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ESTIMATES FOR THE SZEGÖ KERNEL ON A MODEL
NON-PSEUDOCONVEX DOMAIN

CHRISTINE CARRACINO

Abstract. The Szegö kernel S(z, ζ) on the boundary of strictly pseu-
doconvex domains has been studied extensively. We can consider model
domains Ω = {(z1, z2) ∈ C2 | − Im z2 > b(Re z1)}. If b is convex, one
has |S(z, ζ)| ≤ c|B(z, δ)|−1, where B(z, δ) is the nonisotropic ball with
center z and radius δ, and δ is the nonisotropic distance from z to ζ.
The only singularities are on the diagonal z = ζ. In this paper, we
obtain estimates for |S| when the function b is a certain non-convex
function. We show that near certain points, there are singularities off
the diagonal.

Introduction

0.1. Background. Associated to any domain Ω in Cn, there exist cer-
tain natural operators, the Bergman and Szegö projections. The Bergman
projection, the easier one to define, is the projection operator from L2(Ω) to
H2(Ω). The Szegö projection is the analog of the Bergman projection on the
boundary ∂Ω. We consider domains of the form Ω = {x ∈ Cn

∣∣ ρ(x) < 0},
where the defining function ρ ∈ C∞(Cn) satisfies ∇ρ 6= 0 when ρ = 0. An
antiholomorphic vector field L =

∑n
j=1 aj

∂
∂z̄j

is tangential if Lρ = 0. Then

H2(∂Ω) = {f ∈ L2(∂Ω) | Lf = 0 as a distribution,

for all tangential antiholomorphic vector fields L}.

Note that by requiring the vector fields to be tangential, we force a linear
relation on the coefficients aj , and so locally we can find a basis consisting of
n− 1 vector fields, and we could simply require that Lf = 0 for these vector
fields. The Szegö projection is then the orthogonal projection from L2(∂Ω)
to the closed subspace H2(∂Ω).
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These operators can be written formally as integral operators:

Bf(z) =
∫

Ω

K(z, ζ)f(ζ)dV (ζ) and Sf(ζ) =
∫

∂Ω

S(z, ζ)f(ζ)dσ(ζ).

K(z, ζ) is the Bergman kernel and S(z, ζ) is the Szegö kernel. These kernels
have been studied extensively for a variety of domains. If Ω is the unit ball,
we have explicit formulas (see [5]). For more general domains, such explicit
formulas do not often exist.

The Bergman and Szegö kernels on pseudoconvex domains have been stud-
ied extensively. J.J. Kohn introduced “Kohn’s formula” for the Bergman
kernel, B = I − ∂̄∗N∂̄, where N is the ∂̄-Neumann operator. This formula
gives a connection between the ∂̄-Neumann problem and the Bergman kernel
B. This formula appears in [3] and [4]. N. Kerzman showed in [2] that on
strictly pseudoconvex domains Ω with smooth boundary, the Bergman kernel
extends smoothly to Ω̄ × Ω̄ − {the boundary diagonal}. His work used the
then-known results on the solution of the ∂̄-Neumann problem. Using his
techniques, the same result follows for certain classes of weakly pseudoconvex
domains. Estimates for the Bergman and Szegö kernels in pseudoconvex do-
mains of finite type in C2 were obtained by Nagel, Rosay, Stein, and Wainger
in [12] and [13], and by J. McNeal in [6]. McNeal obtained estimates for the
size of the Bergman and Szegö kernels in convex domains of finite type in
Cn in [8] and [7]. McNeal and Stein obtained regularity theorems for the
Bergman and Szegö projections on convex domains in [9] and [10].

We would like to understand Szegö kernel for non-pseudoconvex domains.
However, the problem is in general complicated; this article gives estimates
for a specific non-pseudoconvex domain.

0.2. The Szegö kernel as an integral. We consider certain model do-
mains

(0.1) Ω = {(z1, z2) ∈ C2 | − Im z2 > b(Re z1)},

where b is a polynomial of degree m. We put z1 = x+ iy and z2 = t+ i Im z2,
and on the boundary Im z2 = −b(x). So we can identify ∂Ω with C×R. Then

(0.2) L =
∂

∂x
+ i

[
∂

∂y
+ b′(x)

∂

∂t

]
is a vector field on the boundary which is identified with a global tangential
antiholomorphic vector field in C2, and H2(∂Ω) = {f ∈ L2(∂Ω) | Lf =
0 as a distribution}.

The pseudoconvexity of the model domain Ω is directly related to the
function b. The domain is then pseudoconvex if b′′(x) ≥ 0, that is, if b is
convex. If b is not convex, the domain is not pseudoconvex.
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Formally, we can write the Szegö projection, which we now denote by P ,
defined on f ∈ L2(R3), as a singular integral operator:

(0.3) Pf(x, y, t) =
∫∫∫

f(r, s, u)S((x, y, t); (r, s, u))drdsdu,

where S((x, y, z); (r, s, u)) is the Szegö kernel.
We look at the Szegö kernel S((x, y, t); (r, s, u)). If b(x) grows quadratically

at infinity, we can write it as

S((x, y, t); (r, s, u))(0.4)

=
1
4π

∫ ∞

0

e−τ(b(x)+b(r)+i(t−u))

∫ ∞

−∞

eη(x+r)eiη(y−s)∫∞
−∞ e−2τ(b(λ)− η

τ λ)dλ
dη dτ,

where the formula is understood as a principal value integral. This is shown
in [11]. It is not clear at first where this is a smooth function. It can be
shown (see [11]) that for convex functions b, formula (0.4) gives a function
which is smooth off the diagonal (x, y, t) = (r, s, u). We will see later that for
the non-convex functions b we consider, singularities occur off the diagonal,
where we might not necessarily expect them.

Before studying the nature of the singularities of the Szegö kernel S in
the non-pseudoconvex situation, it is helpful to look at the case when b is a
convex polynomial. In this case, an estimate for this kernel is stated in [11].
For standard Calderón-Zygmund singular integrals, we expect a size estimate
like |K(p, q)| ≤ c|B|−1, where B is the smallest (Euclidean) ball containing p
and q. In the estimate for S in equation (0.4), the ball must be understood
in terms of a nonisotropic metric, derived from appropriate vector fields.

0.2.1. For reference: The convex case. When b is a convex polynomial,

(0.5) |S((x, y, t); (r, s, u))| ≤ c
1

|B((x, y, t), δ)|
,

where B is a nonisotropic ball derived from the vector fields X1 = ∂
∂x , X2 =

∂
∂y + b′(x), and T = b′′(x) ∂

∂t , and δ is the nonisotropic distance from (x, y, t)
to (r, s, u) (see [11]). The only possible singularities are on the diagonal x =
r, y = s, t = u. For an explanation of nonisotropic balls and metrics, see [11]
and [15].

It will be helpful later to compare our estimates to those for the convex
functions b(λ) = (λ − 1)2 and b(λ) = (λ + 1)2. If b(λ) = (λ ± 1)2, then the
domain Ω is convex and in fact biholomorphic to the Siegel upper half space,
which is well understood. Since (0.4) is translation invariant in y and t, we
assume s = u = 0. Then we can easily calculate that the singularities are
when (x− r) = t = y = 0.
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Indeed, one can calculate S exactly and take the norm:

(0.6) |S((x, y, t); (r, 0, 0))| = c
1

((x− r)2 + y2)2 + (2(t− y(x + r ± 2)))2
,

which agrees with (0.5).

0.3. Results. In this paper, I obtain results for S in (0.4) with a certain
non-convex b, namely the function

(0.7) b(x) =


(x− 1)2 if x ≥ 1/2,
−x2 + 1

2 if −1/2 < x < 1/2,
(x + 1)2 if x ≤ −1/2.

0.3.1. Position of singularities. As b(x) is convex in some places and con-
cave in others, and S depends on b(x)+b(r), the behavior of S varies depending
on the values of x and r.

The main result concerns the points (x, r) = (1, 1) and (−1,−1). It is
here where the lack of convexity of b comes through. One can expect that
for |t|, |y| = 0, S will be singular at (x, r) = (1, 1) and (−1,−1), since this
matches the result for the convex function. However, what is new here is that
the singularity persists even if |y| > 0. At (1,−1) and (−1, 1), an upper bound
obtained indicates a similar situation, though the singularities are weaker.

For x + r ≥ c > 2 and x, r ≥ 1/2 (or x + r ≤ c < −2, and x, r ≤ −1/2), we
have that b(x), b(r), b(x+r

2 ) are convex. Based on this, we expect S to behave
like in the convex case. Indeed it does: if t, y = 0, the singularities are on the
diagonal x = r. These singularities disappear if t 6= 0 or y 6= 0.

For |x + r| ≤ c < 2, if we stay away from (±1,±1), then S is bounded.
In the following subsection, we describe the singularities. We define ε =

b(x) + b(r); this is in the important cases the square of the distance to the
nearest singular point in {(±1,±1)} and is always positive. For example, near
x = 1 and r = −1, ε = (x− 1)2 + (r + 1)2. We will use ε in the various cases,
and its expression each time will be made clear.

0.3.2. Description of some singularities. We describe the situation near
the singularity x = r = 1, where we define ε = (x − 1)2 + (r − 1)2. There
are two main cases: ε ≤ 2|t| and ε ≥ 2|t|. In the first case, the methods
used and the results are similar to those of the convex case. The other case is
where things differ greatly. The methods applied to convex functions would
not work here. The estimates are obtained using a contour integral. As long
as |t| = 0, there is a singularity at ε = 0 even if |y| > 0. The result is detailed
in the following theorem.

