EXTREMAL CASES OF EXACTNESS CONSTANTS AND COMPLETELY BOUNDED PROJECTION CONSTANTS

HUN HEE LEE

Abstract

We investigate some extremal cases of exactness constants and completely bounded projection constants. More precisely, for an n-dimensional operator space E we prove that $\lambda_{c b}(E)=\sqrt{n}$ if and only if $\operatorname{ex}(E)=\sqrt{n}$.

1. Introduction

Exactness constants and completely bounded (c.b.) projection constants are fundamental quantities in operator space theory.

For an operator space $E \subseteq B(H)$, the c.b. projection constant of $E, \lambda_{c b}(E)$, is defined by

$$
\lambda_{c b}(E)=\inf \left\{\|P\|_{c b} \mid P: B(H) \rightarrow E, \text { projection onto } E\right\}
$$

Let $B=B\left(\ell_{2}\right)$ and \mathcal{K} be the ideal of all compact operators on ℓ_{2}, and let

$$
T_{E}:\left(B \otimes_{\min } E\right) /\left(\mathcal{K} \otimes_{\min } E\right) \rightarrow(B / \mathcal{K}) \otimes_{\min } E
$$

be the map obtained from

$$
q \otimes I_{E}: B \otimes_{\min } E \rightarrow(B / \mathcal{K}) \otimes_{\min } E
$$

by the taking quotient with respect to $\mathcal{K} \otimes_{\min } E$, where $q: B \rightarrow \mathcal{K}$ is the canonical quotient map. Then the exactness constant of E, ex (E) is defined by

$$
\operatorname{ex}(E)=\left\|T_{E}^{-1}\right\|
$$

It is well known that the exactness constant is the same as $d_{\mathcal{S K}}(E)$, where

$$
d_{\mathcal{S K}}(E)=\inf \left\{d_{c b}(E, F): F \subseteq \mathcal{K}\right\}
$$

when E is finite dimensional ([9]).
The followings are well known facts about these quantities (Chapter 7 and 17 of [12] and Section 9 of [10]):

[^0]FACT 1. For a finite dimensional operator space E we have

$$
\operatorname{ex}(E)=d_{\mathcal{S K}}(E) \leq \lambda_{c b}(E)
$$

FACT 2. When $\operatorname{dim}(E)=n \in \mathbb{N}$, we have

$$
\lambda_{c b}(E) \leq \sqrt{n}
$$

Thus, for an n-dimensional operator space $E, \lambda_{c b}(E)$ and $\operatorname{ex}(E)$ are both bounded by \sqrt{n}, and this upper bound is known to be asymptotically sharp. Indeed, we have $\operatorname{ex}\left(\max \ell_{1}^{n}\right) \geq \frac{n}{2 \sqrt{n-1}}$ for $n \geq 2$ ([9]). However, it is not yet known whether there is an n-dimensional operator space E with $\lambda_{c b}(E)=\sqrt{n}$ or $\operatorname{ex}(E)=\sqrt{n}$.

In this paper we investigate the extremal cases $\lambda_{c b}(E)=\sqrt{n}$ and $\operatorname{ex}(E)=$ \sqrt{n} and prove the following theorem.

Theorem 1. Let $n \geq 2$ and $E \subseteq B(H)$ be an n-dimensional operator space. Then we have $\lambda_{c b}(E)=\sqrt{n}$ if and only if $\operatorname{ex}(E)=\sqrt{n}$. Equivalently, $\lambda_{c b}(E)<\sqrt{n}$ if and only if $\operatorname{ex}(E)<\sqrt{n}$.
$\lambda_{c b}(E)$ is the operator space analogue of the projection constant $\lambda(X)$ of a Banach space X given by $\lambda(X)=\sup \{\lambda(X, Y) \mid X \subseteq Y\}$, where

$$
\lambda(X, Y)=\inf \{\|P\| \mid P: Y \rightarrow Y \text { projection onto } X\}
$$

See [4], [5], and [6] for more information on the Banach space case and [3] and [13] for the operator space case.

