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ON THE ASYMPTOTIC BEHAVIOUR OF ITERATES OF
AVERAGES OF UNITARY REPRESENTATIONS

WOJCIECH JAWORSKI

Abstract. Let G be a locally compact group and µ a probability mea-
sure on G. Given a unitary representation π of G, let Pµ denote the

µ-average
∫
G π(g)µ(dg). µ is called neat if for every unitary representa-

tion π and every a in the support of µ, s-limn→∞
(
Pnµ − π(a)nEµ

)
= 0,

where Eµ is a canonically defined orthogonal projection. G is called neat
if every almost aperiodic probability measure on G is neat. Previously
known results show that every almost aperiodic spread out probability
measure is neat, in particular, every discrete group is neat; furthermore,
identity excluding groups, in particular, compact groups and nilpotent

groups, are neat. In this work neatness of solvable Lie groups, connected
algebraic groups, Euclidian motion groups, [SIN] groups, and extensions
of abelian groups by discrete groups is established. Neatness of ergodic

probability measures on any locally compact group is also proven. The
key to these results is the result that when {Xn}∞n=1 is the left ran-

dom walk of law µ on G and π a unitary representation in a separable

Hilbert space, then for every k = 0, 1, . . . , the sequence π(Xn)−1Pn−kµ

converges almost surely in the strong operator topology.

1. Introduction

Let G be a locally compact (Hausdorff) group and µ a regular probability
measure on G. Given a continuous unitary representation π of G in a Hilbert
space H, let Pµ denote the µ-average of π, i.e., the contraction

Pµ =
∫
G

π(g)µ(dg).

The goal of this article is to prove the following theorem describing the as-
ymptotic behaviour of the products PµnPµn−1 . . . Pµ1 of such averages when
n→∞, and then explore some of the applications of this result.
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Theorem 1.1. Let π be a continuous unitary representation of a locally
compact group G in a separable Hilbert space H and {µn}∞n=1 a sequence of
probability measures on G. Then there exists a sequence {an}∞n=1 of elements
of G such that for each k = 0, 1, . . . , the sequence π(an)PµnPµn−1 . . . Pµk+1

converges in the strong operator topology. When G is second countable and
{Yn}∞n=1 is a sequence of independent G-valued random variables such that µn
is the distribution of Yn, then for each k = 0, 1, . . . , the sequence
π(YnYn−1 . . . Y1)−1PµnPµn−1 . . . Pµk+1 converges almost surely in the strong
operator topology.

Theorem 1.1 is motivated by a result of Csiszár on the asymptotic behaviour
of convolution products of probability measures [9], from which the first state-
ment of the theorem can be deduced when π is the regular representation in
L2(G). According to Theorem 3.1 in [9], when {µn}∞n=1 is a sequence of prob-
ability measures on a locally compact second countable group G, then either
for each compact set K ⊆ G, limn→∞ supg∈G(µn ∗µn−1 ∗ . . .∗µ1)(gK) = 0, or
there is a sequence {an}∞n=1 in G such that for each k = 0, 1, . . . , the sequence
δan ∗µn ∗µn−1 ∗ . . .∗µk+1 converges in the weak topology on probability mea-
sures. Our first application of Theorem 1.1 is a new proof of Csiszár’s result,
simpler and less technical than the original one. The remaining applications
have to do with the case that µ1 = µ2 = . . . , i.e., with the asymptotic
behaviour of the powers Pnµ of a single µ-average. This case has been of con-
siderable interest in ergodic theory, probability, and harmonic analysis, see,
e.g., [4], [5], [6], [11], [26], [27], [30], [31], [37], [38].

It is evident that when dealing with a single µ-average, one may assume
without loss of generality that µ be adapted, i.e., not supported on a proper
closed subgroup; we will assume so throughout the sequel. According to the
mean ergodic theorem, the Cesàro averages 1

n

∑n
i=1 P

i
µ converge in the strong

operator topology to the orthogonal projection Fµ onto the subspace of the
fixed points of Pµ, which coincides (for adapted µ) with the projection onto
the subspace of the fixed points of π. Motivated by this result Derriennic
and Lin [11] inquired whether under certain additional assumptions, aimed
at excluding obvious periodic behaviour, the powers Pnµ themselves converge
strongly to the projection Fµ. They proved that this is indeed so when µ is
aperiodic and spread out; aperiodic means that µ is adapted and not supported
on a coset of a proper closed normal subgroup of G and spread out means that
for some n the convolution power µn is nonsingular with respect to the Haar
measure.

The assumption of aperiodicity is, in fact, necessary in order that the con-
vergence Pnµ

s−→ Fµ hold for every continuous unitary representation [31, The-
orem 2.1]. On the other hand, it is an open question whether the result of
Derriennic and Lin holds without the assumption that µ be spread out. When
G is compact or abelian, the result is true without this assumption. It is also
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known that the assumption can disposed of for [SIN] groups [30], nilpotent
groups [31], and some solvable algebraic groups [34]. A sufficient condition
for the result to hold for every aperiodic probability measure is that G be an
identity excluding group [26]. However, the condition is by no means nec-
essary: compact groups and nilpotent groups are identity excluding but, in
general, neither solvable groups nor [SIN] groups are identity excluding.

Apart from the question about the spread out assumption it is natural to
inquire about the asymptotic behaviour of the powers Pnµ when µ is no longer
assumed aperiodic. In the course of our recent investigation of the identity
excluding groups [24] we obtained a universal asymptotic formula for Pnµ , valid
when G is identity excluding [24, Theorem 3.2]. Let Nµ denote the smallest
closed normal subgroup of G such that µ is carried on a coset of Nµ, and
let Eµ be the orthogonal projection onto the subspace Nµ = {x ∈ H ; π(g)x
= x for every g ∈ Nµ}. Our result was that for every a ∈ G with µ(aNµ) = 1,

(1.1) s-lim
n→∞

(
Pnµ − π(a)nEµ

)
= 0.

We note that for any locally compact group and any (adapted) probability
measure µ on G, the validity of Eq.(1.1) for every continuous unitary repre-
sentation is equivalent to having

(1.2) s-lim
n→∞

Pnµ = 0

for every continuous irreducible unitary representations of dimension greater
than 1 [24, Theorem 3.1]. Using Theorem 1.1 we will prove that Eqs (1.1)
and (1.2) hold for any locally compact group when the left random walk of
law µ is ergodic.

It is known that the quotient G/Nµ is always an abelian group, either
compact or isomorphic to Z [11, Proposition 1.1]. Example 3.4 in [24] shows
that when G/Nµ ∼= Z and G is not identity excluding, then Eq.(1.1) can
fail. However, in addition to the case of identity excluding groups and the
case of ergodic random walks, there is some further evidence supporting the
following conjecture. We call the probability measure µ almost aperiodic if
G/Nµ is compact.

Conjecture 1.2. If µ is an almost aperiodic probability measure on G
then for every continuous unitary representation π of G and every a ∈ G with
µ(aNµ) = 1, one has s-limn→∞

(
Pnµ − π(a)nEµ

)
= 0.

We note that when G is an almost connected locally compact group then
every adapted probability measure is automatically almost aperiodic.

The result of Derriennic and Lin [11] implies, in fact, that Conjecture 1.2 is
true for any locally compact group when µ is spread out, see Corollary 3.14 in
the sequel. Hence, the conjecture is true for any discrete group. Example 3.4
in [24] shows that the assumption that G/Nµ be compact cannot be removed
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even when G is discrete. Further evidence in favour of the conjecture comes
from our work on concentration functions [26]. By [26, Theorem 2.18 and
Proposition 3.3] the conjecture is true when G is any locally compact group
and π is the regular representation in L2(G). It is not difficult to see that the
regular representation can, in fact, be replaced by any unitary representation
whose matrix coefficients vanish at infinity. It follows from this via Eq.(1.2)
that Conjecture 1.2 is true for any locally compact group whose infinite di-
mensional continuous irreducible unitary representations have the property
that all their matrix coefficients vanish at infinity modulo the projective ker-
nel of the representation (see Section 5 below for details). Connected algebraic
groups, exponential solvable Lie groups, and Euclidian motion groups fall into
this category. However, it is not difficult to find examples of connected solv-
able Lie groups as well as discrete groups which do not. Using Theorem 1.1 we
will prove Conjecture 1.2 for all solvable Lie groups, for extensions of abelian
groups by discrete groups, and also for all [SIN] groups.

2. Products of Hilbert space contractions

In this section, as a prerequisite for our study of the µ-averages, we prove
a number of useful results about the asymptotic behaviour of products and
powers of Hilbert space contractions. B(H) stands for the space of bounded
linear operators acting in the Hilbert space H and B1(H) for the closed unit
ball in B(H). RanA denotes the range of an operator A ∈ B(H). By a
projection in B(H) we always mean an orthogonal projection.

Compactness of B1(H) with respect to the weak operator topology and the
following elementary fact about weak convergence are behind our first set of
results.

Remark 2.1. (a) Let Aα be a norm bounded net in B(H) converging
weakly to A and xα a net in H converging to x in norm. Then w-limαAαxα
= Ax.

(b) Let Aα be a norm bounded net in B(H) converging weakly to A and
Bα a net in B(H) converging strongly to B. Then w-limαAαBα = AB.

Lemma 2.2. If E ∈ B1(H) and E = E2 then E is a projection.

