of view of infinites-
imal generators, the generator of the semigroup corresponding to Yt can be
considered as a perturbation of the fractional Laplacian by a bounded linear
operator. The potential theory of stable processes has been extensively in-
vestigated in recent years (see [2], [4], [6], [15]), and there are several results
providing estimates of the Green functions of bounded C1,1 sets (see [14] and
[7]) or even bounded Lipschitz sets ([12], [3]). We intend to make a comparison
of the Green functions of the process Yt with those of its stable counterpart.
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One of the first results in this direction was given in [16], where the relativis-
tic α-stable process was considered. This is a process whose characteristic
function is of the form

E0eiz·Yt = e−t((|z|2+m2/α)α/2−m), z ∈ Rd,

where 0 < α < 2 and m > 0 is a parameter. Observe that for m = 0 this
process reduces to the isotropic α-stable process. The main result of [16] says
that the Green function of a bounded C1,1 set is comparable to the Green
function of the isotropic α-stable process if d > α. Later, in [8], this result
was derived by a different method. In the present paper, we develop the
method from [16] to derive several extensions of the results proved therein.
The main results are contained in the following two theorems.

Theorem 1.1. Let D ⊂ Rd be a bounded connected Lipschitz open set.
Suppose that Yt is a symmetric pure jump Lévy process in Rd with d ≥ 1 and
νY (x) is the density of its Lévy measure. By ν̃(x) we denote the density of
the Lévy measure of the isotropic stable process and by G̃D its Green function
of D. Assume that σ(x) = ν̃(x) − νY (x) ≥ 0, x ∈ Rd, and σ(x) 6 c|x|%−d

for |x| 6 1, where c, % > 0. Then there exists a constant C = C(d, α, D, %, c),
such that

C−1G̃D(x, y) 6 GY
D(x, y) 6 CG̃D(x, y),

for all x, y ∈ D.

In the next theorem we remove the assumption about the positivity of the
function σ at the cost of some mild assumption about the behaviour of the
density of the Lévy measure.

Theorem 1.2. Let d > α. With the same notation as in the previous
theorem assume that there are positive constants c and % such that |σ(x)| 6
c|x|−d+% for |x| 6 1, and that νY (x) is bounded on Bc(0, 1). Then there is a
constant C = C(d, α, D, %, σ) such that for any x, y ∈ D,

C−1G̃D(x, y) 6 GY
D(x, y) 6 CG̃D(x, y).

Observe that in the first theorem the assumption about the positivity of
σ enables us to not require any assumptions about the behaviour of νY (x)
away from the origin except that it has to be dominated by ν̃. For example,
νY (x) can vanish outside some neighborhood of the origin. Of course, the
assumptions are readily checked for the relativistic process (see [16] for the
description of the Lévy measure), so the theorem extends to bounded Lipschitz
domains the main result of [16] (see also [8]). In addition, note that it covers
the one-dimensional case for α ≥ 1, which was not treated in either of the
two papers cited above. Actually, both papers assumed d ≥ 2, but the proofs
remain valid for d > α. To the best of our knowledge, the one-dimensional
result is new and fills a gap in the potential theory of the relativistic process.
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The methods we apply are elementary and are based on the fact that for any
two pure jump processes such that the difference between their Lévy measures
is a positive and finite measure one can represent one of the processes as a
sum of the other and an independent compound Poisson process. A different
approach in taken in [8], where the problem in the C1,1 case was tackled by
the so-called drift transform technique. After obtaining the main results of
the present paper, the authors found on the website of Panki Kim a paper of
Kim and Lee [13] with results similar to ours, but for even more general sets
(so called κ-fat sets). The method they use is essentially designed in [8], so our
methods and results can be viewed as an alternative approach to the problem
of comparing the Green functions. On the other hand, there is a difference
between the results in [13] and in the present paper which is worthwhile to
mention. Namely, one of their core assumptions is a certain condition (see
Theorem 2.2 in [8]), which in our setting is equivalent to

inf
x,y∈D

νY (x− y)
ν̃(x− y)

> 0.

Essentially this means that the Lévy measure νY cannot vanish anywhere if
we want to consider a domain D of a large diameter. Our method can handle
the situation when the Lévy measure νY vanishes outside some neighborhood
of the origin, which seems not to be possible with the other method used in
[8] or [13].

The paper is organized in the following way. In Section 2 we set up the
notation and state the definitions and basic facts needed in the sequel. At
first, we do not assume that Yt is compared with the stable process, but
instead work in a slightly more general setting, where Yt is compared with
another Lévy process Xt under appropriate assumptions about their Lévy
measures. In Section 3 we prove the main estimates along with some other
related results. To prove Theorem 1.2 we first prove the estimates for sets of
small diameter, and then use this to prove the Boundary Harnack Principle
(BHP) for the process Yt in the case when its Lévy measure dominates the
Lévy measure of the isotropic α-stable process.

2. Preliminaries

In Rd, d > 1, we consider a symmetric Lévy processes Xt such that its
characteristic triplet is equal to (0, ν, 0), where ν is its (nonzero) Lévy measure.
That is, its characteristic function is given by

E0eiz·Xt = e−t
R

Rd (1−cos(z·w))ν(dw), z ∈ Rd.

If the measure ν is absolutely continuous with respect to the Lebesgue mea-
sure, then we denote its density by ν(x). We assume that the transition
densities of Xt exist and we denote them by p(t, x, y). Moreover, they are
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assumed to be bounded and defined for every x, y ∈ Rd. The potential kernel
for Xt is given by

U(x, y) = U(x− y) =
∫ ∞

0

p(t, x− y)dt,

if the integral is finite, that is, the process is transient.
We use the notation C = C(α, β, γ, . . . ) to mean that the constant C

depends on α, β, γ, . . . . The values of constants may change from line to line,
but they are always strictly positive and finite. The dependence on usual
quantities (e.g., d, α) is sometimes not explicitly indicated in the notation.

We write f ≈ g on D to denote that the functions f and g are comparable,
that is, there exists a constant C such that

C−1f(x) ≤ g(x) ≤ Cf(x), x ∈ D.

Let D ⊂ Rd be an open set. By τD we denote the first exit time from D,
that is,

τD = inf{t > 0 : Xt /∈ D}.
Next, we investigate the boundedness of the first moment of τD.

Lemma 2.1. For any bounded open set D there exists a constant C =
C(D) such that

sup
x∈Rd

ExτD 6 C.

Proof. The proof of this lemma uses the same arguments as in the classical
case of Brownian motion (see [9]). The argument therein requires the existence
of t0 > 0 such that supx∈Rd P x(Xt0 ∈ D) < 1.

The process is nonzero. Hence one can find y ∈ Rd, y 6= 0, such that the
real-valued process 〈y, Xt〉 is a nonzero Lévy process. Since D is bounded, we
can find r such that D ⊂ {z ∈ Rd : |〈y, z〉| ≤ r}. Hence by Lemma 48.3 in
[17] we obtain

sup
x∈Rd

P x(Xt ∈ D) ≤ sup
x∈Rd

P x(| 〈y, Xt〉 | ≤ r) = O(t−1/2), t →∞. �

In order to study the killed process on exiting D we construct its transition
densities by the classical formula

pD(t, x, y) = p(t, x, y)− rD(t, x, y),

where
rD(t, x, y) = Ex[t > τD; p(t− τD, XτD

, y)].
The arguments used for Brownian motion (see, e.g., [9]) will prevail in our
case and one can easily show that the transition density pD(t, x, y), t > 0,
satisfies the Chapman-Kolmogorov equation (semigroup property). Moreover,
the transition density pD(t, x, y) is a symmetric function (x, y) a.s. Assuming
some other mild conditions on the transition densities of the (free) process,
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one can actually show that pD(t, x, y) can be chosen as continuous functions
of (x, y).

Next, we define the Green function of the set D,

GD(x, y) =
∫ ∞

0

pD(t, x, y)dt.

Let us see that the integral is well defined. We have∫
D

GD(x, y)dy =
∫

D

∫ ∞

0

pD(t, x, y)dtdy =
∫ ∞

0

P x(τD > t)dt = ExτD < ∞.

Hence for every x ∈ Rd the Green function GD(x, y) is well defined (y) a.s.
Again, under assumptions which make the function pD(t, x, y), t > 0, con-
tinuous in the arguments x, y, one can show that the Green function is a
continuous function (in the extended sense) on D ×D.