Throughout this paper, we assume that the reader is familiar with the standard results about operator spaces ([2], [10]), completely nuclear maps ([2]), and completely p-summing maps ([11]). For a linear map $T: E \rightarrow F$ between operator spaces and $1 \leq p<\infty$ we denote the completely nuclear norm and the completely p-summing norm of T by $\nu^{o}(T)$ and $\pi_{p}^{o}(T)$, respectively.

For an index set $I, O H(I)$ denotes the operator Hilbert space on $\ell_{2}(I)$, which was introduced in [10]. When $I=\{1, \ldots, n\}$ for $n \in \mathbb{N}$, we simply write $O H_{n}$. For a family of operator spaces $\left(E_{i}\right)_{i \in I}$ and an ultrafilter \mathcal{U} on I we denote the ultraproduct of $\left(E_{i}\right)_{i \in I}$ with respect to \mathcal{U} by $\prod_{\mathcal{U}} E_{i}$.

2. Proof of the main result

For the proof we need several lemmas. The first lemma is about the relationship between completely 1 -summing maps and completely 2 -summing maps.

Lemma 2. Let $v: E \rightarrow F$ be a completely 1-summing map. Then v is completely 2-summing with $\pi_{2}^{o}(v) \leq \pi_{1}^{o}(v)$.

Proof. Let $E \subseteq B(H)$ for some Hilbert space H. Then by Remark 5.7 of [11] we have an ultrafilter \mathcal{U} over an index set I and families of positive operators $\left(a_{\alpha}\right)_{\alpha \in I},\left(b_{\alpha}\right)_{\alpha \in I}$, in the unit ball of $S_{2}(H)$ such that the following diagram commutes for some u with $\|u\|_{c b} \leq \pi_{1}^{o}(v)$:

where $E_{\infty}=i(E)$ for the complete isometry

$$
i: B(H) \hookrightarrow \prod_{\mathcal{U}} B(H), x \mapsto(x)_{\alpha \in I}
$$

$E_{1}=\overline{M i(E)}$ (the closure in $\prod_{\mathcal{U}} S_{1}(H)$) for

$$
M: \prod_{\mathcal{U}} B(H) \rightarrow \prod_{\mathcal{U}} S_{1}(H),\left(x_{\alpha}\right) \mapsto\left(a_{\alpha} x_{\alpha} b_{\alpha}\right)
$$

and $\mathcal{M}=\left.M\right|_{E_{\infty}}$.
Next, we split M into $M=T_{2} T_{1}$, where

$$
T_{1}: \prod_{\mathcal{U}} B(H) \rightarrow \prod_{\mathcal{U}} S_{2}(H),\left(x_{\alpha}\right) \mapsto\left(a_{\alpha}^{1 / 2} x_{\alpha} b_{\alpha}^{1 / 2}\right)
$$

and

$$
T_{2}: \prod_{\mathcal{U}} S_{2}(H) \rightarrow \prod_{\mathcal{U}} S_{1}(H),\left(x_{\alpha}\right) \mapsto\left(a_{\alpha}^{1 / 2} x_{\alpha} b_{\alpha}^{1 / 2}\right)
$$

Note that

$$
\begin{equation*}
\left\|T_{2}\right\|_{c b} \leq \lim _{\mathcal{U}}\left\|M_{\alpha}: S_{2}(H) \rightarrow S_{1}(H), x \mapsto a_{\alpha}^{1 / 2} x b_{\alpha}^{1 / 2}\right\|_{c b} \leq 1 \tag{2.2}
\end{equation*}
$$

since $M_{\alpha}^{*}=N_{\alpha}$ for

$$
N_{\alpha}: B(H) \rightarrow S_{2}(H), x \mapsto a_{\alpha}^{1 / 2} x b_{\alpha}^{1 / 2}
$$

and $\left\|N_{\alpha}\right\|_{c b} \leq 1$. Thus we have by Theorem 5.1 of [11] that