First we define the terms D and De for x, r ≥ 1/2:

D =
√

2ε− (x + r − 2) and De = Re((2(ε + it))1/2 −
√

2ε.
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These are positive quantities as will be shown later (see Claim 4.3). D is
equivalent to the distance from (x, r) to the diagonal x = r if x + r ≥ 2 and
to the point (1, 1) if x + r < 2, and De is 0 if t = 0. We will also show in
Claim 4.3 that D,De ≤ c

√
ε.

We explain the region in the (x, r)-plane where the theorem holds: we
require ε ≤ 1 so we are in a circle around the point at (1, 1), though we
cannot have (x, r) = (1, 1). We also require that (x, r) is either below the line
x + r = 2, which goes through (1, 1), or that it is off the diagonal x = r. This
is because if we are above the line x + r = 2, the situation is similar to the
convex case, so we must stay off the diagonal.

Define

| Ima | =
∣∣∣∣5t− y(x + r) + 4 Im((2(ε + it))1/2) +

1
2

Im((2(ε + it))3/2)
∣∣∣∣ ,

| Imb | =
∣∣∣t− y(x + r) + 2 Im((2(ε + it))1/2)

∣∣∣ .
Then we have:

Theorem 0.1. If x, r ≥ 1/2, 0 < ε = (x − 1)2 + (r − 1)2, ε, |t| ≤ 1, and
x + r − 2 < 0 or |x− r| > 0, then S = SM1 + E1 + E, where if

(0.8) Q =
√

ε +
√
|t|+ y2 + |Ima|

(ε + |t|)3/2 ((y2 + D + De) + |Imb|)2
,

then for some positive constant c,
1
c
Q ≤ |SM1 | ≤ cQ,

and for c1 and c2 positive constants,

|E1| ≤ c1
1

(ε + |t|)3/2
and |E| ≤ c2 < ∞.

The quantity Q is acquired by taking the norm of a fraction with complex
expressions in the numerator and denominator. The expressions | Ima | and
| Imb | are so named because they are the imaginary pieces. We will refer to
these many times.

We understand Q in (0.8) by looking at different cases. One such case
shows how our result differs from what might be expected. If t = 0 and
0 <

√
ε ≤ |y| ≤ 1, we can simplify Q as follows: If t = 0, then

√
|t| = De = 0

and | Ima |, | Imb | = |y(x + r)|, which is equivalent to |y| since x, r ≥ 1/2 and
ε ≤ 1. Then

√
ε ≤ |y| ≤ 1, so the numerator in Q is
√

ε + y2 + |y(x + r)| ≈
√

ε + y2 + |y| ≈ |y|,

and since D ≤ c
√

ε ≤ c|y| the denominator in Q is

ε3/2(y2 + D + |y(x + r)|)2 ≈ ε3/2(y2 + D + |y|)2 ≈ ε3/2|y|2,
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so we have

|SM1 | ≈
1

ε3/2|y|
.

If |y| is small enough, |E1| will not cancel this. So we see that S has singu-
larities along the line ε = 0, that is, even if |y| > 0, so there are singularities
off the diagonal. This result is unlike those for standard singular integrals.

In order to better understand S, I combine Theorem 0.1 and other theorems
I have obtained into the following estimate in Theorem 0.2. As it is only
an upper estimate, it is weaker than Theorem 0.1; however, the estimate is
simpler and closer to the kind of estimate one would expect.

Theorem 0.2. If x, r ≥ 1/2, ε = (x− 1)2 + (r − 1)2 ≤ 1, and either

(1) ε > 0, {x + r < 2 or |x− r| > 0}, and |y| ≤ 1, or
(2) |t| ≥ ε/k for some positive constant k,

then for some positive constants c (depending on k) and c1,

|S((x, y, t); (r, 0, 0))| ≤ c
1[

(εD2)1/4 +
√√

ε2 + t2 − ε
]3
|Imb|

+ E,

with |E| ≤ c1 < ∞.

This estimate is similar to those for what are called product singular inte-
grals. Simply put, product singular integrals satisfy estimates involving not
one volume of one ball, but the product of the volumes of two (or more) balls
as understood in two (or more) spaces. These estimates were discussed in [1],
where the authors obtained results for product singular integrals with convo-
lution kernels. In a recent paper [14], Nagel and Stein obtained results for
non-convolution operators and nonisotropic balls where the operator satisfies
some size and derivative estimates similar to those for standard Calderón-
Zygmund operators.

0.4. Notation. We use a . b to mean that a ≤ cb, for some positive
constant c. We use a ≈ b to mean 1/ca ≤ b ≤ ca for some positive constant c,
in which case we say that a is equivalent to b. We use E for a generic positive
error which satisfies E ≤ constant. In certain cases, as will be pointed out,
we will add to this E another bounded term, and call the result E. We use
c for a generic constant which changes from line to line. Sometimes to make
this difference clear we also use c1, c2, . . .. We use a � 1 to mean a is less
than the constant required in the argument. We continue to use the letter Q
for relevant quantities in the various theorems, though its meaning changes
with each use, and we redefine it every time. The same is true of ε. |S| refers
to |S((x, y, t); (r, 0, 0))|.
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1. Statement of the main theorems

We obtain estimates for S in (0.4) with b in (0.7). The main theorems are
stated here. Explanations of the proofs will be given in the following sections.
As in the Introduction, we look at the behavior of S in the various regions of
the (x, r)-plane.

Symmetry in x and r: The following theorems are stated for the right
half of the xr-plane, that is, for x ≥ 0. Since b is even, we can transfer the
results to the other half. So all of our theorems hold for (−x,−r) if, in the
result, we replace (x, r) with (−x,−r) and y with −y. From now on we assume
x ≥ 0.

The following theorems each concern a separate region. In the following
diagram, the darker lines and the circle show the boundaries of the regions. If
x, r ≥ 1/2, then we define ε = (x−1)2+(r−1)2, and ε = 1 is the circle shown.
The lighter line on the diagonal x = r, x + r ≥ 2, and the dot at (1,−1) show
the singular points.

-
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Theorem 1.1 covers large areas where S is bounded: the areas outside of
{x, r ≥ 1/2}, which is in the first quadrant, and outside of the strip {|x+r| <
1, x ≥ 1/2, r ≤ −1/2}, which is in the fourth quadrant. Theorem 1.2 covers
those points in the strip {|x+r| < 1, x ≥ 1/2, r ≤ −1/2}. Theorem 1.3 covers
the area in the first quadrant where x, r ≥ 1/2 and x and r are outside the
circle ε = (x − 1)2 + (r − 1)2 = 1. Theorem 1.4 and Corollary 1.5 cover the
area in the first quadrant where x, r ≥ 1/2 and x and r are inside the circle
ε = (x− 1)2 + (r − 1)2 = 1. This is the most important region as it contains
the point (1, 1).

Theorem 1.1 ((x, r) far away from singularities). If x ≥ 0 and (x, r) /∈
{x, r ≥ 1/2} ∪ {|x + r| < 1, x ≥ 1/2, r ≤ −1/2}, then

|S((x, y, t); (r, 0, 0))| ≤ c < ∞.

This theorem specifies a region where |S| is bounded. However, the region
is actually larger than claimed in this theorem; |S| is bounded as long as we
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stay away from the ray |x−r| = 0, x+r−2 ≥ 0, and the point (x, r) = (1,−1).
We discuss the regions near these points in the following theorems.

Theorem 1.2 (Near (1,−1)). If x ≥ 1/2, r ≤ −1/2, and |x+ r| < 1, with
ε = (x− 1)2 + (r + 1)2, then we have for some positive constant c

(1.1) |S| ≤ c
1

(|t|+ ε)3/2(|y|+ 1)
+ |E|,

where |E| ≤ c1 < ∞.

If |y| ≤ 1 and ε ≤ |t|, at worst we have a singularity that looks like 1/|t|3/2.
This is better than the 1/t2 that we have later (see (1.7) and the statement
after it). This is why we say that the singularity is weaker here. Also note
that |t| and ε play the same role; we have

|S| ≤ c

{
1

|t|3/2(|y|+1)
if |t| ≥ ε,

1
ε3/2(|y|+1)

if ε ≥ |t|.

We will see this |t| and ε playing the same role later also. Also, if either ε
or |t| are away from 0 in the region of this theorem, then |S| is bounded.
Specifically, if |x + r| < 1, x ≥ 1/2, r ≤ −1/2, but we stay away from (1,−1),
then |S| is bounded. This matches the result in Theorem 1.1 above.

Theorem 1.3 (|x|, |r| large and in convex part). If x, r ≥ 1/2 and ε =
(x− 1)2 + (r − 1)2 ≥ 1, then for some positive constant c we have

S = SM1 + E,

where

(1.2) |SM1 | = c
1

((x− r)2 + y2)2 + (2(t− y(x + r − 2)))2
,

with |E| ≤ c1 < ∞.

This matches the result for the convex function b(λ) = (λ − 1)2 above in
(0.6). This is expected, because in the region where x, r ≥ 1/2 and ε ≥ 1, our
b is convex and we are away from the transition point (x, r) = (1, 1).