It is well known that if the Lévy measure is absolutely continuous with
respect to the Lebesgue measure, then the distribution of XτD

restricted to
D

c
is absolutely continuous as well (see [11]) and the density is given by the

so-called Ikeda-Watanabe formula:

PD(x, z) =
∫

D

GD(x, y)ν(y − z)dy, (x, z) ∈ D ×D
c
.

We call PD(x, z) the Poisson kernel. Under some other mild conditions XτD

has zero probability of belonging to the boundary of D, so in this case the
Poisson kernel fully describes the distribution of the exiting point.

We say that a measurable function u is harmonic with respect to Xt in an
open set D if for every bounded open set U satisfying U ⊂ D,

u(x) = Exu(XτU
), x ∈ U.

If
u(x) = Exu(XτD

), x ∈ D,

then we say that u is regular harmonic with respect to Xt in an open set D.
The following lemma is a simple consequence of Lemma 2.1 and the bound-

edness of p(t, x).

Lemma 2.2. For any x ∈ D and t ≥ 1 we have

pD(t, x, y) 6 C(X)
ExτDEyτD

t2
(y) a.s. .

Proof. Observe that for s > 0,

sup
x,y∈D

pD(s + 1/4, x, y) 6 sup
x,y∈Rd

p(s + 1/4, x− y) = sup
x∈Rd

p(1/4, ·) ∗ p(s, x)

6 sup
x∈Rd

p(1/4, x) = C1.
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Hence, by the Chapman-Kolmogorov equation we obtain for t > 1/2 and (y)
a.s.

pD(t, x, y) =
∫

D

pD(t/2, x, z)pD(t/2, z, y)dz 6 C1P
x(τD > t/2).

Applying again the Chapman-Kolmogorov equation together with the above
inequality we get for t > 1,

pD(t, x, y) 6 C1P
x(τD > t/4)

∫
D

pD(t/2, z, y)dz

= C1P
x(τD > t/4)P y(τ̂D > t/2),

where τ̂D = inf{t > 0 : −Xt ∈ D}. But the process Xt is symmetric, so
{Xt}

D= {−Xt}. Hence

P y(τ̂D > t/2) = P y(τD > t/2).

Therefore, we have

pD(t, x, y) 6 C1P
x(τD > t/4)P y(τD > t/2).

An application of Chebyshev’s inequality completes the proof. �

Remark 2.3. If Xt is an isotropic stable process, then by similar argu-
ments we have for t > 0 and x, y ∈ D,

pD(t, x, y) 6 C(α, d)
ExτDEyτD

t2+d/α
.

In one of our general results (Theorem 3.1) we require the following prop-
erty which exhibits a relation between the moments of the exit times and the
Green function.

Property A. There is a constant c = c(D) such that

ExτDEyτD ≤ cGD(x, y), x, y ∈ D.

At first glance the above condition looks a bit restrictive, but actually it
holds in the stable case ([15], [6], [1]) and it is usually derived as a consequence
of the intrinsic ultracontractivity of the killed process. In a recent paper of the
first author (see [10]) the intrinsic ultracontractivity is studied under much
broader assumptions. For example, the above property holds if pD(t, ·, ·) is
continuous in x, y and the Lebesgue measure is absolutely continuous with
respect to the Lévy measure.

From now on we consider two symmetric Lévy processes Yt and Xt such that
the signed measure σ = νX−νY is finite, where νY , νX are the Lévy measures
of Yt and Xt, respectively. We use this notational convention throughout the
whole paper; e.g., we denote the transition density of Xt by pX(t, x) and the
transition density of Yt by pY (t, x) (the density must exist since the measure
σ = νX−νY is finite). Later on we will require one of the processes, say Xt, to
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be the isotropic stable process. The aim of this paper is to make comparisons
between the two processes in various aspects of which the relationship of the
Green functions is our main target. Some of the results are general, but our
typical situation is a comparison between the isotropic stable process and
another process such that their Lévy measures are sufficiently close to each
other.

With the assumption that σ = νX − νY is finite we have the following
formula comparing infinitesimal generators on L1(Rd) of these processes:

AY = AX − P, where Pϕ(x) = σ ∗ ϕ(x)− σ(Rd)ϕ(x).

The fact that P is a bounded operator implies that the domains of these
generators coincide.

As mentioned above, very often the process Xt is taken to be the isotropic
α-stable process, 0 < α < 2 . To emphasize its role, we denote it by X̃t. This
process has the following characteristic function:

E0eiz· eXt = e−t|z|α , z ∈ Rd.

From now on, we will use the tilde sign to denote functions, measures, etc.,
corresponding to X̃t. For example, its Lévy measure is given by the formula

ν̃(B) =
∫

B

A (−α, d)|x|−d−αdx,

where

A (ρ, d) =
Γ((d− ρ)/2)

πd/22ρ|Γ(ρ/2)|
.

The potential kernel, which is well defined for α < d, is given by

Ũ(x) = A (α, d)|x|α−d, x ∈ Rd.

The next two lemmas provide the basic tools for examining the relationship
between the Green functions. In the first lemma we compare the moments of
exit times assuming only that σ = νX − νY is a finite signed measure, while
in the second lemma we require that σ is nonnegative. This assumption gives
a nice inequality involving the transitions densities. Although both lemmas
have already appeared in the literature under some additional assumptions
(see [16]), for the reader’s convenience we provide the proofs.

Lemma 2.4. Let D be a bounded open set and let σ = νX − νY be finite.
Then we have on D,

ExτX
D ≈ ExτY

D .

Proof. Suppose that σ = σ+−σ− is the Jordan decomposition of σ. Let Vt

be a compound Poisson process independent of Xt with Lévy measure σ− and
let V

′

t be a compound Poisson process independent of Yt with Lévy measure
σ+. We put Zt = Xt + Vt. Then, of course, we have {Zt}

D= {Yt + V
′

t },
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where D= means equality in distribution. Hence it is enough to show that
ExτZ

D ≈ ExτX
D .

Let us define a stopping time T by T = inf{t > 0 : Vt 6= 0}. The processes
Xt and Vt are mutually independent. Therefore Xt and T are independent as
well. Besides, Zt = Xt for 0 6 t < T . We set m = σ−(Rd).

First, we claim that Ex(τX
D ) 6 2Ex(τX

D ∧ t) for t large enough. Indeed, by
the Markov property and Lemma 2.1 we have

ExτX
D = Ex(τX

D ∧ t) + Ex(τX
D > t; τX

D − t)

= Ex(τX
D ∧ t) + Ex(τX

D > t;EXtτX
D )

6 Ex(τX
D ∧ t) + CP x(τX

D > t)

6 Ex(τX
D ∧ t) + C

ExτX
D

t
,

which proves our claim for t > 2C.
Because τZ

D ∧ T = τX
D ∧ T , by the independence T and Xt we get

ExτZ
D > Ex(τZ

D ∧ T ) = Ex(τX
D ∧ T ) =

∫ ∞

0

Ex(τX
D ∧ t)me−mtdt

>
∫ ∞

2C

Ex(τX
D ∧ t)me−mtdt >

1
2
e−2CmExτX

D .

Now, we prove the upper bound. Again, by the strong Markov property
and Lemma 2.1 we arrive at

ExτZ
D = Ex(τZ

D ∧ T ) + Ex(τZ
D > T ; τZ

D − T )

6 ExτX
D + Ex(τZ

D > T ;EZT τZ
D)

6 ExτX
D + CP x(τZ

D > T ),

but

P x(τZ
D > T ) 6 P x(τX

D > T ) = m

∫ ∞

0

P x(τX
D > t)e−mtdt 6 mExτX

D ,

which completes the proof. �

Lemma 2.5. Suppose that σ = νX − νY is a nonnegative finite measure
and D is an open set. Then for any x ∈ D and t > 0,

pY
D(t, x, ·) 6 emtpX

D(t, x, ·) a.s. .

If, in addition, we assume that pY (t, ·) and pX(t, ·) are continuous, then we
have for x, y ∈ D,

rY
D(t, x, y) 6 e2mtrX

D (t, x, y).

Proof. We put m = σ(Rd) < ∞, and define a compound Poisson process
Vt with the Lévy measure σ independent of Yt. Note that the process Yt + Vt
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is a copy of the process Xt. Hence we may assume that Xt = Yt + Vt. The
random variable

(2.1) T = inf{t > 0 : Vt 6= 0}

has exponential distribution with intensity m. Then Yt and T are independent
and for 0 6 t < T we have Xt = Yt.

