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THE p-BANACH SAKS PROPERTY IN SYMMETRIC
OPERATOR SPACES

F. LUST-PIQUARD AND F. SUKOCHEV

Abstract. Let E be a separable r.i. space which is an interpolation
space between Lr(R+) and Lq(R+), 1 < r < q < ∞. We give sufficient
conditions on E implying that the symmetric operator space E(M, τ)
has the p-Banach-Saks property for a suitable p, for an arbitrary semifi-
nite von Neumann algebraM.

1. Introduction

We recall that a Banach space X has the p-Banach-Saks property (pBS for
short), where 1 < p < ∞, if every weakly null sequence in X has a p-Banach-
Saks subsequence (yj)∞j=1, i.e., there exists a positive constant K such that

lim
n→∞

n−1/p

∥∥∥∥∥∥
n∑
j=1

xj

∥∥∥∥∥∥ ≤ K

for all subsequences (xj)∞j=1 ⊆ (yj)∞j=1.
For example, if 1 < p < ∞, Lp([0, 1]) has inf{p, 2}BS and this is sharp

[B]; the same holds for non-commutative Lp(M, τ) spaces; see [HRS], [S1] if
the trace is finite, and [DDS, Proposition 3.2]. More generally, for a Banach
space, type p implies pBS [R] (and we shall in passing give a proof of this
fact in the preliminaries). Here we show that there are symmetric operator
spaces E(M, τ) with no type which have pBS, e.g., among Lorentz spaces
(Proposition 15). More generally, we complement in the non-commutative
setting results obtained for r.i. spaces E(0, 1) in [SS], [ASS]: they relate the
pBS property in E and the Boyd indices of E when these are non-trivial
(if at least one of the indices is trivial, then E does not have pBS for any
1 < p < ∞ [ASS, Theorem 4.2]). The Boyd indices of E are non-trivial if and
only if E is an interpolation space between some Lr and Lq, 1 < r < q < ∞
(see the definitions and references below). Assuming that E is such a space,
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we relate the pBS property in E(M, τ) and the disjoint pBS-property in E.
Here, (M, τ) is an arbitrary semifinite von Neumann algebra with a faithful
normal semifinite trace, E(M, τ) is the symmetric operator space associated
with E and (M, τ), and the disjoint pBS property in E means that every
weakly null sequence of disjointly supported elements in E has a p-Banach-
Saks subsequence.

Our main results are Theorem 8 (q ≤ 2) and Theorem 12. The pBS
property in the setting of symmetric operator spaces was briefly considered
in [DDS], however our results here (and some techniques) are different.

A classical application of p-Banach-Saks properties is that a Banach space
with exact pBS cannot embed isomorphically in a Banach space possessing
qBS, if p < q. We give an example in Proposition 15, which is parallel to
(but does not follow from) some results in [A], [AL], [DDS].

The paper is organized as follows: in Part 1 we collect notation and pre-
liminaries; Part 2 is devoted to the proof of Theorem 8, Part 3 to the proof
of Theorem 12, Part 4 to the example of non-commutative Lorentz Lp,q(M)
spaces. In the Appendix we collect some facts on D*-convexity and its com-
panion property D-convexity.

Comment: Let us compare our methods with those of previous papers: in
contrast to [SS], [ASS], we do not use square functions. Besides interpolation,
we use the Brunel-Sucheston Theorem as in [DDS], D*-convexity as in [DSeS,
Part 5] and the characterization of relatively weakly compact sets in E(M)
[DSS]; in Part 3 we also need a splitting principle (Proposition 11) as in
most papers on this topic, and a substitute of the Schmidt decomposition in
non-atomic von Neumann algebras as in [DDS].

2. Definitions, notation, preliminaries

We define rearrangement invariant (r.i. for short) function spaces E on the
interval [0, a), 0 < a ≤ ∞, equipped with Lebesgue measure m, as in [LT, 2.a].
They form a subclass of fully symmetric function spaces [DDP],[LT, Definition
2.a.6, Proposition 2.a.8].

We shall deal mostly with separable r.i. spaces E: indeed, the property
pBS, inherited by closed subspaces, does not hold in l∞, and r.i. spaces which
do not contain l∞ as a closed subspace are separable.

Let (M, τ) be a semifinite von Neumann algebra on the Hilbert space H,
equipped with a faithful normal semifinite trace. We denote by M̃ the *-
algebra of closed densely defined operators x on H which commute with the
unitaries of M′ and are τ−measurable (i.e., for every ε > 0 there exists an or-
thogonal projection P ∈M such that τ(Id−P ) < ε and P (H) ⊂ dom x, xP ∈
M). The sets
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N(ε, δ) =
{

x ∈ M̃ | ∃ P ∈M, P = P ∗ = P 2,

τ(Id−P ) < ε, ‖xP‖M < δ
}

form a base at 0 for the (metrizable) measure topology on M̃. Let x ∈ M̃,
and let E|x| be the spectral measure of |x| ; the generalized singular value
function of x is µ(x) : t → µt(x), where, for 0 ≤ t < τ(Id) := a,

µt(x) = inf{s ≥ 0 | τ(E|x|(s,∞) ≤ t}.

For f ∈ ˜L∞[0, a), µ(f) is the decreasing rearrangement of |f | [LT, p. 116].

Symmetric operator spaces. Let (M, τ) be a semifinite von Neumann
algebra as above and let E = E[0, a) be a r.i. space. Then the symmetric
operator space E(M, τ) is the Banach space of those x ∈ M̃ whose generalized
singular value function µ(x) belongs to E, and

‖x‖E(M,τ) = ‖µ(x)‖E .

Since there will be no ambiguity, we shall write E(M) instead of E(M, τ).
A sequence (xn)n≥1 ⊆ E(M) is two-sided disjointly supported if r(xn)r(xm)

= l(xn)l(xm) = 0, n 6= m, where r(x) and l(x) denote right and left support
projections of a τ -measurable operator x.

If E = E[0,∞) is separable and x ∈ E(M), then µt(x) →t→∞ 0.
If E = E[0, a) is separable, then its Köthe dual E×, coincide with its dual

space E∗, and so E embeds isometrically in E××. Then the dual space of
E(M) is E∗(M) = E×(M) and E(M) embeds isometrically in E××(M)
(see [DDP], [DSS] and the references there).

In some statements of this paper we shall assume that (M, τ) is non-atomic,
i.e., has no minimal projection. This causes no loss in generality for the main
results: indeed, if (M, τ) has atoms, (L∞[0, 1]⊗M,m⊗ τ) is non-atomic and
E(M) is isometric to a closed subspace of E(L∞[0, 1]⊗M).

We set Kn = B(l2n), identified with a closed subalgebra of K = B(l2). The
canonical basis of l2 is denoted by (ej)j≥1.

We denote by diag E(K⊗M) the closed linear span in E(K⊗M) of

{x̃j = ej ⊗ ej ⊗ xj | xj ∈ E(M), j ≥ 1}.