For the following, we recall the definitions of the positive terms D and De

for x, r ≥ 1/2:

D =
√

2ε− (x + r − 2) and De = Re((2(ε + it))1/2)−
√

2ε.

So

Re((2(ε + it))1/2)− (x + r − 2)

=
(√

2ε− (x + r − 2)
)

+
(
Re((2(ε + it))1/2)−

√
2ε
)

= D + De.
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Also recall

| Ima | =
∣∣∣∣5t− y(x + r) + 4 Im((2(ε + it))1/2) +

1
2

Im((2(ε + it))3/2)
∣∣∣∣ ,

| Imb | =
∣∣∣t− y(x + r) + 2 Im((2(ε + it))1/2)

∣∣∣ .
In the following theorem, we are in the region x, r ≥ 1/2, inside the circle

ε = (x− 1)2 + (r− 1)2 ≤ 1. Unless t ≥ ε/k for some constant k as in part (c),
we must also specify that (x, r) is either below the line x + r < 2, or off the
diagonal x = r. So whenever we have the condition ε > 0, we also have the
condition {x + r < 2 or |x− r| > 0}.

Theorem 1.4 (Near (1, 1)). For x, r ≥ 1/2 and ε = (x−1)2+(r−1)2 ≤ 1:
(a) If ε > 0, {x + r < 2 or |x − r| > 0}, and ε, |t| ≤ 1, then there is an

equivalence
S = SM1 + E1 + E,

where if

(1.3) Q =
√

ε +
√
|t|+ y2 + |Ima|

(ε + |t|)3/2 (y2 + D + De + |Imb|)2
,

then for positive constants c1, c2, c3, we have
1
c1

Q ≤ |SM1 | ≤ c1Q

and

|E1| ≤ c2
1

(ε + |t|)3/2(y2 + 1)
and |E| ≤ c3 < ∞.

(b) Assume ε > 0 and {x + r < 2 or |x − r| > 0}. There are positive
constants c4 < 1, c5, c6, such that if ε, |t|, |y| ≤ c4, then

1
c5
|SM1 | ≤ |SM1 + E1| ≤ c5|SM1 |.

If ε, |t| ≤ 1, then

|SM1 + E1| ≤ c6|SM1 |.

(c) Assume ε ≤ 1. If either
(1) ε > 0, {x + r < 2 or |x− r| > 0}, and |y| ≤ 1, or
(2) |t| ≥ ε/k for any positive constant k,
then for positive constants c7 (depending on k) and c8, we have

|S| ≤ c7

√
ε +

√
|t|+ |Ima|

(ε + |t|)3/2(D + De + |Imb|)2
+ |E|,

with |E| ≤ c8 < ∞.
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(d) If ε > 0, {x + r < 2 or |x − r| > 0}, ε ≤ 1, |t| ≤ 1 and |y| > 1, then
for positive constants c9, c10, we have

|S| ≤ c9
1

(ε + |t|)3/2y2
+ |E|,

where |E| ≤ c10 < ∞.

Using estimates on the various terms involved (see Claim 4.3), we can then
obtain the following:

1. By (a), if t = 0, 1 ≥ |y| ≥
√

ε > 0, and {x + r < 2 or |x − r| > 0} (so
if t = 0, |y| is dominant, and we are off the diagonal), then | Ima | = | Imb | =
|y(x + r)| ≈ |y| & y2 +

√
ε and De = 0, so

(1.4) |SM1 | ≈
1

ε3/2|y|
,

and so for ε, |y| � 1, the error E1 cannot cancel this, so we have singularities
along the line ε = 0, even if |y| > 0.

2. By (a), if t = 0, 1 ≥
√

ε ≥ cD ≥ |y|, ε > 0, and {x+ r < 2 or |x− r| > 0}
(so if t = 0, ε is dominant, and we are off the diagonal), then | Ima | = | Imb | =
|y(x + r)| ≈ |y|. Also,

√
ε + y2 + |y| ≈

√
ε and y2 + D + De ≈ D, so

(1.5) |SM1 | ≈
1

εD2
≈

{
1

(x−r)4 if x + r − 2 ≥ 0,
1
ε2 if x + r − 2 < 0.

If x + r − 2 ≥ 0, there are singularities all along the diagonal x = r. If
x + r − 2 < 0, there is no singularity until one reaches x = r = 1. This
matches the results of Theorems 1.1 and 1.3.

3. In fact, if |t| ≤ 2ε ≤ 1, ε > 0, {x + r < 2 or |x− r| > 0}, and |y| ≤ 1, we
will show in the proof of part (b) (see (4.12)) that

|SM1 | ≈
√

ε + |y|
ε3/2(D + t√

ε
t
ε + | Imb|)2

.

Then if t = 0, this can be reduced to (1.4) or (1.5) given the conditions for
those equations.

4. Part (b) shows in fact that the error E1 will not cancel the main term
SM1 as long as ε > 0, {x + r < 2 or |x− r| > 0}, and ε, |t|, |y| � 1. We prove
this by showing that Q is large compared to E1, so any singularities in Q are
singularities of S. The second statement shows that if we just have ε, |t| ≤ 1,
we can still write

|S| = |SM1 + E1 + E| ≤ |SM1 + E1|+ |E| . |SM1 |+ |E|.

5. By (c), if ε = 0 and |y(x + r)| > 30
√
|t|, then we can show | Ima | ≈

| Imb | ≈ |y(x + r)| ≈ |y| (see the end of Section 4.1). So

(1.6) |S| . 1
|t|3/2|y|

+ |E|.
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6. By (c), if ε = y = 0, then D = 0. Also, using De ≈ Im((2(ε +
it))1/2) ≈

√
|t| and Im((2(ε + it))3/2) ≈ |t|3/2, we see | Ima | ≈

√
|t| + |t|3/2

and | Imb | ≈
√
|t|+ |t|. Splitting this up into the cases |t| ≥ 1 and |t| < 1, we

see in each case that

(1.7) |S| . 1
t2

+ |E|.

7. In fact, if |t| ≥ ε/k for any positive constant k, we will show in the proof
of part (c) (see (4.18)) that

|S| . 1
|t|3/2(

√
|t|+ | Imb |)2

+ |E|.

This can be reduced to (1.6) if
√
|t| ≤ |y| or (1.7) if

√
|t| ≥ |y|.

Corollary 1.5 (Near (1, 1)). If x, r ≥ 1/2, ε = (x− 1)2 + (r − 1)2 ≤ 1,
and either

(1) ε > 0, {x + r < 2 or |x− r| > 0}, and |y| ≤ 1, or
(2) |t| ≥ ε/k for some positive constant k,

then for positive constants c (depending on k) and c1, we have

|S((x, y, t); (r, 0, 0))| ≤ c
1[

(εD2)1/4 +
√√

ε2 + t2 − ε
]3
|Imb|

+ |E|,

where |E| ≤ c1 < ∞.

This result will be shown to be a corollary of Theorem 1.4(c). Though
it is weaker than those in Theorem 1.4, we include it because it is a unified
estimate for all ε, |y| ≤ 1 and all t which is simpler than the previous one. It
is closer to the kind of estimate we are ultimately looking for, that is, where
the denominator looks like the volume of a ball or possibly the product of the
volumes of two balls.

2. The integral in λ

Before we discuss the estimates for S in more detail, I want to state a
lemma describing the main term. We can immediately make an observation
about the integral in (0.4). The only place where S depends on the global
behavior of b is in the λ-integral in the denominator. So if we compare our
S to S when b is the convex function b(λ) = (λ − 1)2, for example, and look
at the case where x, r ≥ 1/2, the only difference between the two is in the
λ-integral. This integral was evaluated simply for b(λ) = (λ−1)2 (see Section
0.2.1), but it is complicated in our case. In the following lemma, I analyze the
λ-integral, and explain what I have found to be the main term of the integral
S.
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If we define

(2.1) I(τ, η) =
∫ ∞

−∞
e−2τ(b(λ)− η

τ λ) dλ,

then we have:

Lemma 2.1.
1

I(τ, η)
= Mc0 + E0,

where

(2.2) M =
e−

η2

2τ

√
2τ

e2η + e−2η
and c0 =

(∫ ∞

−∞
e−λ2

dλ

)−1

=
1√
π

and

(2.3)
∣∣∣∣∫ ∞

0

e−τ(b(x)+b(r))e−itτ

∫ ∞

−∞
eη(x+r)eiηyE0 dη dτ

∣∣∣∣ ≤ c < ∞.

So then the main term of S is a constant times

(2.4) SM =
∫ ∞

0

e−τ(b(x)+b(r)+it)

∫ ∞

−∞

e−η2/2τeη(x+r)eiηy

e2η + e−2η
dη
√

τ dτ.

For all of the theorems, we use this lemma.

Proof. We will need the following facts, which can be proven by a standard
argument: If a ≥ 1, then
(2.5)

1
4a

e−a2
≤
∫ ∞

a

e−λ2
dλ ≤ 1

2a
e−a2

and
1
4a

e−a2
≤
∫ −a

−∞
e−λ2

dλ ≤ 1
2a

e−a2
.