Let A be a Borel subset of D. Since Yt = Xt, for t < T we infer that
{τY

D > t} ∩ {T > t} = {τX
D > t} ∩ {T > t}. By the independence of Yt and T

we have

P x(t < τY
D ;Yt ∈ A)P x(T > t) = P x(t < τY

D ;Yt ∈ A;T > t)

= P x(t < τX
D ;Xt ∈ A;T > t)

6 P x(t < τX
D ;Xt ∈ A).

So we obtain that (y) a.s.,

pY
D(t, x, y)P x(T > t) 6 pX

D(t, x, y).

But T has exponential distribution with intensity m, that is,

P x(T > t) = e−mt.

The second inequality is proved analogously, using the first with D = Rd

in the intermediate step. Moreover, the continuity of pY (t, ·) and pX(t, ·) is
required to justify the last step:

rY
D(t, x, y)e−mt = Ex[t > τY

D ; pY (t− τY
D , YτY

D
, y)]P x(T > t)

= Ex[τY
D 6 t < T ; pY (t− τY

D , YτY
D

, y)]

= Ex[τX
D 6 t < T ; pY (t− τX

D , XτX
D

, y)]

6 emtEx[τX
D 6 t; pX(t− τX

D , XτX
D

, y)]

= emtrX
D (t, x, y). �

The next lemma is a sort of comparison between transition densities in
the sense that a “nice” behaviour of these for one process implies that the
transition densities of the second are uniformly bounded away from zero. The
“nice” behaviour is present, for example, if the first process is the isotropic
stable process. We use this result in the sequel to ensure that the transition
densities of the killed process are continuous and to obtain Property A. We
define the exponential of a signed finite measure σ by

exp{σ}(A) = e−σ(Rd)
∞∑

n=0

σ∗n(A)
n!

, where A ⊂ Rd is a Borel set.

Lemma 2.6. Suppose that νX and νY are absolutely continuous and σ(x) =
νX(x)−νY (x) is an integrable function such that |pX(t, ·)∗σ(x)|+ |σ(x)| ≤ c1
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for |x| ≥ δ and t ≤ 1. If pX(t, x) 6 c2t
−ζ for t ≤ 1, where ζ > 0, and

pX(t, x) 6 c3(δ) for |x| ≥ δ, then there is a constant C such that

pY (t, x) ≤ C, |x| ≥ ([ζ] ∨ 1) δ and t > 0.

Proof. Suppose that
∫

Rd |σ(x)|dx = M < ∞. We put
∫

Rd σ(x)dx = m. We
can write

pY (t, x) = pX(t, ·) ∗ exp{−tσ}

= pX(t, x)etm +
∞∑

n=1

(−t)npX(t, ·) ∗ σ∗n(x)
n!

etm.

Observe that∣∣pX(t, ·) ∗ σ∗n(x)
∣∣ ≤ sup

y∈Rd

pX(t, y)Mn 6 c2
Mn

tζ
,

so for t ≤ 1 we have

(2.2)
∣∣∣ ∞∑
n≥ζ

(−t)npX(t, ·) ∗ σ∗n(x)
n!

etm
∣∣∣ ≤ C

∞∑
n≥ζ

tn−ζMn

n!
= CeM < ∞.

Now, we show that if |pX(t, ·) ∗ σ(x)| + |σ(x)| ≤ c(1) for |x| ≥ δ and t ≤ 1,
then

(2.3)
∣∣pX(t, ·) ∗ σ∗n(x)

∣∣ ≤ c(n), |x| ≥ nδ.

We assume (2.3) for n and we prove it for n + 1. Observe that∣∣∣pX(t, ·) ∗ σ∗(n+1)(x)
∣∣∣ 6

∫
Bc(x,nδ)

∣∣pX(t, ·) ∗ σ∗n(x− y)
∣∣ |σ(y)|dy

+
∫

B(x,nδ)

∣∣pX(t, ·) ∗ σ∗n(x− y)
∣∣ |σ(y)|dy

≤ c(n)M + c1M
n,

because if y ∈ B(x, nδ), then |y| ≥ |x| − |x − y| ≥ δ. Combining (2.2) and
(2.3) and using that pX(t, x) ≤ c(δ) for |x| ≥ δ, we complete the proof for
t 6 1.

Next, for t > 1 we have

sup
x∈Rd

pY (t, x) = sup
x∈Rd

pY (1, ·) ∗ pY (t− 1, x) 6 sup
x∈Rd

pY (1, x) = C,

which proves the conclusion for t > 1. �

The following lemma is an attempt to find a condition under which the
potential kernel of a process is comparable at the vicinity of the origin with
the stable potential kernel. It will play an important role in proving the upper
bound for the Green function GY

D by its stable counterpart (see Theorem 3.23).
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Lemma 2.7. Let d > α. Let −σ = νY − ν̃ be a nonnegative finite measure
such that Ũ ∗ (−σ)(x) ≤ CŨ(x) for |x| ≤ 1. Then for some constant C > 1,

C−1Ũ(x) ≤ UY (x) ≤ CŨ(x), |x| ≤ 1.

Proof. Suppose that −σ = νY − ν̃ ≥ 0. Let −σ(Rd) = m > 0. We can
write

pY (t, x) = p̃(t, ·) ∗ exp{−tσ} = p̃(t, x)e−tm +
∞∑

n=1

tnp̃(t, ·) ∗ (−σ)∗n(x)
n!

e−tm.

Observe that

p̃(t, ·) ∗ (−σ)∗n(x) ≤ sup
y∈Rd

p̃(t, y)mn = C
mn

td/α
,

so for n > d/α− 1 we have∫ ∞

0

tnp̃(t, ·) ∗ (−σ)∗n(x)
n!

e−tmdt ≤ C

∫ ∞

0

tn−d/αmn

n!
e−tmdt

≤ C
Γ(n + 1− d/α)

n!
md/α+1 ≤ C

md/α+1

nd/α
.

This implies that

(2.4)
∫ ∞

0

∞∑
n>d/α−1

tnp̃(t, ·) ∗ (−σ)∗n(x)
n!

e−tm ≤ C

∞∑
n>d/α−1

md/α+1

nd/α
< ∞.

Next, estimating tne−tm ≤ C(n, m) < ∞, we have∫ ∞

0

tnp̃(t, ·) ∗ (−σ)∗n(x)
n!

e−tmdt ≤ C(n, m) Ũ ∗ (−σ)∗n(x).

Let

Ũ(x) =
A

|x|d−α
.

If we assume that Ũ ∗ (−σ)(x) ≤ CŨ(x) for |x| ≤ 1, then we claim that

(2.5) Ũ ∗ (−σ)∗n(x) ≤ C(n)Ũ(x), |x| ≤ 1.

We check this for n = 2, since the general case will follow by induction.

Ũ ∗ σ∗2(x) =
∫

B(x,1)

Ũ ∗ (−σ)(x− y)(−σ)(dy) +
∫

Bc(x,1)

Ũ(x− y)σ∗2(dy)

≤ C

∫
B(x,1)

Ũ(x− y)(−σ)(dy) + A m2

≤ C2Ũ(x) + A m2 ≤ C(2)Ũ(x),

because lim|x|→0 Ũ(x) = ∞. By (2.4) and (2.5) we conclude that UY (x) ≤
CŨ(x), |x| ≤ 1.
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Getting the reverse inequality is almost immediate, since

p̃(t, x) ≤ etmpY (t, x)

by Lemma 2.5 together with the fact that p̃(t, ·) and pY (t, ·) are continuous.
The following estimate is well known:

(2.6) p̃(t, x) 6 C(d, α)
(

t−d/α ∧ t

|x|d+α

)
.

Hence for |x| 6 1,

Ũ(x) 6 C

∫ 1

0

p̃(t, x)dt,

for some constant C = C(d, α). Therefore

Ũ(x) 6
∫ 1

0

p̃(t, x)dt ≤ em

∫ 1

0

pY (t, x)dt ≤ emUY (x),

for |x| ≤ 1. �

Remark 2.8. If −σ(x) is a nonnegative density of a finite measure and

−σ(x) ≤ C|x|−d+%, |x| ≤ 1,

where % > 0, then the condition Ũ ∗ (−σ)(x) ≤ CŨ(x) for |x| ≤ 1 is satisfied.