Proof. See, e.g., [40, Theorem 3, p. 84]. �

Proposition 2.3. Let {Tn}∞n=1 be a sequence of contractions acting in a
Hilbert space H. Given nonnegative integers k and n let

Tnk =

{
I, when n ≤ k,
TnTn−1 . . . Tk+1, otherwise.
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(1) Suppose that there exists a sequence {Un}∞n=1 of unitary operators
such that for each k = 0, 1, . . . the limit Lk = s-limn→∞ UnTnk exists.
Then :
(i) LlTlk = Lk for all l ≥ k ≥ 0 ;
(ii) L = s-limk→∞ UkL

∗
k exists and is the projection onto⋃∞

k=1 RanLk.
(2) Suppose {Un}∞n=1 and {Vn}∞n=1 are two sequences of unitary operators

such that for each k = 0, 1, . . . , the limits Lk = s-limn→∞ UnTnk and
Mk = s-limn→∞ VnTnk exist. Put L = s-limk→∞ UkL

∗
k and M =

s-limk→∞ VkM
∗
k . It follows that K = s-limn→∞ VnU

∗
nL exists and

is a partial isometry with the initial projection equal to L and the
final projection equal to M . Furthermore, KLk = Mk for every k =
0, 1, . . . and K∗ = s-limn→∞ UnV

∗
nM .

Proof. (1): (i) follows from the identity Tnk = TnlTlk, n ≥ l ≥ k ≥ 0.
To prove (ii) consider a weak cluster point W of the sequence {LkU∗k}∞k=0 ⊆
B1(H). Thus W = w-limα LkαU

∗
kα

for a subnet LkαU
∗
kα

. Note that by (i), for
each k ≥ 0 and large enough α, Lk = LkαU

∗
kα
UkαTkαk. Hence, by Remark 2.1,

Lk = WLk. This implies W = W 2. Consequently, by Lemma 2.2, W is the
projection onto a subspace W of H. Due to the identity Lk = WLk, k ≥ 0, it
is clear that

⋃∞
k=1 RanLk ⊆W. On the other hand, if x ⊥

⋃∞
k=1 RanLk then

for each k ≥ 0, x ∈ (RanLk)⊥ = KerL∗k. But w-limα UkαL
∗
kα

= W ∗ = W .

Hence, Wx = 0, i.e, x ⊥ W. Thus
(⋃∞

k=1 RanLk
)⊥ ⊆ W⊥. Combining

the two inclusions we get W =
⋃∞
k=1 RanLk, and so W coincides with the

projection, L, onto
⋃∞
k=1 RanLk. Since this is true for every weak cluster

point of the sequence LkU∗k , we obtain that w-limk→∞ LkU
∗
k = L. Hence, we

also have L = w-limk→∞ UkL
∗
k. It remains to show that L = s-limk→∞ UkL

∗
k.

This results from the inequality:

‖UkL∗kx− Lx‖2 = ‖L∗kx‖2 + ‖Lx‖2 − 〈UkL∗kx , Lx〉 − 〈Lx , UkL∗kx〉
= ‖L∗kLx‖2 + ‖Lx‖2 − 〈UkL∗kx , Lx〉 − 〈Lx , UkL∗kx〉
≤ 2‖Lx‖2 − 〈UkL∗kx , Lx〉 − 〈Lx , UkL∗kx〉.

(2): Let W and W ′ be weak cluster points of the sequence VnU∗n. Since
Mk = s-limn→∞ VnTnk = s-limn→∞(VnU∗n)(UnTnk), using Remark 2.1 we
obtain Mk = WLk = W ′Lk. As LH =

⋃∞
k=1 RanLk, this implies that WL =

W ′L. Using this result and the identity LLk = Lk, it follows that the sequence
VnU

∗
nL converges in the weak operator topology to an operator K such that

Mk = KLk for every k = 0, 1, . . . .
Note that for every x ∈ H and k = 0, 1, . . . we have ‖Mkx‖ = ‖Lkx‖. This

is because ‖Mkx‖ = limn→∞ ‖VnTnkx‖ = limn→∞ ‖UnTnkx‖ = ‖Lkx‖. Thus
‖KLkx‖ = ‖Mkx‖ = ‖Lkx‖. As LH =

⋃∞
k=0 RanLk and K�(LH)⊥ = 0, it
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follows that K is a partial isometry with the initial projection equal to L.
Using the identities KLk = Mk and MH =

⋃∞
k=0 RanMk, we conclude that

M is the final projection of K. That K = s-limn→∞ VnU
∗
nL follows from the

fact that ‖Kx‖ = ‖KLx‖ = ‖Lx‖ = limn→∞ ‖VnU∗nLx‖ and an elementary
result on weak convergence in H.

The same argument shows that K ′ = s-limn→∞ UnV
∗
nM exists and is a

partial isometry with initial projection M and final projection L. On the
other hand, K∗ is also a partial isometry with initial projection M and fi-
nal projection L and K∗ = w-limn→∞ LUnV

∗
n . Hence, K∗ = K∗M =

w-limn→∞ LUnV
∗
nM = LK ′ = K ′. So K∗ = s-limn→∞ UnV

∗
nM . �

For the rest of this section T denotes a contraction acting in H. In the
special case that Tn = T for every n, Proposition 2.3 has this complement:

Corollary 2.4. Let {Un}∞n=1 be a sequence of unitary operators such
that for each k = 0, 1, . . . , the limit Lk = s-limn→∞ UnT

n−k exists, and let
L = s-limk→∞ UkL

∗
k. Then V = s-limn→∞ Un+1U

∗
nL exists and is a partial

isometry with the initial and final projections equal to L. Moreover, V ∗ =
s-limn→∞ UnU

∗
n+1L and for each k = 0, 1, . . . , V Lk = Lk+1.

Proof. Put Vn = Un+1. Then the sequences {Un}∞n=1 and {Vn}∞n=1 satisfy
the assumptions of Proposition 2.3(2) and using the notation of the proposi-
tion, Mk = Lk+1 and M = L. Put V = K. �

Recall that by elementary operator theory the sequences T ∗nTn and TnT ∗n

converge in the strong operator topology. Let S = s-limn→∞ T ∗nTn and S̃ =
s-limn→∞ TnT ∗n. Recall also that HT = {x ∈ H ; ‖Tnx‖ = ‖x‖ for every
n ∈ N} is a closed subspace equal to

⋂∞
n=1 Ker(I − T ∗nTn).

Proposition 2.5.

(i) If S 6= 0 then ‖S‖ = 1.
(ii) If S is a projection then it is the projection onto HT .
(iii) If S = S̃ then HT = HT∗ and S is the projection onto HT = HT∗ .

Proof. (i): Note that T ∗nSTn = S for every n ∈ N. Hence, for every x ∈ H,
‖
√
STnx‖ =

√
〈T ∗nSTnx , x〉 = ‖

√
Sx‖. Therefore when Sx 6= 0, then

lim
n→∞

‖
√
STnx‖
‖Tnx‖

= lim
n→∞

‖
√
Sx‖

‖Tnx‖
= 1.

Since
√
S is a contraction this shows that ‖

√
S‖ = 1, and so ‖S‖ = 1 too.

(ii): Clearly, if x ∈ HT then Sx = x. So x ∈ SH. Conversely, if x ∈ SH,
i.e., Sx = x, then ‖x‖2 = 〈Sx , x〉 = limn→∞〈T ∗nTnx , x〉 = limn→∞ ‖Tnx‖2.
Hence, ‖Tnx‖ = ‖x‖ for all n because T is a contraction. So x ∈ HT . Thus
SH = HT .



AVERAGES OF UNITARY REPRESENTATIONS 1123

(iii): Observe that S = S̃ = T ∗nSTn = TnST ∗n for all n ∈ N. Hence,
S = TnT ∗nSTnT ∗n. As the map B1(H)×B1(H) 3 (A,B)→ AB is continuous
in the strong operator topology, we obtain S = S3. Since 0 ≤ S ≤ I, an easy
application of the spectral theorem shows that S is a projection. Then Part
(ii) applied to both T and T ∗ yields the desired conclusion. �

Remark 2.6. The subspace HT ∩HT∗ reduces T and T �HT ∩HT∗ is a uni-
tary operator. When dim H <∞, HT = HT∗ = {x ∈ H ; limn→∞ Tnx = 0}⊥ =
{x ∈ H ; limn→∞ T ∗nx = 0}⊥ and, as a result, we always have S = S̃. It is
well known that, in general, none of this remains in force when dim H =∞.

Remark 2.7. Akcoglu and Boivin [1] proved that there exists an isometry
U ∈ B(H) such that s-limn→∞(Tn−Un

√
S) = 0. However, there is no explicit

formula expressing U in terms of T ; furthermore, in general, U is not unique.

3. Unitary representations and their averages: notations and
preliminaries

Let G be a locally compact group. We will denote by M(G) the measure
algebra of G and by M1(G) ⊆M(G) the subset of probability measures. Let
π be a continuous unitary representation of G in a Hilbert space H. Given
µ ∈M(G), let Pµπ, or simply Pµ when π is understood, stand for the operator

Pµπ = Pµ =
∫
G

π(g)µ(dg).

We recall that the mapping µ → Pµπ is a *-representation of M(G). In
particular, when µ is a positive measure then P ∗µπ = Pµ̃π where µ̃ is the
measure µ̃(A) = µ(A−1).

Given µ ∈ M1(G) let Gµ, Mµ, and Nµ be the closed subgroups generated
by the sets sµ,

⋃∞
n=1 s

−n
µ snµ, and

⋃∞
n=1(s−nµ snµ ∪ snµs−nµ ), respectively, where

sµ denotes the support of µ. Furthermore, let Gµ, Mµ, and Nµ denote the
closed subspaces,

Gµ = {x ∈ H ; π(g)x = x for every g ∈ Gµ},
Mµ = {x ∈ H ; π(g)x = x for every g ∈Mµ},
Nµ = {x ∈ H ; π(g)x = x for every g ∈ Nµ}.