Now we prove Lemma 2.1. First we break the integral I in (2.1) into three
pieces, I, II and III:

I =
∫ − 1

2

−∞
e−2τ((λ+1)2− η

τ λ) dλ =
1√
2τ

∫ 1
2 (1− η

τ )
√

2τ

−∞
e−λ2

dλ e−2ηe
η2

2τ ,

III =
∫ ∞

1
2

e−2τ((λ−1)2− η
τ λ) dλ =

1√
2τ

∫ ∞

1
2 (−1− η

τ )
√

2τ

e−λ2
dλ e2ηe

η2

2τ ,

II =
∫ 1

2

− 1
2

e−2τ(−λ2+ 1
2−

η
τ λ) dλ =

1√
2τ

∫ 1
2 (1+ η

τ )
√

2τ

1
2 (−1+ η

τ )
√

2τ

eλ2
dλ e−τe−

η2

2τ .
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Write

S =
∫ ∞

0

e−τ(b(x)+b(r)+it)

∫ ∞

−∞
eη(x+r)eiηyMc0 dη dτ

(2.6)

−
∫ ∞

0

e−τ(b(x)+b(r)+it)

∫ ∞

−∞
eη(x+r)eiηy

(
Mc0 −

1
I + II + III

)
︸ ︷︷ ︸

E0

dη dτ

Now we will show that the second term is bounded in absolute value by a
constant. This term is in absolute value ≤
(2.7)∫ ∞

0

e−τε

∫ ∞

−∞
eη(x+r)

∣∣∣∣∣
(

e−
η2

2τ

√
2τc0

e2η + e−2η

)[∫∞
−∞ e−λ2

dλ− I1 + II1 + III1
e2η+e−2η

I1 + II1 + III1
e2η+e−2η

]∣∣∣∣∣︸ ︷︷ ︸
|E0|

dηdτ,

where ε = b(x) + b(r) and

I1 = e−2η

∫ 1
2 (1− η

τ )
√

2τ

−∞
e−λ2

dλ,

III1 = e2η

∫ ∞

1
2 (−1− η

τ )
√

2τ

e−λ2
dλ,

II1 = e−
2η2

2τ e−τ

∫ 1
2 (1+ η

τ )
√

2τ

1
2 (−1+ η

τ )
√

2τ

eλ2
dλ.

We show that (2.7) is ≤ c.

Step 1: Show that
I1 +II1 +III1
e2η + e−2η

≈ c.

The idea is to consider the cases η ≥ 0 and η ≤ 0 separately. If η ≥ 0, then

III1
e−2η + e2η

≈ e2η

e2η

∫ ∞

1
2 (−1− η

τ )
√

2τ

e−λ2
dλ ≈ c,

since −∞ < 1
2

(
−1− η

τ

)√
2τ ≤ 0. This is the dominant term. The others are

positive and bounded by a constant. If η ≤ 0, the situation is similar, but
now the term with I1 is dominant.

Now we have

|(2.7)| .
∫ ∞

0

∫ ∞

−∞

e−τεeη(x+r)e−
η2

2τ

√
2τ

e2η + e−2η

∣∣∣∣∫ ∞

−∞
e−λ2

dλ− I1 +II1 +III1
e2η + e−2η

∣∣∣∣ dηdτ.
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Step 2: Show that

(2.8)
e−τεeη(x+r)e−

η2

2τ

e2η + e−2η

is bounded by a constant. Recall that we are assuming x ≥ 0.

Case 1: x, r ≥ 1/2. Here ε = b(x)+b(r) = (x−1)2+(r−1)2. We complete
the square and use ε− 1

2 (x + r − 2)2 = 1
2 (x− r)2.

Case 2: |x + r| < 2. Then

e−τεeη(x+r)e−
η2

2τ

e2η + e−2η
≤

{
e−τεe−

η2

2τ eη(x+r−2) ≤ c if η ≥ 0 (use x + r < 2),

e−τεe−
η2

2τ eη(x+r+2) ≤ c if η < 0 (use x + r > −2).

Other cases: In proving the other cases, we make and prove a claim, which
we will use later.

Claim 2.2. If x ≥ 0 and (x, r) /∈ {x, r ≥ 1/2} ∪ {|x + r| < 2}, then for
some c > 0,

e−τεeη(x+r)e−
η2

2τ

e2η + e−2η
≤ e−cτe−

1
2τ (η+(x+r±2)τ)2 ,

where the plus or minus sign depends on whether (x, r) is above or below the
strip |x + r| < 2.

Proof. For these cases, we will use the inequality
1

e2η + e−2η
≤ e±2η,

where we chose the plus or minus depending on whether (x, r) is above or
below the strip |x + r| < 2, and then we complete the square:

e−τεeη(x+r)e−
η2

2τ

e2η + e−2η
≤ e−(b(x)+b(r)− 1

2 (x+r±2)2)τe−
1
2τ (η+(x+r±2)τ)2 .

There are four cases. In each case we have b(x)+ b(r)− 1
2 (x+ r±2)2 ≥ c > 0.

Case x ≥ 1/2, |r| ≤ 1/2, x + r ≥ 2: Note if r ≥ 1/2, |x| ≤ 1/2, x + r ≥ 2,
the same argument will hold with x, r switched. Note here x ≥ 3/2. We have

b(x) + b(r)− 1
2
(x + r − 2)2 = (x− 1)2 − r2 +

1
2
− 1

2
(x + r − 2)2 ≥ 1

4
.

There are three other cases: where r ≤ −1/2, |x| ≤ 1/2, x + r ≤ −2, where
x ≥ 1/2, r ≤ −1/2, x + r ≥ 2, and where x ≥ 1/2, r ≤ −1/2, x + r ≤ −2. The
arguments for these are similar to the one shown above. �

Now we have

|(2.7)| .
∫ ∞

0

∫ ∞

−∞

√
2τ

∣∣∣∣∫ ∞

−∞
e−λ2

dλ− I1 +II1 +III1
e2η + e−2η

∣∣∣∣ dη dτ.
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Step 3: We show that this is bounded by a constant. The term |.| is

=
1

e2η + e−2η

×
∣∣∣∣(e−2η

∫ ∞

−∞
e−λ2

dλ− I1

)
+
(

e2η

∫ ∞

−∞
e−λ2

dλ− III1

)
− II1

∣∣∣∣
=

1
e2η + e−2η

×

∣∣∣∣∣e−2η

(∫ ∞

1
2 (1− η

τ )
√

2τ

e−λ2
dλ

)
+ e2η

(∫ 1
2 (−1− η

τ )
√

2τ

−∞
e−λ2

dλ

)
− II1

∣∣∣∣∣
≤

∣∣∣∣∣ e−2η

e2η + e−2η

(∫ ∞

1
2 (1− η

τ )
√

2τ

e−λ2
dλ

)∣∣∣∣∣
+

∣∣∣∣∣ e2η

e2η + e−2η

(∫ 1
2 (−1− η

τ )
√

2τ

−∞
e−λ2

dλ

)∣∣∣∣∣+
∣∣∣∣ 1
e2η + e−2η

II1

∣∣∣∣ .
So now

|(2.7)| ≤
∫ ∞

0

√
2τ

∫ ∞

−∞

e2η

e2η + e−2η

∫ 1
2 (−1− η

τ )
√

2τ

−∞
e−λ2

dλdηdτ

+
∫ ∞

0

√
2τ

∫ ∞

−∞

e−2η

e2η + e−2η

∫ ∞

1
2 (1− η

τ )
√

2τ

e−λ2
dλdηdτ

+
∫ ∞

0

√
2τ

∫ ∞

−∞

II1
e2η + e−2η

dηdτ,

which we denote as

(2.9)
∫

III +
∫

I +
∫

II .

We show that each of these is bounded by a constant.∫
III in (2.9):

(2.10)
∫

III =
∫ ∞

0

√
2τ

∫ ∞

−∞

e2η

e2η + e−2η

∫ 1
2 (−1− η

τ )
√

2τ

−∞
e−λ2

dλ dη dτ.

Case 1:
1
2

(
−1− η

τ

)√
2τ ≤ −1. Using (2.5), we see that

(2.10) ≤
∫ ∞

0

∫ ∞

−∞

√
2τ

e2η

e2η + e−2η
e
− τ

2

“
1+2 η

τ +( η
τ )2

”
dη dτ

≤ c

∫ ∞

0

√
τe−

τ
2 dτ ≤ c.
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Case 2:
1
2

(
−1− η

τ

)√
2τ ≥ −1. Here we have η ≤

√
2τ − τ and

∫ 1
2 (−1− η

τ )
√

2τ

−∞
e−λ2

dλ ≈ c.

So

(2.10) .
∫ ∞

0

√
τ

∫ √
2τ−τ

−∞

e2η

e2η + e−2η
dηdτ

≤
∫ 8

0

√
τ

∫ √
2τ−τ

−∞

e2η

e2η + e−2η
dηdτ +

∫ ∞

8

√
τ

∫ √
2τ−τ

−∞

e2η

e2η + e−2η
dηdτ

≤ c +
∫ ∞

8

√
τ

∫ √
2τ−τ

−∞

e2η

e2η + e−2η
dηdτ.

For the second term, we use τ ≥ 8 to show that −τ/2 ≥
√

2τ − τ . So we
see η ≤

√
2τ − τ ≤ −τ/2, and so the second term is ≤∫ ∞

8

√
τ

∫ −τ/2

−∞

e2η

e2η + e−2η
dη dτ ≤ c.

∫
I in (2.9): The argument is similar to that for

∫
III. Instead of the cases

there, we have 1
2

(
1− η

τ

)√
2τ ≥ 1 and 1

2

(
1− η

τ

)√
2τ ≤ 1.∫

II in (2.9): We have

(2.11)
∫

II ≤ c

∫ ∞

0

√
τ

∫ ∞

−∞

II1
e2η + e−2η

dη dτ.

