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EXTREMAL CASES OF EXACTNESS CONSTANTS AND
COMPLETELY BOUNDED PROJECTION CONSTANTS

HUN HEE LEE

Abstract. We investigate some extremal cases of exactness constants
and completely bounded projection constants. More precisely, for an
n-dimensional operator space E we prove that λcb(E) =

√
n if and only

if ex(E) =
√

n.

1. Introduction

Exactness constants and completely bounded (c.b.) projection constants
are fundamental quantities in operator space theory.

For an operator space E ⊆ B(H), the c.b. projection constant of E, λcb(E),
is defined by

λcb(E) = inf{‖P‖cb | P : B(H) → E, projection onto E}.
Let B = B(`2) and K be the ideal of all compact operators on `2, and let

TE : (B ⊗min E)/(K ⊗min E) → (B/K)⊗min E

be the map obtained from

q ⊗ IE : B ⊗min E → (B/K)⊗min E

by the taking quotient with respect to K ⊗min E, where q : B → K is the
canonical quotient map. Then the exactness constant of E, ex(E) is defined
by

ex(E) =
∥∥T−1

E

∥∥ .

It is well known that the exactness constant is the same as dSK(E), where

dSK(E) = inf {dcb(E,F ) : F ⊆ K} ,

when E is finite dimensional ([9]).
The followings are well known facts about these quantities (Chapter 7 and

17 of [12] and Section 9 of [10]):
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Fact 1. For a finite dimensional operator space E we have

ex(E) = dSK(E) ≤ λcb(E).

Fact 2. When dim(E) = n ∈ N, we have

λcb(E) ≤
√

n.

Thus, for an n-dimensional operator space E, λcb(E) and ex(E) are both
bounded by

√
n, and this upper bound is known to be asymptotically sharp.

Indeed, we have ex(max `n
1 ) ≥ n

2
√

n−1
for n ≥ 2 ([9]). However, it is not yet

known whether there is an n-dimensional operator space E with λcb(E) =
√

n
or ex(E) =

√
n.

In this paper we investigate the extremal cases λcb(E) =
√

n and ex(E) =√
n and prove the following theorem.

Theorem 1. Let n ≥ 2 and E ⊆ B(H) be an n-dimensional operator
space. Then we have λcb(E) =

√
n if and only if ex(E) =

√
n. Equivalently,

λcb(E) <
√

n if and only if ex(E) <
√

n.

λcb(E) is the operator space analogue of the projection constant λ(X) of a
Banach space X given by λ(X) = sup{λ(X, Y ) | X ⊆ Y }, where

λ(X, Y ) = inf {‖P‖ | P : Y → Y projection onto X} .

See [4], [5], and [6] for more information on the Banach space case and [3] and
[13] for the operator space case.

Throughout this paper, we assume that the reader is familiar with the stan-
dard results about operator spaces ([2], [10]), completely nuclear maps ([2]),
and completely p-summing maps ([11]). For a linear map T : E → F between
operator spaces and 1 ≤ p < ∞ we denote the completely nuclear norm and
the completely p-summing norm of T by νo(T ) and πo

p(T ), respectively.
For an index set I, OH(I) denotes the operator Hilbert space on `2(I),

which was introduced in [10]. When I = {1, . . . , n} for n ∈ N, we simply
write OHn. For a family of operator spaces (Ei)i∈I and an ultrafilter U on I
we denote the ultraproduct of (Ei)i∈I with respect to U by

∏
U Ei.

2. Proof of the main result

For the proof we need several lemmas. The first lemma is about the re-
lationship between completely 1-summing maps and completely 2-summing
maps.

