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REFINED ANALYTIC TORSION: COMPARISON
THEOREMS AND EXAMPLES

RUNG-TZUNG HUANG

Abstract. Braverman and Kappeler introduced a refinement of the
Ray-Singer analytic torsion associated to a flat vector bundle over a
closed odd-dimensional manifold. We study this notion and improve
the Braverman-Kappeler theorem comparing the refined analytic torsion
with the Farber-Turaev refinement of the combinatorial torsion. Using
this result we establish, modulo sign, the Burghelea-Haller conjecture,
comparing their complex analytic torsion with the Farber-Turaev torsion
in the case when the flat connection can be deformed in the space of flat
connections to a Hermitian connection. We then compute the refined
analytic torsion of lens spaces and answer some of the questions posed
in [5, Remark 14.9].

1. Introduction

Let M be a closed oriented odd dimensional manifold and let E be a com-
plex vector bundle over M endowed with a flat connection ∇. In a series of
papers [5], [4], [6], [7], M. Braverman and T. Kappeler defined and studied a
nonzero element

ρan(∇) ∈ Det
(
H•(M,E)

)
of the complex determinant line Det

(
H•(M,E)

)
of the cohomology H•(M,E)

of M with coefficients in the complex vector bundle E. They called this
element refined analytic torsion. It can be viewed as an analytic analogue of
the refinement of the Reidemeister torsion due to Turaev [21], [22] and, more
generally, to Farber and Turaev [14], [15]. Recall that the Farber-Turaev
torsion ρε,o(∇) depends on the Euler structure ε, the cohomology orientation
o, and the connection ∇.

The following extension of the Cheeger-Müller theorem [11], [18] was proven
in [7, Theorem 5.11]: For each connected component C of the space Flat(E)
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1310 RUNG-TZUNG HUANG

of flat connections on E, there exists a constant θC ∈ R, such that

(1.1)
ρan(∇)
ρε,o(∇)

= eiθC

· fε,o(∇),

where fε,o(∇) is a holomorphic function of ∇ ∈ Flat(E), given by an explicit
local expression. Equality (1.1) does not give us any information about the
constant θC and its dependence on C, ε, and o. In particular, Braverman and
Kappeler posed the following two questions in [5, Remark 14.9],

Question 1. Does the constant θC depend on the connected component
C of the space Flat(E) of flat connections on E?

Question 2. For which connections ∇ one can find an Euler structure ε
and the cohomological orientation o such that ρan(∇) = ρε,o(∇)?

In Section 3 we compute the constant θC for any connected component C
of Flat(E) which contains a Hermitian connection. In Section 5 and Section
6 of this paper we compute the refined analytic torsion of lens spaces and
study its relationship with the cohomological Turaev torsion of lens spaces.
Our explicit calculation for the three-dimensional lens space L(5; 1, 1) shows
that, in general, the constant θC does depend on the connected component C
of Flat(E). This result provides a positive answer to Question 1 above. (Note
that, in the case of lens spaces, Flat(E) is discrete and coincides with the
space of acyclic Hermitian connections. Hence, connected components C of
Flat(E) are one-element subsets).

We then compute the quotient of the refined analytic torsion and cohomo-
logical Turaev torsion of the five-dimensional lens space L(3; 1, 1, 1). In this
case we show that for all connections, all Euler structures and all cohomo-
logical orientations, the cohomological Turaev torsion and the refined analytic
torsion are not equal. This provides a partial answer to Question 2 above.

In [9], [10] Burghelea and Haller defined a complex valued quadratic form,
referred to as complex Ray-Singer torsion. This torsion is defined for a com-
plex flat vector bundle over a closed manifold of arbitrary dimension, provided
that the complex vector bundle admits a non-degenerate complex valued sym-
metric bilinear form b. Burghelea and Haller ([10, Conjecture 5.1]; see also
Conjecture 4.1 below) conjectured that the complex Ray-Singer torsion is
roughly speaking equal to the square of the Farber-Turaev torsion and estab-
lished the conjecture in some non-trivial situations. Braverman and Kappeler,
[8], expressed the Burghelea-Haller complex Ray-Singer torsion in terms of the
square of the refined analytic torsion ρan(∇) and the eta invariant η(∇). In
particular, they proved a weak version of the Burghelea-Haller conjecture. In
Section 4 we improve this result for the case when ∇ belongs to a connected
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component of the space of flat connections on the associated complex vec-
tor bundle E which contains a Hermitian connection. Our result establishes,
modulo sign, the Burghelea-Haller conjecture for this case.

This paper is organized as follows. In Section 2 we recall the definitions
and properties of refined analytic torsion from [5], [4], [6]. In Section 3 we
study the comparison theorem of the refined analytic torsion and the cohomo-
logical Farber-Turaev torsion from [7, Theorem 5.11] and present the formula
of the constant θC . In Section 4 we present our result about the Burghelea-
Haller conjecture. In Section 5 we compute the refined analytic torsion of lens
spaces. In Section 6 we compute the Turaev torsion of lens spaces. At the end
of Section 6 we calculate the constant θC in the case of the three-dimensional
lens space L(5; 1, 1) and the quotient of the refined analytic torsion and co-
homological Turaev torsion of the five-dimensional lens space L(3; 1, 1, 1) and
explain how our computation gives answers to Question 1 and Question 2
above.