As in Step 1, an easy calculation shows

II1
e2η + e−2η

.
√

τe−
τ
2 e−

η2

2τ ×

{
e−η if η ≥ 0,
eη if η < 0.

From this one obtains
∣∣∫ II

∣∣ ≤ c. This completes the proof of (2.3) and hence
the proof of Lemma 2.1. �

3. Proofs of Theorems 1.1–1.3

3.1. Proof of Theorem 1.1. Here we assume that (x, r) is not in {x, r ≥
1/2}. We also assume that if x ≥ 1/2 and r ≤ −1/2, then ε = b(x) + b(r) =
(x − 1)2 + (r + 1)2 ≥ c > 0. We will show that under these assumptions |S|
is bounded.
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Proof. By Lemma 2.1, we need only look at

SM =
∫ ∞

0

e−τ(ε+it)

∫ ∞

−∞

e
−η2

2τ eη(x+r)eiηy

e−2η + e2η
dη
√

τ dτ.

Case 1: |x + r| ≥ 2. The proof follows from Claim 2.2.

Case 2: |x + r| < 2. We have that |SM | is

≤
∫ ∞

0

e−τ(b(x)+b(r))
√

τ

(∫ 0

−∞
e−

η2

2τ eη(x+r+2)dη +
∫ ∞

0

e−
η2

2τ eη(x+r−2)dη

)
dτ

≤ c

∫ ∞

0

e−τ(b(x)+b(r))τ dτ.

This integral is bounded as long as b(x) + b(r) ≥ c > 0, which one can
show to be true by considering separately the cases x ≥ 1/2, |r| ≤ 1/2,
r ≤ −1/2, |x| ≤ 1/2, and x ≥ 1/2, r ≤ −1/2. �

3.2. Proof of Theorem 1.2. We covered part of the region in this the-
orem in the above section; that is, we showed that if x ≥ 1/2, r ≤ −1/2 and
ε ≥ c > 0, then |S| is bounded. So we assume ε ≤ c. We can also assume
|t| ≤ c since otherwise |S| . E as we will see later in Lemma 4.2.

Proof. As above, we need only consider

SM = lim
δ→0

∫ ∞

0

e−τ(ε+it)

∫ ∞

−∞

e
−η2

2τ eη(x+r)eiηy

e−2η + e2η
dη
√

τχ(δτ) dτ,

where χ(τ) is a Schwartz cutoff function which is 1 for τ ≤ 1 and 0 for τ ≥ 2;
it is easily seen that this limit exists by doing the integration by parts below.
We consider two cases.

Case 1: |y| ≥ c. We split up the integral at 1
ε+|t| . We merely note that

for the second piece, we do integration by parts with

u =
∫ ∞

−∞

e
−η2

2τ eη(x+r)eiηy

e−2η + e2η
dη
√

τχ(δτ),

and then one can show that ∣∣∣∣dpu

dτp

∣∣∣∣ ≤ c

τp

√
τχ.

We then do integration by parts two times and the result follows.
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Case 2: |y| ≤ c. We first do integration by parts in the η integral to bring
down a power of |y|. We obtain∫ ∞

−∞

e−
η2

2τ eη(x+r)

e−2τ + e2τ
eiηydη

= − 1
iy

∫ ∞

−∞

(
− 2η

2τ + (x + r)
e−2η + e−2η

+
2e−2η − 2e2η

(e−2η + e2η)2

)
e−

η2

2τ eη(x+r)eiηydη.

Then with this as our u in the integration by parts in τ , one can show that∣∣∣∣dpu

dτp

∣∣∣∣ . 1
|y|

1
τp

√
τχ,

and so we proceed as above. �

3.3. Proof of Theorem 1.3. If ε ≥ 1, S behaves as if we had replaced
our b(x) with the convex function b(x) = (x − 1)2. The following lemma
describes how the main term of S exhibits this behavior.

Lemma 3.1. If x, r ≥ 1/2 and x + r − 2 ≥ c > 0, then for ε = (x− 1)2 +
(r − 1)2 and M as in Lemma 2.1 we have

M = M1 + E01,

where
M1 = e−

η2

2τ

√
2τe−2η

and ∣∣∣∣∫ E01

∣∣∣∣ = ∣∣∣∣∫ ∞

0

e−τ(ε+it)

∫ ∞

−∞
eiηyeη(x+r)E01dηdτ

∣∣∣∣ ≤ c.

Proof. Write

1
e2η + e−2η

=
e−2η

1 + e−4η
= e−2η − e−6η

1 + e−4η
.

We use the first piece for M1 and the second for E01. So

M1 = e−
η2

2τ

√
2τe−2η and E01 = e−

η2

2τ

√
2τ

e−6η

1 + e−4η
.

For E01 we have∣∣∣∣∫ E01

∣∣∣∣ . ∫ ∞

0

e−ετ

(∫ 0

−∞
e−

η2

2τ eη(x+r−2)dη +
∫ ∞

0

e−
η2

2τ eη(x+r−6)dη

)√
τdτ.

We then show that this is bounded by considering each term separately. We
complete the square and use (2.5). �

Claim 3.2. Upon applying this lemma, one can obtain Theorem 1.3.



ESTIMATES FOR THE SZEGÖ KERNEL 1381

Proof. First note that x, r ≥ 1/2 and ε ≥ 1 imply x + r − 2 ≥ 1/3. One
can see this by considering the situation in the xr-plane. So we have

SM1 = c

∫ ∞

0

e−(ε+it)τ

∫ ∞

−∞
eη(x+r−2)eiηye−

η2

2τ dη
√

τdτ.

Then, by completing the square, using ε − (x+r−2)2

2 = (x−r)2

2 , and doing a
change of variables, we have that this

= c

∫ ∞

0

e
−

„
(x−r)2

2 + y2

2 +i(t−y(x+r−2))

«
τ
∫ ∞

−∞
e−η2

dητdτ.

Since the real part of the exponent is positive, we can use the Identity Theorem
to get that this

= c
1

[(x− r)2 + y2 + 2i(t− y(x + r − 2))]2
.

We obtain (1.2) by taking the norm. This finishes the proof of Theorem
1.3. �

4. Proofs of Theorem 1.4 and Corollary 1.5

Both theorems rely on Lemma 2.1. For Theorem 1.4, there are some ad-
ditional main lemmas used, and these are stated here; they will be proven in
later sections as the proofs are long and detailed. Following the statements
of these lemmas, we will show how to use the lemmas to prove the theorems.
Corollary 1.5 will be obtained as a corollary of Theorem 1.4(c).

In Theorem 1.4, there are a number of constants. The proof does not refer
to each one, but rather they are implicit in the a ≈ b and a . b statements.

4.1. Proof of Theorem 1.4.

4.1.1. Main estimates used for Theorem 1.4. We have two main lemmas,
which correspond to ε or |t| being dominant, though the ranges where they
apply actually overlap.

Again recall that D and De are defined as follows if x, r ≥ 1/2:

D =
√

2ε− (x + r − 2) and De = Re((ε + it)1/2)−
√

2ε.

Also recall that

| Ima | =
∣∣∣∣5t− y(x + r) + 4 Im((2(ε + it))1/2) +

1
2

Im((2(ε + it))3/2)
∣∣∣∣ ,

| Imb | =
∣∣∣t− y(x + r) + 2 Im((2(ε + it))1/2)

∣∣∣ .
Lemma 4.1 (ε dominant). If ε > 0, x, r ≥ 1/2 and {x + r − 2 < 0 or |x−

r| > 0)}, then
S = SM1 + E1 + E,
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where if
(4.1)

Q =

[(
Re((ε + it)3/2) + Re((ε + it)1/2) + D + De + y2

)2
+ (Ima)2

]1/2

(ε + |t|)3/2
[
((x− r)2 + y2 + D + De)

2 + (Imb)
2
] ,

then
1
c
Q ≤ |SM1 | ≤ cQ

and

|E1| ≤ c1

{
1

(ε+|t|)3/2(y2+1)
if |ε + it| ≤ 2,

1 if |ε + it| > 2,
and |E| ≤ c2 < ∞.

Proof. See Section 4.3. The idea is to interchange the order of integration
and then use a contour integral. �

Lemma 4.2 (|t| dominant). If |t| ≥ cε for any positive c, then for c1

depending on c,

(4.2) |S| ≤ c1
1

|t|3/2(|t|1/2 + |y|)
+ |E|.

Proof. See Section 4.4. We first show that |S| ≤ c1
1
t2 + |E|. The idea

is to use integration by parts in the τ -integral. Then we show that |S| ≤
c1

1
|t|3/2|y|+|E|. The idea is again to use integration by parts: We can integrate

by parts once in η, bringing down one power of y. Then we integrate by parts
in τ . �

These two lemmas overlap when ε > 0, |t| ≥ cε for any positive c. We will
show in the next section that they give the same estimate where they overlap
if ε, |t|, |y| ≤ 1.

4.1.2. Proof of Theorem 1.4 using the main estimates. We prove Theo-
rem 1.4 based on the lemmas in Section 4.1.1 and the approximations in the
following claim, which can be proven using Taylor series.

Claim 4.3. The following approximations hold:
1.

D =
√

2ε− (x + r − 2)(4.3)

≈

{
(x−r)2√

ε
if x + r − 2 ≥ 0√

ε if x + r − 2 ≤ 0

}
.
√

ε,

if x, r ≥ 1/2.
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2.