Lemma 2. Let v : E → F be a completely 1-summing map. Then v is
completely 2-summing with πo

2(v) ≤ πo
1(v).
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Proof. Let E ⊆ B(H) for some Hilbert space H. Then by Remark 5.7
of [11] we have an ultrafilter U over an index set I and families of positive
operators (aα)α∈I , (bα)α∈I , in the unit ball of S2(H) such that the following
diagram commutes for some u with ‖u‖cb ≤ πo

1(v):

E
v−−−−→ F

i

y xu

E∞ −−−−→
M

E1

(2.1)

where E∞ = i(E) for the complete isometry

i : B(H) ↪→
∏
U

B(H), x 7→ (x)α∈I ,

E1 = Mi(E) (the closure in
∏
U S1(H)) for

M :
∏
U

B(H) →
∏
U

S1(H), (xα) 7→ (aαxαbα),

and M = M |E∞ .
Next, we split M into M = T2T1, where

T1 :
∏
U

B(H) →
∏
U

S2(H), (xα) 7→ (a1/2
α xαb1/2

α )

and
T2 :

∏
U

S2(H) →
∏
U

S1(H), (xα) 7→ (a1/2
α xαb1/2

α ).

Note that

(2.2) ‖T2‖cb ≤ lim
U

∥∥∥Mα : S2(H) → S1(H) , x 7→ a1/2
α xb1/2

α

∥∥∥
cb
≤ 1,

since M∗
α = Nα for

Nα : B(H) → S2(H) , x 7→ a1/2
α xb1/2

α

and ‖Nα‖cb ≤ 1. Thus we have by Theorem 5.1 of [11] that

‖(vxij)‖Mn(F ) = ‖(uT2T1ixij)‖Mn(F ) ≤ πo
1(v) ‖(T2T1ixij)‖Mn(S1(H))

≤ πo
1(v) ‖(T1ixij)‖Mn(S2(H)) = πo

1(v)
∥∥∥(a1/2

α xijb
1/2
α )

∥∥∥
Mn(S2(H))

for any n ∈ N and (xij) ∈ Mn(F ), which implies πo
2(v) ≤ πo

1(v). �

The second lemma is about the trace duality of completely 2-summing
norms.

Lemma 3. Let E and F be operator spaces and E be finite dimensional.
Then for v : F → E we have

(πo
2)
∗(v) := sup {|tr(vu)| | πo

2(u : E → F ) ≤ 1} = πo
2(v).
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Proof. See Lemma 4.7 of [7]. �

The final lemma is about the relationship between the trace norm and
the completely nuclear norm of a linear map on an operator space and the
operator space approximation property.

Lemma 4. Let E be an operator space with the operator space approxima-
tion property. Then for any completely nuclear map u : E → E we can define
tr(u), the trace of u, and we have

|tr(u)| ≤ νo(u).

Proof. Since E has the operator space approximation property, the canon-
ical mapping

Φ : E⊗̂E∗ → E ⊗min E∗

is one-to-one by Theorem 11.2.5 of [2], where ⊗̂ (resp. ⊗min) is the projective
(resp. injective) tensor product in the category of operator spaces. Thus,
N o(E), the set of all completely nuclear maps on E, can be identified with
E⊗̂E∗ with the same norm. Since we have the trace functional defined on
E⊗̂E∗ (7.1.12 of [2]), we can translate it to N o(E), so that we have

|tr(u)| ≤ ‖U‖E b⊗E∗ = νo(u),

where U ∈ E⊗̂E∗ is the element associated to u ∈ N o(E). �

Let E and F be operator spaces. Then the Γ∞-norm and the γ∞-norm of
a linear map v : E → F are defined by

Γ∞(v) = inf ‖α‖cb ‖β‖cb ,

where the infimum is taken over all Hilbert spaces H and all factorizations

iF v : E
α→ B(H)

β→ F,

where iF : F ↪→ F ∗∗ is the canonical embedding, and

γ∞(v) = inf ‖α‖cb ‖β‖cb ,

where the infimum is taken over all m ∈ N and all factorizations

v : E
α→ Mm

β→ F.

See Section 4 of [3] or [1] for the details.
Now we are ready to prove our main result. The proof follows the classical

idea of [4].