Let Fµ, Dµ, and Eµ be the corresponding projections.
The next lemma is an immediate consequence of strict convexity of H.

Lemma 3.1. If x ∈ H then ‖Pµx‖ = ‖x‖ if and only if Pµx = π(g)x for
every g ∈ suppµ.

Proposition 3.2.

(i) Gµ = {x ∈ H ; Pµx = x}.
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(ii) Mµ = {x∈H ; Pnµ x = π(a)x for every n∈N and a∈G with µn(aMµ)
= 1} = {x ∈ H ; ‖Pnµ x‖ = ‖x‖ for every n ∈ N} = {x ∈ H ; P ∗nµ Pnµ x
= x for every n ∈ N}.

(iii) Nµ = {x ∈ H ; Pnµ x = π(a)x and P ∗nµ x = π(a−1)x for every n ∈
N and a ∈ G with µn(aNµ) = 1} = {x ∈ H ; ‖Pnµ x‖ = ‖P ∗nµ x‖ =
‖x‖ for every n ∈ N} = {x ∈ H ; P ∗nµ Pnµ x = P ∗nµ Pnµ x = x for every
n ∈ N}.

Proof. (i): The inclusion Gµ ⊆ {x ∈ H ; Pµx = x} is obvious. The reversed
inclusion follows from Lemma 3.1.

(ii): Note that if µn(aMµ) = 1 then suppµn ⊆ aMµ. Hence, when x ∈Mµ,
then π(g)x = π(a)x for every g ∈ suppµn, and so Pnµ x =

∫
G
π(g)µn(dg) =

π(a)x. This yields the inclusion Mµ ⊆ {x ∈ H ; Pnµ x = π(a)x for every
n ∈ N and a ∈ G with µn(aMµ) = 1}. The inclusion {x ∈ H ; Pnµ x =
π(a)x for every n ∈ N and a ∈ G with µn(aMµ) = 1} ⊆ {x ∈ H ; ‖Pnµ x‖ =
‖x‖ for every n ∈ N} is trivial. Next, the equality {x ∈ H ; ‖Pnµ x‖ = ‖x‖
for every n ∈ N} = {x ∈ H ; P ∗nµ Pnµ x = x for every n ∈ N} follows from the
fact that if T is a contraction in a Hilbert space then ‖Tx‖ = ‖x‖ if and only
if T ∗Tx = x. Finally, if P ∗nµ Pnµ x = Pµ̃n∗µnx = x for every n ∈ N then using
(i) with µ replaced by µ̃n ∗ µn we get that x ∈

⋂∞
n=1 Gµ̃n∗µn . It is easily seen

that this intersection equals Mµ.
The proof of (iii) is analogous; the result that Nµ is normal in Gµ [11, proof

of Proposition 1.1] is needed in the first step of the argument. �

For the next result see Propositions 1.1 and 1.6 in [11].

Proposition 3.3. When µ is adapted then :
(i) Nµ is the smallest closed normal subgroup of G containing suppµ

in one of its cosets, and is also the smallest closed normal subgroup
containing Mµ.

(ii) G/Nµ is a monothetic group, either compact or isomorphic to Z. The
cyclic group generated by the coset gNµ containing suppµ is dense in
G/Nµ.

Corollary 3.4. When µ is adapted then Nµ is a π-invariant subspace.
When µ is adapted and π is irreducible of dimension greater than 1, then
Nµ = {0}.

Proof. The first statement is true because Nµ is normal. Next, when π
is irreducible, it follows that Nµ = H or Nµ = {0}. But if Nµ = H then
Nµ ⊆ Kerπ and so the formula π′(gNµ) = π(g), g ∈ G, defines an irreducible
representation of the abelian group G/Nµ; thus dimπ = 1. �

The following definition will facilitate the statement of our future results.
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Definition 3.5. We will say that an adapted probability measure µ on
G is π-neat if s-limn→∞

(
Pnµ − π(an)Eµ

)
= 0 for every a ∈ G with µ(aNµ) =

1. We will say that µ is neat if it is π-neat for every continuous unitary
representation π. We will say that G is neat if every almost aperiodic µ ∈
M1(G) is neat (i.e., Conjecture 1.2 is true).

Proposition 3.6. Let µ be adapted. The following conditions are equiv-
alent :

(i) µ is neat.
(ii) µ is π-neat for every continuous irreducible unitary representation π.
(iii) s-limn→∞ Pnµ = 0 for every continuous irreducible unitary represen-

tation of dimension greater than 1.
(iv) s-limn→∞ Pnµ = 0 for every infinite dimensional continuous irreducible

unitary representation.

Proof. (i) implies (ii) trivially and (ii) implies (iii) by using the second
statement of Corollary 3.4. (iii) is equivalent to (i) by Theorem 3.1 in [24].
(iii) implies (iv) trivially. To see that (iv) implies (iii) suppose that dimπ <∞
and Pnµ

s
9 0. Then by Remark 2.6 and Proposition 3.2, Nµ = HPµ 6= {0}. So

dimπ = 1 by Corollary 3.4. �

Let H be a closed normal subgroup of G and p : G → G/H the canonical
homomorphism. We will write µH for the measure µH(A) = µ

(
p−1(A)

)
on

G/H. When H ⊆ Kerπ, we will denote by πH the representation of G/H
given by πH(gH) = π(g), g ∈ G. We omit an obvious proof of the following
useful observation.

Lemma 3.7. (G/H)µH = p(Gµ), NµH = p(Nµ), and if µ is adapted (resp.,
almost aperiodic), then so is µH . Furthermore, if H ⊆ Kerπ, then Pµπ =
PµHπH .

We note that adaptedness implies (owing to the regularity of µ) that G be
σ-compact. Thus in our study of the asymptotic behaviour of the powers Pnµ ,
G will always be a σ-compact locally compact group. The next lemma along
with Proposition 3.6 and Lemma 3.7 show that to prove Conjecture 1.2 it
suffices to deal with second countable groups and infinite dimensional faithful
irreducible representations in separable Hilbert spaces.

Lemma 3.8. Let G be σ-compact and π irreducible. Then πKerπ is a
faithful irreducible representation of G/Kerπ, G/Kerπ is second countable,
and H is separable.

Proof. πKerπ is trivially faithful and irreducible. To prove the remaining
statements recall that G, being σ-compact, contains arbitrarily small compact
normal subgroups K with G/K second countable [16, Theorem 8.7]. Choose a
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unit vector x ∈ H. Then there exists a compact normal subgroup K such that
G/K is second countable and ‖x− π(k)x‖ ≤ 1

2 for every k ∈ K. Let ω be the
normalized Haar measure of K. Then Pω is the projection onto the π-invariant
subspace, H′, of the fixed points of K. Furthermore, ‖(I − Pω)x‖ ≤ 1

2 and so
Pω 6= 0. Thus Pω = I by irreducibility of π. Therefore, K ⊆ Kerπ, and so
G/Kerπ is second countable because G/K is. Since continuous irreducible
unitary representations of separable groups act in separable Hilbert spaces, H
is separable. �

We end this section with a few corollaries to Proposition 2.5.

Corollary 3.9. The following conditions are equivalent:

(i) s-limn→∞ P ∗nµ Pnµ is a projection.
(ii) s-limn→∞ P ∗nµ Pnµ = Dµ.
(iii) s-limn→∞

(
Pnµ − π(a)nDµ

)
= 0 for every a ∈ suppµ.

Proof. (i) ⇒ (ii): By Proposition 2.5, S = s-limn→∞ P ∗nµ Pnµ is the projec-
tion onto HPµ . By Proposition 3.2, HPµ = Mµ.

(ii) ⇒ (iii): If a ∈ suppµ then an ∈ suppµn. Therefore suppµn ⊆
an(suppµn)−1 suppµn ⊆ an(suppµ)−n(suppµ)n ⊆ anMµ, i.e., µn(anMµ)
= 1. Hence, by Proposition 3.2, PnµDµ = π(a)nDµ. Thus it suffices to show
that limn→∞ Pnµ x = 0 for every x ∈ (I − Dµ)H. But this follows from the
identity: limn→∞ ‖Pnµ x‖2 = limn→∞〈P ∗nµ Pnµ x , x〉 = 〈Dµx , x〉.

(iii) ⇒ (i): As P ∗µ is a contraction, s-limn→∞
(
P ∗nµ Pnµ −P ∗nµ π(a)nDµ

)
= 0.

But π(a)nDµ = PnµDµ and P ∗nµ PnµDµ = Dµ. So s-limn→∞
(
P ∗nµ Pnµ −Dµ

)
=

0. �

Corollary 3.10. µ is π-neat if and only if s-limn→∞ P ∗nµ Pnµ = Eµ.

Proof. ⇒: By Proposition 3.2, PnµEµ = π(a)nEµ for every a ∈ G with
µ(aNµ) = 1. Using π-neatness of µ and the argument of the proof of the
implication (iii)⇒ (i) of Corollary 3.9, we obtain that s-limn→∞ P ∗nµ Pnµ = Eµ.
⇐: By Corollary 3.9, Eµ = Dµ and s-limn→∞

(
Pnµ − π(a)nEµ

)
= 0 for

every a ∈ suppµ. Since π(g)Eµ depends only on the coset gNµ, it is clear
that µ is π-neat. �

Remark 3.11. In Example 3.4 in [24] we constructed a countable solv-
able group G, an infinite dimensional irreducible unitary representation π of
G, and an adapted probability measure µ on G such that the powers Pnµ
fail to converge strongly to 0, i.e., µ is not π-neat. However, straightforward
computations show that both s-limn→∞ P ∗nµ Pnµ and s-limn→∞ Pnµ P

∗n
µ are pro-

jections. Thus the equivalent conditions of Corollary 3.9 are strictly weaker
than π-neatness.
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Corollary 3.12. If s-limn→∞ Pnµ = 0 then µ is π-neat.