De =
(
Re((2(ε + it))1/2)−

√
2ε
)

(4.4)

≈


t√
ε

t
ε if ε ≥ 4|t|√
|t| if ε ≤ |t|

4√
|t| ≈ t√

ε
t
ε if 1

4 ≤
ε
|t| ≤ 4


.


√

ε if ε ≥ 4|t|√
|t| if ε ≤ |t|

4√
|t| ≈ t√

ε
t
ε if 1

4 ≤
ε
|t| ≤ 4

.

3.

Re((2(ε + it))1/2) =
√√

ε2 + t2 + ε(4.5)

≈
{ √

ε if ε ≥ |t|√
|t| if ε ≤ |t| .

4.

Im((2(ε + it))1/2) = sgn(t)
√√

ε2 + t2 − ε(4.6)

≈


t√
ε

if ε ≥ 2|t|
sgn(t)

√
|t| if ε ≤ |t|

2
t√
ε
≈ sgn(t)

√
|t| if 1

2 ≤
ε
|t| ≤ 2

.

5.

Re((2(ε + it))3/2) = 2
√

(ε2 + t2)3/2 + ε3 − 3εt2(4.7)

≈


ε3/2 if ε ≥ |t| 1

.95

|t|3/2 if ε < |t|
ε3/2 ≈ |t|3/2 if .9 ≤ ε

|t| ≤
1

.95

.

6.

Im((2(ε + it))3/2) = sgn(t)2
√

(ε2 + t2)3/2 − ε3 + 3εt2(4.8)

≈
{ √

εt if ε ≥ 3
4 |t|

sgn(t)|t|3/2 if ε ≤ 3
4 |t|

.

We also prove in some cases more specific results. Here k is any
positive constant:

7.
Im((2(ε + it))1/2) =

t√
2ε

+err,

where

|err| ≤ 1
4
|t|√
2ε

(
t

ε

)2

≤ 1
16

|t|√
2ε

if |t| ≤ ε

2
, ε > 0.
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8. ∣∣∣Im((2(ε + it))1/2)
∣∣∣ ≤ (k + 1)1/4

√
|t| if |t| ≥ ε

k
.

In particular, if k = 2,∣∣∣Im((2(ε + it))1/2)
∣∣∣ ≤ 2

√
|t| if |t| ≥ ε

2
.

9. ∣∣∣Im((2(ε + it))3/2)
∣∣∣ ≤ 2((k2 + 1)3/2 + 3k)1/2|t|3/2 if |t| ≥ ε

k
.

In particular, if k = 2,∣∣∣Im((2(ε + it))3/2)
∣∣∣ ≤ 12|t|3/2 if |t| ≥ ε

2
.

10. ∣∣∣Im((2(ε + it))3/2)
∣∣∣ ≤ 6

√
ε|t| if |t| ≤ ε

2
.

Proof of Theorem 1.4(a). We make some observations about Lemma 4.1:
• Re((ε + it)1/2) ≈ ε1/2 + |t|1/2 and Re((ε + it)3/2) ≈ ε3/2 + |t|3/2 by

(4.5) and (4.7).
• If ε, |t| ≤ 1, then ε3/2 + |t|3/2 ≤ ε1/2 + |t|1/2.
• Also D is always . ε1/2, and De .

√
|t|+

√
ε (see (4.3) and (4.4)).

• If ε ≤ 1, then D & (x− r)2 (see (4.3)).
So we can reduce (4.1) to (1.3) in Theorem 1.4(a). For the error, note that if
ε, |t| ≤ 1, then |ε + it| ≤ 2. �

Proof of Theorem 1.4(b),(d). The plan here is to show that Q ≥ |E1|.

First assume |y| ≤ 1. We show that the piece in Q multiplying the term
1

(ε+|t|)3/2 is greater than a constant if ε, |t| and |y| are ≤ 1, and that it can be
made as large as we want if ε, |t|, and |y| are made small enough. We start
with the following claim:

Claim 4.4. If |y| ≤ 1, then the term y2 is always less than or equal to one
of the other existing terms.

Proof. 1. For |t| ≤ ε/2, recall that

| Imb | =
∣∣∣t− y(x + r) + 2 Im((2(ε + it))1/2)

∣∣∣ ,
| Ima | =

∣∣∣∣5t− y(x + r) + 4 Im((2(ε + it))1/2) +
1
2

Im((2(ε + it))3/2

∣∣∣∣ .
If |y(x + r)| ≥ 30| t√

2ε
|, then using Claim 4.3 and |x + r| ≈ 1 (since x, r ≥ 1/2

and ε ≤ 1) we see that∣∣∣t + 2 Im((2(ε + it))1/2)
∣∣∣ < 5

∣∣∣∣ t√
2ε

∣∣∣∣
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and ∣∣∣∣5t + 4 Im((2(ε + it))1/2) +
1
2

Im((2(ε + it))3/2

∣∣∣∣ < 21
∣∣∣∣ t√

2ε

∣∣∣∣ ,
and so

(4.9) y2 ≤ |y| ≈ | Imb | ≈ | Ima |.
If |y(x + r)| ≤ 30| t√

2ε
|, we use

y2 ≤ c

(
t√
ε

)2( 1√
ε

)
≈ De .

√
ε.

2. For 1 ≥ |t| ≥ ε/2, we use similar arguments to show that either y2 .
| Imb | ≈ | Ima | or y2 . |De|. �

Using this we can simplify (1.3) in Theorem 1.4(a) to get

(4.10) |SM1 | ≈
1

(ε + |t|)3/2

√
ε +

√
|t|+ |Ima|

(D + De + |Imb|)2
.

Then we define F by

(4.11)
1

(ε + |t|)3/2

√
ε +

√
|t|+ |Ima|

(D + De + |Imb|)2
=

1
(ε + |t|)3/2

(F ).

Now we will show that if ε, |t|, |y| � 1, then |SM1 + E1| ≈ |SM1 |, and for
ε, |t|, |y| ≤ 1, we have |SM1 + E1| . |SM1 |. To do this, we first prove the
following claim. We label the constant c4 to make it clear that it is the same
as in the Theorem.

Claim 4.5. Given a constant d, there exists a constant c4 < 1 such that
if ε, |t|, |y| ≤ c4, then 1/F ≤ 1/d.

Proof. Case 1a: We look first at the case t = 0. Then | Ima | = | Imb | ≈ |y|.
Here

1
F

=
(D + |y|)2

(
√

ε + |y|)
≈


|y| if |y| ≥

√
ε

y2
√

ε
if D ≤ |y| ≤

√
ε

D2
√

ε
if |y| ≤ D

 .

 |y| if |y| ≥
√

ε√
ε if D ≤ |y| ≤

√
ε√

ε always
.

So we see that we can make 1/F small if ε, |y| � 1.

Case 1b: Now we look at the more general case ε ≥ 2|t|. First we use
Claim 4.3 to see that

| Imb | . |t|+ |y|+ |t|√
ε

+
√

ε|t| . |y|+ |t|√
ε

. |y|+
√

ε.

Next we show that √
ε + | Ima | ≈

√
ε + |y|.
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To do so, we first note that we have already shown (see (4.9)) that

| Ima | ≈ |y(x + r)| ≈ |y| if |y(x + r)| ≥ 30
∣∣∣∣ t√

2ε

∣∣∣∣ ,
which is true if |y| ≥ 30

∣∣∣ t√
2ε

∣∣∣ since |x + r| ≥ 1. If |y| ≤ 30
∣∣∣ t√

2ε

∣∣∣, then

|y| ≤ 15
√

ε, so then

| Ima | . |t|+ |y|+ |t|√
ε

+
√

ε|t| .
√

ε.

So
√

ε + | Ima | ≈
√

ε ≈
√

ε + |y|. Using these approximations, we get

1
F
≈

(D + t√
ε

t
ε + | Imb |)2

(
√

ε + | Ima |)
≈

(D + t√
ε

t
ε + | Imb |)2

(
√

ε + |y|)
.
√

ε + |y| .

So we see that we can make this small if ε, |y| are small enough.
Note that the second approximation shows that if 1 ≥ ε ≥ 2|t|, ε > 0,

{x + r < 2 or |x− r| > 0}, and |y| ≤ 1, then

(4.12) |SM1 | ≈
√

ε + |y|
ε3/2(D + t√

ε
t
ε + | Imb |)2

.

This expression is referred to in the notes after Theorem 1.4.

Case 2: If ε ≤ 2|t| and |t| ≤ 1, the argument is similar to that in Case 1b.
To finish the proof of the claim, we choose c4 < 1 so that 1/F ≤ 1/d when

ε, |t|, |y| ≤ c4. �

Now we choose d such that given c2 in Theorem 1.4(a), c2
2 d = d′ > 1. Then

if we assume ε, |t|, |y| ≤ c4 < 1, we have

|SM1 |
|E1|

≥ c2

2
F ≥ c2

2
d = d′ > 1,

so
1
d′
|SM1 | ≥ |E1|,

so (
1− 1

d′

)
|SM1 | ≤ |SM1 + E1| ≤

(
1 +

1
d′

)
|SM1 |.

Therefore, if we pick c5 so that 1 + 1
d′ ≤ c5 and 1 − 1

d ≥
1
c5

, we get the first
claim in Theorem 1.4(b).