Proof of Theorem 1. By Fact 1 and Fact 2 it is enough to show that the
condition λcb(E) =

√
n is inconsistent with the condition ex(E) = dSK(E) <√

n.
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Step 1. πo
1(IE) =

√
n.

By trace duality and Lemma 4.1 and 4.2 of [3] (or see Theorem 7.6 of [1])
we have

λcb(E) = Γ∞(IE) = γ∞(IE) = sup
u∈πo

1(E)

|tr(u)|
πo

1(u)
.

Since E is finite dimensional, we can find u ∈ CB(E) such that

|tr(u)|
πo

1(u)
=
√

n,

and by multiplying by a suitable constant we can also assume that πo
2(u) =√

n. Then, by Lemma 2, Lemma 3, and Theorem 6.13 of [11], we obtain

n =
√

nπo
2(u) ≤

√
nπo

1(u) = |tr(u)| ≤ πo
2(u)πo

2(IE) = n.

Thus, we get
πo

1(u) =
√

n and |tr(u)| = n.

Next, we show that u is actually IE . By Proposition 6.1 of [11] we have
the factorization

u : E
A→ OHn

B→ E with πo
2(A) ‖B‖cb ≤

√
n.

If we let v : OHn → OHn be defined by v = AB, we have tr(v) = tr(v∗) =
tr(u) and

‖IOHn − v‖2HS = tr
(
(IOHn − v)(IOHn − v)∗

)
= tr(IOHn)− 2 tr(u) + tr(vv∗)

= n− 2n + ‖v‖2HS = (πo
2(v))2 − n

≤ (πo
2(A) ‖B‖cb)

2 − n ≤ 0,

which leads to the desired conclusion.

Step 2. Now we factorize IE as in the proof of Lemma 2. Then we have an
ultrafilter U , families of positive operators (aα)α∈I , (bα)α∈I , in the unit ball
of S2(H), such that the diagram (2.1) commutes for some u with

‖u‖cb ≤ πo
1(IE) =

√
n.

Then we can find a rank n projection

w1 : i(B(H)) → i(B(H)) onto E∞ with πo
1(w1) ≤

√
n.

Consider iu : E1 → i(B(H)). Since i is a complete isometry, i(B(H)) is
injective in the operator space sense, so that we can extend iu to

ũ :
∏
U

S1(H) → i(B(H)) with ‖ũ‖cb = ‖iu‖cb .

Now consider the same factorization M = T2T1 as before. Note that

πo
2(T1) ≤ 1 and ‖T2‖cb ≤ 1
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by the same calculation as the proof for (5.8) of [11] and (2.2), respectively.
Then for

w := T1ũT2 :
∏
U

S2(H) →
∏
U

S2(H)

we have

(2.3) ‖w‖HS = πo
2(w) ≤ πo

2(T1) ‖ũ‖cb ‖T2‖cb ≤ πo
2(T1) ‖u‖cb ≤

√
n.

Since T1i is 1-1, F := T1i(E) is n-dimensional. Furthermore, since

wT1ix = T1ũT2T1ix = T1iuMix = T1ix

for all x ∈ E, we have w|F = IF , which means that |λk(w)| ≥ 1 for 1 ≤ k ≤ n,
where (λk(w))k≥1 is the sequence of eigenvalues of w, in non-increasing order
and counted according to multiplicity. By applying Weyl’s inequality (Lemma
3.5.4 of [8]) and (2.3), we get

n ≤
n∑

k=1

|λk(w)|2 ≤
∞∑

k=1

sk(w)2 = ‖w‖2HS ≤ n,

where (sk(w))k≥1 is the sequence of singular values of w. Then we have

|λk(w)| =

{
1 if 1 ≤ k ≤ n,
0 if k > n,

which implies that w has rank at most n, as does

w1 := ũM = ũT2T1|i(B(H)) : i(B(H)) → i(B(H)).