The last lemma in this section is intended to treat the one-dimensional
situation while comparing two processes of which one is a symmetric α-stable
process with α ≥ 1 (the recurrent case). This case is different from the case
α < 1 (the transient case) and requires somewhat different arguments.

Lemma 2.9. Let d = 1, α ≥ 1 and 0 < t0 ≤ 1. Suppose that σ = ν̃ − νY

is a finite measure. Then there exists a constant C = C(m,M) such that∫ t0

0

∣∣p̃(t, x)− e−2mtpY (t, x)
∣∣ dt 6 C t

2−1/α
0 ,

where m = σ(R) and M = |σ|(R).

Proof. Let σ(R) = m and |σ|(R) = M > 0. We can write

pY (t, x) = p̃(t, ·) ∗ exp{−tσ} = p̃(t, x)etm +
∞∑

n=1

(−t)np̃(t, ·) ∗ σ∗n(x)
n!

etm.

Next,

|p̃(t, ·) ∗ σ∗n(x)| ≤ sup
y∈R

p̃(t, y)Mn = C
Mn

t1/α
.
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Using this estimate we obtain∣∣p̃(t, x)− e−2mtpY (t, x)
∣∣

=

∣∣∣∣∣p̃(t, x)(1− e−mt)−
∞∑

n=1

(−t)np̃(t, ·) ∗ σ∗n(x)
n!

e−mt

∣∣∣∣∣
≤ p̃(t, x)(1− e−mt) +

C

t1/α

∞∑
n=1

(tM)n

n!
e−mt.

From this it easily follows that there is a constant C = C(m,M) such that∣∣p̃(t, x)− e−2mtpY (t, x)
∣∣ ≤ Ct1−1/α, t ≤ 1.

Now the conclusion follows by integration. �

3. Comparability of the Green functions

In this section we prove our main results. We start with a general one-sided
estimate of Green functions.

Theorem 3.1. Let D be a bounded open set and σ = νX − νY be a
nonnegative finite measure. Suppose that for one of the processes Xt or Yt

its Green function satisfies Property A. Then there exists a constant C =
C(σ,D, α, d) such that for x ∈ D,

GY
D(x, y) 6 CGX

D(x, y) (y) a.s..

Proof. Denote σ(Rd) = m. From Lemmas 2.2 and 2.5 we get that (y)
almost surely

GY
D(x, y) =

∫ t0

0

pY
D(t, x, y)dt +

∫ ∞

t0

pY
D(t, x, y)dt

6 emt0

∫ t0

0

pX
D(t, x, y)dt + C1

∫ ∞

t0

t−2ExτY
D EyτY

D dt,

for t0 ≥ 1. Hence

GY
D(x, y) 6 cGX

D(x, y) +
C1

t0
ExτY

D EyτY
D .

If Yt satisfies

(3.1) ExτY
D EyτY

D ≤ C2G
Y
D(x, y),

then for t0 = max{1, 2C1C2} we get

GY
D(x, y) 6 2cGX

D(x, y).

Now, suppose that (3.1) holds for Xt. Then by Lemma 2.4 we have

GY
D(x, y) 6 cGX

D(x, y) + C3E
xτX

D EyτX
D 6 CGX

D(x, y),

which completes the proof. �
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Kulczycki in [15] showed that for the isotropic α-stable process Property A
is satisfied for any bounded open set D, so we obtain the following corollary.

Corollary 3.2. Let D be a bounded open set. If σ = ν̃ − νY is a non-
negative and finite measure, then there is a constant C such that

GY
D(x, y) 6 CG̃D(x, y).

If νY − ν̃ is a nonnegative and finite measure, then

G̃D(x, y) 6 CGY
D(x, y).

Suppose that pX
D(t, x, ·) and pX

D(t, ·, x) are continuous for any x ∈ D. If the
Lebesgue measure is absolutely continuous with respect to the Lévy measure
of Xt, then the following theorem is true for any bounded open set D. On
the other hand, if there exists a radius r > 0 such that the density νX

ac of the
absolutely continuous part of the Lévy measure satisfies

inf
x∈B(0,r)

νX
ac(x) > 0,

then the following theorem holds for any connected Lipschitz bounded set D
(see [10]).

Theorem 3.3. For every t > 0 there is a constant c = c(t, D, α) such that

cExτX
D EyτX

D 6 pX
D(t, x, y), x, y ∈ D.

If we integrate the above inequality with respect to dt, we get Property A
for Xt:

CExτX
D EyτX

D 6 GX
D(x, y).

Therefore from Theorem 3.1 we obtain the following corollary.

Corollary 3.4. Let pX
D(t, ·, ·) be continuous for every t > 0, and let

the finite measure σ = νX − νY be nonnegative. Suppose that the Lebesgue
measure is absolutely continuous with respect to νX . Then for any bounded
open set D there exists a constant C = C(σ,D, α, d) such that for x ∈ D,

GY
D(x, y) 6 CGX

D(x, y), (y) a.s..

Our next goal is to reverse the above estimate. We are not able to do
this under the above assumptions alone, but instead need some additional
assumptions. We proceed in several steps. In the first step, we take advantage
of the following lemma, which can be proved in the same way as Lemma 7 in
[16].

Lemma 3.5. Let σ = νX − νY be a nonnegative finite measure. Suppose
that GX

D(x, ·) and GY
D(x, ·) are continuous. Then

GX
D(x, y) 6 GY

D(x, y) + Ex[τX
D > T ;GX

D(XT , y)],
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where T is defined by (2.1).

This lemma can be rewritten in the following way, which is more useful for
further analysis.

Corollary 3.6. Suppose that σ = νX − νY is a nonnegative finite mea-
sure, and GX

D(x, ·) and GY
D(x, ·) are continuous. Then

GX
D(x, y) 6 GY

D(x, y) +
∫

D

∫
D−w

GY (x,w)GX(w + z, y)σ(dz)dw.

Proof. See the proof of Lemma 9 in [16]. �

From now on we assume that Xt = X̃t and that the measure σ = ν̃ −
νY is finite and absolutely continuous. We will use the following notational
convention: in the case when a measure µ is absolutely continuous we denote
its density by µ(x). Thus, σ(x) is the density of ν̃−νY . Moreover, we assume
a particular behavior of σ(x) near 0, namely, we suppose that there exist % > 0
and C such that

(3.2) |σ(x)| 6 C|x|%−d, |x| 6 1.

In addition, we assume that σ(x) is bounded on Bc(0, 1), which obviously is
equivalent to the boundedness of νY (x) on Bc(0, 1).

For example, the above conditions are satisfied by the Lévy measure of the
relativistic process (see [16]) and the Lévy measure of the α-stable process
truncated to B(0, 1) (νY (x) = 1B(0,1)(x)ν̃(x)).

With these assumptions we have that the characteristic function of Yt is
integrable, so pY (t, ·) is bounded and continuous. Moreover, by (2.6) we get
that for any δ > 0,

p̃(t, x) 6 C(δ), |x| > δ.

Therefore from Lemma 2.6 we obtain that the transition density of Yt also
satisfies

pY (t, x) 6 C(δ), |x| > δ.

This property enables us to prove, similarly as for the Brownian motion in [9],
that pY

D(t, x, ·) and pY (t, ·, y) are continuous, and that GY
D(x, ·) and GY

D(·, y)
are continuous, too. Hence, under the present assumptions, in the statements
of all results proved so far, the estimates hold for every y, and not just for
almost all y.

Furthermore, by (3.2) there exist a radius r and a constant c such that
ν̃(x) ≤ cνY (x) on B(0, r). So, infx∈B(0,r) νY (x) > 0. Therefore from Theorem
3.3 we have that for any bounded connected Lipschitz open set the process Yt

satisfies property A. That is, we have the following corollary.

Corollary 3.7. Let σ(x) = ν̃(x) − νY (x) be an integrable function sat-
isfying (3.2). Moreover, let σ be bounded on Bc(0, 1). Then Property A holds
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for Yt and any bounded connected Lipschitz open set. On the other hand, if
we assume that νY > ν̃, then Property A holds for Yt and any bounded open
set.