Proof. If s-limn→∞ Pnµ = 0 then by Corollary 3.9, Dµ = 0. But Eµ ≤ Dµ.
So µ is π-neat. �

Corollary 3.13. Let µ be adapted. The following conditions are equiv-
alent:

(i) s-limn→∞ P ∗nµ Pnµ = s-limn→∞ Pnµ P
∗n
µ .

(ii) s-limn→∞ P ∗nµ Pnµ = s-limn→∞ Pnµ P
∗n
µ = Eµ.

(iii) Both µ and µ̃ are π-neat.

Proof. (i)⇒ (ii): By Proposition 2.5, s-limn→∞ P ∗nµ Pnµ = s-limn→∞ Pnµ P
∗n
µ

is the projection onto HPµ ∩ HP∗µ = Nµ.
(ii)⇒ (iii): If µ(aNµ) = 1 then PnµEµ = π(a)nEµ and P ∗nµ Eµ = π(a)−nEµ.

Then the proof is analogous to the proof of the implication (ii) ⇒ (iii) of
Corollary 3.9.

(iii) ⇒ (i): Mimic the proof of the implication (iii) ⇒ (i) of Corollary
3.9. �

Corollary 3.14. Every almost aperiodic spread out probability measure
is neat.

Proof. When µ is spread out, Nµ is necessarily open. Hence, k = [G : Nµ]
is finite when µ is also almost aperiodic. Then by Theorem 2.9 in [11], for any
continuous unitary representation π, s-limn→∞ P knµ exists and is the projec-
tion onto the subspace of the fixed points of P kµ . Since the same remains true
for P kµ̃ = P k∗µ and Ker(I −P k) = Ker(I −P k∗) (because P kµ is a contraction),
it follows that Condition (i) of Corollary 3.13. is satisfied. �

Remark 3.15. (a) When dimπ <∞, Corollary 3.13 combined with Re-
mark 2.6 shows that every adapted µ is π-neat.

(b) In general, s-limn→∞ P ∗nµ Pnµ need not be a projection, furthermore, µ̃
can be π-neat while µ is not : Let G be the semidirect product Roτ Z where
τ is the homothety τ(x) = εx with 0 < ε < 1. Let µ = σ × δ−1 where σ is a
probability measure on R such that suppσ = R and

∫
R

log(1+ |x|)σ(dx) <∞.
It follows from Theorems 1.1, 3.6, and Lemma 3.4 in [12] that the sequence
µ̃n ∗µn converges weakly in M1(G) to a probability measure ν which is not an
idempotent. Let π be the regular representation of G. By Lemma 5.1(ii) in
the sequel, we have s-limn→∞ P ∗nµ Pnµ = Pν and Pν is not a projection because
ν is not an idempotent. By Corollary 3.10, µ is not π-neat. However, Theorem
4.5 in [23] and Lemma 5.4 in the sequel show that s-limn→∞ Pnµ̃ = 0. So by
Corollary 3.12 µ̃ is π neat.

Corollary 3.16. The following conditions are equivalent for a locally
compact group G :
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(i) G is neat.
(ii) s-limn→∞ P ∗nµ Pnµ = s-limn→∞ Pnµ P

∗n
µ for every almost aperiodic prob-

ability measure µ on G and every continuous unitary representation.
(iii) s-limn→∞(Pnµ P

n
ν −Pnν Pnµ ) = 0 for every pair of almost aperiodic prob-

ability measures µ,ν on G and every continuous unitary representa-
tion.

Proof. (i) and (ii) are equivalent by Corollary 3.13. (iii) trivially implies
(ii). To prove that (i) implies (iii) observe that for every adapted σ ∈M1(G)
and all g, h ∈ G, π(gh)Eσ = π(hg)Eσ, because [g, h] ∈ Nσ by Proposition
3.3(ii). Hence, using Corollary 3.4 one obtains π(g)π(h)Eσ = π(h)Eσπ(g). It
follows that

(3.1) Aπ(h)Eσ = π(h)EσA

for every A in V N(π), the von Neumann algebra generated by π(G).
Let a, b ∈ G be such that µ(aNµ) = ν(bNν) = 1. Now, Pµ, Pν ∈ V N(π) and

neatness of G implies (via Corollary 3.13) that we also have Eµ, Eν ∈ V N(π).
Then a straightforward computation using Eq. (3.1) yields

Pnµ P
n
ν − Pnν Pnµ = Pnµ

(
Pnν − π(bn)Eν

)
+ π(bn)Eν

(
Pnµ − π(an)Eµ

)
− Pnν

(
Pnµ − π(an)Eµ

)
− π(an)Eµ

(
Pnν − π(bn)Eν

)
.

Hence, s-limn→∞(Pnµ P
n
ν − Pnν Pnµ ) = 0. �

4. Products of averages of unitary representations

In this section we prove a refined version of Theorem 1.1. Our proof relies
on the theory of random walks which intervenes also in some of the subsequent
applications of Theorem 1.1. We therefore begin with a brief review of the
relevant parts of the random walk theory.

4.1. Random walks. Let G be a locally compact group with B denoting
the σ-algebra of Borel subsets of G. By a (not necessarily homogeneous)
random walk on G we mean a Markov chain with state space G and G-
invariant transition probabilities Π1,Π2, . . . . The G-invariance means that
either,

(4.1.1) Πn(gg′, gA) = Πn(g′, A)

for all n = 1, 2, . . . , g, g′ ∈ G, and A ∈ B, or,

(4.1.2) Πn(g′g,Ag) = Πn(g′, A)

for all n = 1, 2, . . . , g, g′ ∈ G, and A ∈ B. In the first case we are dealing
with a right random walk, in the second case, with a left random walk. In any
case the random walk is determined by a sequence {µn}∞n=1 of probability
measures: if µn(A) = Πn(e,A) where e ∈ G is the identity element, then
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Πn(g,A) = µn(g−1A) for the right, and Πn(g,A) = µn(Ag−1) for the left
random walk.

By G∞ we denote the product space G∞ =
∏∞
n=0G (the space of paths ω =

{ωn}∞n=0 of the random walk), by Xn : G∞ → G, n = 0, 1, . . . , the canonical
projections, and by B∞ the product σ-algebra

∏∞
n=0 B = σ(X0, X1, . . . ). G∞

is considered a G-space with the action of G given by g{ωn}∞n=0 = {gωn}∞n=0

in the case of the right random walk, and g{ωn}∞n=0 = {ωng−1}∞n=0 for the
left random walk.

By the theory of Markov chains [32, Proposition V.2.1], given a random
walk with transition probabilities {Πn}∞n=1, for each k = 0, 1, . . . there exists a
unique transition probability Rk from (G,B) to

(
G∞, σ(Xk, Xk+1, . . . )

)
such

that

Rk

(
g,
k+m⋂
i=k

X−1
i (Ai)

)
(4.1.3)

= χAk(g)
∫

Ak+1

Πk+1(g, dxk+1)
∫

Ak+2

Πk+2(xk+1, dxk+2) . . .

. . .

∫
Ak+m

Πk+m(xk+m−1, dxk+m)

for all g ∈ G, m = 0, 1, . . . , and Ak, Ak+1, . . . , Ak+m ∈ B. When G is second
countable, Rk can be also defined using a sequence {Yn}∞n=1 of independent
G-valued random variables such that for each k = 0, 1, . . . , µk = Πk(e, ·) is
the distribution of Yk : Let g0, g1, . . . , gk be any sequence of elements of G
with gk = g. In the case of the right random walk, Rk(g,A) is the probability
that the sequence

(4.1.4) (g0, g1, . . . , gk, gkYk+1, gkYk+1Yk+2, . . . )

belongs to A; for the left random walk, Rk(g,A) is the probability that the
sequence

(4.1.5) (g0, g1, . . . , gk, Yk+1gk, Yk+2Yk+1gk, . . . )

belongs to A.1

When ν is a measure on G, the measure Qν = νR0,

(4.1.6) (νR0)(A) =
∫
G

ν(dg)R0(g,A), A ∈ B∞,

1 Second countability ensures that the products Yk+1Yk+2, Yk+1Yk+2Yk+3, . . . , or

Yk+2Yk+1, Yk+3Yk+2Yk+1, . . . , are measurable and that Fubini’s theorem can be used

without technical difficulties. The result can be proven for arbitrary locally compact groups
under certain additional technical regularity conditions imposed on the sequence {Yn}∞n=1.
Techniques from the theory of measure on locally compact spaces show that there always
exists a sequence {Yn}∞n=1 with these extra conditions satisfied.
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is called the Markov measure of the random walk started with the initial
distribution ν. The transition probabilities Rk satisfy

(4.1.7) Rk(g,A) =
∫
G

Πk+1(g, dx)Rk+1(x,A)

for every k = 0, 1, . . . , g ∈ G, and A ∈ σ(Xk+1, Xk+2, . . . ). Furthermore, they
areG-invariant: for every k = 0, 1, . . . , g, g′ ∈ G, andA ∈ σ(Xk+1, Xk+2, . . . ),

(4.1.8) Rk(gg′, gA) = Rk(g′, A)

in the case of the right random walk and,

(4.1.9) Rk(g′g−1, gA) = Rk(g′, A)

in the case of the left random walk.
The asymptotic (tail) σ-algebra of the random walk is denoted by B(a),

(4.1.10) B(a) =
∞⋂
k=0

σ(Xk, Xk+1, . . . ).