$$
\begin{aligned}
\left\|\left(v x_{i j}\right)\right\|_{M_{n}(F)} & =\left\|\left(u T_{2} T_{1} i x_{i j}\right)\right\|_{M_{n}(F)} \leq \pi_{1}^{o}(v)\left\|\left(T_{2} T_{1} i x_{i j}\right)\right\|_{M_{n}\left(S_{1}(H)\right)} \\
& \leq \pi_{1}^{o}(v)\left\|\left(T_{1} i x_{i j}\right)\right\|_{M_{n}\left(S_{2}(H)\right)}=\pi_{1}^{o}(v)\left\|\left(a_{\alpha}^{1 / 2} x_{i j} b_{\alpha}^{1 / 2}\right)\right\|_{M_{n}\left(S_{2}(H)\right)}
\end{aligned}
$$

for any $n \in \mathbb{N}$ and $\left(x_{i j}\right) \in M_{n}(F)$, which implies $\pi_{2}^{o}(v) \leq \pi_{1}^{o}(v)$.
The second lemma is about the trace duality of completely 2 -summing norms.

Lemma 3. Let E and F be operator spaces and E be finite dimensional. Then for $v: F \rightarrow E$ we have

$$
\left(\pi_{2}^{o}\right)^{*}(v):=\sup \left\{|\operatorname{tr}(v u)| \mid \pi_{2}^{o}(u: E \rightarrow F) \leq 1\right\}=\pi_{2}^{o}(v)
$$

Proof. See Lemma 4.7 of [7].
The final lemma is about the relationship between the trace norm and the completely nuclear norm of a linear map on an operator space and the operator space approximation property.

Lemma 4. Let E be an operator space with the operator space approximation property. Then for any completely nuclear map $u: E \rightarrow E$ we can define $\operatorname{tr}(u)$, the trace of u, and we have

$$
|\operatorname{tr}(u)| \leq \nu^{o}(u)
$$

Proof. Since E has the operator space approximation property, the canonical mapping

$$
\Phi: E \widehat{\otimes} E^{*} \rightarrow E \otimes_{\min } E^{*}
$$

is one-to-one by Theorem 11.2 .5 of [2], where $\widehat{\otimes}\left(\right.$ resp. $\left.\otimes_{\min }\right)$ is the projective (resp. injective) tensor product in the category of operator spaces. Thus, $\mathcal{N}^{\circ}(E)$, the set of all completely nuclear maps on E, can be identified with $E \widehat{\otimes} E^{*}$ with the same norm. Since we have the trace functional defined on $E \widehat{\otimes} E^{*}\left(7.1 .12\right.$ of [2]), we can translate it to $\mathcal{N}^{o}(E)$, so that we have

$$
|\operatorname{tr}(u)| \leq\|U\|_{E \widehat{\otimes} E^{*}}=\nu^{o}(u)
$$

where $U \in E \widehat{\otimes} E^{*}$ is the element associated to $u \in \mathcal{N}^{o}(E)$.
Let E and F be operator spaces. Then the Γ_{∞}-norm and the γ_{∞}-norm of a linear map $v: E \rightarrow F$ are defined by

$$
\Gamma_{\infty}(v)=\inf \|\alpha\|_{c b}\|\beta\|_{c b}
$$

where the infimum is taken over all Hilbert spaces H and all factorizations

$$
i_{F} v: E \xrightarrow{\alpha} B(H) \xrightarrow{\beta} F,
$$

where $i_{F}: F \hookrightarrow F^{* *}$ is the canonical embedding, and

$$
\gamma_{\infty}(v)=\inf \|\alpha\|_{c b}\|\beta\|_{c b},
$$

where the infimum is taken over all $m \in \mathbb{N}$ and all factorizations

$$
v: E \xrightarrow{\alpha} M_{m} \xrightarrow{\beta} F .
$$

See Section 4 of [3] or [1] for the details.
Now we are ready to prove our main result. The proof follows the classical idea of [4].

Proof of Theorem 1. By Fact 1 and Fact 2 it is enough to show that the condition $\lambda_{c b}(E)=\sqrt{n}$ is inconsistent with the condition $\operatorname{ex}(E)=d_{\mathcal{S K}}(E)<$ \sqrt{n}.