Acknowledgment. This paper is part of the author’s PhD thesis at North-
eastern University. The author would like to thank Maxim Braverman for
suggesting these problems as well as for help and encouragement throughout.
The author is also very grateful to Thomas Kappeler and to the referee for
very valuable comments and suggestions.

2. Refined analytic torsion

Throughout this paper we will assume that M is a closed oriented manifold
of odd dimension d = 2n − 1 and E is a complex vector bundle over M
endowed with a flat connection ∇. Fix a Riemannian metric gM on M . In
[6], Braverman and Kappeler defined a non-zero element (cf. [6, Section 7]),

(2.1) ρ(∇, gM ) ∈ Det
(
H•(M,E)

)
.

In general, ρ(∇, gM ) might depend on the Riemannian metric gM . Hence
they introduced the refined analytic torsion ρan(∇) (cf. Definition 2.3), which
is a slight modification of ρ(∇, gM ) and is independent of gM .

2.1. The odd signature operator. The refined analytic torsion is de-
fined in terms of the odd signature operator which was introduced by Atiyah,
Patodi, and Singer, [1, p. 44], [2, p. 405], and, in a more general setting, by
Gilkey, [16, pp. 64–65]. Hence, let us begin by recalling the definition of this
operator.

Let Ω•(M,E) denote the space of smooth differential forms on M with
values in E. Fix a Riemannian metric gM on M and let ∗ : Ω•(M,E) →
Ωd−•(M,E) denote the Hodge ∗-operator. Define the chirality operator Γ =
Γ(gM ) : Ω•(M,E) → Ω•(M,E) by the formula

(2.2) Γω := in(−1)
k(k+1)

2 ∗ ω, ω ∈ Ωk(M,E),
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where n is given as above by n = d+1
2 . Note that Γ2 = 1.

Definition 2.1. The (even part of the) odd signature operator Beven =
Beven(∇, gM ) acting on an even form ω ∈ Ω2p(M,E) is defined by the formula

Beven ω := (Γ∇+∇Γ)ω ∈ Ωd−2p−1( M,E ) ⊕ Ωd−2p+1( M,E ).

The operator Beven is an elliptic differential operator, whose leading symbol
is symmetric with respect to any Hermitian metric hE on E.

2.2. The η-invariant. Let θ be an Agmon angle for Beven; see [5, Defini-
tion 3.4] or [6, Definition 6.3] for the choice of this angle. The η-function of
Beven is defined by the formula

ηθ(s,Beven) =
∑

Re λk>0

mk(λk)−s −
∑

Re λk<0

mk(−λk)−s,

where λk is the eigenvalue of Beven and mk is the algebraic multiplicity of λk.
It is known, [16], that ηθ(s,Beven) has a meromorphic extension to the whole
complex plane C with isolated simple poles, and that it is regular at 0.

Let m+ (respectively, m−) denote the number of eigenvalues (counted with
their algebraic multiplicities) of Beven on the positive (respectively, negative)
part of the imaginary axis. Let m0 denote the algebraic multiplicity of 0 as
an eigenvalue of Beven.

Definition 2.2. The η-invariant η(∇) of Beven is defined by the formula

η(∇) =
ηθ( 0,Beven ) + m+ −m− + m0

2
.

Note that η(∇) is independent of the angle θ (cf. [5, Subsection 3.10]).

2.3. The refined analytic torsion. Let Btrivial = Γd + dΓ : Ω•(M) →
Ω•(M). Define

ηtrivial = ηtrivial(gM ) =
ηθ( 0,Btrivial )

2
to be the η-invariant corresponding to the trivial line bundle M × C → M
over M .

Recall that the element ρ(∇, gM ) ∈ Det
(
H•(M,E)

)
of the determinant

line of the cohomology of M with coefficients in E was defined in [6, Section
7]. If the bundle E is acyclic, Det

(
H•(M,E)

)
is canonically isomorphic to C.

In this case, ρ(∇, gM ) can be viewed as a complex number, which is equal to
the graded determinant of the operator Beven (cf. [5, Section 6]).

Definition 2.3. Let (E,∇) be a flat vector bundle on M . The refined
analytic torsion is the element

(2.3) ρan(∇) := ρ(∇, gM )·exp
(

iπ·rank E·ηtrivial(gM )
)
∈ Det

(
H•(M,E),
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where gM is any Riemannian metric on M .

It is shown in [6, Theorem 9.6] that ρan(∇) is independent of the choice of
the metric gM . Note that when dim M ≡ 1 (mod 4), ηtrivial = 0, and, hence,
ρan(∇) = ρ(∇, gM ).

3. Comparison between the refined analytic torsion and the
Farber-Turaev torsion

We now recall the definition of the canonical involution on the complex
determinant line Det

(
H•(M,E)

)
of the cohomology H•(M,E) of M with

coefficients in E. We then derive the formula of the phase of the refined
analytic torsion and recall the formula of the phase of the Farber-Turaev
torsion. Then we compute the constant θC and improve the Braverman-
Kappeler theorem comparing the refined analytic torsion and the Farber-
Turaev torsion.

3.1. Involution on the determinant line. In this subsection we recall
the definition of the canonical involution on the complex line Det

(
H•(M,E)

)
from [6, Subsection 10.1].

Let M be a closed oriented manifold of odd dimension d = 2n− 1 and let
E be a flat complex vector bundle over M admitting a flat Hermitian metric
hE and endowed with a flat connection ∇. Then

dhE(u, v) = hE(∇u, v) + hE(u,∇v), u, v ∈ C∞(M,E),

and hE can be extended canonically to a sesquilinear map

hE : Ω•(M,E)× Ω•(M,E) → Ω•(M, C).