An asymptotic set A ∈ B(a) will be called universally null (resp., universally
conull) if Rk(g,A) = 0

(
resp., Rk(g,A) = 1

)
for all k = 0, 1, . . . and all g ∈ G.

We will say that a property dependent on ω ∈ G∞ holds universally almost
surely (u.a.s.) if it holds for ω in a universally conull set.

LetNu denote the collection of the universally null sets. A B(a)-measurable
function f : G∞ → C (asymptotic random variable) will be called universally
essentially bounded if

(4.1.11) ‖f‖u = inf
∆∈Nu

(
sup

ω∈G∞−∆
|f(ω)|

)
<∞.

It is easy to see that ‖ · ‖u is a norm on the vector space L∞(G∞,B(a))
of equivalence classes of universally essentially bounded asymptotic random
variables where two such random variables are equivalent when they coincide
u.a.s.. For each k = 0, 1, . . . , the formula

(4.1.12) (R̃kf)(g) =
∫
G∞

Rk(g, dω) f(ω)

defines a contraction R̃k from L∞(G∞,B(a)) into the space of bounded Borel
functions on G equipped with the sup-norm ‖ ·‖∞. Moreover, since Eq.(4.1.7)
holds, in particular, for all g ∈ G and A ∈ B(a), it follows that if hk = R̃kf
then

(4.1.13) hk(g) =
∫
G

Πk+1(g, dg′)hk+1(g′)

for every k = 0, 1, . . . and g ∈ G. In general, a sequence h = {hk}∞k=0 of
bounded Borel functions hk : G → C which satisfies (4.1.13) for all k and



AVERAGES OF UNITARY REPRESENTATIONS 1131

for which supk ‖hk‖∞ <∞ is called a bounded space-time harmonic function
of the random walk. Bounded space-time harmonic functions form a vector
space H∞ and the formula ‖h‖ = supk ‖hk‖∞ = limk→∞ ‖hk‖∞ defines a
norm on H∞. By Eqs (4.1.12) and (4.1.13) we then have a contraction R :
L∞(G∞,B(a)) → H∞ given by Rf = {R̃kf}∞k=0. Our proof of Theorem 1.1
relies on the following fundamental result [32, Proposition V.2.2].

Proposition 4.1.1. R is an isometric isomorphism of L∞(G∞,B(a))
onto H∞. Moreover, for every h = {hn}∞n=0 ∈ H∞ the sequence {hn◦Xn}∞n=0

converges u.a.s. to R−1h.

Let ϑ : G∞ → G∞ denote the Markov shift , ϑ
(
{ωn}∞n=0

)
= {ωn+1}∞n=0.

The σ-algebra B(i) = {A ∈ B∞ ; ϑ−1(A) = A} is called the invariant σ-
algebra. Elements of B(i) are called invariant sets and B(i)-measurable func-
tions, invariant random variables. Clearly, B(i) ⊆ B(a). For a homogeneous
random walk the transition probabilities Rk, cf. Eq.(4.1.3), satisfy

(4.1.14) Rk+1

(
g, ϑ−1(A)

)
= Rk(g,A)

for all g ∈ G and A ∈ σ(Xk, Xk+1, . . . ), and so they coincide on G × B(i).
Therefore an invariant set A is universally null if and only if R0(g,A) = 0 for
every g ∈ G.

4.2. Borel structures in Hilbert space. Let H be a separable Hilbert
space. By a measurable (or Borel) function from a Borel space (Ω,A) to H
we mean a function that is measurable with respect to the Borel structure
on H given by the norm topology. It is well known that this Borel structure
coincides with the weak Borel structure generated by the functions 〈 · , y〉,
y ∈ H [33, Chap. 2]. Hence, a function f : Ω → H is Borel if and only if
for each y ∈ H the function Ω 3 x → 〈f(x) , y〉 ∈ C is Borel. It is also
a well known fact that given Borel functions f, g : Ω → H, the function
Ω 3 x→ 〈f(x) , g(x)〉 is Borel.

A function f : Ω → B(H) will be called measurable if it is measurable
with respect to the Borel structure on B(H) given by the strong operator
topology. This Borel structure is standard and coincides with the weak Borel
structure generated by the functions B(H) 3 A→ 〈Ax , y〉 ∈ C, x, y ∈ H [33,
Chap. 2]. Thus f is a Borel function if and only if for all x, y ∈ H, the function
Ω 3 ω → 〈f(ω)x , y〉 ∈ C is Borel.

4.3. Products of averages. Let π be a continuous unitary representation
of the locally compact group G in a separable Hilbert space H and {µn}∞n=1 a
sequence of probability measures on G. Given nonnegative integers k and n,
we will write Pnk for the operator

(4.3.1) Pnk =

{
I, when n ≤ k,
PµnPµn−1 . . . Pµk+1 , otherwise.
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Let Q(l) denote the Markov measure of the left random walk given by {µn}∞n=1

and started from the identity element e
(
Eq.(4.1.6) with ν = δe

)
. Let Q(r)

denote the Markov measure of the right random walk given by {µ̃n}∞n=1 and
started from e. It is clear from our discussion of the left and right random
walks, cf. Eqs (4.1.4) and (4.1.5), that the second statement of Theorem 1.1
is equivalent to each of the following:

(1) Q(l){ω ∈ G∞ ; s-limn→∞ π(ω−1
n )Pnk exists

}
= 1 for every k = 0, 1, . . .

(2) Q(r){ω ∈ G∞ ; s-limn→∞ π(ωn)Pnk exists
}

= 1 for every k = 0, 1, . . .

We will work with the right random walk and prove the following stronger
result:

Theorem 4.3.1. With respect to the right random walk defined by {µ̃n}∞n=1

the set

Γ = {ω ∈ G∞ ; the limit s-lim
n→∞

π(ωn)Pnk exists for each k = 0, 1, . . . }

is a universally conull asymptotic set. In the case that µ1 = µ2 = . . . , Γ is
an invariant set.

Proof 2. Note that the last statement follows from the first one because in
the special case that µ1 = µ2 = · · · = µ, Pnk = Pn−kµ for all n ≥ k ; using this
it is easy to see that ϑ−1(Γ ) = Γ , so if Γ ∈ B(a) then Γ ∈ B(i).

Now, it is routine to check that when {xj}∞j=1 is a dense sequence in H then

Γ =
∞⋂
k=0

∞⋂
j=1

{
ω ∈ G∞ ; the sequence {π(ωn)Pnkxj}∞n=1 converges

}
.

Next, since π(ωn)Pnkxj is a sequence in the complete separable metric space
H, one obtains

{
ω ∈ G∞ ; the sequence {π(ωn)Pnkxj}∞n=1 converges

}
∈ B(a),

and so Γ ∈ B(a). Hence, to complete the proof it suffices to show that for each
x ∈ H and each k = 0, 1, . . . , the set

{
ω ∈ G∞ ; the sequence {π(ωn)Pnkx}∞n=1

converges
}

is universally conull.
Given n ≥ k consider the sequence P ∗jnPjn, j = n, n+1, . . . . This is a non-

increasing sequence of nonnegative operators, hence, by basic operator theory
the limit Sn = s-limj→∞ P ∗jnPjn exists. Note that PtsPsr = Ptr whenever
t ≥ s ≥ r. Therefore

(4.3.2) P ∗nmSnPnm = Sm

whenever n ≥ m ≥ k. So,

2 This proof is essentially due Christophe Cuny. Our original proof was longer. The
weaker result that Γ 6= ∅ can be proven without involving the random walk theory.
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‖SnPnkx− Pnkx‖2(4.3.3)

= ‖SnPnkx‖2 + ‖Pnkx‖2 − 〈P ∗nkSnPnkx , x〉 − 〈x , P ∗nkSnPnkx〉
≤ 2‖Pnkx‖2 − 2〈Skx , x〉 = 2〈P ∗nkPnkx , x〉 − 2〈Skx , x〉.

Thus limn→∞ ‖π(ωn)SnPnkx−π(ωn)Pnkx‖ = limn→∞ ‖SnPnkx−Pnkx‖ = 0,
and so it suffices to show that the sequence π(ωn)SnPnkx converges u.a.s..

We will first show that this sequence converges weakly u.a.s.. Define xn =
SnPnkx for n ≥ k and xn = P ∗knSkx for k > n ≥ 0. Since Pµn+1Pnk =
Pn+1n Pnk = Pn+1 k, it follows from this definition and Eq.(4.3.2) that xn =
P ∗µn+1

xn+1 = Pµ̃n+1xn+1 for all n ≥ 0. Fix y ∈ H and define functions
hyn : G→ C, n = 0, 1, . . . , by hyn(g) = 〈π(g)xn , y〉. Then

hyn(g) = 〈π(g)P ∗µn+1
xn+1 , y〉 =

∫
G

〈π(g)π(g′)xn+1 , y〉 µ̃n+1(dg′)(4.3.4)

=
∫
G

hyn+1(gg′) µ̃n+1(dg′).

