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UNIQUENESS OF THE MAXIMAL FUNCTION IN THE
RATIO ERGODIC THEOREM

ROLAND ZWEIMÜLLER

Abstract. We show that the maximal operator associated to Hopf’s
ratio ergodic theorem is injective.

1. Introduction

In a recent paper L. Ephremidze has shown that for a measure preserving
transformation (m.p.t.) T on a finite measure space (X,A, µ) the ergodic
maximal function M(f) := supn≥1 n

−1Sn(f), where Sn(f) :=
∑n−1
k=0 f ◦ T k,

n ≥ 1, uniquely determines f ∈ L1(µ), i.e., M(f) = M(g) a.e. implies f = g
a.e., cf. [E]. (An alternative short proof on this result has been given in [J].)

His article also discusses to what extent this remains true if the measure
space is infinite (but σ-finite), proving that the conclusion still holds for non-
negative functions, and showing that it does break down for some others.
While this observation certainly is of some interest, one might argue that in
infinite measure preserving situations (see [A]), M(f) is not the “correct”
object to study (there being no nontrivial limiting behaviour of n−1Sn(f)).
Instead, we are going to consider the maximal function corresponding to the
proper version of the pointwise ergodic theorem for infinite measure spaces,
that is, to Hopf’s ratio ergodic theorem (cf. [S], [H]). We briefly recall the
statement of the latter (see [KK] and [Z] for short proofs):

Theorem 1 (Hopf’s Ratio Ergodic Theorem). Let T be a conservative
m.p.t. on the σ−finite measure space (X,A, µ). Let f, p ∈ L1(µ) with p > 0.
Then there exists a measurable function Q(f, p) : X → R such that

Sn(f)
Sn(p)

=
∑n−1
k=0 f ◦ T k∑n−1
k=0 p ◦ T k

−→ Q(f, p) a.e. on X as n→∞.
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The limit function Q(f, p) is measurable w.r.t. the σ−algebra I ⊆ A of T -
invariant sets and satisfies

∫
I
Q(f, p) · p dµ =

∫
I
f dµ for all I ∈ I. In other

words, Q(f, p) = Eµp [f/p ‖I ], where dµp := p dµ.

Following Ephremidze’s original approach, we are going to prove:

Theorem 2 (Uniqueness of Hopf’s Ergodic Maximal Function). Let T be
a conservative m.p.t. on the σ−finite measure space (X,A, µ). Fix p ∈ L1(µ)
with p > 0, and for f ∈ L1(µ) define Hopf’s ergodic maximal function as

M(f, p) := sup
n≥1

Sn(f)
Sn(p)

= sup
n≥1

∑n−1
k=0 f ◦ T k∑n−1
k=0 p ◦ T k

.

Then M(f, p) uniquely determines f , that is, M(f, p) = M(g, p) a.e. implies
f = g a.e. on X.

Notice that even in the case of finite measure this contains a nontrivial
generalization of the earlier result.

Remark 1. The question of integrability of M(f, p) has been discussed
in [D].

2. Injectivity of a discrete maximal operator

The core of the argument is a discussion of injectivity properties of the
discrete maximal operator associated to a class of averaging operations on se-
quences of real numbers. Let Γ := R

N0 denote the set of real-valued sequences
α = (αn)n≥0. We consider families of averaging functions An,m : Γ→ R such
that An,m(α) only depends on (αn, . . . , αm), m ≥ n ≥ 0, and study their
associated maximal operator

M : Γ→ R
N0 , Mαn := sup

m≥n
An,m(α), n ≥ 0.

Its restriction to Γ∗ := {α ∈ Γ: for every n ∈ N0 there exists m ≥ n with
Mαn = An,m(α)}, which clearly maps into Γ, will also be denoted by M.
The An,m are assumed to satisfy the following conditions:

(♦) for 0 ≤ n ≤ l < m and α ∈ Γ, An,m(α) is a nontrivial convex

combination of An,l(α) and Al+1,m(α)

(which automatically extends to partitions of {n, . . . ,m} into more than two
subintervals), and

(♥) for 0 ≤ n ≤ m and α ∈ Γ, An,m(α) and (αn+1, . . . , αm)
uniquely determine αn.

The special case relevant for our ergodic theoretical result is that of inhomo-
geneous arithmetic averages:
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Example 1. For a fixed sequence π = (πk)k≥0 in (0,∞) define

An,m(α) :=
∑m
k=n αk∑m
k=n πk

, m ≥ n ≥ 0.

This clearly satisfies our assumptions. The case πk ≡ 1 was considered in [E].

We are going to prove the following generalization of Proposition 2 of [E],
closely following the line of argument given there:

Proposition 1 (Injectivity of the restricted discrete maximal operator).
The maximal operator M is injective on Γ∗.

A component of a set J ⊆ N0 will be understood to be a maximal finite
interval Ip,q := {p, . . . , q} ⊆ N0 contained in J . We abbreviate An,m :=
An,m(α) and {Mα > λ} := {n ∈ N0 : Mαn > λ}. Whenever an expression
like Ip,q, Ap,q etc. appears, we tacitly assume that p ≤ q.