Step 1. $\pi_{1}^{o}\left(I_{E}\right)=\sqrt{n}$.
By trace duality and Lemma 4.1 and 4.2 of [3] (or see Theorem 7.6 of [1]) we have

$$
\lambda_{c b}(E)=\Gamma_{\infty}\left(I_{E}\right)=\gamma_{\infty}\left(I_{E}\right)=\sup _{u \in \pi_{1}^{o}(E)} \frac{|\operatorname{tr}(u)|}{\pi_{1}^{o}(u)}
$$

Since E is finite dimensional, we can find $u \in C B(E)$ such that

$$
\frac{|\operatorname{tr}(u)|}{\pi_{1}^{o}(u)}=\sqrt{n}
$$

and by multiplying by a suitable constant we can also assume that $\pi_{2}^{o}(u)=$ \sqrt{n}. Then, by Lemma 2, Lemma 3, and Theorem 6.13 of [11], we obtain

$$
n=\sqrt{n} \pi_{2}^{o}(u) \leq \sqrt{n} \pi_{1}^{o}(u)=|\operatorname{tr}(u)| \leq \pi_{2}^{o}(u) \pi_{2}^{o}\left(I_{E}\right)=n
$$

Thus, we get

$$
\pi_{1}^{o}(u)=\sqrt{n} \text { and }|\operatorname{tr}(u)|=n
$$

Next, we show that u is actually I_{E}. By Proposition 6.1 of [11] we have the factorization

$$
u: E \xrightarrow{A} O H_{n} \xrightarrow{B} E \text { with } \pi_{2}^{o}(A)\|B\|_{c b} \leq \sqrt{n} .
$$

If we let $v: O H_{n} \rightarrow O H_{n}$ be defined by $v=A B$, we have $\operatorname{tr}(v)=\operatorname{tr}\left(v^{*}\right)=$ $\operatorname{tr}(u)$ and

$$
\begin{aligned}
\left\|I_{O H_{n}}-v\right\|_{H S}^{2} & =\operatorname{tr}\left(\left(I_{O H_{n}}-v\right)\left(I_{O H_{n}}-v\right)^{*}\right) \\
& =\operatorname{tr}\left(I_{O H_{n}}\right)-2 \operatorname{tr}(u)+\operatorname{tr}\left(v v^{*}\right) \\
& =n-2 n+\|v\|_{H S}^{2}=\left(\pi_{2}^{o}(v)\right)^{2}-n \\
& \leq\left(\pi_{2}^{o}(A)\|B\|_{c b}\right)^{2}-n \leq 0
\end{aligned}
$$

which leads to the desired conclusion.
Step 2. Now we factorize I_{E} as in the proof of Lemma 2. Then we have an ultrafilter \mathcal{U}, families of positive operators $\left(a_{\alpha}\right)_{\alpha \in I},\left(b_{\alpha}\right)_{\alpha \in I}$, in the unit ball of $S_{2}(H)$, such that the diagram (2.1) commutes for some u with

$$
\|u\|_{c b} \leq \pi_{1}^{o}\left(I_{E}\right)=\sqrt{n}
$$

Then we can find a rank n projection

$$
w_{1}: i(B(H)) \rightarrow i(B(H)) \text { onto } E_{\infty} \text { with } \pi_{1}^{o}\left(w_{1}\right) \leq \sqrt{n}
$$

Consider $i u: E_{1} \rightarrow i(B(H))$. Since i is a complete isometry, $i(B(H))$ is injective in the operator space sense, so that we can extend $i u$ to

$$
\tilde{u}: \prod_{\mathcal{U}} S_{1}(H) \rightarrow i(B(H)) \text { with }\|\tilde{u}\|_{c b}=\|i u\|_{c b}
$$