Thus {hyn}∞n=0 is a bounded space-time harmonic function. By Proposition
4.1.1 the setΩy =

{
ω ∈ G∞ ; the sequence {hyn(ωn)}∞n=0 converges

}
is univer-

sally conull and there is an asymptotic random variable Zy such that for every
ω ∈ Ωy, Zy(ω) = limn→∞ hyn(ωn) and that hyn(g) =

∫
G∞

Zy(ω)Rn(g, dω) for
every g ∈ G and n ≥ 0. A routine argument using separability of H shows
that the set Ω =

⋂
y∈HΩ

y is also universally conull. Now, for every ω ∈ Ω the
function H 3 y → Zy(ω) is a bounded linear functional on H. It follows that
there is a B(a)-measurable function f : G∞ → H such that for every ω ∈ Ω,
the sequence π(ωn)xn = π(ωn)SnPnkx converges weakly to f(ω) and

(4.3.5) π(g)xn =
∫
G∞

f(ω)Rn(g, dω)

for every n ≥ 0 and g ∈ G.
To complete the proof it suffices to show that the sequence π(ωn)xn con-

verges in norm u.a.s. to f(ω). Now, the sequence ‖π(ωn)xn‖ = ‖xn‖ is non-
decreasing and uniformly bounded. Let M = supn≥0 ‖xn‖ = limn→∞ ‖xn‖.
Note that ‖f(ω)‖ ≤M for ω ∈ Ω. On the other hand, Eq.(4.3.5) yields

(4.3.6) ‖xn‖ ≤
∫
G∞

‖f(ω)‖Rn(g, dω) = (Rn‖f‖)(g)

for every g ∈ G and n ≥ 0. Consider the asymptotic random variable
(M−‖f‖)(ω) = M−‖f(ω)‖. Clearly,

(
Rn(M−‖f‖)

)
(g) = M−(Rn‖f‖)(g) ≤

M −‖xn‖. Hence, ‖Rn(M −‖f‖)‖∞ ≤M −‖xn‖ and therefore using Propo-
sition 4.1.1,

∥∥M−‖f‖∥∥
u

= limn→∞ ‖Rn(M−‖f‖)‖∞ = 0. Thus ‖f(ω)‖ = M
u.a.s.. Since π(ωn)xn converges weakly u.a.s. to f(ω) and ‖π(ωn)xn‖ ≤ M ,
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we obtain, using an elementary result on weak convergence, that π(ωn)xn
converges in norm u.a.s. to f(ω). �

Our applications of Theorem 4.3.1 rely on certain special properties of the
limit contractions Lk(ω) = s-limn→∞ π(ωn)Pnk, which readily follow from
Proposition 2.3 and Corollary 2.4.

Corollary 4.3.2. With the notation and assumptions of Theorem 4.3.1
define functions Lk : G∞ → B(H), k = 0, 1, . . . and L : G∞ → B(H) by

Lk(ω) =

{
s-limn→∞ π(ωn)Pnk, when ω ∈ Γ,
0, otherwise,

L(ω) = the projection onto
∞⋃
k=1

RanLk(ω).

Then Lk and L are B(a)-measurable functions. For every ω ∈ G∞, L(ω) =
s-limk→∞ π(ωk)L∗k(ω). For every ω ∈ G∞, g ∈ G, and l ≥ k ≥ 0 , we
have : Ll(ω)Plk = Lk(ω), L(ω)Lk(ω) = Lk(ω), Lk(gω) = π(g)Lk(ω), and
L(gω) = π(g)L(ω)π(g)−1. Furthermore, given ω′, ω ∈ Γ , the limit

K(ω′, ω) = s-lim
k→∞

π(ω′kω
−1
k )L(ω)

exists and is a partial isometry with initial projection L(ω) and final projection
L(ω′), such that K(ω′, ω)Lk(ω) = Lk(ω′) for every k = 0, 1, . . . . Moreover,
K∗(ω′, ω) = K(ω, ω′).

Corollary 4.3.3. Suppose that µ1 = µ2 = . . . . Then with the nota-
tion and assumptions of Theorem 4.3.1 and Corollary 4.3.2, the limit V (ω) =
s-limn→∞ π(ωn+1ω

−1
n )L(ω) exists for every ω ∈ G∞ and is a partial isome-

try with the initial and final projections equal to L(ω). Moreover, V (gω) =
π(g)V (ω)π(g)−1 for every ω ∈ G∞ and g ∈ G, and V (ω)Lk(ω) = Lk+1(ω) for
every ω ∈ G∞ and k = 0, 1, . . . . When G is second countable, the function
G∞ 3 ω → V (ω) ∈ B(H) is B(i)-measurable.3

5. Convolution products, concentration functions, and
representations vanishing at infinity

Here as our first application of Theorem 1.1 we give a concise proof of
a result of Csiszár on the asymptotic behaviour of convolution products of
probability measures. Previously this result played a crucial role in the solu-
tion of the problem of convergence to zero of the concentration functions of
a probability measure on a noncompact group [18], [26]. Such convergence to
zero is equivalent to strong convergence to zero of the powers of the µ-average
of the regular representation. After proving Csiszár’s result we explain how

3 Second countability ensures measurability of the products ωn+1ω
−1
n .
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the result on concentration functions can be used to study the asymptotic be-
haviour of the powers Pnµ for more general representations, leading, for certain
classes of locally compact groups, to a proof of Conjecture 1.2.

Let G be a locally compact group. Recall that by the weak topology on
M(G) one means the σ

(
M(G), Cb(G)

)
-topology where Cb(G) is the algebra

of bounded continuous functions on G. The weak* topology on M(G) is the
σ
(
M(G), C0(G)

)
-topology where C0(G) is the algebra of continuous functions

on G which vanish at infinity. We write M[0,1](G) for the set of positive
measures ν ∈ M(G) with ν(G) ≤ 1. The canonical norm on M(G) is the
total variation norm. Below in Lemmas 5.1, 5.2 and 5.4, and in the proof of
Theorem 5.3 all µ-averages refer to the right regular representation πr of G.

Lemma 5.1.

(i) If µα is a norm bounded net in M(G) and µ ∈ M(G) then

µα
w*−−→ µ if and only if Pµα

w−→ Pµ.
(ii) If µα is a net in M1(G) and µ ∈ M1(G) then µα

w−→ µ if and only if
Pµα

s−→ Pµ.
(iii) The set {Pµ ; µ ∈M[0,1](G)} ⊆ B

(
L2(G)

)
is weakly closed.

Proof. (i): This follows from the fact the matrix coefficients of πr form a
uniformly dense subset of C0(G).

(ii): ⇒: Given x ∈ L2(G),

‖Pµαx− Pµx‖2 = 〈Pµ̃α∗µαx , x〉+ 〈Pµ̃∗µx , x〉 − 〈Pµ̃∗µαx , x〉 − 〈Pµ̃α∗µx , x〉

(5.1)

=
∫
G

〈πr(g)x , x〉 (µ̃α ∗ µα)(dg) +
∫
G

〈πr(g)x , x〉 (µ̃ ∗ µ)(dg)

−
∫
G

〈πr(g)x , x〉 (µ̃ ∗ µα)(dg)−
∫
G

〈πr(g)x , x〉 (µ̃α ∗ µ)(dg).

As the mappings M1(G) 3 ν → ν̃ and M1(G)×M1(G) 3 (ν1, ν2)→ ν1 ∗ν2 are
continuous with respect to the weak topology, µ̃α ∗µα, µ̃α ∗µ, µ̃∗µα

w−→ µ̃∗µ.
Hence, the right hand side of Eq.(5.1) converges to 0.

⇐: If Pµα
s−→ Pµ then Pµα

w−→ Pµ. Hence, by (i), µα
w*−−→ µ. But the weak

and weak∗ topologies coincide on M1(G).
(iii): Let P belong to the weak operator closure of

{
Pµ ; µ ∈ M[0,1](G)

}
.

Thus there is a net µα in M[0,1](G) with P = w-limα Pµα . Since M[0,1](G) is
weak* compact, we may assume that w*-limα µα = µ for some µ ∈M[0,1](G).
Hence, P = Pµ by (i). �

Lemma 5.2. Let {µn}∞n=1 be a sequence in M1(G). Then s-limn→∞ Pµn =
0 if and only if limn→∞ supg∈G µn(gK) = 0 for every compact subset K ⊆ G.
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Proof. Mimic the argument on p. 98 in [11]. �

Given a sequence {µn}∞n=1 ⊆M1(G) and nonnegative integers k, n let

(5.2) µnk =

{
δe, when n ≤ k,
µn ∗ µn−1 ∗ · · · ∗ µk+1, otherwise.

When g ∈ G and ν ∈M(G), let gν = δg ∗ ν and νg = ν ∗ δg.

Theorem 5.3 (Csiszár [9]). Let {µn}∞n=1 be a sequence in M1(G) where
G is second countable. Then either limn→∞ supg∈G µn0(gK) = 0 for every
compact K ⊆ G, or there exists a sequence {an}∞n=1 in G such that for every
k = 0, 1, . . . , the sequence {anµnk}∞n=1 converges weakly. Given a sequence
{an}∞n=1 with this property, let νk = w-limn→∞ anµnk. Then as k → ∞, the
sequence {νka−1

k }∞k=1 converges weakly to the normalized Haar measure ν of a
compact subgroup. The measures νk satisfy νk+1 ∗ µk+1 = νk and ν ∗ νk = νk
for every k = 0, 1, . . . .

Proof. By Theorem 4.3.1 there exists a sequence {an}∞n=1 ⊆ G such that for
each k = 0, 1, . . . , Lk = s-limn→∞ π(an)Pnk = s-limn→∞ Panµnk exists. By
Lemma 5.1(iii), Lk = Pνk for some νk ∈ M[0,1](G). Next, by Corollary 4.3.2,
L = s-limk→∞ π(ak)L∗k = s-limk→∞ Pakν̃k also exists and is the projection
onto

⋃∞
k=1 RanLk. By Lemma 5.1(iii), L = Pν for some ν ∈M[0,1](G).