Interpolation spaces. We say that a r.i. space E = E[0, a) is an in-
terpolation space between Lr([0, a)) and Lq([0, a)), 1 ≤ r < q ≤ ∞, de-
noted by E ∈ Ir,q, if every linear operator T which is bounded, Lr([0, a)) →
Lr([0, a)) and Lq([0, a)) → Lq([0, a)), is also bounded on E, with ‖T‖E→E ≤
max{‖T‖r→r , ‖T‖q→q}. In particular, every r.i. space is an interpolation
space between L1([0, a)) and L∞([0, a)) [DDP, Theorem 2.4, Corollaries 2.6,
2.7].

If E = E[0, τ(Id)) belongs to Ir,q, then for every semifinite von Neu-
mann algebra (M, τ), E(M) is an interpolation space between Lr(M, τ) and



1210 F. LUST-PIQUARD AND F. SUKOCHEV

Lq(M, τ) [DDP, Theorem 3.2]. This does not imply in general that, e.g.,
lp(E(M)) is an interpolation space between lp(Lr(M, τ)) and lp(Lq(M, τ)).

D∗-convexity. An important tool when dealing with interpolation spaces
is the notion of D∗−convexity:

Definition 1. A r.i. space E = E([0, a)) is D∗-convex if there exists a
constant D > 0 such that, for n ≥ 1 and all (yi)2

n

i=1 ⊆ E,

2−n
2n∑
i=1

‖yi‖E =

∥∥∥∥∥
2n∑
i=1

χ
(n)
i ⊗ yi

∥∥∥∥∥
L1([0,1],E)

≤ D

∥∥∥∥∥
2n∑
i=1

χ
(n)
i ⊗ yi

∥∥∥∥∥
E([0,1]×[0,a))

.

Here, χ
(n)
i , 1 ≤ i ≤ 2n, denotes the characteristic function of the interval

[ i−1
2n , i

2n ].

By [S2] a similar inequality then holds for E(M), where (M, τ) is any
semifinite von Neumann algebra. Considering a sequence of Rademacher
functions on [0, 1], then replacing it by an i.i.d sequence (εj)j≥1 of centered
Bernoulli variables on a probability space (Ω,A, P ), it follows that∥∥∥∥∥∥

n∑
j=1

εj ⊗ xj

∥∥∥∥∥∥
L1(Ω,E(M))

≤ D

∥∥∥∥∥∥
n∑
j=1

εj ⊗ xj

∥∥∥∥∥∥
E(L∞(Ω)⊗M))

.

For more on D∗-convexity, see the appendix to this paper.

The p-Banach-Saks property.

Definition 2. Let X be a Banach space and 1 < p < ∞. A weakly null
sequence (xj)∞j=1 ⊆ X is a p-Banach-Saks sequence if there exists a constant
K > 0 such that, for all further subsequences (xjk)∞k=1,

lim
n→∞

n−1/p

∥∥∥∥∥
n∑
k=1

xjk

∥∥∥∥∥ ≤ K.

X has the p-Banach-Saks property (pBS) if every weakly null sequence in X
has a p-Banach-Saks subsequence.

The constant K depends a priori on the sequence; by [SS, Lemma 4.2], if
X = E([0, 1]) has pBS, and ‖xj‖ ≤ 1, then the constant depends only on the
space.

For technical reasons we shall also consider the following property:
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Definition 3. Let E = E([0, a)) be a r.i. space. E has the disjoint p-
Banach-Saks property (disjoint pBS) if every weakly null disjointly supported
sequence in E has a p-Banach-Saks subsequence.

Obviously, if E satisfies an upper p-estimate (see the definition below),
then E has disjoint pBS.

p-Banach-Saks property and Boyd indices. When X = E([0, a)) is a
separable r.i. space there are some relations between the disjoint p-Banach-
Saks property and the Boyd indices 1 ≤ pE ≤ qE ≤ ∞ of E, as defined in
[LT, 2.b.1 and p. 132].

Indeed, pE is the supremum of those p such that, for some constant K,∥∥∥∥∥∥
n∑
j=1

yj

∥∥∥∥∥∥
E

≤ Kn1/p, n ≥ 1,

for every sequence (yj)∞j=1 ⊆ E of disjointly supported equimeasurable norm
one functions, while qE is the infimum of those q such that, for some constant
K ′, and the same sequences,∥∥∥∥∥∥

n∑
j=1

yj

∥∥∥∥∥∥
N

≥ K ′n1/q, n ≥ 1.

Hence, if every bounded sequence of disjointly supported functions in E
is weakly convergent to 0 (see Remark 2 after Theorem 8) and if E has the
p-Banach-Saks disjoint property, one must have 1 < p ≤ pE .

Considering a sequence of Rademacher functions in E([0, 1]), the property
qE < ∞ implies that the p-Banach-Saks property may hold in E([0, a)) only
for 1 < p ≤ 2 [LT, p. 134]. Conversely, if a separable E([0, a)) has the
p-Banach-Saks property for 1 < p ≤ 2, then qE < ∞ [ASS, Theorem 4.2].

Boyd indices and interpolation. For a r.i. space E = E([0, a)), the
following properties are equivalent:

(a) The Boyd indices are nontrivial, i.e., 1 < pE ≤ qE < ∞.
(b) E ∈ Ir,q for some 1 < r < q < ∞.

Moreover, in this case, E ∈ Ir,q for any r < pE ≤ qE < q.
Indeed, (a) implies (b) and the last assertion, by the Boyd Interpolation

Theorem [LT, Theorem 2.b.11].
Conversely, let us recall that (at least if a = ∞, and with a suitable modi-

fication if a < ∞)

qE = lim
s→0+

Log(s)
Log ‖σs‖E→E

, pE = lim
s→∞

Log(s)
Log ‖σs‖E→E

,
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where σs, s > 0, is the dilation operator:

σs(f)(t) = f

(
t

s

)
, t ∈ (0,∞)

[LT, 2.b.1]. Since pLp = qLp = p, (b) implies, by interpolation of σs, that
1 < r ≤ pE ≤ qE ≤ q < ∞, whence (a).

We recall that a sequence (xn)∞n=1 in a Banach space X is C-unconditional
if there exists a constant C > 0 such that, for all n ≥ 1 and all scalars ci and
αi with |αi| = 1, ∥∥∥∥∥

n∑
i=1

αicixi

∥∥∥∥∥ ≤ C

∥∥∥∥∥
n∑
i=1

cixi

∥∥∥∥∥ .

Hyperfinite von Neumann algebras and unconditionality constant
of E(R). In the following, the advantage afforded by the assumption that
(M, τ) = (R, τ) is hyperfinite lies in the fact that the spaces Lr(R, τ), 1 <
r < ∞, admit an unconditional finite dimensional decomposition (UFDD)
{Un}n≥1, Un ⊂ R∩L1(R, τ), [SF], [SF2], whose unconditionality constant Cr
depends only on r. We denote by Pn the (orthogonal) projection: Lr(R, τ) →
Un ⊂ Lr(R, τ). When an increasing sequence of conditional expectations
En, n ≥ 1, onto finite dimensional Von Neumann subalgebras Rn is available
(assuming

⋃
n≥1 Rn is dense in R for the strong operator topology and the

restriction of τ to Rn is a semifinite trace), defining Un as the range of En+1−
En, n ≥ 2, U1 as the range of E1, the UFDD also comes from [PX, Remark
2.4], applied to the martingales (Enx)n≥1, x ∈ Lr(R, τ).