Let D ⊂ Rd be a bounded connected Lipschitz open set with Lipschitz
character (r0, λ) (see [12], [2] for the definitions). We need to introduce some
additional notations related to D. We assume that D is a nonempty bounded
open set. We put r0 = r0/ diam(D) and κ = 1/(2

√
1 + λ2). The set {x ∈

D : δD(x) > r0/2} is nonempty. We choose one of its elements and denote it
by x0 = x0(D). We also fix a point x1 such that |x0 − x1| = r0/4. For any
x, y ∈ D let r = r(x, y) = δD(x) ∨ δD(y) ∨ |x − y|. If r 6 r0/32, we let Ax,y

be an element of the set

B(x, y) = {A ∈ D : B(A, κr) ⊂ D ∩B(x, 3r) ∩B(y, 3r)},
and if r > r0/32, we set Ax,y = x1.

For bounded Lipschitz open sets Jakubowski [12] proved the following the-
orem, which gives estimates of the Green function for the isotropic α-stable
process in the case d ≥ 2. If d = 1, then an analogous theorem is true also for
α < 1 (see, e.g., [5]).

Theorem 3.8. Let D be a bounded open Lipschitz set and d > α. There
is a constant C1 = C1(d, λ, r0,diam(D), α) such that for every x, y ∈ D we
have

C−1
1

φ̃D(x)φ̃D(y)

φ̃2
D(Ax,y)

|x− y|α−d 6 G̃D(x, y) 6 C1
φ̃D(x)φ̃D(y)

φ̃2
D(Ax,y)

|x− y|α−d,

where φ̃D(x) = G̃D(x, x0) ∧A (d, α)rα−d
0 ≈ ExτD.

From the scaling property of the Green function for the isotropic α-stable
process we have the following remark.

Remark 3.9. The constant C1 depends on the constants r0 and diam(D)
only via their ratio r0.

Now, we recall estimates for the Green function of the isotropic α-stable
process if 1 = d 6 α. Their proof can be found, e.g., in [5].

Theorem 3.10. Let d = 1 and D be an open interval. Then we have on
D ×D,

G̃D(x, y) ≈


log

(
(δD(x)δD(y))1/2

|x− y|
+ 1

)
, α = 1,

min
{

(δD(x)δD(y))(α−1)/2,
(δD(x)δD(y))α/2

|x− y|

}
, 1 < α.

Theorem 3.8 and Theorem 3.10 imply the following corollary.
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Corollary 3.11. Let D be a bounded Lipschitz open set if d ≥ 2 or a
bounded open interval if d = 1. For |x − y| > θ > 0 there exists a constant
C(θ) such that

G̃D(x, y) 6 C(θ)Exτ̃DEy τ̃D.

Proof. We prove only the case d ≥ 2, since the other case follows immedi-
ately from Theorem 3.10 and the fact that ExτD ≈ (δD(x))α/2.

By Theorem 3.8

G̃D(x, y) 6 C1
φ̃D(x)φ̃D(y)

φ̃2
D(Ax,y)

|x− y|α−d.

Next, note that, by the definition of the point A = Ax,y, we have

δD(A) ≥ κ|x− y| ∧ r0/4 ≥ κθ ∧ r0/4 = rθ,

which shows that

φ̃D(A) ≈ EAτ̃D ≥ EAτ̃B(A,rθ) = Crα
θ .

This implies the conclusion. �

A consequence of Lemmas 13 and 15 from [12] is the following lemma.

Lemma 3.12. There are constants C = C(d, λ, α, r0) and γ = γ(d, λ, α) <
α < d such that for every x, y, z, w ∈ D we have

φ̃2
D(Ax,y)

φ̃D(Ax,w)φ̃D(Az,y)
6 C max

{
1,
|x− y|γ

|x− w|γ
,
|x− y|γ

|z − y|γ
,

|x− y|2γ

|x− w|γ |z − y|γ

}
.

Proof. First, we assume that |x−y| 6 |x−w|. Then it can be proved using
similar methods as in Lemma 13 of [12] that

(3.3) φ̃D(Ax,y) 6 C(d, λ, α, r0)φ̃D(Ax,w).

Now, let |x−w| 6 |x− y|. Then from the proof of Lemma 15 in [12] we infer
that

(3.4) φ̃D(Ax,y) 6 C(d, λ, α, r0)
|x− y|γ

|x− w|γ
φ̃D(Ax,w),

for some 0 < γ < α. Combining (3.3) and (3.4) completes the proof. �

Lemma 3.13. Let x 6= y ∈ D, −d < % and 0 < a, b. We set

Q(x, y) =
∫

D

∫
D

|y − z|a−d|z − w|%|w − x|b−ddzdw.



1426 TOMASZ GRZYWNY AND MICHA L RYZNAR

Then there exists a constant C = C(d, a, b, %) such that

Q(x, y) 6 C


|x− y|a+%+b, a + % + b < 0,

1 + log
(

diam(D)
|x−y|

)
, a + % + b = 0,

(diam(D))a
(
1 + log

(
diam(D)
|x−y|

))
, a = b = −%,

(diam(D))a+%+b, otherwise.

Proof. By changing variables to u = z−y
|x−y| and v = w−x

|x−y| we get

Q(x, y) = |x− y|a+b+%

∫
D−y
|x−y|

∫
D−x
|x−y|

|u|a−d|v|b−d|u− v − q|%dudv,

where q = x−y
|x−y| .

For % + a < 0 we have∫
Rd

|u|a−d|u− v − q|%du = Cd,a,%|v + q|a+%,

and for % + a + b < 0 we have∫
Rd

|v|b−d|v + q|a+%dv = Cd,a,b,%,

which proves the first case. If % + a + b = 0, then we have∫
D−x
|x−y|

|v|b−d|v + q|a+%dv 6
∫

B(0,2)

|v|b−d|v + q|a+%dv+

+ 2−%−a

∫
B(0,diam(D)/|x−y|)\B(0,2)

|v|−ddv

= C(d, a, b, %)+

+ C(d, a, %)
(

log
(

diam(D)
|x− y|

)
− log(2))

)
∨ 0

6 C(d, a, b, %)
{

1 + log
(

diam(D)
|x− y|

)}
.

If 0 < % + a + b < b, then∫
D−x
|x−y|

|v|b−d|v + q|a+%dv 6
∫

B(0,2)

|v|b−d|v + q|a+%dv+

+ 2−%−a

∫
B(0,

diam(D)
|x−y| )\B(0,2)

|v|%+a+b−ddv

6 C(d, a, b, %)

{
1 +

(
diam(D)
|x− y|

)%+a+b
}

.

The remaining cases can be proved in the same way. �
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Lemma 3.14. Let d > α. Suppose that there exist positive constants % and
c1 = c1(diam(D)) such that |σ(x)| 6 c1|x|%−d for |x| ≤ diam(D). Then there
exists a constant C = C(d, λ, r0, α, %) such that for all x, y ∈ D,∫

D

∫
D

G̃D(y, z)|σ(z−w)|G̃D(w, x)dwdz 6 c1C (diam(D))ζ1 |x− y|ζ2G̃D(x, y),

for some ζ1 > 0 and ζ2 > 0.

Proof. From Theorem 3.8 and Lemma 13 in [12] we obtain

G̃D(x,w)G̃D(z, y)

G̃D(x, y)
≈

(
|x− y|

|x− w||y − z|

)d−α
φ̃D(w)φ̃D(z)φ̃2

D(Ax,y)

φ̃2
D(Ax,w)φ̃2

D(Az,y)

6

(
|x− y|

|x− w||y − z|

)d−α
φ̃2

D(Ax,y)

φ̃D(Ax,w)φ̃D(Az,y)
.

Because |σ(x)| 6 c1|x|%−d, for |x| ≤ diam(D), we get |σ(w−z)| ≤ c1|w−z|%−d

on D×D. So, by Lemma 3.12 it is enough to prove that for some ζ1 > 0 and
ζ2 > 0,∫

D

∫
D

|x− w|α−ρ1−d|w − z|%−d|z − y|α−ρ2−d

|x− y|α−d−ρ1−ρ2
dwdz 6 C(diam(D))ζ1 |x− y|ζ2 ,

for some C = C(d, ρ1, ρ2, %), where ρ1, ρ2 ∈ {0, γ}. Recall that γ < α. Hence
the above inequality is a consequence of Lemma 3.13. �

By inspecting the estimates from Theorem 3.10 one obtains the following
remark.