Now consider the same factorization $M=T_{2} T_{1}$ as before. Note that

$$
\pi_{2}^{o}\left(T_{1}\right) \leq 1 \text { and }\left\|T_{2}\right\|_{c b} \leq 1
$$

by the same calculation as the proof for (5.8) of [11] and (2.2), respectively. Then for

$$
w:=T_{1} \tilde{u} T_{2}: \prod_{\mathcal{U}} S_{2}(H) \rightarrow \prod_{\mathcal{U}} S_{2}(H)
$$

we have

$$
\begin{equation*}
\|w\|_{H S}=\pi_{2}^{o}(w) \leq \pi_{2}^{o}\left(T_{1}\right)\|\tilde{u}\|_{c b}\left\|T_{2}\right\|_{c b} \leq \pi_{2}^{o}\left(T_{1}\right)\|u\|_{c b} \leq \sqrt{n} \tag{2.3}
\end{equation*}
$$

Since $T_{1} i$ is 1-1, $F:=T_{1} i(E)$ is n-dimensional. Furthermore, since

$$
w T_{1} i x=T_{1} \tilde{u} T_{2} T_{1} i x=T_{1} i u \mathcal{M} i x=T_{1} i x
$$

for all $x \in E$, we have $\left.w\right|_{F}=I_{F}$, which means that $\left|\lambda_{k}(w)\right| \geq 1$ for $1 \leq k \leq n$, where $\left(\lambda_{k}(w)\right)_{k \geq 1}$ is the sequence of eigenvalues of w, in non-increasing order and counted according to multiplicity. By applying Weyl's inequality (Lemma 3.5.4 of [8]) and (2.3), we get

$$
n \leq \sum_{k=1}^{n}\left|\lambda_{k}(w)\right|^{2} \leq \sum_{k=1}^{\infty} s_{k}(w)^{2}=\|w\|_{H S}^{2} \leq n
$$

where $\left(s_{k}(w)\right)_{k \geq 1}$ is the sequence of singular values of w. Then we have

$$
\left|\lambda_{k}(w)\right|= \begin{cases}1 & \text { if } 1 \leq k \leq n \\ 0 & \text { if } k>n\end{cases}
$$

which implies that w has rank at most n, as does

$$
w_{1}:=\tilde{u} \mathcal{M}=\left.\tilde{u} T_{2} T_{1}\right|_{i(B(H))}: i(B(H)) \rightarrow i(B(H))
$$

Actually, w_{1} is our desired rank n projection. Indeed, we have

$$
w_{1} i x=\tilde{u} \mathcal{M} i x=i u \mathcal{M} i x=i x
$$

for all $x \in E$, and since E_{∞} is n-dimensional, w_{1} maps onto E_{∞}. Moreover, we have

$$
\pi^{o}\left(w_{1}\right) \leq\|\tilde{u}\|_{c b} \pi_{1}^{o}(\mathcal{M}) \leq \sqrt{n}
$$

since $\pi_{1}^{o}(\mathcal{M}) \leq 1((5.7)$ of [11]).
Step 3. Since $d_{\mathcal{S K}}\left(E_{\infty}\right)=d_{\mathcal{S K}}(E)<\sqrt{n}$, we have $F \in \mathcal{K}$ and an isomorphism

$$
T: E_{\infty} \rightarrow F \text { with }\|T\|_{c b}\left\|T^{-1}\right\|_{c b}<\sqrt{n} .
$$

By the fundamental extension theorem (Theorem 1.6 of [12]) we have extensions

$$
\widetilde{T}: i(B(H)) \rightarrow B\left(\ell_{2}\right) \text { and } \widetilde{T^{-1}}: B\left(\ell_{2}\right) \rightarrow i(B(H))
$$

of T and T^{-1}, respectively, with

$$
\|\widetilde{T}\|_{c b}=\|T\|_{c b} \quad \text { and }\left\|\widetilde{T^{-1}}\right\|_{c b}=\left\|T^{-1}\right\|_{c b}
$$