Interpolating for every fixed choice of signs (εn)n≥1 the operators

x →
N∑
n=1

εnPn(x),

one gets a similar UFDD in every symmetric operator space E(R, τ) associated
with a separable r.i. space E ∈ Ir,q, 1 < r < q < ∞, and the unconditionality
constant is CE ≤ max{Cr, Cq} [SF], [SF2].

We shall consider sequences of disjoint block projections (Pj)j≥1, meaning
that Pj =

∑nj−1
n=nj−1

Pn, where (nj)j≥0 is an increasing sequence of integers
and n0 = 1. Then ‖Pj‖Lr→Lr ≤ Cr.

Note that all Lr(R, τ) for (R, τ) semifinite and hyperfinite are described in
[HRS, Theorem 5.1].

Type, upper and lower estimate. Modifying the usual definition [LT,
Definition 1.e.12] and using the Kahane inequalities if p > 2 [LT, Theorem
1.e.13], we say that a Banach space X has type inf{p, 2} for some p > 1 if there
exists a constant Tinf{p,2} such that, for every finite sequence (xj)nj=1 ⊆ X,
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and a sequence (εj)j≥1 of i.i.d centered Bernoulli variables on a probability
space (Ω,A, P ),∥∥∥∥∥∥

n∑
j=1

εj ⊗ xj

∥∥∥∥∥∥
Lp(Ω,X)

≤ Tinf{p,2}

 n∑
j=1

‖xj‖inf{p,2}
X

1/ inf{p,2}

.

Let 1 ≤ p, q ≤ ∞. A Banach lattice X is p-convex, respectively q-concave, if
there exists a constant C > 0 such that for every finite sequence (xj)nj=1 ⊆ X,∥∥∥∥∥∥∥

 n∑
j=1

|xj |p
1/p

∥∥∥∥∥∥∥
X

≤ C

 n∑
j=1

‖xj‖pX

1/p

,

respectively,  n∑
j=1

‖xj‖qX

1/q

≤ C

∥∥∥∥∥∥∥
 n∑
j=1

|xj |q
1/q

∥∥∥∥∥∥∥
X

.

If the inequalities above hold only for an arbitrary choice of pairwise disjoint
elements (xi)ni=1

in X, then X is said to satisfy an upper p-estimate (respec-
tively, lower q-estimate).

The Brunel-Sucheston trick. The following is a classical tool when con-
sidering Banach-Saks properties; see, e.g., [HRS, p. 47].

Let (yj)j≥1 be a weakly null sequence in a Banach space X. By the Brunel-
Sucheston Theorem [BS], there exists a subsequence (xj)j≥1 such that, for
every k ≥ 1, the finite sequence (xj)2

k

j=k is 4−unconditional.
Assume moreover that every 4−unconditional finite subsequence of (xj)j≥1

satisfies for some p ≥ 1, some constant K and every admissible n

(1)

∥∥∥∥∥
n∑
k=1

xjk

∥∥∥∥∥
X

≤ Kn1/p sup
j
‖xj‖X .

Then

lim
n→∞

n−1/p

∥∥∥∥∥∥
n∑
j=1

xj

∥∥∥∥∥∥
X

≤ K sup
j
‖xj‖X .

Indeed, for every n, choose k such that 2k−1 ≤ n < 2k. Then∥∥∥∥∥∥
n∑
j=1

xj

∥∥∥∥∥∥
X

≤
k−1∑
j=1

‖xj‖X +

∥∥∥∥∥∥
n∑
j=k

xj

∥∥∥∥∥∥
X

≤ (log2 n + K(n− log2 n)1/p) sup
j
‖xj‖X .
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The trick shows, in particular, that for a Banach space, type p implies pBS
[R]. Indeed, (1) is satisfied if X has type p (with constant Tp) since, for every
4−unconditional sequence (zk)k≥1 in X,∥∥∥∥∥

n∑
k=1

zk

∥∥∥∥∥
X

≤ 4

∥∥∥∥∥
n∑
k=1

εk ⊗ zk

∥∥∥∥∥
L1(Ω,X)

≤ 4Tp

(
n∑
k=1

‖zk‖pX

)1/p

≤ 4Tpn
1/p sup

k
‖zk‖X .

3. Results in the Ir,2 case

In this part (M, τ) may have atoms.
Though type inequalities cannot be interpolated in general, one has the

following result, which can be compared to [ASS, Lemma 3.5] in the commu-
tative setting:

Proposition 4. Let E = E(0,∞) ∈ Ir,2, 1 < r < 2, be a separable r.i.
space. Let (xj)nj=1 be a sequence in E(M). Then:

(a) If M = R is hyperfinite, for any sequence of disjoint block projections
(Pj)j≥1 (associated with an UFDD {Un}n≥1)∥∥∥∥∥∥

n∑
j=1

Pjxj

∥∥∥∥∥∥
E(R)

≤ C2
r

∥∥∥∥∥∥
n∑
j=1

ej ⊗ ej ⊗ xj

∥∥∥∥∥∥
E(Kn⊗R)

n ≥ 1,

where Cr is the unconditionality constant of {Un}n≥1 in Lr(R, τ).
(b) If E is D∗−convex with constant D,∥∥∥∥∥∥

n∑
j=1

εj ⊗ xj

∥∥∥∥∥∥
L1(Ω,E(M))

≤ D

∥∥∥∥∥∥
n∑
j=1

ej ⊗ ej ⊗ xj

∥∥∥∥∥∥
E(Kn⊗M)

.

Proof. By complex interpolation between 1 and 2, Lp(M) has type p with
constant Tp = 1 for 1 ≤ p ≤ 2; in particular,∥∥∥∥∥∥

n∑
j=1

εj ⊗ xj

∥∥∥∥∥∥
Lp(Ω,Lp(M))

≤

 n∑
j=1

‖xj‖pLp(M)

1/p

(2)

=

∥∥∥∥∥∥
n∑
j=1

ej ⊗ ej ⊗ xj

∥∥∥∥∥∥
Lp(Kn⊗M)

.
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Since diag Lp(K⊗M) is 1−complemented in Lp(K⊗M), 1 ≤ p ≤ ∞, the
functor which interpolates E(K⊗M) between Lr(K⊗M) and L2(K⊗M) also
interpolates diag E(K⊗M) between diag Lr(K⊗M) and diag L2(K⊗M).

(a) We have to prove that the linear mappings

An :
n∑
j=1

ej ⊗ ej ⊗ xj →
n∑
j=1

Pjxj

are uniformly bounded: diag E(Kn⊗R) → E(R). By interpolation it is
enough to verify that the norm of An: diag Lp(Kn⊗R) → Lp(R) is uniformly
bounded for p = r > 1 and p = 2.