To show that |SM1 +E1| . |SM1 |, we simply note that 1/F ≤ c if ε, |t|, |y| ≤
1. This gives us the second claim in Theorem 1.4(b) if |y| ≤ 1.
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So we have for ε > 0, {x + r < 2 or |x− r| > 0}, and ε, |t|, |y| ≤ 1,

|S| ≤ |SM1 + E1|+ |E|(4.13)

. |SM1 |+ |E|

≈
√

ε +
√
|t|+ |Ima|

(ε3/2 + |t|3/2) [D + De + |Imb|]2
+ |E|.

Now assume |y| > 1. We look again at (1.3), which is true if ε > 0, {x+r <
2 or |x− r| > 0}, and ε, |t| ≤ 1:

Q =
(
√

ε +
√
|t|+ y2) + |Ima|

(ε + |t|)3/2 [(y2 + D + De) + |Imb|]2
.

Then by Claim 4.3 and the fact that ε, |t| ≤ 1 < |y|, we have

| Ima | =
∣∣∣∣5t− y(x + r) + 4 Im((2(ε + it))1/2) +

1
2

Im((2(ε + it))3/2)
∣∣∣∣ < y2.

We also have

| Imb | =
∣∣∣t− y(x + r) + 2 Im((2(ε + it))1/2)

∣∣∣ < y2.

So we now have

Q ≈ y2

(ε + |t|)3/2[y2]2
=

1
(ε + |t|)3/2y2

.

Since |SM1 | ≈ Q, and we have

|E1| .
1

(ε + |t|)3/2y2
,

we have now finished the proof of Theorem 1.4(d).
Furthermore, we have for |y| > 1,

|SM1 + E1| ≤ c|SM1 |.
This finishes the proof of Theorem 1.4(b). �

Proof of Theorem 1.4(c). We will obtain an upper bound for |S| covering
the more general case where ε ≤ 1 and either (1) ε > 0, {x+r < 2 or |x−r| >
0}, and |y| ≤ 1 or (2) |t| ≥ ε/k for some positive constant k. Although Lemma
4.1 is only known to be true for ε > 0, we will use it to suggest an estimate
and then prove this estimate. Here is the sequence of ideas:

1. We showed above (see (4.13)) that for ε > 0, {x + r < 2 or |x− r| > 0},
and ε, |t|, |y| ≤ 1,

(4.14) |S| .
√

ε +
√
|t|+ |Ima|

(ε3/2 + |t|3/2) [D + De + |Imb|]2
+ |E|.

2. If |t| > 1, then |t| ≥ ε, so Lemma 4.2 shows that |S| ≤ c + |E|, and the
constant can be included in |E|, so we are done.
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3. We must now allow for ε = 0. In fact, we can show that the result
is true as long as 1 ≥ |t| ≥ ε/k for any positive constant k. Here we use k
instead of c because it will be important to keep track of the constant in the
approximations in Claim 4.3.

Define (∗) by writing (4.14) as

|S| . (∗) + |E|.

We must show that this is true for 1 ≥ |t| ≥ ε/k. Here De ≈
√
|t| & D (see

Claim 4.3), so we can simplify (∗) to get

(4.15) (∗) ≈
√
|t|+ | Ima |

|t|3/2(
√
|t|+ | Imb |)2

.

Now we show that |S| . (∗) + |E| if ε ≤ k|t| ≤ k. First we choose fk so
that fk ≥ 5 + 4(k + 1)1/4 + ((k2 + 1)3/2 + 3k)1/2 + 1. We will see shortly the
importance of this expression. Then we have two cases:

Case a:
√
|t| ≥ 1

fk
|y(x + r)|. Here | Ima |, | Imb | .

√
|t|, so (∗) + |E| ≈

1
t2 + |E| & |S| by Lemma 4.2.

Case b:
√
|t| ≤ 1

fk
|y(x + r)|. Here | Ima | ≈ | Imb | ≈ |y| &

√
|t|. Using

Claim 4.3, we have

| Ima | =
∣∣∣∣5t + 4 Im((2(ε + it))1/2) +

1
2

Im((2(ε + it))3/2)
∣∣∣∣

≤ 5|t|+ 4(k + 1)1/4
√
|t|+ 1

2
2((k2 + 1)3/2 + 3k)1/2|t|3/2

≤
(
5 + 4(k + 1)1/4 + ((k2 + 1)3/2 + 3k)1/2

)√
|t|

≤ 5 + 4(k + 1)1/4 + ((k2 + 1)3/2 + 3k)1/2

fk
|y(x + r)|

and

| Imb | =
∣∣∣t + 2 Im((2(ε + it))1/2)

∣∣∣
≤ |t|+ 2(k + 1)1/4

√
|t|

≤ (1 + 2(k + 1)1/4)
√
|t|

≤ (1 + 2(k + 1)1/4)
fk

|y(x + r)|.

Since the quantity in front of the term |y(x + r)| is strictly less than 1, we
have | Ima | ≈ | Imb | ≈ |y(x + r)|. Then we use the fact that (x + r) ≈ 1 since
ε ≤ 1 and x, r ≥ 1/2 to see that | Ima | ≈ | Imb | ≈ |y| &

√
|t|.

So

(∗) + |E| ≈ |y|
|t|3/2|y|2

+ |E| ≈ 1
|t|3/2|y|

+ |E| & |S|
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by Lemma 4.2.
This shows that |S| . (∗) + |E| and finishes the proof of Theorem 1.4(c),

which we state here again for reference: As long as ε ≤ 1 and either (1) ε > 0,
{x + r < 2 or |x − r| > 0}, and |y| ≤ 1 or (2) |t| ≥ ε/k for some constant k,
we have

(4.16) |S| .
√

ε +
√
|t|+ |Ima|

(ε3/2 + |t|3/2) [D + De + |Imb|]2
+ |E|.

In fact, the previous discussion shows that if 1 ≥ |t| ≥ ε/k for any positive
constant k, then

(4.17) (∗) ≈ 1
|t|3/2(

√
|t|+ |y|)

,

and we have shown |S| . (∗) + |E|, so

(4.18) |S| . 1
|t|3/2(

√
|t|+ |y|)

+ |E|,

which is exactly the bound in Lemma 4.2. Since (∗) was obtained from (4.14),
which was obtained from Lemma 4.1, we see that the two lemmas agree where
they overlap if ε, |t|, |y| ≤ 1. This finishes the proof of Theorem 1.4. �

4.2. Proof of Corollary 1.5. In this section we will prove Corollary 1.5
as a corollary of Theorem 1.4(c).

Proof. Case 1: ε ≥ 2|t|. Start from (4.16). If ε ≥ 2|t|, we can reduce this
to

|S| .
√

ε + | Ima |

ε3/2
(
D + t√

ε
t
ε + | Imb |

)2 + |E|.

Case 1a: | Ima | ≥ c
√

ε. Here

(4.19) |S| . | Ima |
ε3/2| Imb |2

+ |E|.

We will show that either | Ima | ≈ | Imb | or | Ima | .
√

ε, in which case we can
use Case 1b below. Write

Ima = (Imb) +
(

4t + 2 Im((2(ε + it))1/2) +
1
2

Im((2(ε + it))3/2)
)

= A + B.
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Case |B| ≤ 1
2 |A|: Then Ima ≈ Imb. So we can reduce (4.19) and, using

ε & D2, obtain the statement in Corollary 1.5:

|S| . 1[
ε1/2 +

√√
ε2 + t2 − ε

]3
| Imb |

+ |E|

.
1[

(εD2)1/4 +
√√

ε2 + t2 − ε
]3
| Imb |

+ |E|.

Case |B| > 1
2 |A|: Then

| Ima | ≤ | Imb |+ |B|
≤ c|B|

= c

∣∣∣∣4t + 2 Im((2(ε + it))1/2) +
1
2

Im((2(ε + it))3/2)
∣∣∣∣

.
√

ε.

Case 1b: | Ima | ≤ c
√

ε. Here

|S| . 1

ε
(
D + t√

ε
t
ε + | Imb |

)2 + |E|

.
1

ε3/4ε1/4
(
D + t√

ε
t
ε

)
| Imb |

+ |E|

.
1(

ε3/4D3/2 + t√
ε
t
)
| Imb |

+ |E|.

Then, using the fact that
√
|t| & |t|√

ε
, this is

.
1(

ε3/4D3/2 +
∣∣∣ t√

ε

∣∣∣3) | Imb |
+ |E|

≈ 1(
ε1/4D1/2 +

∣∣∣ t√
ε

∣∣∣)3

| Imb |
+ |E|

≈ 1(
ε1/4D1/2 +

√√
ε2 + t2 − ε

)3

| Imb |
+ |E|.

For the last line, we use that fact that in this case
√√

ε2 + t2 − ε ≈ |t|/
√

ε,
which is part of Claim 4.3.
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Case 2: ε ≤ 2|t|. Now we use (4.17). Using the cases which precede that
equation, we see that

√
|t|+ |y| ≈

√
|t|+ | Imb |. So

|S| . 1

(ε + |t|)3/2
(√

|t|+ | Imb |
) + |E|

≈ 1(
ε3/2 + |t|3/2

) (√
|t|+ | Imb |

) + |E|

.
1(

(εD2)3/4 +
(√√

ε2 + t2 − ε
)3
)
| Imb |

+ |E|.