For ω1, ω2 ∈ Ω•(M,E) and for each j = 0, . . . , d, we then obtain a sesquilinear
pairing

(3.1) hE : Ωj(M,E)× Ωd−j(M,E) → C, (ω1, ω2) 7→
∫

M

hE(ω1 ∧ ω2).

The pairing (3.1) induces a non-degenerate sesquilinear pairing

(3.2) Hj( M,E )⊗Hd−j( M,E ) −→ C, j = 0, . . . , d,

and allows us to identify Hj( M,E ) with the dual space of Hd−j( M,E ).
Using the construction of Subsection 3.4 of [6] we thus obtain a canonical
involution

(3.3) D : Det
(
H•(M,E)

)
−→ Det

(
H•(M,E)

)
.

Note that if the flat bundle E is acyclic, then the complex determinant line
Det

(
H•(M,E)

)
is canonically isomorphic to C and under this isomorphism

the involution (3.3) coincides with the complex conjugation.
If h ∈ Det

(
H•(M,E)

)
and D(h) = h, then the element h will be called

real. The real elements of Det
(
H•(M,E)

)
form a real line.
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If h ∈ Det
(
H•(M,E)

)
can be represented in the form h = h0e

iφ, where h0

is real, then φ ∈ R will be called the phase of h. It is defined up to an integral
multiple of π and we will denote it by Ph(h).

3.2. On sign conventions. The definition of the canonical involution D
in [6, Subsection 10.1] is different from the definition of the canonical involu-
tion in [14, Subsection 2.1] by a factor (−1)ν , ν ∈ Z. Hence, if we denote by
P̃h(h) the phase of h ∈ Det

(
H•(M,E)

)
as it is defined in [14], then

(3.4) Ph(h) = P̃h(h) +
πν

2
modπZ.

Note, however, that if the bundle E is acyclic, then both involutions coin-
cide with the complex conjugation (cf. Subsection 3.1 and [14, Lemma 2.2]).
Hence, for the acyclic case, ν = 0 and Ph(h) = P̃h(h).

3.3. Phase of the refined analytic torsion. In this subsection we de-
rive the formula of the phase of the refined analytic torsion ρan(∇). We have
the following proposition.

Proposition 3.1. Let M be a closed oriented manifold of odd dimension
d = 2n− 1 and let E be a flat complex vector bundle over M admitting a flat
Hermitian metric and endowed with a flat connection ∇. Then the phase of
the refined torsion ρan(∇) is given by the following formula:

(3.5) Ph
(
ρan(∇)

)
= −π

(
η(∇)− rank E · ηtrivial

)
modπZ.

Proof. From [6, Theorem 10.3], we have

(3.6) D
(
ρan(∇)

)
= ρan(∇) · e2iπ

(
η(∇)−rank E·ηtrivial

)
.

If ρan(∇) = ρ0e
iφ, where ρ0 is real with respect to the canonical involution

(3.3), then we obtain D
(
ρan(∇)

)
/ρan(∇) = e−2iφ. Therefore,

�(3.7) Ph
(
ρan(∇)

)
= −π

(
η(∇)− rank E · ηtrivial

)
modπZ.

3.4. Phase of the Farber-Turaev torsion. The homological version of
the formula of the phase of the Farber-Turaev torsion was computed in [14].
Similarly, we can compute the cohomological version of the formula of the
phase of the Farber-Turaev combinatorial torsion ρε,o(∇).

Following Farber [13], we denote by Arg∇ the unique cohomology class
Arg∇ ∈ H1(M, C/Z) such that for every closed curve γ ∈ M we have

(3.8) det
(

Mon∇(γ)
)

= exp
(
2πi〈Arg∇, [γ] 〉

)
,

where Mon∇(γ) denotes the monodromy of the flat connection ∇ along the
curve γ and 〈·, ·〉 denotes the natural pairing

H1(M, C/Z)×H1(M, Z) −→ C/Z.
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Note that when ∇ is a Hermitian connection, Mon∇(γ) is unitary and Arg∇ ∈
H1(M, R/Z) (cf. [13]).

Let c(ε) ∈ H1(M, Z) denote the characteristic class of the Euler structure
ε (cf. [15, Subsection 5.2] or [22]). Then we have the following proposition
([14, Theorem 2.3]).

Proposition 3.2. Let M be a closed oriented manifold of odd dimension
d = 2n− 1 and let E be a flat complex vector bundle over M admitting a flat
Hermitian metric and endowed with a flat connection ∇. Then the phase of
the Farber-Turaev torsion ρε,o(∇) is given by the following formula:

(3.9) Ph
(
ρε,o(∇)

)
= π〈Arg∇, c(ε) 〉 +

πν

2
modπZ,

where ν ∈ Z. If, moreover, the bundle E is acyclic, then ν = 0 (cf. Subsec-
tion 3.2).

3.5. Comparison between the Farber-Turaev torsion and the re-
fined analytic torsion. In [5], [7], Braverman and Kappeler computed the
ratio

R = R(∇, ε, o) :=
ρan(∇)
ρε,o(∇)

.

We now briefly recall their result. First, we need to introduce some additional
notations.