Suppose that it is not the case that limn→∞ supg∈G µn0(gK) = 0. Then
by Lemma 5.2, L0 = Pν0 6= 0. Consequently, L = Pν 6= 0 and so ν must be
a nonzero idempotent in M[0,1](G), i.e, the normalized Haar measures of a
compact subgroup. Furthermore, by Lemma 5.1(i), ν = w*-limk→∞ akν̃k.

Now, the convolution identities νk+1 ∗ µk+1 = νk and ν ∗ νk = νk, k =
0, 1, . . . , follow immediately from the identities Lk+1Pµk+1 and LLk = Lk (cf.
Corollary 4.3.2). Next, note that νk+1 ∗ µk+1 = νk implies that νk+1(G) =
νk(G). Hence, as ν = w*-limk→∞ akν̃k is a probability measure, each ν̃k must
be a probability measure. Then, as s-limn→∞ Panµnk = Pνk and
s-limk→∞ Pakν̃k = Pν , Lemma 5.1(ii) yields w-limn→∞ anµnk = νk and
w-limk→∞ akν̃k = ν. The latter is equivalent to w-limk→∞ νka

−1
k = ν̃. But

ν = ν̃ because ν is the Haar measure of a compact subgroup. �

Let K(G) denote the family of compact subsets of G. Given µ ∈ M1(G)
the function fn : K(G)→ [0, 1] defined by

fn(K) = sup
g∈G

µn(gK)

is called the n-th concentration function of µ.

Lemma 5.4. The following conditions are equivalent:
(i) limn→∞ fn(K) = 0 for every K ∈ K(G).
(ii) s-limn→∞ Pnµ = 0.
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(iii) w*-limn→∞(µ̃n ∗ µn) = 0.
(iv) limn→∞(µ̃n ∗ µn)(K) = 0 for every K ∈ K(G).

Proof. (i) ⇔ (ii) by Lemma 5.2. Next, s-limn→∞ Pnµ = 0 ⇔
s-limn→∞ P ∗nµ Pnµ = 0 ⇔ w-limn→∞ P ∗nµ Pnµ = 0. Since P ∗nµ Pnµ = Pµ̃n∗µn ,
by Lemma 5.1(i), (ii) is then equivalent (iii). It is easy to see that (iii) ⇔
(iv). �

The following theorem was proven in [26].

Theorem 5.5. If µ is almost aperiodic and G is not compact then for
every K ∈ K(G), limn→∞ fn(K) = 0.

Corollary 5.6. Every almost aperiodic probability measure is πr-neat.

Proof. Compact groups are neat (by, e.g., [24, Theorem 3.2]). For noncom-
pact groups use Theorem 5.5, Lemma 5.4, and Corollary 3.12. �

We note that there exist examples of adapted probability measures on non-
compact locally compact groups whose concentration functions fail to converge
to zero. Such measures must satisfy certain rather restrictive conditions and
can exist only on semidirect products G = N o Z where Z acts on N via an
automorphism which contracts N modulo a compact subgroup, see [22], [23]
for details. The fact that the concentration functions of µ fail to converge
to zero does not imply that µ fails to be πr-neat (cf. [23, Proposition 3.14]
and Lemma 5.1). An example of an adapted probability measure which is not
πr-neat was mentioned in Remark 3.15(b).

Corollary 5.6 turns out to be a special case of a more general consequence
of Theorem 5.5. Let π be a continuous unitary representation of G in H and
H a closed normal subgroup of G. We will say that a function f : G → C

vanishes at infinity modulo H if for every ε > 0 there exists a compact set
K ⊆ G/H such that |f(g)| < ε whenever gH /∈ K. This is equivalent to
having limα f(gα) = 0 for every net gα in G with gαH → ∞ in G/H. We
will say that the unitary representation π vanishes at infinity modulo H if the
matrix coefficients of π vanish at infinity modulo H.

Remark 5.7. By Corollary 3.12, µ is π-neat whenever s-limn→∞ Pnµ = 0.
Suppose π vanishes at infinity modulo H where G/H is not compact, and let
µ ∈ M1(G) be almost aperiodic. It is easy to verify that then Nµ = {0}.
Hence, µ is π-neat if and only if s-limn→∞ Pnµ = 0.

Corollary 5.8. Let G be second countable and let π vanish at infinity
modulo a closed normal subgroup H with G/H is noncompact. Then every
almost aperiodic probability measure on G is π-neat.
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Proof. Let αn = µ̃n ∗ µn and consider the quotient measures µH and αnH
on G/H. Then µH is almost aperiodic and αnH = µ̃nH ∗ µnH . Since G/H is
not compact, the concentration functions of µH converge to zero and thus by
Lemma 5.4, limn→∞ αnH(K) = 0 for every compact K ⊆ G/H.

Now, by [33, Theorem 4.5], for each n there exists a transition probability
qn from G/H to G such that

(1) qn(ξ, ξ) = 1 for αnH -a.e. ξ ∈ G/H;
(2) for every bounded Borel function f : G→ C,∫

G

αn(dg) f(g) =
∫

G/H

αnH(dξ)
∫
G

qn(ξ, dg) f(g).

Let x ∈ H and f(g) = 〈π(g)x , x〉, g ∈ G. Since π vanishes at infinity modulo
H, given ε > 0 there is a compact K ⊆ G/H such that |f(g)| < 1

2ε for every
g ∈ G with gH /∈ K. Hence, using (1) and (2) above, for large enough n we
obtain

‖Pnµ x‖2 =
∫
G

αn(dg) f(g) ≤
∫

G/H

αnH(dξ)
∫
G

qn(ξ, dg) |f(g)|

=
∫
K

αnH(dξ)
∫
G

qn(ξ, dg) ‖x‖ +
∫

G/H−K

αnH(dξ)
∫
ξ

qn(ξ, dg) |f(g)|

≤ αnH(K)‖x‖+ 1
2ε < ε.

Hence, s-limn→∞ Pnµ = 0, and so by Corollary 3.12 µ is π-neat. �

Corollary 5.9. Let G be a locally compact σ-compact group with the
property that every continuous infinite dimensional irreducible unitary rep-
resentation of G vanishes at infinity modulo a closed normal subgroup with
noncompact quotient. Then G is neat.

Proof. When G is second countable, the result is clear by Proposition 3.6.
In the general case, consider the representation πKerπ of G/Kerπ given by
πKerπ(gKerπ) = π(g). We leave it is an exercise to verify that πKerπ also
vanishes at infinity modulo a closed normal subgroup with noncompact quo-
tient. Then the desired conclusion follows with the aid of Lemmas 3.7 and
3.8. �

Corollary 5.10. Connected algebraic groups over a local field of charac-
teristic zero, connected semisimple Lie groups, exponential solvable Lie groups,
and Euclidian motion groups are neat.

Proof. Recall that by the projective kernel of a continuous unitary repre-
sentation π one means the closed normal subgroup PKerπ of G consisting of
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the elements g ∈ G for which π(g) is a scalar multiple of the identity oper-
ator. It is known that continuous irreducible unitary representations of the
groups in question vanish at infinity modulo their projective kernels [3], [19].
Therefore in view of the preceding corollary it suffices to show that G/PKerπ
cannot be compact when π is irreducible and infinite dimensional. To see this
suppose that G/PKerπ is compact where π is irreducible. By passing to a
quotient group we may assume that π is faithful. But then PKerπ coincides
with the centre of G. Hence, by [15], dimπ <∞. �

We note that for H = PKerπ, Corollary 5.8 can be easily proven without
involving the fibration of µ̃n ∗ µn over G/H and without the restriction that
G be second countable or G/H noncompact. The following is an example of
an application of Corollary 5.8 with H 6= PKerπ.

Example 5.11. Let G be the Mautner group: G = C × C × R with the
multiplication (z1, z2, t)(z′1, z

′
2, t
′) = (z1 + z′1e

it, z2 + z′2e
2πit, t + t′). Let π be

the unitary representation of G in L2(T2) given by
(
π(z1, z2, t)f

)
(ζ1, ζ2) =

eiRe(z̄1ζ1+z̄2ζ2)f(ζ1e−it, ζ2e−2πit). It is well known that π is irreducible and
does not vanish at infinity [3]. The projective kernel of π is trivial and so
Corollary 5.8 cannot be applied here with H = PKerπ. However, let H =
C×{0}×Z. H is a closed normal subgroup of G with G/H noncompact and we
claim that π vanishes at infinity modulo H. Let for m,n ∈ Z, emn : T2 → C

be the function emn(ζ1, ζ2) = ζm1 ζ
n
2 . Then {emn}m,n∈Z is an orthonormal

basis in L2(T2). To show that π vanishes at infinity modulo H, it suffices
to show that the matrix coefficients 〈π(·)ekl , emn〉, k, l,m, n ∈ Z, vanish at
infinity modulo H. But an elementary computation shows that

(5.1) |〈π(z1, z2, t)ekl , emn〉| ≤ |fln(|z2|)|
where

fln(x) =
1
π

∫ 1

−1

eixs cos
(
(l − n) arccos(s)

)
√

1− s2
ds, x ∈ R.

As the Fourier transform of an integrable function, fln ∈ C0(R). Now, when
gα = (z1α, z2α, tα) is a net in G with gαH → ∞ in G/H, then |z2α| → ∞ in
R. So by (5.1), limα〈π(gα)ekl , emn〉 = 0. Thus π indeed vanishes at infinity
modulo H and Corollary 5.8 shows that every adapted µ ∈M1(G) is π-neat.