Owing to the UFDD of Lp(R), the sequence (Pjxj)nj=1 is Cp−unconditional
in Lp(R), 1 < p < ∞, hence (2) implies for 1 < p ≤ 2∥∥∥∥∥∥

n∑
j=1

Pjxj

∥∥∥∥∥∥
Lp(R)

≤ Cp

∥∥∥∥∥∥
n∑
j=1

εj ⊗ Pjxj

∥∥∥∥∥∥
Lp(Ω,Lp(R))

≤ Cp

 n∑
j=1

‖Pjxj‖pLp(R)

1/p

≤ C2
p

 n∑
j=1

‖xj‖pLp(R)

1/p

= C2
p

∥∥∥∥∥∥
n∑
j=1

ej ⊗ ej ⊗ xj

∥∥∥∥∥∥
Lp(Kn⊗R)

,

which proves the claim since C2 = 1.
(b) We have to prove that the linear mappings

Bn :
n∑
j=1

ej ⊗ ej ⊗ xj →
n∑
j=1

εj ⊗ xj

are uniformly bounded: diag E(Kn⊗M) → L1(Ω, E(M)). By D∗−convexity
of E, ∥∥∥∥∥∥

n∑
j=1

εj ⊗ xj

∥∥∥∥∥∥
L1(Ω,E(M))

≤ D

∥∥∥∥∥∥
n∑
j=1

εj ⊗ xj

∥∥∥∥∥∥
E(L∞(Ω)⊗M))

.

Hence it is enough to prove that Bn has norm 1: diag E(Kn⊗M) →
E(L∞(Ω)⊗M). By interpolation, it is enough to know that Bn has norm
1: diag Lp(Kn⊗M) → Lp(L∞(Ω)⊗M)) = Lp(Ω, Lp(M)), 1 ≤ p ≤ 2, which
is (2). �
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We define L0(0,∞) to be the norm closure of L1(0,∞) ∩ L∞(0,∞) in
L1(0,∞) + L∞(0,∞).

Lemma 5. Let E = E(0,∞) be a separable r.i. space such that E× ⊂
L0(0,∞). Then a sequence (xj)j≥1 is relatively weakly compact in E(M) if
and only if the sequence (µ(xj))j≥1 is relatively weakly compact in E.

Proof. Since E(M) isometrically embeds in E××(M), the condition on
(xj)j≥1 also reads: (xj)j≥1 is relatively σ(E××(M), E×(M)) compact, and
similarly for the condition on (µ(xj))j≥1. Hence the lemma comes from [DSS,
Theorem 5.4]. �

The following result comes from [CDS, Lemma 2.6] (see also [Ra, Propo-
sition 2.4]).

Lemma 6. Let E = E(0,∞) be a separable r.i. space such that E× ⊂
L0(0,∞). Let (x̃j)j≥1 be a two-sided disjointly supported sequence in E(M).
Then there exists a sequence (fj)j≥1 of disjointly supported elements in E,
satisfying µ(x̃j) = µ(fj), j ≥ 1, and∥∥∥∥∥∥

n∑
j=1

x̃j

∥∥∥∥∥∥
E(M)

=

∥∥∥∥∥∥
n∑
j=1

fj

∥∥∥∥∥∥
E

, n ≥ 1.

Corollary 7. Let E = E(0,∞) be a separable r.i. space such that
E× ⊂ L0(0,∞) and assume that E has disjoint pBS. Let (yj)j≥1 be a
weakly null sequence in E(M). Then every two-sided disjointly supported
sequence (ỹj)j≥1 in E(M) such that µ(yj) = µ(ỹj), j ≥ 1, has a subsequence
(x̃j)j≥1 ⊂ (ỹj)j≥1 satisfying, for some constant K and all further subsequences

lim
n

n−1/p

∥∥∥∥∥
n∑
k=1

x̃jk

∥∥∥∥∥
E(M)

≤ K.

Proof. (a) Since (yj)j≥1 is weakly null, (µ(yj))j≥1 is relatively weakly com-
pact in E by Lemma 5; by Lemma 5 again, so is the sequence (fj)j≥1 associ-
ated to (ỹj)j≥1 as in Lemma 6, since µ(yj) = µ(ỹj) = µ(fj). We claim that
(fj)j≥1 is weakly null, i.e.,

∫
gfjdm →j→∞ 0 for every g ∈ E∗ = E×. Indeed,

if this does not hold, there exist a subsequence (fjk)k≥1 and ε > 0 such that

‖gfjk‖L1(0,∞) ≥
∣∣∣∣∫ gfjkdm

∣∣∣∣ ≥ ε, k ≥ 1.

Since (gfjk)k≥1 is disjointly supported, it is equivalent in L1(0,∞) to the
canonical basis (ek)k≥1 of l1; on the other hand, (gfj)j≥1 is relatively σ(L1, L∞)
compact, and hence (ek)k≥1 is σ(l1, l∞) compact. This contradiction proves
the claim.
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(b) The sequence (fj)j≥1, being a weakly null disjointly supported sequence
in E, has by assumption a p-Banach-Saks subsequence. By Lemma 6, the
corresponding subsequence (x̃j)j≥1 ⊂ (ỹj)j≥1 satisfies the conclusion of the
corollary. �

Theorem 8. Let E = E(0,∞) ∈ Ir,2, 1 < r < 2, be a separable r.i. space
and assume that E(0,∞) has disjoint pBS, 1 < p ≤ 2. Then E(M) has the
pBS property if either M = R is hyperfinite, or E is D∗−convex.

Proof. First note that E× ⊂ Lr
′
+ L2 ⊂ L0(0,∞), 1

r + 1
r′ = 1.

For a sequence (xj)j≥1 in E(M), the sequence (x̃j)j≥1 = (ej ⊗ ej ⊗ xj)j≥1

is a two-sided disjointly supported sequence in E(K⊗M).
(a) Let (yj)j≥1 be a weakly null sequence in E(R). We can extract a

subsequence (xj)j≥1 and find a sequence of disjoint block projections (Pj)j≥1

such that ‖xj − Pjxj‖E(R) ≤
1
2j , j ≥ 1. By Proposition 4(a)∥∥∥∥∥∥

n∑
j=1

Pjxj

∥∥∥∥∥∥
E(R)

≤ C2
r

∥∥∥∥∥∥
n∑
j=1

x̃j

∥∥∥∥∥∥
E(K⊗R)

.

From the two-sided disjointly supported sequence (x̃j)j≥1 we extract a subse-
quence associated to a constant K as in Corollary 7. The corresponding sub-
sequence of (xj)j≥1 is p-Banach-Saks in E(R) since for further subsequences
(xjk)k≥1

lim
n→∞

n−1/p

∥∥∥∥∥
n∑
k=1

xjk

∥∥∥∥∥
E(R)

= lim
n→∞

n−1/p

∥∥∥∥∥
n∑
k=1

Pjkxjk

∥∥∥∥∥
E(R)

≤ C2
r lim
n→∞

n−1/p

∥∥∥∥∥
n∑
k=1

x̃jk

∥∥∥∥∥
E(K⊗R)

≤ C2
rK.