Let us denote by L̂(p) ∈ H•(M, Z) the Poincaré dual of the cohomology
class [L(p)], where L(p) = LM (p) is the Hirzebruch L-polynomial in the Pon-
trjagin forms of the Riemannian metric gM . Let L̂1 ∈ H1(M, Z) denote the
component of L̂(p) in H1(M, Z). Then

〈 [L(p)] ∪Arg∇, [M ] 〉 = 〈Arg∇, L̂1 〉 ∈ C/Z.

Note that when dim M ≡ 3 (mod 4), L̂1 = 0.
The following Braverman-Kappeler theorem comparing the refined analytic

torsion with the Farber-Turaev torsion was proven in [7, Theorem 5.11]. We
will restrict to the case when the connected component C of Flat(E) contains
a Hermitian connection.

Theorem 3.3. Suppose that M is a closed oriented odd dimensional man-
ifold. Let E be a flat complex vector bundle over M admitting a Hermitian
metric and endowed with a flat connection ∇. Let ε be an Euler structure on
M and let o be a cohomological orientation of M . Then, for each connected
component C of the set Flat(E) that contains a Hermitian connection, there
exists a constant θC = θC

o ∈ R/2πZ, depending on o (but not on ε), such that,
for any connection ∇ ∈ C,

(3.10)
ρan(∇)
ρε,o(∇)

= ±eiθC
o · e−πi〈Arg∇,c(ε)+bL1 〉.
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Now we compute the constant θC which appears in the quotient of the
refined analytic torsion and the cohomological Farber-Turaev torsion of M
(cf. (3.10)). We have the following theorem.

Theorem 3.4. Suppose that M is a closed oriented odd dimensional man-
ifold. Let E be a flat complex vector bundle over M admitting a Hermitian
metric and endowed with a flat connection ∇. Let ε be an Euler structure on
M and let o be a cohomological orientation of M . If the connected component
C of Flat(E) contains a Hermitian connection, then, for some ν ∈ Z:

(1) If dim M ≡ 1 (mod 4), then

(3.11) θC = −π
(

Re η(∇)− Re〈Arg∇, L̂1 〉
)

+
πν

2
mod πZ.

(2) If dim M ≡ 3 (mod 4), then

(3.12) θC = −π
(

Re η(∇)− rank E · ηtrivial

)
+

πν

2
mod πZ.

If, moreover, the bundle E is acyclic, then ν = 0 (cf. Subsection 3.2).

Proof. If ∇ ∈ C is a Hermitian connection, then the theorem follows by
combining Proposition 3.1 and Proposition 3.2 with Theorem 3.3.

Suppose that ∇t(t ∈ [0, 1]) is a smooth family of connections in C such
that ∇0 = ∇ is Hermitian. From Theorem 12.3 and Lemma 12.6 of [5] we
conclude that

(3.13)
d

dt
η(∇t) =

d

dt
〈Arg∇t

, L̂1〉.

Lemma 5.5 of [7] shows that

(3.14) exp
(
π Im〈Arg∇, L̂1 〉

)
= exp

(
π Im η(∇)

)
.

Hence by combining (3.13), (3.14) with the case that ∇ ∈ C is a Hermitian
connection, the theorem follows. �

From Theorem 3.3 and Theorem 3.4, we have the following theorem which
improves the Braverman-Kappeler theorem (Theorem 3.3).

Theorem 3.5. Suppose that M is a closed oriented odd dimensional man-
ifold. Let E be a flat complex vector bundle over M admitting a Hermitian
metric and endowed with a flat connection ∇. Let ε be an Euler structure on
M and let o be a cohomological orientation of M . If the connected component
C of Flat(E) contains a Hermitian connection, then

(3.15)
ρan (∇)
ρε,o(∇)

= ±iν · e−πi〈Arg∇,c(ε) 〉 · e−iπ(η(∇)−rank E·ηtrivial),

where ν ∈ Z. If, moreover, the bundle E is acyclic, then ν = 0 (cf. Subsec-
tion 3.2).
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4. Comparison between the Farber-Turaev torsion and the
Burghelea-Haller torsion

In [9], [10] Burghelea and Haller introduced a refinement of the square of
the Ray-Singer torsion for a closed manifold of arbitrary dimension, provided
that the complex vector bundle E admits a non-degenerate complex valued
symmetric bilinear form b. They defined a complex valued quadratic form
τb,∇ on the determinant line Det

(
H•(M,E)

)
. Then they defined a complex

valued quadratic form, referred to as complex Ray-Singer torsion. For the
closed oriented odd dimensional manifold M and the complex vector bundle
E over M endowed with a flat connection ∇, it is given by

(4.1) τBH
b,γ,∇ := τb,∇ · e−2

R
M

ω∇,b∧γ ,

where γ ∈ Ωd−1(M) is an arbitrary closed (d− 1)-form and ω∇,b ∈ Ω1(M) is
the Kamber-Tondeur form (cf. [10, Section 2]).

Burghelea and Haller conjectured, [10, Conjecture 5.1], that for a suitable
choice of γ the form τBH

b,γ,∇ is roughly speaking equal to the square of the
Farber-Turaev torsion and established the conjecture in some non-trivial sit-
uations. Though the conjecture is for manifolds of arbitrary dimensions, we
restrict to the odd dimensional case and adopt the following formulation from
[8, Conjecture 1.9].