Actually, w1 is our desired rank n projection. Indeed, we have

w1ix = ũMix = iuMix = ix

for all x ∈ E, and since E∞ is n-dimensional, w1 maps onto E∞. Moreover,
we have

πo(w1) ≤ ‖ũ‖cb πo
1(M) ≤

√
n

since πo
1(M) ≤ 1 ((5.7) of [11]).

Step 3. Since dSK(E∞) = dSK(E) <
√

n, we have F ∈ K and an isomor-
phism

T : E∞ → F with ‖T‖cb

∥∥T−1
∥∥

cb
<
√

n.

By the fundamental extension theorem (Theorem 1.6 of [12]) we have exten-
sions

T̃ : i(B(H)) → B(`2) and T̃−1 : B(`2) → i(B(H))
of T and T−1, respectively, with∥∥∥T̃

∥∥∥
cb

= ‖T‖cb and
∥∥∥T̃−1

∥∥∥
cb

=
∥∥T−1

∥∥
cb

.

Let w̃1 = T̃w1T̃−1 : B(`2) → B(`2). Then clearly we have ran(w̃1) ⊆ F and
w̃1|F = IF , which means that w̃1 is also a rank n projection from B(`2) onto
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F . Since F ⊆ K and K satisfies the operator space approximation property,
we have by Lemma 4 and Corollary 15.5.4 of [2] that

n = |tr(w̃1|K : K → K)| ≤ νo(w̃1|K : K → K) = πo
1(w̃1|K : K → K)

= πo
1(w̃1|K : K → B(`2)) ≤

∥∥∥T̃
∥∥∥

cb

∥∥∥T̃−1
∥∥∥

cb
πo

1(w1)

≤ ‖T‖cb

∥∥T−1
∥∥

cb

√
n < n,

This is a contradiction. �

References

[1] E. G. Effros, M. Junge, and Z.-J. Ruan, Integral mappings and the principle of lo-
cal reflexivity for noncommutative L1-spaces, Ann. of Math. (2) 151 (2000), 59–92.
MR 1745018 (2000m:46120)

[2] E. G. Effros and Z.-J. Ruan, Operator spaces, London Mathematical Society Mono-
graphs. New Series, vol. 23, The Clarendon Press Oxford University Press, New York,
2000. MR 1793753 (2002a:46082)

[3] M. Junge, Embedding of the operator space OH and the logarithmic ‘little Grothendieck
inequality’, Invent. Math. 161 (2005), 225–286. MR 2180450 (2006i:47130)

[4] H. König and D. R. Lewis, A strict inequality for projection constants, J. Funct. Anal.
74 (1987), 328–332. MR 904822 (88j:46014)

[5] H. König and N. Tomczak-Jaegermann, Bounds for projection constants and 1-
summing norms, Trans. Amer. Math. Soc. 320 (1990), 799–823. MR 968885
(90k:46028)

[6] , Norms of minimal projections, J. Funct. Anal. 119 (1994), 253–280.
MR 1261092 (94m:46024)

[7] H. H. Lee, Type and cotype of operator spaces, Studia Math. 185 (2008), 219–247.
[8] A. Pietsch, Eigenvalues and s-numbers, Cambridge Studies in Advanced Mathematics,

vol. 13, Cambridge University Press, Cambridge, 1987. MR 890520 (88j:47022b)
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Astérisque 247 (1998). MR 1648908 (2000a:46108)
[12] , Introduction to operator space theory, London Mathematical Society Lecture

Note Series, vol. 294, Cambridge University Press, Cambridge, 2003. MR 2006539
(2004k:46097)

[13] G. Pisier and D. Shlyakhtenko, Grothendieck’s theorem for operator spaces, Invent.
Math. 150 (2002), 185–217. MR 1930886 (2004k:46096)

Hun Hee Lee, Department of Mathematical Sciences, Seoul National Univer-
sity, San56-1 Shinrim-dong Kwanak-gu, Seoul 151-747, Korea

Current address: Department of Pure Mathematics, Faculty of Mathematics, University
of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada

E-mail address: hh5lee@math.uwaterloo.ca; lee.hunhee@gmail.com