(b) Let (yj)j≥1 be a weakly null sequence in E(M). By Corollary 7, there
exists K > 0 and a subsequence (z̃j)j≥1 ⊂ (ỹj)j≥1 ⊂ E(K⊗M), such that,
for every further subsequence (x̃j)j≥1 ⊂ (z̃j)j≥1, there exists N satisfying

(3) ∀n ≥ N

∥∥∥∥∥∥
n∑
j=1

x̃j

∥∥∥∥∥∥
E(K⊗M)

≤ Kn1/p.

Let us extract from (zj)j≥1 ⊂ (yj)j≥1 (corresponding to (z̃j)j≥1 ⊂ (ỹj)j≥1)
a subsequence (xj)j≥1 as in the Brunel-Sucheston Theorem; let (x̃j)j≥1 ⊂
(z̃j)j≥1 be the corresponding sequence and let N be defined as in (3) for this
(x̃j)j≥1.
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Every 4-unconditional finite subsequence (xjk)1≤k≤m ⊂ (xj)j≥1 satisfies,
by Proposition 4(b) and (3), for N ≤ n ≤ m,∥∥∥∥∥

n∑
k=1

xjk

∥∥∥∥∥
E(M)

≤ 4

∥∥∥∥∥
n∑
k=1

εj ⊗ xjk

∥∥∥∥∥
L1(Ω,E(M))

≤ 4D

∥∥∥∥∥
n∑
k=1

x̃jk

∥∥∥∥∥
E(M⊗K)

≤ 4DKn1/p.

Hence we may apply the Brunel-Sucheston trick to (xj)j≥1 in E(M), so that
(xj)j≥1 is a p-Banach-Saks sequence. �

Remark 9. The proof of Theorem 8 is easier if E satisfies an upper p-
estimate with constant Kp instead of having only disjoint pBS, and Corollary
7 is not needed in this case.

Indeed, for the first step in the proof of (b), we define (fj)j≥1 associated
to (ỹj)j≥1 as in Lemma 6, hence, for all further subsequences,∥∥∥∥∥

n∑
k=1

ỹjk

∥∥∥∥∥
E(K⊗M)

=

∥∥∥∥∥
n∑
k=1

fjk

∥∥∥∥∥
E

≤ Kpn
1/p sup

j
‖yj‖E(M) .

A similar argument works for (a).

Motivated by the proof of Corollary 7, one may wonder when every bounded
disjointly supported sequence in a separable r.i. space is weakly null. We are
indebted to Yves Raynaud for the following remark:

Remark 10. For a Banach lattice X, the following properties are equiv-
alent:

(i) Every bounded disjointly supported sequence in X is weakly null.
(ii) X does not contain a sublattice order isomorphic to l1.

If moreover X is a separable Köthe function space, these conditions are
also equivalent to:

(iii) X does not contain a closed subspace isomorphic to l1.

Proof.
(i)=⇒(ii) is obvious since the canonical basis of l1 does not satisfy (i).
(ii)=⇒(i): Assume (i) does not hold. Then there exists a bounded disjointly

supported sequence (fj)j≥1 in X, with ‖fj‖X ≤ C, there exists g ∈ X∗,
‖g‖X∗ = 1, and ε > 0, such that g(fj) ≥ ε, j ≥ 1. Hence for λj ≥ 0, n ≥ 1,

C

n∑
j=1

λj ≥

∥∥∥∥∥∥
n∑
j=1

λjfj

∥∥∥∥∥∥
E

≥
n∑
j=1

λjg(fj) ≥ ε

n∑
j=1

λj .
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Since ∣∣∣∣∣∣
n∑
j=1

λjfj

∣∣∣∣∣∣ =
∣∣∣∣∣∣
n∑
j=1

λ′jfj

∣∣∣∣∣∣
as soon as λj =

∣∣λ′j∣∣ , j ≥ 1, the closed span of the fj ’s is order isomorphic to
l1, and it is obviously a sublattice of X.

(iii)=⇒(ii) is obvious.
(ii)=⇒(iii): By [MN, Proposition 2.3.12], (ii) implies that the lattice X∗

does not contain a sublattice order isomorphic to l∞. Since X∗ is a lattice
and a dual, it is σ−order complete; by [LT, Proposition 1.a.7] applied to X∗,
X∗ is σ−order continuous.

If moreover X is a separable Köthe function space on the measure space
(Ω,Σ, µ), X is σ−order complete and σ−order continuous, hence X∗ = X× by
[LT, Theorem 1.b.14]. By this same theorem applied to X×, L1∩L∞(Ω,Σ, µ)
is norm dense in X×. Every f ≥ 0 in L1 ∩ L∞, being a.s. a pointwise limit
of an increasing sequence (fn)n≥1 of positive integrable step functions, is also
a limit of (fn)n≥1 for the norm of X∗ since X∗ is σ−order continuous. Since
(Ω,Σ, µ) is separable, it follows that X× is separable, which together with the
equality X∗ = X× implies (iii). �

4. Results in the Ir,q case

4.1. Subsequence splitting principle. If E has the Fatou property (i.e.
E = E××) the following result is [DDS, Proposition 2.7]. In the general case
the proof follows along the same lines (see also [ASS, Lemma 3.6]) and is
therefore omitted.

Proposition 11. Let E = E(0,∞) be a separable r.i. space and let M
be non-atomic. Let (yn)n≥1 be a sequence in E(M), such that ‖yn‖E(M) =
1, n ≥ 1. Then there exist a subsequence (xn)n≥1 ⊆ (yn)n≥1, sequences
(un)n≥1, (vn)n≥1, (wn)n≥1 in E(M), an element u ∈ E(M)××, with
‖u‖E(M)×× ≤ 1, such that

xn = un + vn + wn, n ≥ 1,

µ(un) ≤ µ(u), n ≥ 1,

‖wn‖E(M) →n→∞ 0,

and (vn)n≥1 is a bounded two-sided disjointly supported sequence which tends
to 0 for the measure topology.

If, in addition, the sequence (yn)n≥1 is weakly null and E× ⊆ L0[0,∞),
then the sequences (un)n≥1, (vn)n≥1 may be chosen to be weakly null as well.

If E has the Fatou property, the sequence (un)n≥1 may be chosen equimea-
surable.
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The next result looks similar to Theorem 8, but is actually deeper and uses
the splitting lemma. Indeed there is no trick analogous to Proposition 4.

Theorem 12. Let E = E(0,∞) ∈ Ir,q, 1 < r < q < ∞, be a separable r.i.
space. Let α = inf{r, 2}. Assume that E(0,∞) has the disjoint αBS property
and that M is non-atomic. Then E(M) has the αBS property as soon as
either M = R is hyperfinite or E is D∗−convex.

We first need two lemmas. The next one is [DDP, Theorem 3.5], a gen-
eralization of the Schmidt decomposition for compact operators on a Hilbert
space.