Conjecture 4.1 (Burghelea-Haller). Let M be a closed oriented manifold
of odd dimension d = 2n − 1 and let E be a flat complex vector bundle over
M endowed with a flat connection ∇. Let b be a non-degenerate symmetric
bilinear form on E. Let ε be an Euler structure on M represented by a non-
vanishing vector field X and let o be a cohomological orientation of M . Fix
a Riemannian metric gM on M and let Ψ(gM ) ∈ Ωd−1(TM\{0}) denote the
Mathai-Quillen form, [3, pp. 40–44], [17, Section 7]. Set

(4.2) γε = γε(gM ) := X∗Ψ(gM ).

Then

(4.3) τBH
b,γε,∇(ρε,o(∇)) = 1.

In [8] Braverman and Kappeler expressed the Burghelea-Haller complex
Ray-Singer torsion in terms of the square of the refined analytic torsion ρan(∇)
and the eta invariant η(∇). In particular, they proved the following weak
version of the Burghelea-Haller conjecture: τBH

b,γε,∇(ρε,o(∇)) is locally constant
in ∇ and

|τBH
b,γε,∇(ρε,o(∇))| = 1.

In the following theorem we improve this result for the case when ∇ belongs to
a connected component of the space of flat connections on the associated com-
plex vector bundle E which contains a Hermitian connection. More precisely,
we have the following theorem:
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Theorem 4.2. Suppose the assumptions of Conjecture 4.1 hold, and as-
sume in addition that the connected component C of the set Flat(E) of flat
connections on E contains a Hermitian connection. Then

(4.4) τBH
b,γε,∇(ρε,o(∇)) = ±1, for all ∇ ∈ C.

Proof. In Theorem 1.10 of [8], Braverman and Kappeler proved that
τBH
b,γε,∇(ρε,o(∇)) is constant on C with absolute value 1. Hence it is enough to

prove the equality (4.4) in the case when ∇ ∈ C is a Hermitian connection.
From (1.1), (1.2) and Theorem 1.4 of [8] we have

(4.5) τBH
b,γε,∇(ρan(∇)) = ±e−2πi

(
η(∇)−rank E·ηtrivial

)
· e−2

R
M

ω∇,b∧γε .

We also have (cf. [8, Subsection 5.4])

(4.6) e−2
R

M
ω∇,b∧γε = e<[ω∇,b,c(ε)]> = ±e−2πi〈Arg∇,c(ε) 〉.

From (3.8) and (3.15), we get

(4.7)
( ρan (∇)

ρε,o(∇)

)2

= ±e−2πi〈Arg∇,c(ε) 〉 · e−2iπ
(

η(∇)−rank E·ηtrivial

)
.

By combining (4.5) and (4.6) with (4.7), we obtain the result. �

5. Refined analytic torsion of lens spaces

In this section we compute the refined analytic torsion of lens spaces. We
begin by recalling the relationship of the acyclic case of the refined analytic
torsion with the Ray-Singer torsion and the eta invariants. We then recall
the definition of a lens space and the formula for the Ray-Singer torsion of
a lens space from [19]. Then we recall the formula for the eta invariant of a
lens space from [2]. By combining these results, we obtain the refined analytic
torsion of a lens space.

5.1. The acyclic case of the refined analytic torsion. Denote by
M̃ the universal covering of M and by π1(M) the fundamental group of M ,
viewed as the group of deck transformations of M̃ → M. For each complex
representation α : π1(M) → GL(r, C), we denote by

(5.1) Eα := M̃ ×α Cr → M

the flat vector bundle induced by α. Let ∇α be the flat connection on Eα

induced from the trivial connection on M̃ × Cr. We also denote by ∇α the
induced differential

∇α : Ω•( M, Eα ) → Ω•+1( M, Eα ),

where Ω•(M,Eα) denotes the space of smooth differential forms of M with
values in Eα.
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If the representation α is acyclic, i.e., H•(M,Eα) = 0, then the determinant
line Det(H•(M,Eα)) is canonically isomorphic to C. In particular, if α is an
acyclic unitary representation of π1(M), then (cf. [5, Section 12])

(5.2) ρan(∇α) = ρRS
α · e−iπηα · eiπ·rank α·ηtrivial ,

where ρRS
α := ρRS(∇α) is the well-known Ray-Singer torsion, [20], and ηα :=

η(∇α).

5.2. The lens space. Fix an integer m ≥ 3 and let Gm denote the cyclic
group of order m. We fix a generator g ∈ Gm so that Gm = {1, g, . . . , gm−1}.

Let p1, . . . , pn be integers relatively prime to m. Then the action of Gm on
the sphere

S2n−1 =
{

z ∈ Cn | ‖z‖ = 1
}

defined by

(5.3) g · ( z1, . . . , zn ) =
(
e2πip1/mz1, . . . , e

2πipn/mzn

)
is free. The lens space L = L(m; p1, . . . , pn) is the orbit space of this action

L = L( m; p1, . . . , pn ) := S2n−1/Gm.

Clearly, π1(L) = Gm.
Fix q ∈ Z and consider the unitary representation α = αq : π1(L) = Gm →

U(1), defined by

αq(g) = e2πiq/m.

We will be interested in the refined analytic torsion ρan(q) = ρan(∇αq
) asso-

ciated to the representation αq.

5.3. The Ray-Singer torsion of the lens spaces. In this subsection we
recall the formula for the Ray-Singer torsion of lens spaces from [19, Section
4]. Note that our definition of the logarithm of the Ray-Singer torsion is
negative one half of the logarithm of the Ray-Singer torsion defined in [19].