Remark 3.15. In the case d = 1 6 α the above lemma does not hold.
This is why the proof given below of Theorem 1.1 in the one-dimensional case
for α ≥ 1 requires arguments different from those in the general case.

3.1. Proof of Theorem 1.1. Throughout this subsection we assume that
σ = ν̃− νY is a finite nonnegative absolutely continuous measure and that its
density satisfies

σ(x) 6 C|x|%−d, |x| ≤ 1,

for some positive %. Then there is a constant c = c(C, d, α, diam(D)) such that
σ(x) 6 c|x|%−d for |x| ≤ diam(D). Let D be a bounded connected Lipschitz
open set. Then Property A holds for Yt by Theorem 3.3.

By Corollaries 3.2 and 3.6 we have the inequality

(3.5) C−1
1 GY

D(x, y) 6 G̃D(x, y) 6 GY
D(x, y) + C1R̃D(x, y),

where R̃D(x, y) =
∫

D

∫
D

G̃D(x,w)σ(w − z)G̃D(z, y)dwdz.
By Corollary 3.11 we have, for |x− y| > θ > 0,

G̃D(x, y) 6 C(θ)Exτ̃DEy τ̃D.
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Hence, by Property A and Lemma 2.4 we get

G̃D(x, y) 6 C(θ)GY
D(x, y), |x− y| > θ > 0.

It remains to show that R̃D(x, y) 6 1
2C1

G̃D(x, y) if |x − y| is small enough.
But for d > α this is a consequence of Lemma 3.14. This completes the proof
for d > α.

Next, we deal with the case 1 = d 6 α. We need to show that G̃D(x, y) 6
CGY

D(x, y) if |x− y| is small enough. Recall that in this case D is a bounded
open interval.

Lemma 3.16. Let d = 1. Then there is a constant C = C(α, D,m) such
that for any x, y ∈ D,

R̃D(x, y) 6 C
(δD(x)δD(y))α/2

|x− y|1−%∧1
.

Proof. From Theorem 3.10 it is easy to see that

(3.6) G̃D(x, y) 6 C
(δD(x)δD(y))α/2

|x− y|
.

Hence, for % < 1 we can prove in the same way as in Lemma 8 in [16] that

(3.7)
∫

D

G̃D(x,w)
dw

|w − y|1−ρ
6 C

(δD(x))α/2

|x− y|1−ρ
.

From the above,∫
D

G̃D(x,w)σ(z − w)dw 6 C

∫
D

G̃D(x,w)
dw

|w − z|1−%
6 C

δD(x)α/2

|x− z|1−%
.

If % ≥ 1, then σ is bounded and since Exτ̃D ≈ (δD(x))α/2, we have∫
D

G̃D(x,w)σ(z − w)dw ≤ CExτ̃D ≤ cδD(x)α/2.

Now, we use the symmetry of the Green function and the inequality (3.7)
again to get

R̃D(x, y) 6 C
(δD(x)δD(y))α/2

|x− y|1−%∧1
. �

We are now able to prove the desired lower bound of the Green function
for 1 = d ≤ α.

Proposition 3.17. Let D be a bounded open interval. Let α ≥ 1. Then
there exists a constant C = C(m, d, α,D) such that for any x, y ∈ D,

G̃D(x, y) 6 CGY
D(x, y).
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Proof. Note that we only need to consider the case |x − y| ≤ θ for some
sufficiently small θ > 0. First, we assume that δD(x)δD(y) 6 |x − y|2. By
Theorem 3.10 this implies that

(δD(x)δD(y))α/2

|x− y|
6 CG̃D(x, y).

Next, we apply Lemma 3.16 to obtain

R̃D(x, y) 6 C|x− y|%∧1G̃D(x, y),

for some constant C. Thus, from (3.5) it follows that

(3.8) G̃D(x, y) 6 GY
D(x, y) + C̃|x− y|%∧1G̃D(x, y).

By the estimates of p̃D(t, x, y) (Remark 2.3) we have

(3.9)
∫ ∞

t0

p̃D(t, x, y)dt 6 Ct
−1−1/α
0 (δD(x)δD(y))α/2.

Next, from Lemma 2.5 with X = X̃ we have

(3.10) p̃D(t, x, y) 6 pY
D(t, x, y) + p̃(t, x, y)− e−2mtpY (t, x, y),

so integrating over [0, t0], where t0 = (δD(x)δD(y))α/6 ≤ 1, and using Lemma
2.9 together with (3.9) we obtain

G̃D(x, y) =
∫ t0

0

p̃D(t, x, y)dt +
∫ ∞

t0

p̃D(t, x, y)dt(3.11)

6 GY
D(x, y) +

∫ t0

0

(p̃(t, x, y)− e−2mtpY (t, x, y))dt+

+ Ct
−1−1/α
0 (δD(x)δD(y))α/2

6 GY
D(x, y) + ct

2−1/α
0 + Ct

−1−1/α
0 (δD(x)δD(y))α/2

= GY
D(x, y) + c(δD(x)δD(y))

2α−1
6 .

Now assume that |x − y|2 6 δD(x)δD(y) and take into account that in this
case G̃D(x, y) ≥ C(δD(x)δD(y))(α−1)/2, so that we can rewrite (3.11) as

(3.12) G̃D(x, y) 6 GY
D(x, y) + c(δD(x)δD(y))ρG̃D(x, y),

where ρ = 2−α
6 > 0. Observe that (3.12) in the case |x−y|2 6 δD(x)δD(y) ≤ θ,

and (3.8) in the case δD(x)δD(y) ≤ |x−y|2 ≤ θ for θ sufficiently small, provide
the conclusion in these cases. Of the remaining cases δD(x)δD(y) ≥ θ or
|x−y|2 ≥ θ only the first needs to be considered and can be handled in a very
simple way. Indeed, in this situation,

(δD(x)δD(y))
2α−1

6 ≤ (δD(x)δD(y))
α
2 θ−

α+1
6 ≤ Cθ−

α+1
6 GY

D(x, y),

where the last step follows from the fact that Yt has Property A and Lemma
2.4. Hence the conclusion holds by (3.11). This completes the proof. �
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3.2. Case νY > ν̃. Throughout this subsection we assume that νY > ν̃,
and, in addition, that D is a bounded Lipschitz open set. Note that in this
case, by a result of Sztonyk [18], the process Y does not hit the boundary on
exiting D. In verifying the conditions needed for the result to hold (see [18]),
we apply Corollary 3.2 and Lemma 2.4 to reduce the problem to the stable
case, which is known to be true. Hence, if u is regular harmonic on D with
respect to the process Y , then

(3.13) u(x) = Exu(YτD
) =

∫
Dc

u(z)PY
D (x, z)dz, x ∈ D.

The aim of this section is to prove that the Green functions are comparable,
first for sets D with small diameter, and then for arbitrary bounded Lips-
chitz open sets. The result for sets D with small diameter allows us to prove
a version of the Boundary Harnack Principle (BHP) under the following as-
sumptions:

(G1) νY (x) > ν̃(x) for x ∈ Rd \ {0}.
(G2) For some R > 0 there are constants c1 = c1(R) and % such that

|σ(x)| = |ν̃(x)− νY (x)| 6 c1|x|%−d for |x| 6 R.

(G3) There is a constant c2 = c2(R) such that

νY (x) 6 c2ν
Y (y)

for any x, y ∈ Rd such that |x− y| 6 R/2 and |x|, |y| > R/2.

Then, after establishing BHP, we show that we can remove the assumption
about the diameter of the set D.

We start by iterating the inequality from Corollary 3.6 to obtain, for
GY

D(x, ·) continuous,

GY
D(x, y) 6

n∑
k=0

[(Hσ
D)kG̃D(·, y)](x) + [(Hσ

D)n+1GY
D(·, y)](x),(3.14)

where Hσ
D : L1(D) → L1(D) is given by

[Hσ
Df(·)](x) =

∫
D

∫
D

G̃D(x,w)|σ(w − z)|f(z)dwdz.

We now prove the comparability of Green functions for sets of small diam-
eter. Note that the constant C in the conclusion of the following proposition
depends on D through r0 and λ. This feature is crucial for our future appli-
cations.