Lemma 13. Let (M, τ) be a semifinite non-atomic von Neumann algebra.
If x ∈ M̃ and µt(x) →t→∞ 0, then there exists a positive rearrangement-

preserving algebra ∗-isomorphism J|x| of ˜L∞(0,∞) into M̃ such that

J|x|(µ(x)) = |x|.

In particular, for f ∈ ˜L∞ (0,∞) ,

µ(f) = µ(J|x|(f)).

Lemma 14. Let (M, τ) be a semi-finite non-atomic von Neumann algebra.
Let U1, . . . , Un ∈M be fixed partial isometries, let h1, . . . , hn be fixed functions
in L∞(0,∞), with ‖hk‖∞ ≤ 1, 1 ≤ k ≤ n, and let J1, . . . , Jn be fixed positive

*-isomorphisms: ˜L∞(0,∞)) → M̃ which preserve decreasing rearrangements,
as in Lemma 13.

(a) Let M = R be moreover hyperfinite and let (Pk)k≥1 be a sequence of
disjoint block projections associated with the UFDD (Un)n≥1. Let Sn
be the linear mapping:

f →
n∑
k=1

PkUkJk(hkf).

Then, for 1 < p < ∞,

‖Sn‖Lp(0,∞)→Lp(R) ≤ C2
pTinf{p,2}n

1/ inf{p,2},

where Cp is the unconditionality constant of {Un}n≥1 in Lp(R, τ).
(b) Let Rn be the linear mapping:

f →
n∑
k=1

εk ⊗ UkJk(hkf).

Then, for 1 ≤ p < ∞,

‖Rn‖Lp(0,∞)→Lp(L∞(Ω)⊗M) ≤ Tinf{p,2}n
1/ inf{p,2}.
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(c) Let E = E(0,∞) ∈ Ir,q, 1 < r < q < ∞, be a separable r.i. space, let
α = inf{r, 2}. Then there is a constant C such that

‖Sn‖E→E(R) ≤ Cn1/α

and
‖Rn‖E→E(L∞(Ω)⊗M) ≤ Cn1/α.

Proof. Each Jk is by definition an isometry: Lp(0,∞) → Lp(M). Since
Lp(M) has type α = inf{p, 2} and Lp(L∞(Ω)⊗M) = Lp(Ω, Lp(M)),

(4)

∥∥∥∥∥
n∑
k=1

εk ⊗ xk

∥∥∥∥∥
Lp(L∞(Ω)⊗M)

≤ Tα

(
n∑
k=1

‖xk‖αLp(M)

)1/α

.

(a) Since every sequence (Pkxk)nk=1 is Cp−unconditional in Lp(R), 1 < p <
∞, (4) implies∥∥∥∥∥

n∑
k=1

PkUkJk(hkf)

∥∥∥∥∥
Lp(R)

≤ Cp

∥∥∥∥∥
n∑
k=1

εk ⊗ PkUkJk(hkf)

∥∥∥∥∥
Lp(Ω,Lp(R))

≤ CpTα

(
n∑
k=1

‖PkUkJk(hkf)‖αLp(M)

)1/α

≤ C2
pTαn1/α ‖f‖Lp(0,∞) .

(b) Similarly, by (4),∥∥∥∥∥
n∑
k=1

εk ⊗ UkJk(hkf)

∥∥∥∥∥
Lp(L∞(Ω)⊗M)

≤ Tα

(
n∑
k=1

‖UkJk(hkf)‖αLp(M)

)1/α

≤ Tαn1/α ‖f‖Lp(0,∞) .

(c) This follows by interpolation from (a), (b) applied to p = r and p = q,
since inf{r, 2} < inf{q, 2}. �

Proof of Theorem 12. First note that E× ⊂ Lr
′
+Lq

′ ⊂ L0(0,∞), 1
r + 1

r′ =
1, 1

q + 1
q′ = 1. By the splitting principle, applying Corollary 7 to the two-sided

disjointly supported part, it suffices to find a constant K such that

lim
n

n−1/α

∥∥∥∥∥
n∑
k=1

xjk

∥∥∥∥∥
E(M)

≤ K sup
j
‖xj‖E(M)

for all subsequences of some (xj)j≥1 ⊂ (yj)j≥1, where (yj)j≥1 ⊂ E(M) is
weakly null and satisfies µ(yj) ≤ µ(u), j ≥ 1, u ∈ E(M)××. Let yj = Uj |yj |
be the polar decomposition of yj . By Proposition 11 and Lemma 13, since E
is separable, there exists Jj such that |yj | = Jj(µ(yj)), j ≥ 1.
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(a) Since (yj)j≥1 is weakly null, one may extract a subsequence (xj)j≥1 ⊂
(yj)j≥1, and find a sequence of disjoint block projections (Pj)j≥1 such that

‖xj − Pjxj‖E(R) ≤
1
2j

, j ≥ 1.

For any fixed n, let fn(t) = sup1≤j≤n µt(xj) ∈ E and define h
(n)
j by

µt(xj) = h
(n)
j (t)fn(t), 1 ≤ j ≤ n.

In particular,

‖fn‖E ≤ ‖µ(u)‖E×× ≤ sup
j
‖yj‖E(R) .

By Lemma 14(c) applied to the operator Sn defined by these Pj , Uj , Jj , h(n)
j ,

∥∥∥∥∥∥
n∑
j=1

Pjxj

∥∥∥∥∥∥
E(R)

=

∥∥∥∥∥∥
n∑
j=1

PjUjJj(h(n)
j fn)

∥∥∥∥∥∥
E(R)

≤ Cn1/α ‖fn‖E
≤ Cn1/α sup

j
‖yj‖E(R) .

Since a similar inequality holds for all subsequences of (xj)j≥1, the claim is
proved.

(b) Since (yj)j≥1 is weakly null, one may extract a subsequence (xj)j≥1 ⊂
(yj)j≥1 as in the Brunel-Sucheston Theorem. By the Brunel-Sucheston trick,
it suffices to get the estimate

∥∥∥∥∥
n∑
k=1

xjk

∥∥∥∥∥
E(M)

≤ 4Dn1/α sup
j
‖yj‖E(M)

when the finite subsequence (xjk)nk=1 is 4−unconditional in E(M). Defining
fn and h

(n)
jk

, 1 ≤ k ≤ n, as in (a), let us consider the mapping Rn defined as

in Lemma 14(c) by the corresponding Ujk , Jjk , h
(n)
jk

. Since E is D∗−convex,
Lemma 14(c) implies
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n∑
k=1

xjk

∥∥∥∥∥
E(M)

≤ 4

∥∥∥∥∥
n∑
k=1

εk ⊗ xjk

∥∥∥∥∥
L1(Ω,E(M))

≤ 4D

∥∥∥∥∥
n∑
k=1

εk ⊗ xjk

∥∥∥∥∥
E(L∞(Ω)⊗M))

= 4D ‖Rn(fn)‖E(L∞(Ω)⊗M))

≤ 4DCn1/α ‖fn‖E
≤ 4DCn1/α sup

j
‖yj‖E(M) . �

5. Examples and application: the Lorentz Lp,q(M) spaces

We recall that x ∈ Lp,q(M, τ), 1 < p < ∞, 1 ≤ q ≤ ∞, if

‖x‖Lp,q =


(
q
p

∫∞
0

(µt(x)t1/p)q dtt
)1/q

, q < ∞,

sup0<t<∞ µt(x)t1/p, q = ∞,

is finite. The expression ‖ · ‖Lp,q is a norm for q ≤ p and is equivalent to
a norm for q > p [LT, p. 142]. If M coincides with the algebra l∞ of all
bounded complex sequences, Lp,q(M) coincides with the classical sequence
space lp,q.