Proposition 5.1. Let lk (k = 1, . . . , n) be any integers such that lkpk ≡
1 (modm) and let ρRS

αq
(L) denote the Ray-Singer torsion of the lens space L

associated to the nontrivial acyclic representation αq. Then

ρRS
αq

(L) =
n∏

k=1

∣∣∣e 2πiqlk
m − 1

∣∣∣ .

5.4. The η invariant of the odd signature operator for lens spaces.
By a slight modification of Proposition 2.12 in [2], where the eta invariant
ηtrivial of a lens space for trivial representation was computed, we have the
following proposition; see also [12, Proposition 4.1].
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Proposition 5.2. Let ηαq
= ηq denote the eta invariant of the odd sig-

nature operator Beven(∇αq
, gL) of the lens space L. Then

ηq =
i−n

2m

m−1∑
l=1

(
e

2πilq
m ·

n∏
j=1

cot
πlpj

m

)
.

In particular, when n is even we have

ηq =
i−n

2m

m−1∑
l=1

(
cos

2πlq

m
·

n∏
j=1

cot
πlpj

m

)
,

and when n is odd we have

ηq =
i1−n

2m

m−1∑
l=1

(
sin

2πlq

m
·

n∏
j=1

cot
πlpj

m

)
.

Note that our η invariant is equal to one half of the η invariant in [2].
Combining these two propositions with (5.2) and Proposition 2.12 in [2],

we have:

Theorem 5.3. For the lens space L = L( m; p1, . . . , pn ),m ≥ 3, and
the nontrivial acyclic representation αq : π1(L) = Gm → U(1) such that
αq(g) = e2πiq/m, the refined analytic torsion is given by

ρan(q) =
n∏

k=1

∣∣∣e 2πiqlk
m − 1

∣∣∣ · e i−(n+1)π
2m

Pm−1
l=1 (e

2πilq
m ·

Qn
j=1 cot

πlpj
m )·

· e
i−(n−1)π

2m

Pm−1
l=1 (

Qn
j=1 cot

πlpj
m ),

where lk (k = 1, . . . , n) are any integers such that lkpk ≡ 1 (modm)

6. Comparison between the refined analytic torsion and the
Turaev torsion of a lens space

In this section we begin by recalling the definition of the Turaev torsion
and computing the Turaev torsion of lens spaces. We then calculate the
constant θC for the three-dimensional lens space L(5; 1, 1) and the ratio R
of the refined analytic torsion and cohomological Turaev torsion of the five-
dimensional lens space L(3; 1, 1, 1) and explain how our computations give
answers to Questions 1 and 2 of the introduction.

6.1. Torsion of an acyclic chain complex. Let F be a field of charac-
teristic zero and let

C : 0 −→ Cd
∂d−1−→ Cd−1

∂d−2−→ . . .
∂0−→ C0 −→ 0

be a finite dimensional chain complex over F. Assume that the chain complex
(C, ∂) is acyclic, i.e., H∗(C) = 0. For each i, let ci be a fixed basis for Ci and
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bi be a sequence of vectors in Ci whose image under ∂i−1 is a basis in Im ∂i−1.
Then the vectors ∂i(bi+1), bi form a basis for Ci. The torsion of C is defined
by

τcomb(C) =
d∏

i=0

[ ∂i(bi+1)bi/ci ](−1)i+1
,

where [∂i(bi+1)bi/ci] is the determinant of the matrix transforming ci into the
basis ∂i(bi+1), bi of Ci.

6.2. The Reidemeister torsion. Fix a CW-decomposition X =
{e1, . . . , eN} of M . For each j = 1, . . . , N , fix a lift ẽj , i.e., a cell of the
CW-decomposition X̃ of M̃ , such that π(ẽj) = ej . By (5.1), the pull-back of
the bundle Eα to M̃ is the trivial bundle M̃× Cn → M̃ . Hence, the set of the
cells ẽ1 . . . ẽN identifies the chain complex C(X, α) of the CW-complex X with
coefficients in Eα with the complex C(X̃)⊗α Cr, where α : π1(X) → GL(r, C)
is a representation. Assume that this chain complex C(X, α) is acyclic, i.e.,

H∗( M,Eα ) = H∗( C(X, α) ) = 0.

Then the Reidemeister torsion is defined as the torsion of this chain complex.

6.3. Combinatorial Euler structures and the homological Turaev
torsion. In this subsection we recall the definition of combinatorial Euler
structures from [23].

A family ê = {êi} of open cells in the maximal abelian covering

X̂ = X̃/[π1(X), π1(X) ]

of X is called fundamental if each open cell ei in X is covered exactly by one
cell êi of ê.

Following Turaev, we denote the operation of any two cells in multiplicative
notation. Let

ê′/ê =
∏

ei∈X

( ê′i/êi )(−1)dim ei ∈ H1(M)

for any two fundamental families ê and ê′, where ê′i/êi ∈ H1(M). We say that
the fundamental families ê and ê′ are equivalent if ê/ê′ = 1. The equivalence
classes are called combinatorial Euler structures on M .

Let α : π1(M) → GL(r, C) be an acyclic representation. Then we can as-
sociate to each combinatorial Euler structure ε on M the homological Turaev
torsion

τα( M, ε ) = τα( M, ê ) ∈ C/± .