Here we used the fact that in this case
√√

ε2 + t2 − ε ≈
√
|t|. This completes

the proof of Corollary 1.5. �

4.3. Proof of Lemma 4.1.

Proof. By Lemma 2.1 we need only look at

SM =
∫ ∞

0

e−τ(ε+it)

∫ ∞

−∞

e
−η2

2τ eη(x+r)eiηy

e−2η + e2η
dη
√

τ dτ.

First assume t = 0. By changing the order of integration we get

SM =
∫ ∞

−∞
eiηy

∫ ∞

0

e−ετe−
η2

2τ
√

τdτeη(x+r) 1
e2η + e−2η

dη(4.20)

=
c

ε
√

ε

∫ ∞

−∞
eiηy

∫ ∞

0

e−τe−
η2ε
2τ
√

τ dτeη(x+r) 1
e2η + e−2η

dη,(4.21)

where the second line is obtained by putting τ ′ = ετ . Then we use∫ ∞

0

e−τe−
η2

4τ
√

τ dτ =
π

2
(|η|+ 1)e−|η|,

which is proved by an argument similar to one in [16], and∫ ∞

−∞

eiηx

(1 + x2)2
dx =

π

2
(|η|+ 1)e−|η|,

which is proved by doing a contour integral. We get to

SM =
c

ε3/2

∫ ∞

−∞
eiηy

(√
2ε|η|+ 1

)
e−
√

2ε|η|en(x+r) 1
e2η + e−2η

dη

=
c

ε3/2

[∫ 0

−∞
eiηy

(
−
√

2ε η + 1
)

eη(
√

2ε+(x+r+2)) 1
e4η + 1

dη

+
∫ ∞

0

eiηy
(√

2ε η + 1
)

e−η(
√

2ε−(x+r−2)) 1
1 + e−4η

dη

]
.
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Then we write
1

e−4|η| + 1
= 1− e−4|η|

1 + e−4|η| .

The term corresponding to the term 1 will be called SM1 , the remaining term
E1.

For SM1 : By a change of variables and the Identity Theorem, we get

SM1

=
c

ε3/2

[√
2ε

1
(iy +

√
2ε + (x + r − 2) + 4)2

+
1

(iy +
√

2ε + (x + r − 2) + 4)

+
√

2ε
1

(−iy +
√

2ε− (x + r − 2))2
+

1
(−iy +

√
2ε− (x + r − 2))2

]
= c

[
(4(2ε))3/2 + 16(2ε) + 16(

√
2ε) + 4(x− r)2 + 16D + 4y2 − i(8y(x + r))

]
ε3/2 [(x− r)2 + y2 + 4D − i(2y(x + r))]2

,

where

D =
√

2ε− (x + r − 2) ≈

{
(x−r)2√

ε
if x + r − 2 ≥ 0√

ε if x + r − 2 ≤ 0

}
.
√

ε.

Then we have

|SM1 | ≈
1

ε3/2

[
ε3/2 + ε1/2 + y2 + |y(x + r)|

]
[(x− r)2 + y2 + D + |y(x + r)|]2

.

Here we used the fact that D2, (x− r)2 ≤ cε. We postpone the discussion of
the error E1 for now.

Next allow |t| ≥ 0. Now in place of ε, we have ε + it. To get from (4.20)
to (4.21), we will now need a change of contour. We then proceed along the
same lines as above, with an additional use of the Identity theorem. We arrive
at

SM =
c

(ε + it)3/2

∫ ∞

−∞
eiηy (

√
2(ε + it)|η|+ 1)e−

√
2(ε+it)|η|

e2η + e−2η
eη(x+r) dη.

As above, we write

1
e2η + e−2η

= e−2|η| 1
e−4|η| + 1

= e−2|η|
(

1− e−4|η|

e−4|η| + 1

)
.

Taking care with the complex ε + it, we arrive at

|SM1 | ≈

[(
Re((ε + it)3/2) + Re((ε + it)1/2) + D + De + y2

)2
+ (Ima)2

]1/2

(ε + |t|)3/2
[
((x− r)2 + y2 + D + De)

2 + (Imb)
2
] ,

as claimed.
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The error E1. Using∣∣∣e−√2(ε+it)|η|eη(x+r)e−2|η|
∣∣∣ ≤ 1,

we can easily show that

(4.22) |E1| ≤
c∣∣(ε + it)3/2

∣∣ ∣∣∣√2(ε + it) + 1
∣∣∣ .

If |ε + it| > 2, this is bounded by a constant. If |ε + it| ≤ 2, integration by
parts shows that in addition to (4.22), we have

|E1| ≤
c∣∣(ε + it)3/2

∣∣ y2
.

This finishes the proof of the lemma. �

4.4. Proof of Lemma 4.2.

4.4.1. t dominant. We assume x, r ≥ 1/2, so ε = (x−1)2+(r−1)2. In this
subsection we assume |t| ≥ c|x + r− 2|2. Then we show that |S| ≤ c1

1
t2 + |E|.

In fact, we show even more:

(4.23) |S| ≤ c1
1

((x− r)2 + |t|)2
+ |E|.

We will be able to get our result for any positive c, though the constant c1

above depends on c. Since |x + r − 2|2 ≤ ε, this result is true if t ≥ cε.

Proof. We again use Lemma 2.1. We also use the easily shown fact that∣∣∣∣∣
∫ 1

(x−r)2+|t|

0

e−ετ

∫ ∞

−∞
eη(x+r)(Mc0 + E0)dτ

∣∣∣∣∣ ≤ c

(
1

((x− r)2 + |t|)2
+ 1
)

.

So we need only look at∫ ∞

1
(x−r)2+|t|

e−τ(ε+it)

∫ ∞

−∞

e
−η2

2τ eη(x+r−2)eiηy

e−4η + 1
dη
√

τ dτ

= lim
δ→0

∫ ∞

1
(x−r)2+|t|

e
−τ

„
(x−r)2

2 +it

« ∫ ∞

−∞
e−

(η−τ(x+r−2))2

2τ
eiηy

e−4η + 1
dη
√

τχ(δτ) dτ,

where χ(τ) is a Schwartz cutoff function which is 1 for τ ≤ 1 and 0 for τ ≥ 2.
Now we will integrate by parts:∫ ∞

1
(x−r)2+|t|

e
−τ

„
(x−r)2

2 +it

«
︸ ︷︷ ︸

dv

∫ ∞

−∞
e−

(η−τ(x+r−2))2

2τ
eiηy

e−4η + 1
dη
√

τχ(δτ)︸ ︷︷ ︸
u

dτ.
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One can show that

|u| ≤ cτχ(δτ),∣∣∣∣dpu

dτp

∣∣∣∣ ≤ c
1

τp−1
(
√

τ |x + r − 2|+ 1)pχ(δτ).

Using this and the assumption that |t| ≥ c|x + r − 2|2, we integrate by parts
five times to obtain the result. �

4.4.2. y dominant. Here we assume |y| ≥
√
|t|,

√
ε, and as above, ε ≤ c|t|

for positive c. We then prove |S| ≤ c1
1

|t|3/2|y| . In fact, we prove more:

|SM | ≤ c
1

((x− r)2 + |t|)3/2|y|
.

Proof. We again use Lemma 2.1, so we can start with

(4.24) SM =
∫ ∞

0

e
−τ

„
(x−r)2

2 +it

« ∫ ∞

−∞
e−

(η−τ(x+r−2))2

2τ
eiηy

e−4η + 1
dη
√

τ dτ.

We could use the above section, but we can get a better result by doing the
following if |y| ≥

√
|t|. This explanation will be similar to the one in Section

4.4.1. The only difference is that we will bring down a power of |y| first, and
then do integration by parts in the τ -integral. We look at the inner integral
in (4.24). We will integrate by parts:∫ ∞

−∞
eiηy︸︷︷︸
dv

e−
1
2τ (η−τ(x+r−2))2

1 + e−4η︸ ︷︷ ︸
u

dη.

The boundary terms are 0, so we get for χ a cutoff as above that SM is a
constant times the limit as δ goes to 0 of∫ ∞

0

e
−τ

„
(x−r)2

2 +it

«

×
∫ ∞

−∞

eiηy

y
e−

(η−τ(x+r−2))2

2τ

[
2(η−τ(x+r−2))

2τ

1 + e−4η
− 4e−4η

(1 + e−4η)2

]
dη
√

τχ(δτ)dτ.

A quick calculation shows∣∣∣∣∣
∫ 1

(x−r)2+|t|

0

(·)dτ

∣∣∣∣∣ ≤ c

∫ 1
(x−r)2+|t|

0

1
|y|
√

τdτ =
c

|y|((x− r)2 + |t|)3/2
,
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and so we need only do integration by parts for∫ ∞

1
(x−r)2+|t|

e
−τ

„
(x−r)2

2 +it

«
︸ ︷︷ ︸

dv

×
∫ ∞

−∞

eiηy

y
e−

(η−τ(x+r−2))2

2τ

[
2(η−τ(x+r−2))

2τ

1 + e−4η
− 4e−4η

(1 + e−4η)2

]
dη
√

τχ(δτ)︸ ︷︷ ︸
u

dτ.

In a manner similar to the above, one can show that

|u| ≤ c
√

τ
1
|y|

χ(δτ),∣∣∣∣dpu

dτp

∣∣∣∣ ≤ c
1

|y|τp

√
τ(
√

τ |x + r − 2|+ 1)pχ(δτ).

We then use this as we integrate by parts four times, and the result follows. �
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