Lemma 1. Let m,n, p, q ∈ N0, λ ∈ R, and α ∈ Γ∗.
(a) If Mαn = An,q, then Ap,q ≥Mαn for all p ∈ In,q.
(b) If n < m and Mαn > Mαm, then Mαn = An,q for some q ∈ In,m−1.
(c) If Ip,q is a component of {Mα > λ}, then for any n ∈ Ip,q, Mαn =

An,m for some m = m(n) ∈ In,q.
(d) If Ip,q is a component of {Mα > λ}, then An,q > λ for all n ∈ Ip,q.
(e) If Mαn+1 ≤Mαn, then An,n = Mαn.
(f) If In+1,m is a component of {Mα > Mαn}, then An,m = Mαn.

Proof. (a) The case p = n being trivial, we suppose that Ap,q < Mαn for
some p ∈ In+1,q. Then using An,p−1 ≤Mαn, (♦) implies An,q < Mαn, which
contradicts our assumption.

(b) We have Mαn = An,q for some q ≥ n, and part (a) shows that q < m.
(c) Fix any n ∈ Ip,q. As Mαn > λ ≥ Mαq+1, statement (b) yields our

assertion.
(d) Fix n ∈ Ip,q. Repeatedly applying (c), we obtain n = n0 < n1 < · · · <

nj = q with Ani−1,ni−1 > λ (take ni+1 := m(ni) + 1), and (♦) implies (d).
(e) Let λ := Mαn, and let q ≥ n be an integer satisfying An,q = λ. If

q = n we are done. Suppose now that q > n. The trivial estimate An+1,q ≤
Mαn+1 ≤ λ together with (♦) shows that An,n < λ would imply An,q < λ,
contradicting our choice of q.

(f) Let λ and q be as in (e). Observe first that necessarily q ≥ m: By
statement (d), assuming the contrary implies Aq+1,m > λ, and hence (due to
An,q = λ and property (♦)) An,m > λ, which is impossible.

If q = m, we are done. Suppose now that q > m. The trivial inequality
Am+1,q ≤Mαm+1 ≤ λ together with (♦) shows that An,m < λ would imply
An,q < λ, contradicting our choice of q. Thus, An,m ≥ λ, and therefore
An,m = λ. �



1262 ROLAND ZWEIMÜLLER

Lemma 2. Let λ ∈ R, α, β ∈ Γ∗.
(a) If Ip,q is a component of {Mα > λ}, then (Mαp, . . . ,Mαq) deter-

mines (αp, . . . , αq).
(b) If Mαn ≥Mαm for some m > n ≥ 0, then αn is uniquely determined

by Mα.

Proof. (a) Arrange the values {Mαn : n ∈ Ip,q} in descending order, i.e.,
λ1 > · · · > λj > λ, where Ii := {n ∈ Ip,q : Mαn = λi} 6= ∅ and

⋃j
i=1 Ii =

Ip,q. We are going to identify the αn for n ∈ Ii by induction on i.
For i = 1 and n ∈ Ii, we have An,n = λ1 by Lemma 1 (e), which due to

(♥) uniquely determines αn.
Assume now that the αn have been found for n ∈ I1 ∪ · · · ∪ Ii. We identify

αn for any fixed n ∈ Ii+1: If Mαn+1 ≤ λi+1, then An,n = λ1 by Lemma 1 (e),
and we are done. If Mαn+1 > λi+1, then there exists m ≤ q such that In+1,m

is a component of {Mα > λi+1}, and Lemma 1 (f) ensures that An,m = λi+1.
Since α has already been identified on {Mα > λi+1} ⊇ {n+1, . . . ,m}, we see
that αn is uniquely determined, cf. (♥).

(b) If λ := Mαn ≥Mαn+1, then Lemma 1 (e) shows that An,n = λ, which
uniquely determines αn by (♥).

Otherwise, if λ < Mαn+1, then there is some q ≤ m for which In+1,q is
a component of {Mα > λ}. According to statement (a), (αn+1, . . . , αq) is
uniquely determined, and by Lemma 1 (f), An,m = λ. Consequently, cf. (♥),
αn is uniquely determined as well. �

The injectivity result now follows easily:

Proof of Proposition 1. Due to Lemma 2 (b), it is enough to show that
each α ∈ Γ∗ has the following property:

for each n ≥ 0 there is some m > n s.t. Mαn ≥Mαm.