For each Euler structure ε on M , there is an Euler class c(ε) ∈ H1(M)
associated to it (cf. [22] or [15, Subsection 5.2]). If d = dim M is odd, then
(in multiplicative notation)

(6.1) c(hε) = h2c(ε)
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for any ε ∈ Eul(M), h ∈ H1(M).
Turaev also introduced the homology orientation to get rid of the sign

indeterminacy of Reidemeister torsion. For our purpose it will be enough to
consider the Turaev torsion up to sign, so we skip the definition of homology
orientation.

6.4. The cohomological Turaev torsion. In this subsection we recall
the relationship of the cohomological Turaev torsion with the homological
Turaev torsion (cf. [15, Subsection 9.2]).

Let M be a closed oriented manifold of odd dimension d = 2n−1, where n ≥
1 and α : π1(M) → GL(r, C) be an acyclic representation of the fundamental
group of M . Denote the cohomological Turaev torsion associated to the Euler
structure ε by ρα( M, ε )(= ρε,o(∇α) ). Then (cf. [15, p. 218, (9.2), (9.3)])

(6.2) ρα( M, ε ) =
1

τα∗( M, ε )
,

where α∗ is the dual representation of α. Recall that, for all g ∈ π1(M),
α∗(g) = ( α(g)−1 )t (cf. [15, Subsection 4.1]), where t denotes the transpose of
matrices. It is clear that for all g ∈ π1(M) we have det( α(g) )·det(α∗(g) ) = 1.

6.5. The Turaev torsion of lens spaces. In this subsection we compute
the Turaev torsion of lens spaces. Let L = L(m; p1, . . . , pn),m ≥ 3, be the
lens space. First we fix a preferred Euler structure ε on L. Consider the CW-
decomposition e = { ej }j=1,...,2n−1 of L such that the CW-decomposition e
lifts to a Gm-equivariant CW-decomposition of S2n−1. More precisely, for
each j = 1, . . . , 2n− 1, let us fix the lift ẽj of ej to S2n−1 such that, for each
i = 1, . . . , n,
(6.3)

ẽ2i−1 =
{

(z1, . . . , zn) ∈ S2n−1 | zi+1 = · · · = zn = 0, 0 < arg zi < 2π/m
}

and

(6.4) ẽ2i−2 =
{

(z1, . . . , zn) ∈ S2n−1 | zi+1 = · · · = zn = 0, arg zi = 0
}
.

Then

ẽ =
{

gj · ẽ2i−1, g
j · ẽ2i−2

}
i=1,...,n,j∈Z/mZ

defines a Gm-equivariant CW-decomposition of S2n−1 with m cells in each
dimension. Note that e has exactly one cell in each dimension. Then by (5.3),
we have

(6.5) g · ẽ2i−1 =
{

(z1, . . . , zn) ∈ S2n−1 |
zi+1 = · · · = zn = 0, 2πpi/m < arg zi < 2π(pi + 1)/m

}
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and

(6.6) g · ẽ2i−2 =
{

(z1, . . . , zn) ∈ S2n−1 |
zi+1 = · · · = zn = 0, arg zi = 2πpi/m

}
.

Recall that S2n−1 is the universal covering and also the maximal abelian
covering of the lens space L, so we can consider the collection of cells ê =
{ẽj}1≤j≤2n−1 in S2n−1 as a fundamental family in S2n−1. The equivalence
class of this family defines an Euler structure denoted by ε.

In the following proposition we will compute the homological Turaev torsion
τα(L, ε) of the lens space L and the preferred Euler structure ε by using the
same argument as for the Reidemeister torsion of lens spaces; see [23, Theorem
10.6, p. 45] for the detailed computation of the Reidemeister torsion of lens
spaces.

Proposition 6.1. Let L = L(m; p1, . . . , pn),m ≥ 3, be the lens space.
Let g ∈ π1(L) be the generator and let l1, . . . , ln ∈ Z/mZ such that lkpk ≡
1 (modm). Let αq : π1(L) = Gm → U(1) be the nontrivial unitary represen-
tation such that αq(g) = e2πiq/m, 1 ≤ q ≤ m − 1. Also let ε be the Euler
structure defined as above. Then H∗(C(L,αq)) = 0 and

(6.7) ταq ( L, ε ) =
n∏

k=1

∣∣∣e2πiqlk/m − 1
∣∣∣−1

· in · e−
πiq

Pn
k=1 lk
m ∈ C∗/± .

Proof. Assume that ẽi is oriented for each i such that the boundary ho-
momorphism of the chain complex C(S2n−1) is given by (cf. (6.3), (6.6)) and
recall that lipi ≡ 1 (modm),

∂ẽ2i−1 = gli ẽ2i−2 − ẽ2i−2 = (gli − 1)ẽ2i−2

and (cf. (6.4) and (6.5)),

∂ẽ2i−2 = ẽ2i−3 + gẽ2i−3 + · · ·+ gm−1ẽ2i−3 =
m−1∑
j=0

gj ẽ2i−3.

Since, by assumption, αq(g) 6= 1 and since αq(g)m = 1, we have that
m−1∑
j=0

αq(g)j =
αq(g)m − 1
αq(g)− 1

= 0.

Hence we have the chain complex

C(L,αq) = C(S2n−1)⊗αq C = (· · · 0→ Cẽ2i−1
e2πiqli/m−1−→ Cẽ2i−2

0→ . . . ).

It is not difficult to see that

H∗
(
C(L,αq)

)
= 0.
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It follows from the definitions that

(6.8) ταq ( L, ε ) = ±
n∏

k=1

( e2πiqlk/m − 1 )−1.