Proposition 3.18. Let d > α. Let D be a Lipschitz open set and GY
D(x, ·)

be continuous and let νY satisfy (G1) and (G2). Then there exist constants
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R0 = R0(d, α, λ, r0, σ) 6 R and C = C(R0) satisfying the following property:
if diam(D) 6 R0, then

C−1G̃D(x, y) 6 GY
D(x, y) 6 CG̃D(x, y), x, y ∈ D.

Proof. If diam(D) 6 R, we get by Lemma 3.14 that

[Hσ
DG̃D(·, y)](x) 6 C1 diam(D)ζG̃D(x, y),

for some constant C1 = C1(d, α, λ, r0, σ) and ζ > 0. Iterating the above
inequality, we obtain that [(Hσ

D)kG̃D(·, y)](x) is bounded by

(C1 diam(D)ζ)kG̃D(x, y).

Setting

R0 =
1
2
C
−1/ζ
1 ∧R,

we obtain for diam(D) 6 R0 that

(3.15) [Hσ
DG̃D(·, y)](x) 6 θG̃D(x, y),

for some θ 6 1/2.
Next, we show that for any x 6= y ∈ D

lim
n→∞

[(Hσ
D)nGY

D(·, y)](x) = 0.

Indeed, let us observe that for a positive f ∈ L1(D) we have from (3.15) that

[(Hσ
D)2f ](x) =

∫
D

∫
D

[(Hσ
D)G̃D(·, w)](x)|σ(w − z)|f(z)dzdw

6 θ

∫
D

∫
D

G̃D(x,w)|σ(w − z)|f(z)dzdw

= θ[Hσ
Df ](x).

Iterating, we obtain

[(Hσ
D)n+1GY

D(·, y)](x) 6 θn[(Hσ
D)GY

D(·, y)](x).

So it is enough to prove that [(Hσ
D)GY

D(·, y)](x) is finite. But from Lemma 2.7
we obtain that there is a constant C such that GY (x, y) 6 CŨ(x− y). Hence
by Lemma 3.13 we get

[(Hσ
D)GY

D(·, y)](x) 6 C

∫
D

∫
D

Ũ(x− w)|σ(w − z)|Ũ(z − y)dwdz < ∞.

Finally, we infer from (3.14) that if diam(D) 6 R0, then

GY
D(x, y) 6

θ

1− θ
G̃D(x, y),

which together with Corollary 3.2 completes the proof. �

Remark 3.19. The constant C(R0) in the above theorem converges to 1
if diam(D) converges to 0.
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The next result shows that the Poisson kernels for D are comparable un-
der the assumptions of the preceding result. This will provide the necessary
tools to establish BHP, which is employed to obtain comparability of Green
functions for sets of arbitrary finite diameter.

Proposition 3.20. Let d > α and D be a bounded Lipschitz open set.
Assume that νY satisfies assumptions (G1) and (G2) and is bounded on
Bc(0, R). There exist constants R0 = R0(d, α, λ, r0, σ) 6 R/2 and C = C(R0)
which satisfy, for diam(D) 6 R0,

C−1P̃D(x, z) 6 PY
D (x, z) 6 CP̃D(x, z),

for any x ∈ D and z ∈ D
c

: δD(z) 6 R0. Moreover, if we suppose that νY

satisfies assumption (G3) with R = 2 R0, then there exists a constant C(R0)
such that

C−1νY (z − x)Exτ̃D 6 PY
D (x, z) 6 CνY (z − x)Exτ̃D,

for x ∈ D and z ∈ D
c

: δD(z) > R0.

Proof. By Proposition 3.18 there are constants R0 6 R/2 and C1(R0) such
that

C−1
1 G̃D(x, y) 6 GY

D(x, y) 6 C1G̃D(x, y),

if diam(D) 6 R0. Next, by Theorem 1 in [11] we have

PY
D (x, z) =

∫
D

νY (z − y)GY
D(x, y)dy.

But

|σ(w)| 6 c1|w|−d+% = c1A (−α, d)−1ν̃(w)|w|%+α.

So for z ∈ D
c

: δD(z) 6 R0 we have

|σ(z − y)| 6 c1A (−α, d)−1(2R0)%+αν̃(z − y).

Hence, we put

R0 = R0 ∧
1
2

(
A (−α, d)

2c1

)1/(α+%)

and then

|σ(z − y)| 6 1
2
ν̃(x).
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By the above inequality we obtain

PY
D (x, z) 6 C1

∫
D

νY (z − y)G̃D(x, y)dy

= C1

(∫
D

ν̃(z − y)G̃D(x, y)dy +
∫

D

σ(z − y)G̃D(x, y)dy

)
6 C1P̃D(x, y) + C1

∫
D

|σ(z − y)|G̃D(x, y)dy

6
3
2
C1P̃D(x, y),

and

PY
D (x, z) > C−1

1

∫
D

νY (z − y)G̃D(x, y)dy

> C−1
1 P̃D(x, y)− C−1

1

∫
D

|σ(z − y)|G̃D(x, y)dy

>
C−1

1

2
P̃D(x, y),

which completes the proof of the first claim of the theorem.
Now, suppose that there is a constant c = c(R0) such that νY (x) 6 cνY (y)

for all |x|, |y| > R0 such that |x− y| ≤ R0. Assume that z ∈ D
c

: δD(z) > R0.
For x, y ∈ D we have

|x− z| > δD(z) > R0 and, of course, |x− y| 6 diam(D) 6 R0.

Hence, we get

PY
D (x, z) 6 cC1ν

Y (x− z)
∫

D

G̃D(x, y)dy

= cC1ν
Y (x− z)Exτ̃D.

Similarly, we obtain the lower bound

PY
D (x, z) > (cC1)−1νY (x− z)Exτ̃D. �

Theorem 3.21 (Boundary Harnack Principle (BHP)). Let d > α and D
be a bounded Lipschitz open set. Suppose that νY satisfies (G1)–(G3). Let
Z ∈ ∂D. Then there exists a constant ρ0 = ρ0(D) such that for any ρ ∈ (0, ρ0]
and any two functions u and v which are nonnegative in Rd and positive,
regular harmonic in D ∩ B(Z, ρ) the following holds: If u and v vanish on
Dc ∩B(Z, ρ), then for x, y ∈ D ∩B(Z, ρβ)

u(x)
v(x)

6 C
u(y)
v(y)

,

for some constant C = C(D,α, σ) and β(d, λ) ∈ (0, 1).
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Proof. There is a constant R1 = R1(d, λ) > 1 (see, e.g., [2]) such that for
all Z ∈ ∂D and r ∈ (0, r0), there exists a bounded Lipschitz open set Ω(r)
with Lipschitz constant λ R1 and localization radius diam(D)r0/R1, such that

D ∩B(Z, r/R1) ⊂ Ω(r) ⊂ D ∩B(Z, r).

The proof consists of showing that there are constants C = C(D,α, σ) and
ρ0 such that for ρ < ρ0 and z ∈ Ω(ρ)c ∩Bc(Z, ρ/R1),

(3.16) PY
Ω(ρ)(x, z) 6 C

Exτ̃Ω(ρ)

Ey τ̃Ω(ρ)
PY

Ω(ρ)(y, z),

where x, y ∈ D ∩ B(Z, ρ/(R12)). It is worth mentioning that the constant
C is universal for all sets Ω(ρ), ρ ≤ ρ0. This will give the conclusion with
β = 1/(2 R1), since by (3.13) we have

u(x) = Exu(YτΩ(ρ)) =
∫

Ω(ρ)c

u(z)PY
Ω(ρ)(x, z)dz

=
∫

Ω(ρ)c\B(Z,ρ/R1)

u(z)PY
Ω(ρ)(x, z)dz

6 C
Exτ̃Ω(ρ)

Ey τ̃Ω(ρ)

∫
Ω(ρ)c\B(Z,ρ/R1)

u(z)PY
Ω(ρ)(y, z)dz

= C
Exτ̃Ω(ρ)

Ey τ̃Ω(ρ)
u(y),

which implies
u(x)
u(y)

v(y)
v(x)

6 C
Exτ̃Ω(ρ)

Ey τ̃Ω(ρ)
C

Ey τ̃Ω(ρ)

Exτ̃Ω(ρ)
= C2.