The spaces L
p,q = L

p,q (0,∞) are separable for q < ∞ and reflexive for
1 < q < ∞. The spaces Lp,∞ are not separable. However, the spaces Lp,∞0 =

L1 ∩ L∞
‖·‖Lp,∞

are separable r.i. spaces.
The spaces L

p,q belong to Ip−ε,p+ε for every ε > 0, 1 < p < ∞, 1 ≤ q ≤ ∞,
so that their Boyd indices are pE = qE = p.

The spaces L
p,q are D∗−convex if 1 ≤ q ≤ p [S2].

The spaces L
p,q have type inf{p, q, 2} if 1 < p, q < ∞ and p 6= 2 [N], [C].

The spaces L2,q have type q if 1 < q ≤ 2, and (2 − ε) for every ε > 0 if
2 < q < ∞ [N], [C].

The spaces Lp,∞0 are 2-convex if 2 ≤ p < ∞, and satisfy an upper p-estimate
for 1 < p < 2 (see [C] or [SS, Lemma 5.6]).

The spaces Lp,∞0 and Lp,1, 1 < p < ∞ have no type.
The following proposition extends to the non-commutative setting the re-

sults of [SS, Part 5].

Proposition 15. Let (M, τ) be a semifinite von Neumann algebra. Then:
(a) Lp,q(M, τ) has inf{p, q, 2}BS if 1 < p, q < ∞ and p 6= 2.
(b) L2,q(M, τ) has qBS if 1 < q ≤ 2 and (2− ε)BS for every ε > 0 (but

not 2BS) if 2 < q < ∞.
(c) Lp,1(M, τ) has inf{p, 2}BS if 1 < p < ∞ and p 6= 2, M being non-

atomic.
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(d) L2,1((M, τ) has (2 − ε)BS for every ε > 0 (but not 2BS) if M is
non-atomic.

If (M, τ) = (R, τ) is hyperfinite non-atomic, then:
(e) Lp,∞0 (R, τ) has inf{p, 2}BS if 1 < p < ∞ and p 6= 2.
(f) L2,∞

0 (R, τ) has (2− ε)BS for every ε > 0 (but not 2BS).
These results are sharp.

Proof. The results are sharp because they are already sharp in the com-
mutative setting of E(0, 1) r.i. spaces [SS, Part 5].

(a) and (b) are known since they come from the type property of these
spaces.

(e) For p < 2 the claim comes from Theorem 8(a) since Lp,∞0 satisfies an
upper p-estimate and hence the disjoint pBS property.

For p > 2 the claim comes from Theorem 12(a) applied with r = p− ε > 2
and q = p + ε, since Lp,∞0 , being 2-convex, has the disjoint 2BS property.
Note that Lp,∞0 is not D∗−convex (see [S2, Proposition 4.2]) and does not
have the Fatou property.

(f) This comes from Theorem 12(a) applied with r = 2− ε and q = 2 + ε,
since L2,∞

0 , being 2-convex, has the disjoint 2 − BS property, and hence the
disjoint (2− ε)BS property.

(c) In order to apply Theorem 8(b) if p < 2, or Theorem 12(b) between
r = p− ε > 2 and q = p + ε if p > 2, it suffices to know that Lp,1 has disjoint
inf{p, 2}BS, 1 < p < ∞, which is proved in the next Lemma 16. Note that
Lp,1 is D∗−convex and has the Fatou property.

(d) Similarly, in order to apply Theorem 12(b) between r = 2 − ε and
q = 2 + ε, it suffices to know that L2,1 has the disjoint 2BS property, which
again comes from Lemma 16. �

Lemma 16.
(a) Lp,1(0,∞) has the disjoint pBS property, 1 < p < ∞.
(b) L2,1(0,∞) and L2,q(0,∞), 2 < q < ∞, and L2,∞

0 (0,∞) do not have
the 2BS property.

(c) l2,1 and l2,q, 2 < q < ∞, and l2,∞0 have the 2BS property.

Proof. (a) By [DDS, Lemma 3.13], a bounded sequence of disjointly sup-
ported functions in Lp,1 which tends to 0 in measure either converges in norm
to 0 or is equivalent to the canonical basis of l1. So, if moreover the sequence
is weakly null, it converges in norm to 0.

Let (fj)j≥1 ⊂ Lp,1 be a weakly null sequence of disjointly supported func-
tions. By the splitting principle, some subsequence (gj)j≥1 admits a decom-
position gj = uj + vj + wj , j ≥ 1, as in Proposition 11. We just saw that
‖vj‖Lp,1 →j→∞ 0, and ‖wj‖Lp,1 →j→∞ 0. Since Lp,1 has the Fatou property,
we may assume that (uj)j≥1 ⊂ Lp,1 is a weakly null sequence of disjointly
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supported equimeasurable functions. Hence, by definition,∥∥∥∥∥∥
n∑
j=1

uj

∥∥∥∥∥∥
Lp,1

=
1
p

∫ ∞

0

µt/n(u1)t
1
p−1dt = n1/p ‖u1‖Lp,1 .

(Equivalently, the Boyd indices satisfy pLp,1 = qLp,1 = p.) It follows that
(gj)j≥1 is a pBS sequence.

(b) This is proved in [SS, Lemmas 5.2, 5.5 and 5.8] for L2,q(0, 1) (resp.
L2,∞

0 (0, 1)), which can be viewed as a closed subspace of L2,q(0,∞) (resp.
L2,∞

0 (0,∞)).
(c) l2,1 can be viewed as a closed subspace of L2,1(0,∞), hence has the

disjoint 2BS property by (a). Then it has the 2BS property since from a
weakly null sequence in l2,1 one can extract a subsequence (fj)j≥1 such that
‖fj − gj‖l2,1 ≤ 1

2j for some disjointly supported sequence (gj)j≥1. In the
same way, l2,q for 2 < q < ∞ and l2,∞0 , being 2-convex, have the disjoint
2BS property, and hence the 2BS property. �

Similarly as in [DDS, Proposition 2.14], a theorem of Arazy [A] now implies
the following result, which is similar in spirit to [AL, Theorem 6].

Proposition 17. Let C2,q = l2,q(K) be the Schatten ideal associated to
l2,q. Then if q = 1 or 2 < q < ∞, L2,q(0,∞) is not isomorphic to a closed
subspace of C2,q. L2,∞

0 (0,∞) is not isomorphic to a closed subspace of C2,∞
0 .