Let $\tilde{w}_{1}=\widetilde{T} w_{1} \widetilde{T^{-1}}: B\left(\ell_{2}\right) \rightarrow B\left(\ell_{2}\right)$. Then clearly we have $\operatorname{ran}\left(\tilde{w}_{1}\right) \subseteq F$ and $\left.\tilde{w}_{1}\right|_{F}=I_{F}$, which means that \tilde{w}_{1} is also a rank n projection from $B\left(\ell_{2}\right)$ onto
F. Since $F \subseteq \mathcal{K}$ and \mathcal{K} satisfies the operator space approximation property, we have by Lemma 4 and Corollary 15.5.4 of [2] that

$$
\begin{aligned}
n & =\left|\operatorname{tr}\left(\left.\tilde{w}_{1}\right|_{\mathcal{K}}: \mathcal{K} \rightarrow \mathcal{K}\right)\right| \leq \nu^{o}\left(\left.\tilde{w}_{1}\right|_{\mathcal{K}}: \mathcal{K} \rightarrow \mathcal{K}\right)=\pi_{1}^{o}\left(\left.\tilde{w}_{1}\right|_{\mathcal{K}}: \mathcal{K} \rightarrow \mathcal{K}\right) \\
& =\pi_{1}^{o}\left(\left.\tilde{w}_{1}\right|_{\mathcal{K}}: \mathcal{K} \rightarrow B\left(\ell_{2}\right)\right) \leq\|\widetilde{T}\|_{c b}\left\|\widetilde{T^{-1}}\right\|_{c b} \pi_{1}^{o}\left(w_{1}\right) \\
& \leq\|T\|_{c b}\left\|T^{-1}\right\|_{c b} \sqrt{n}<n
\end{aligned}
$$

This is a contradiction.

References

[1] E. G. Effros, M. Junge, and Z.-J. Ruan, Integral mappings and the principle of local reflexivity for noncommutative L^{1}-spaces, Ann. of Math. (2) $\mathbf{1 5 1}$ (2000), 59-92. MR 1745018 (2000m:46120)
[2] E. G. Effros and Z.-J. Ruan, Operator spaces, London Mathematical Society Monographs. New Series, vol. 23, The Clarendon Press Oxford University Press, New York, 2000. MR 1793753 (2002a:46082)
[3] M. Junge, Embedding of the operator space OH and the logarithmic 'little Grothendieck inequality', Invent. Math. 161 (2005), 225-286. MR 2180450 (2006i:47130)
[4] H. König and D. R. Lewis, A strict inequality for projection constants, J. Funct. Anal. 74 (1987), 328-332. MR 904822 (88j:46014)
[5] H. König and N. Tomczak-Jaegermann, Bounds for projection constants and 1summing norms, Trans. Amer. Math. Soc. 320 (1990), 799-823. MR 968885 (90k:46028)
[6] , Norms of minimal projections, J. Funct. Anal. 119 (1994), 253-280. MR 1261092 (94m:46024)
[7] H. H. Lee, Type and cotype of operator spaces, Studia Math. 185 (2008), 219-247.
[8] A. Pietsch, Eigenvalues and s-numbers, Cambridge Studies in Advanced Mathematics, vol. 13, Cambridge University Press, Cambridge, 1987. MR 890520 (88j:47022b)
[9] G. Pisier, Exact operator spaces, Astérisque (1995), 159-186, Recent advances in operator algebras (Orléans, 1992). MR 1372532 (97a:46023)
[10] , The operator Hilbert space OH, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 122 (1996). MR 1342022 (97a:46024)
[11] , Non-commutative vector valued L_{p}-spaces and completely p-summing maps, Astérisque 247 (1998). MR 1648908 (2000a:46108)
[12] , Introduction to operator space theory, London Mathematical Society Lecture Note Series, vol. 294, Cambridge University Press, Cambridge, 2003. MR 2006539 (2004k:46097)
[13] G. Pisier and D. Shlyakhtenko, Grothendieck's theorem for operator spaces, Invent. Math. 150 (2002), 185-217. MR 1930886 (2004k:46096)

Hun Hee Lee, Department of Mathematical Sciences, Seoul National University, San56-1 Shinrim-dong Kwanak-gu, Seoul 151-747, Korea

Current address: Department of Pure Mathematics, Faculty of Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada

E-mail address: hh5lee@math.uwaterloo.ca; lee.hunhee@gmail.com

[^0]: Received May 4, 2006; received in final form June 19, 2006.
 2000 Mathematics Subject Classification. Primary 47L25.
 Key words and phrases. Exactness constants, projection constants.
 Research supported by the BK21 program.