Fix α and n. We have λ := Mαn = An,p for some p ≥ n. Due to (♦),
the existence of some q > p with Ap+1,q > λ would imply An,q > λ, which
is impossible. Hence, Ap+1,q ≤ λ for all q > p, so that Mαm ≤ λ, where
m := p+ 1. �

3. Proof of the theorem

In proving our result for Hopf’s ergodic maximal function, we will stick
to arguments specific to the ergodic theory of point transformations (rather
than operators). If T is a conservative m.p.t. on the σ-finite measure space
(X,A, µ), and Y ∈ A with 0 < µ(Y ) < ∞, we let ϕY (x) := min{n ≥ 1 :
Tnx ∈ Y }, x ∈ Y , denote the first return time of Y , which is finite a.e. on
Y , and consider the first return (or induced) map TY : Y → Y given by
TY x := TϕY (x)x. According to basic classical results, TY is an m.p.t. of the
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finite measure space (Y,A ∩ Y, µ |A∩Y ), and the invariant measures µ and
µ |A∩Y are related via

(1)
∫
I(Y )

F dµ =
∫
Y

FY dµ for F ∈ L1(µ),

where FY :=
∑ϕY −1
j=0 F ◦ T j , and I(Y ) :=

⋃
n≥0 T

−nY ∈ I.
The one auxiliary result from ergodic theory we need for the proof of our

theorem has long been known in the ergodic finite measure preserving case
(see, e.g., [P, p. 84]). It is not hard to extend it to conservative infinite
measure preserving situations, thus obtaining the following generalization of
Proposition 1 in [E].

Proposition 2 (Zero chance of strictly constant signs). Let T be a con-
servative m.p.t. on the σ-finite measure space (X,A, µ). Let F ∈ L1(µ) with∫
I
F dµ = 0 for I ∈ I. Then

µ ({Sn(F ) < 0 for all n ≥ 1}) = 0.

Proof. (a) Assume first that µ is finite. For the reader’s convenience we
briefly recall the beautiful argument given in [P]. Let Y := {Sn(F ) ≤ 0 for
all n ≥ 1} and suppose that µ(Y ) > 0 (otherwise there is nothing to prove).
Then it is easy to see that

supn≥1 Sn(F ) = FY a.e. on Y .

Recalling (1) we obtain
∫
Y

supn≥1 Sn(F ) dµ =
∫
Y
FY dµ =

∫
I(Y )

F dµ =
0, and as supn≥1 Sn(F ) ≤ 0 on Y , we conclude that supn≥1 Sn(F ) = 0
a.e. on Y . Since for a.e. x ∈ Y this supremum is attained, we have
µ ({Sn(F ) < 0 for all n ≥ 1}) = 0.

(b) If µ is infinite, we show that for any Y ∈ A with 0 < µ(Y ) <∞,

µ (Y ∩ {Sn(F ) < 0 for all n ≥ 1}) = 0.

Fix such a set Y , and let SYm(FY ) :=
∑m−1
k=0 FY ◦ T kY , m ≥ 1. Since 1JFY =

(1I(J)F )Y for TY -invariant sets J , we can apply the finite-measure version of
the proposition to the induced system and FY to obtain

µ
(
Y ∩

{
SYm(FY ) < 0 for all m ≥ 1

})
= 0.

Since (SYm(FY )(x))m≥1 is a subsequence of (Sn(F )(x))n≥1, the result follows.
�

All the tools required for proving our main result are now available.

Proof of Theorem 2. (a) For x ∈ X, we let πx ∈ Γ be given by (πx)k :=
p ◦ T k(x), k ≥ 0, and define Ax,n,m : Γ→ R by

Ax,n,m(α) :=
∑m
k=n αk∑m
k=n(πx)k
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for m ≥ n ≥ 0, as in Example 1. Then, for any n ≥ 0,

(Mxαx)n = sup
m≥n

Ax,n,m(αx) = M(f ◦ Tn, p ◦ Tn)(x),

where αx ∈ Γ is given by (αx)n := f ◦ Tn(x).
(b) Observe first that since M(f ◦T k, p ◦T k) = M(f, p) ◦T k for k ≥ 0, the

assumption M(f, p) = M(g, p) a.e. of the theorem immediately implies

M(f ◦ T k, p ◦ T k) = M(g ◦ T k, p ◦ T k) for all k ≥ 0 a.e. on X,

meaning that Mxαx = Mxβx for a.e. x ∈ X, where (βx)n := g ◦ Tn(x).
(c) Proposition 1 ensures that the sequence αx (and hence, in particular,

(αx)0 = f(x)) is uniquely determined by Mxαx provided that αx ∈ Γ∗x =
{α ∈ Γ: for every n ∈ N0 there exists m ≥ n with (Mxα)n = Ax,n,m(α)}.
We claim that this holds for a.e. x ∈ X: By Hopf’s ergodic theorem, Sn(f ◦
T k)/Sn(p ◦ T k)→ Q(f ◦ T k, p ◦ T k) = Q(f, p) a.e. as n→∞, and hence

M(f ◦ T k, p ◦ T k) ≥ Q(f, p) for all k ≥ 0 a.e. on X.

Applying Proposition 2 to F := (f ◦ T k)−Q(f, p)(p ◦ T k), we see that for all
k ≥ 0,

µ

({
Sn(f ◦ T k)
Sn(p ◦ T k)

< Q(f, p) for all n ≥ 1
})

= 0.

Consequently, for a.e. x ∈ X, and any k ≥ 0, there is some j = j(x, k)
such that Sj(f ◦ T k)(x)/Sj(p ◦ T k)(x) ≥ Q(f, p)(x), and hence some index
m = m(x, k) for which supn Sn(f ◦T k)(x)/Sn(p◦T k)(x) is attained. Therfore,
αx ∈ Γ∗x as required. �
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