Proof. By Lemma 16, L2,q(0,∞) does not have the 2BS property, so it
suffices to prove that C2,q has the 2BS property. Since every weakly null
normalized sequence in C2,q has a shell-block subsequence, [A, Theorem 2.4]
implies that there exists a further subsequence which is equivalent to a block
basis of a permutation of the natural basis of l2 ⊕ l2,q. Since l2,q has 2BS by
Lemma 16, so does l2⊕ l2,q, hence C2,q also has the 2BS property. The same
argument also works for C2,∞

0 , considering l2 ⊕ l2,∞0 . �

Appendix A. D-and D∗-convex r.i. spaces.

D- and D∗-convexity were defined in [S2] with different names; see Defini-
tion 1 for the second notion. Keeping the same notation we have:

Definition 18. A r.i. space E = E(0, a) is D-convex if there exists a
constant D′ > 0 such that, for n ≥ 1 and all (yi)2

n

i=1 ⊆ E,∥∥∥∥∥
2n∑
i=1

χ
(n)
i ⊗ yi

∥∥∥∥∥
E([0,1]×(0,∞))

≤ D′ max
1≤i≤2n

‖yi‖E .

The following holds:
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(a) If E is D-convex, then E× is D∗-convex; if E is D∗-convex, then E×

is D-convex [S2, Proposition 2.3].
(b) If E is D∗-convex (respectively D-convex), one may in the above in-

equalities replace E by E(M) and E([0, 1]×(0,∞)) by E(L∞[0, 1]⊗M)
[S2, Proposition 2.2].

(c) If E is D-convex and (εj)j≥1 is a sequence of Rademacher functions
on [0, 1],∥∥∥∥∥∥

n∑
j=1

εj ⊗ xj

∥∥∥∥∥∥
E(L∞[0,1]⊗M)

≤ D′

∥∥∥∥∥∥
n∑
j=1

εj ⊗ xj

∥∥∥∥∥∥
L∞([0,1],E(M))

;

we already mentioned the similar inequality when E is D∗-convex.
(d) The Orlicz and Lorentz function spaces Λψ,q on (0,∞) are D∗-convex,

in particular, Lp,q(0,∞), 1 ≤ q ≤ p < ∞; the Orlicz spaces on (0,∞)
are D-convex [S2, Proposition 2.4, 2.5].

Independently, in the setting of r.i. spaces on a finite interval, the same
properties were introduced by N. Kalton [K] in a different way and further
studied in [MSS, Part 6], where it is mentioned that the Marcinkiewicz func-
tion spaces on (0, 1) are D-convex. We now give these second definitions and
explain why they are equivalent to the previous ones. We recall that σs is the
dilation operator on (0,∞) used in the definition of Boyd indices. For A > 0,
we have the following relation beween the distribution functions of σ1/n(f)
and f :

m{t :
∣∣σ1/nf(t)

∣∣ > A} = m{t : |f(nt)| > A} =
1
n

m{s : |f(s)| > A}

and the decreasing rearrangement µ(f) is the right continuous inverse function
of the distribution function of |f |.

A r.i. space E = E(0,∞) is called D-convex [K] (respectively D∗-convex;
see [MSS]) in the second sense if there exists a constant c > 0 such that for
every y1, . . . , yn ∈ E, n ≥ 1,∥∥∥∥∥σ1/n

(
n∑
k=1

ỹk

)∥∥∥∥∥
E

≤ c max
1≤k≤n

‖yk‖E ,

respectively ∥∥∥∥∥σ1/n

(
n∑
k=1

ỹk

)∥∥∥∥∥
E

≥ c inf
1≤k≤n

‖yk‖E .

Here, ỹ1, . . . , ỹn ∈ E are disjointly supported and each ỹk is equimeasurable
with yk.
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The two definitions of D-convexity coincide since the distribution functions
of
∑2n

i=1 χ
(n)
i ⊗ yi and σ2−n

(∑2n

k=1 ỹk

)
are equal, and hence

∥∥∥∥∥
2n∑
i=1

χ
(n)
i ⊗ yi

∥∥∥∥∥
E([0,1]×(0,∞))

=

∥∥∥∥∥σ2−n

(
2n∑
k=1

ỹk

)∥∥∥∥∥
E

.

Since E is an interpolation space between L1 and L∞, if E is D∗-convex in
the second sense, then E is D∗-convex in the sense of Definition 1 by [MSS,
Corollary 24]. Conversely, if E is D∗-convex, then E× is D-convex in both
senses, hence E is D∗-convex in the second sense by [MSS, Part 6].

Proposition 19.

(a) If E = E(0,∞) satisfies a lower p-estimate with 1 ≤ p ≤ pE (hence
p = pE = qE), then E is D∗-convex.

(b) If E = E(0,∞) satisfies an upper q-estimate with qE ≤ q (hence
pE = qE = q), then E is D-convex.

Proof. By definition, if E satisfies a lower p-estimate, then p ≥ qE , and if
E satisfies an upper q-estimate, then q ≤ pE .

(a) Note that, for some constant c > 0,

‖yi‖E ≤ ‖σ2n‖E→E‖σ2−nyi‖E
≤ 2n/pE c‖σ2−nyi‖E
≤ 2n/pc‖σ2−nyi‖E .

Then, by the lower p-estimate,

∥∥∥∥∥
2n∑
i=1

χ
(n)
i ⊗ yi

∥∥∥∥∥
E([0,1]×(0,∞))

≥ C

(
2n∑
i=1

‖χ(n)
i ⊗ yi‖pE([0,1]×(0,∞))

)1/p

= C

(
2n∑
i=1

‖σ2−nyi‖pE(0,∞)

)1/p

≥ c−1C

(
2−n

2n∑
i=1

‖yi‖pE

)1/p

≥ c−1C

(
2−n

2n∑
i=1

‖yi‖E

)
.
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(b) Similarly,

‖σ2−nyi‖E ≤ ‖σ2−n‖E→E‖yi‖E
≤ 2−n/qE c‖yi‖E
≤ 2−n/qc‖yi‖E .

By the upper q-estimate∥∥∥∥∥
2n∑
i=1

χ
(n)
i ⊗ yi

∥∥∥∥∥
E([0,1]×(0,∞))

≤ C

(
2n∑
i=1

‖χ(n)
i ⊗ yi‖qE([0,1]×(0,∞))

)1/q

= C

(
2n∑
i=1

‖σ2−nyi‖qE

)1/q

≤ c C

(
2−n

2n∑
i=1

‖yi‖qE

)1/q

≤ c C max
1≤i≤2n

‖yi‖E . �
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toise, 95302 Cergy-Pointoise, FRANCE

E-mail address: francoise.piquard@math.u-cergy.fr

F. Sukochev, School of Informatics and Engineering, Flinders University, Bed-
ford Park, SA 5042 AUSTRALIA

E-mail address: sukochev@infoeng.flinders.edu.au