Now we prove (3.16). By Proposition 3.20 there exist constants ρ0 < r0(D)
and C1 = C1(ρ0) such that for any ρ 6 ρ0

C−1
1 P̃Ω(ρ)(x, z) 6 PY

Ω(ρ)(x, z) 6 C1P̃Ω(ρ)(x, z),

if δΩ(ρ)(z) 6 ρ0. Note that C1 is universal for all Ω(ρ).
By Theorem 2 in [12] there is some C2 = C2(α, d, λ, r0) such that for any

x, y ∈ D and z ∈ D
c
,

P̃Ω(ρ)(x, z) 6 C2

Exτ̃Ω(ρ)

Ey τ̃Ω(ρ)

φ̃2
Ω(ρ)(Ay,z′)

φ̃2
Ω(ρ)(Ax,z′)

|y − z|d−α

|x− z|d−α
P̃Ω(ρ)(y, z),

where z′ ∈ {A ∈ D : B(A, κδΩ(ρ)(z)) ⊂ D ∩ B(S, δΩ(ρ)(z))} if δΩ(ρ)(z) 6
r0/32, and z′ = x1 if δΩ(ρ)(z) > r0/32 for S such that |z − S| = δΩ(ρ)(z). If
x, y ∈ D ∩B(Z, ρ/(R12)) and z ∈ Ω(ρ)c ∩Bc(Z, ρ/R1), then

|y − z|
|x− z|

6
|x− z|+ |x− y|

|x− z|
6

(
1 +

ρ/R1

ρ/(2R1)

)
= 3.
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Now, suppose that δΩ(ρ)(z) 6 ρ/32. Then we obtain

|x−z′| > |x−z|−|z−z′| > |x−z|−|z−S|−|z′−S| > ρ

2
−2δΩ(ρ)(z) >

7
16

ρ >
r0

32
,

while if δΩ(ρ)(z) > ρ/32, then z′ = x1, so δΩ(ρ)(z′) > r0/4. Therefore, Ax,z′ =
x1 = Ay,z′ and, of course, φ̃Ω(ρ)(Ay,z′)/φ̃Ω(ρ)(Ax,z′) = 1. Hence for x, y ∈
D ∩ B(Z, ρ/(R12)) and z ∈ Ω(ρ)c ∩ Bc(Z, ρ/R1) such that δΩ(ρ)(z) 6 ρ0 we
get

PY
Ω(ρ)(x, z) 6 C2

1C23d−α Exτ̃Ω(ρ)

Ey τ̃Ω(ρ)
PY

Ω(ρ)(y, z).

Next, observe that (G1)–(G3) imply that for r ≤ R there is a constant
c = c(r) such that νY (x) 6 cνY (y) for all x and y such that |x − y| 6 r and
|x|, |y| > r. Hence for δΩ(ρ)(z) > ρ0 we have

PY
Ω(ρ)(x, z) 6 C3(ρ0)νY (z − x)Exτ̃Ω(ρ) 6 C3(ρ0)c(ρ0)νY (z − y)Exτ̃Ω(ρ)

6 cC2
3

Exτ̃Ω(ρ)

Ey τ̃Ω(ρ)
PY

Ω(ρ)(y, z).

This completes the proof of (3.16) and hence that of the theorem. �

For regular harmonic functions which vanish on Dc the following remark
holds.

Remark 3.22. Suppose νY satisfies (G1), (G2) and is bounded on Bc(0, R).
Let Z ∈ ∂D. Then there exists a constant ρ0 = ρ0(D) such that for any
ρ ∈ (0, ρ0] and any two functions u and v which are nonnegative in Rd and
positive, regular harmonic in D∩B(Z, ρ) the following holds: If u and v vanish
on Dc, then for x, y ∈ D ∩B(Z, ρβ)

u(x)
v(x)

6 C
u(y)
v(y)

,

for some constant C = C(D,α, σ) and β(d, λ) ∈ (0, 1).

Theorem 3.23. Let d > α and D be a bounded Lipschitz open set. Assume
that νY satisfies assumptions (G1), (G2) and is bounded on Bc(0, R). Then
for x, y ∈ D we have

C−1G̃D(x, y) 6 GY
D(x, y) 6 CG̃D(x, y),

for some constant C = C(d, λ, r0, σ).

Proof. Observe that for |x− y| 6 N(δD(x) ∧ δD(y)),

GY
D(x, y) > GY

B(x,δD(x)∧δD(y)∧R0(D))(x, y) > CG̃B(x,δD(x)∧δD(y)∧R0)(x, y),



1436 TOMASZ GRZYWNY AND MICHA L RYZNAR

where R0 is such that GY
B(0,R0)(x, y) ≈ G̃B(0,R0)(x, y) (such an R0 exists by

Proposition 3.18). Next, it is easy to see from Theorem 3.4 in [14] that

(3.17) c(N)|x− y|α−d 6 G̃B(x,δD(x)∧δD(y)∧R0)(x, y) 6 CGY
D(x, y).

From Lemma 2.7 we have

(3.18) GY
D(x, y) 6 UY (x− y) 6 CŨ(x− y) = C|x− y|α−d.

We define similarly as in Theorem 3.8 the truncated Green function for Yt

by
φY

D(x) = GY
D(x1, y) ∧A (d, α)rd+α

0 .

Using Remark 3.22 we can repeat the arguments from Lemma 17 in [12] to
show that

φY
D(x) ≈ ExτY

D .

Next, by Lemma 2.4 we get

ExτY
D ≈ Exτ̃D.

Therefore

(3.19) φY
D(x) ≈ φ̃D(x).

From the above and (3.18) we infer that there is a constant r such that
φY

D(x) = GY
D(x, x0) for x ∈ D ∩Bc(x0, r). Hence by Harnack’s inequality for

α-stable harmonic functions we obtain, for all x, y ∈ D ∩ Bc(x0, r) such that
|x− y| 6 N(δD(x) ∧ δD(y)),

(3.20) GY
D(x, x0) = φY

D(x) ≈ φ̃D(x) 6 C(N) φ̃D(y) ≈ φY
D(y) = GY

D(y, x0).

Using BHP for Yt (see Remark 3.22), and taking into account (3.17), (3.18)
and (3.20) we can prove a version of Theorem 3.8 with GY

D instead of G̃D (see
the proof of Theorem 1 in [12]), namely,

C−1
1

φY
D(x)φY

D(y)
(φY

D(Ax,y))2
|x− y|α−d 6 GY

D(x, y) 6 C1
φY

D(x)φY
D(y)

(φY
D(Ax,y))2

|x− y|α−d.

Applying (3.19) and then comparing the above estimate with the bound from
Theorem 3.8 we get the conclusion. �

3.3. Proof of Theorem 1.2. Let d > α and D be a bounded connected
Lipschitz open set. Suppose that |σ(x)| 6 c3|x|−d+% for |x| 6 1, where % > 0
and νY (x) is bounded on Bc(0, 1). Then Property A holds for Yt by Corollary
3.7.

Let {Zt} be a Lévy process with the density of its Lévy measure given
by ν(x) ∨ ν̃(x). Then, of course, the process Zt and the set D satisfy the
assumptions of Theorem 3.23. Hence there is a constant C1 such that

(3.21) C−1
1 G̃D(x, y) 6 GZ

D(x, y) 6 C1G̃D(x, y).
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By Corollaries 3.2 and 3.6 we have

(3.22) C−1
2 GY

D(x, y) 6 GZ
D(x, y) 6 GY

D(x, y) + C2R
Z
D(x, y),

where RZ
D(x, y) =

∫
D

∫
D

GZ
D(x,w)|σ(w − z)|GZ

D(z, y)dwdz. From (3.21) and
Lemma 3.14 it follows that there exists a constant θ such that for |x− y| < θ,

(3.23) RZ
D(x, y) 6 C2

1 R̃D(x, y) 6
1

2C1
G̃D(x, y) 6

1
2
GZ

D(x, y).

From inequality (3.21) and Corollary 3.11 we obtain the following inequal-
ity:

GZ
D(x, y) 6 C1G̃D(x, y) 6 C(θ)Exτ̃DEy τ̃D, |x− y| > θ.

Hence, by Lemma 2.4 and Property A for Yt we get for |x− y| > θ,

(3.24) GZ
D(x, y) 6 CGY

D(x, y).

Combining (3.22), (3.23) and (3.24) we arrive at

(3.25) C−1
3 GY

D(x, y) 6 GZ
D(x, y) 6 C3G

Y
D(x, y).

By (3.21) and (3.25) we have

C−1G̃D(x, y) 6 GY
D(x, y) 6 CG̃D(x, y),

which completes the proof.
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