We now compute the phase θ of ταq (L, ε). Set r = |ταq (L, ε)|. Then ταq (L, ε) =
reiθ and

(6.9) ταq ( L, ε )
/

ταq
(L, ε) = e2iθ.

A simple calculation using (6.8) shows that

ταq (L, ε)
/

ταq
(L, ε) =

n∏
k=1

( e2πiqlk/m − 1)−1

(e−2πiqlk/m − 1 )−1
(6.10)

= (−1)n · e−2πiq
Pn

k=1 lk/m.

From (6.9) and (6.10), we obtain

θ = nπ/2− πq

n∑
k=1

lk/m.

Hence the proposition follows. �

Note that the first component
∏n

k=1 |e2πiqlk/m− 1|−1 of (6.7) is the Reide-
meister torsion of L.

Now we compute the cohomological Turaev torsion of lens spaces. We will
follow the same notations as in Proposition 6.1.

Proposition 6.2. Let ραq (L, ε) denote the cohomological Turaev torsion
of the lens space L associated to the preferred Euler structure ε. Then

ραq
( L, ε ) =

n∏
k=1

∣∣∣e2πiqlk/m − 1
∣∣∣ · in · e−πiq

Pn
k=1 lk
m ∈ C∗/± .

Proof. The proposition follows from (6.2) and Proposition 6.1. �

The following theorem gives the cohomological Turaev torsion of a lens
space for an arbitrary Euler structure ε. Recall that the cardinality of the set
of the Euler structures Eul(L) and the cardinality of H1(L) are the same and
equal to m.

Theorem 6.3. Let ê be a fundamental family of the preferred Euler struc-
ture ε (cf. Proposition 6.1), and let ε be the Euler structure represented by
a fundamental family ê′. Then there exists s ∈ {0, . . . ,m − 1}, such that
ê′/ê = gs (cf. Subsection 6.3), and the cohomological Turaev torsion of lens
space L associated to the Euler structure ε is given by

(6.11) ραq
(L, ε) =

n∏
k=1

∣∣∣e2πiqlk/m − 1
∣∣∣ · in · eπiq(2s−

Pn
k=1 lk)

m ∈ C∗/± .



REFINED ANALYTIC TORSION 1325

Proof. The theorem follows easily from Proposition 6.2 and the following
property of the Turaev torsion (cf. [15, (9.4)]):

ραq (L, ê′) = ±αq( ê′/ê)ραq (L, ê ). �

6.6. Dependence of the constant θC on the representation. An
example. Theorem 3.3 does not give any information about the dependence
of the constant θC on the connected component C. In this subsection we use
the results of previous subsection to study this dependence in the case of lens
spaces. Our goal is to show that, in general, θC = θα does depend on α, thus
providing a positive answer to Question 1 of the introduction.

Let αq be the representation as before and L = L(5; 1, 1) be the lens space.
A direct computation using Theorem 3.4 and Proposition 5.2 shows that

θα1 = θα4 = −3π/10 mod πZ

and

θα2 = θα3 = −7π/10 mod πZ.

Therefore we conclude that the constant θαq depends on the representation
αq.

6.7. The ratio of the refined analytic torsion and the Turaev tor-
sion. An example. It is natural to ask for which representations α one
can find an Euler structure ε and a cohomological orientation o such that
ρan(∇) = ρε,o(∇). In this subsection we use Theorem 5.3 and Theorem 6.3 to
show that the refined analytic torsion and the cohomological Turaev torsion
of the five-dimensional lens space L(3; 1, 1, 1) are never equal.

We compute the ratio R of the two torsions of the lens space L(3; 1, 1, 1)
for all nontrivial representations (i.e., q = 1, 2) and all Euler structures (i.e.,
s = 0, 1, 2); see Theorem 6.3 for the definition of s. A direct computation
gives the following table for the ratio R.

s = 0 s = 1 s = 2

q = 1 R = ±e
5πi
9 R = ±e

8πi
9 R = ±e

2πi
9

q = 2 R = ±e
−5πi

9 R = ±e
−8πi

9 R = ±e
−2πi

9

We conclude that for all Euler structures ε on L(3; 1, 1, 1) and all rep-
resentations α of the fundamental group of L(3; 1, 1, 1), the refined analytic
torsion and the Turaev torsion are not equal. This provides a partial answer
to Question 2 of the introduction.
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Added in proof. Since this paper was accepted for publication, addi-
tional progress has been made. Burghelea and Haller (D. Burghelea and
S. Haller, Complex valued Ray-Singer torsion, II, arXiv:math.DG/0610875)
proved Conjecture 4.1 up to sign. Independently and at the same time Su
and Zhang (G. Su and W. Zhang, A Cheeger-Mueller theorem for symmetric
bilinear torsion, arXiv:math.DG/0610577) proved Conjecture 4.1 in full gen-
erality. A generalization of Conjecture 4.1 is proposed in the final revision of
[8].
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Birkhäuser Verlag, Basel, 2001, Notes taken by Felix Schlenk. MR 1809561
(2001m:57042)

Rung-Tzung Huang, Department of Mathematics, Northeastern University,
Boston, MA 02115, USA

Current address: School of Mathematics, Korea Institute for Advanced Study, 207-43,
Cheongnyangui 2-dong, Dongdaemun-gu, Seoul 130-722, Korea

E-mail address: rthuang@kias.re.kr