We are not aware of any study of the concept of a representation vanishing
at infinity modulo a closed normal subgroup not contained in the projective
kernel and, as a result, we have not found any general applications of Corollary
5.8 or 5.9 when H is different from PKerπ. Nevertheless, these corollaries are
interesting in that they seem to be the strongest results about the asymptotic
behaviour of the powers of the µ-averages, possible to derive using the result on
concentration functions. The two examples that follow indicate that Corollary
5.9 is not enough to prove Conjecture 1.2 for general locally compact groups.
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We do not know of similar examples involving connected or almost connected
groups.

Example 5.12. LetG be the alternating group on N = {1, 2, . . . }, i.e., the
group of finite even permutations of N. Denote by {en}∞n=1 the standard basis
in l2(N) and define a unitary representation π of G in l2(N) by π(g)en = eg(n).
Then π is irreducible and does not vanish at infinity. But G is a simple group
and so there is no proper normal subgroup H such that π vanishes at infinity
modulo H. Nevertheless G is neat because by Corollary 3.14 every discrete
group is neat.

Example 5.13. Let G = C×Z with the product (z, n)(z′, n′) = (z+einz′,
n+n′). G is a solvable Lie group called the discrete Mautner group [2]. Let π
denote the representation in L2(T) given by

(
π(z, n)f

)
(ζ) = eiRe z̄ζf(e−inζ).

π is irreducible [2]. It is an easy exercise to verify that the only nontrivial
closed normal subgroups of G are the subgroups C× kZ where k = 0, 1, . . . .
Using this it can be readily seen that π does not vanish at infinity modulo any
closed normal subgroup with noncompact quotient. Nevertheless G is neat
because, as we prove it in the sequel, every solvable Lie group is neat.

6. π-neatness versus π-regularity

Throughout this section G denotes a locally compact second countable
(lcsc) group, π a continuous unitary representation of G in a separable Hilbert
space H, and µ an adapted probability measure on G. We freely use the
notation and results of Sections 3 and 4.

Definition 6.1. A µ-harmonic sequence in H is a sequence {xn}∞n=0 ⊆ H
such that supn≥0 ‖xn‖ <∞ and xn = Pµxn+1 for each n. µ is called π-regular
if for every µ-harmonic sequence {xn}∞n=0 one has ‖x0‖ = ‖x1‖ = ‖x2‖ = . . . .

The main result of this section, that π-neatness of µ is equivalent to π-
regularity of µ̃, will be very useful in our subsequent investigations.

Proposition 6.2. Let {xn}∞n=0 be a µ̃-harmonic sequence and let γ =
{γn}∞n=0 ∈ Γ . Then there exists a unique x ∈ L(γ)H such that xk = L∗k(γ)x
for every k = 0, 1, . . . .

Proof. Given y ∈ H and n = 0, 1, . . . , let hyn : G → C be the function
hyn(g) = 〈π(g)xn , y〉. Then hy = {hyn}∞n=0 ∈ H∞ and it follows as in the proof
of Theorem 4.3.1 that there exists a universally conull asymptotic set Ω and an
asymptotic random variable f : G∞ → H such that f(ω) = limn→∞ π(ωn)xn
for every ω ∈ Ω. Pick an ω ∈ Γ∩Ω. Since L∗k(ω) = w-limn→∞ P ∗nkπ(ω−1

n ) and
xk = P ∗nkxn = P ∗nkπ(ω−1

n )π(ωn)xn for n ≥ k, using Remark 2.1(a) and taking
the weak limit in H, we obtain xk = L∗k(ω)f(ω). But by Corollary 4.3.2,
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L∗k(ω) = L∗k(γ)K∗(ω, γ). Therefore xk = L∗k(γ)x where x = K∗(ω, γ)f(ω)
∈ L(γ)H. The uniqueness of x is clear because π(γk)xk = π(γk)L∗k(γ)x −−−−→

k→∞
(γ)x = x. �

Lemma 6.3. Suppose that s-limn→∞
(
π(g)Pnµ −Pn+k

µ

)
= 0 for some g ∈ G

and k ≥ 0. Then for every ω ∈ G∞, V ∗k(ω)L(ω) = s-limn→∞ π(ωngω−1
n )L(ω).

Proof. The claim is trivial when ω ∈ G∞ − Γ . Fix ω ∈ Γ and let j =
0, 1, . . . . Then for n ≥ k + j,

π(ωngω−1
n )V k(ω)Lj(ω)− Lj(ω)(6.1)

= π(ωngω−1
n )Lk+j(ω)− Lj(ω)

= π(ωngω−1
n )
(
Lk+j(ω)− π(ωn)Pn−k−jµ

)
+ π(ωn)

(
π(g)Pn−k−jµ − Pn−jµ

)
+ π(ωn)Pn−jµ − Lj(ω).

Using our assumption that s-limn→∞
(
π(g)Pnµ −Pn+k

µ

)
= 0, and the definition

of Li(ω), we can see that each term on the right hand side of Eq.(6.1) converges
strongly to 0 as n → ∞. Thus Lj(ω) = s-limn→∞ π(ωngω−1

n )V k(ω)Lj(ω).
Recalling that L(ω) is the projection onto

⋃∞
j=0 RanLj(ω), we obtain that

L(ω) = s-limn→∞ π(ωngω−1
n )V k(ω)L(ω). But V k(ω)L(ω) (= V k(ω) when

k > 0) is a partial isometry with the initial and final projections equal to L(ω).
So V ∗k(ω)L(ω) = L(ω)V ∗k(ω) = s-limn→∞ π(ωngω−1

n )V k(ω)L(ω)V ∗k(ω) =
s-limn→∞ π(ωngω−1

n )L(ω). �

Given a subset A of a group let gp(A) denote the subgroup generated by
A and ngp(A) the smallest normal subgroup of gp(A) containing A in one of
its cosets.

Lemma 6.4. ngp(A) = gp
(⋃∞

k=1(A−kAk ∪AkA−k)
)
.

Proof. See the proof of Proposition 1.1 in [11]. �

Lemma 6.5. There exists a σ-compact subgroup N of G such that:

(i) N E G and Nµ ⊆ N .
(ii) µ(zN) = 1 for some z ∈ G, and zNz−1 = N for every z ∈ G with

µ(zN)=1.
(iii) If µ(zN) = 1 then s-limn→∞

(
π(g)Pnµ − Pn+k

µ

)
= 0 for every k =

0, 1, . . . and every g ∈ zkN .
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Proof. Let x ∈ H. Then∫
G

‖π(g)Pnµ x− Pn+1
µ x‖2 µ(dg)(6.2)

= ‖Pnµ x‖2 + ‖Pn+1
µ x‖2 −

∫
G

〈π(g)Pnµ x , P
n+1
µ x〉 µ(dg)

−
∫
G

〈Pn+1
µ x , π(g)Pnµ x〉 µ(dg) = ‖Pnµ x‖2 − ‖Pn+1

µ x‖2.

Hence,

(6.3)
∫
G

∞∑
n=1

‖π(g)Pnµ x− Pn+1
µ x‖2 µ(dg) =

∞∑
n=1

(
‖Pnµ x‖2 − ‖Pn+1

µ x‖2
)
<∞.

This implies that there exists a Borel set Bx with µ(Bx) = 1 and

(6.4) lim
n→∞

‖π(g)Pnµ x− Pn+1
µ x‖ = 0

for every g ∈ Bx. Let B =
⋂∞
j=1Bxj where {xj}∞j=1 is a sequence dense in H.

B is then a Borel set with µ(B) = 1 and it is easy to see that for each g ∈ B,
Eq.(6.4) holds for every x ∈ H, i.e.,

(6.5) s-lim
n→∞

(
π(g)Pnµ − Pn+1

µ

)
= 0

for every g ∈ B. This implies that we also have

(6.6) s-lim
n→∞

(
π(g)Pnµ − Pn−1

µ

)
= 0

for every g ∈ B−1. Then straightforward induction yields

(6.7) s-lim
n→∞

(
π(g)Pnµ − Pn+k

µ

)
= 0

for every k ∈ Z and g ∈ Bk. It follows that for g ∈
⋃∞
k=1

(
B−kBk ∪BkB−k

)
,

(6.8) s-lim
n→∞

(
π(g)Pnµ − Pnµ

)
= 0.

But
{
g ∈ G ; s-limn→∞

(
π(g)Pnµ − Pnµ

)
= 0

}
is a subgroup of G and thus

Eq. (6.8) holds for all g ∈ gp
(⋃∞

k=1(B−kBk ∪BkB−k)
)
.

Now, due to the regularity of µ, B contains a σ-compact subset A with
µ(A) = 1. Then N = gp

(⋃∞
k=1(A−kAk ∪ AkA−k)

)
is a σ-compact subgroup

and Eq.(6.8) holds for all g ∈ N . Moreover, for every a ∈ A, A ⊆ aN and
therefore µ(aN) = 1.

Next, D = gp(A) is dense in G by the adaptedness of µ. By Lemma 6.4,
N E D and, hence, N E G. Since µ(aN) = 1 whenever a ∈ A, N must
contain Nµ, by the definition of Nµ. It remains to prove the second statement
of (ii) and statement (iii). Choose an a ∈ A and suppose that µ(zN) = 1. As
µ(aN) = 1, we must have z ∈ aN . Since a ∈ D, zNz−1 = aNa−1 = N . This
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completes the proof of (ii). Next, we have zkN = akN and so if g ∈ zkN then
g = akh with h ∈ N . Therefore using Eq.(6.7) and the definition of N we get

π(g)Pnµ − Pn+k
µ = π(ak)π(h)Pnµ − Pn+k

µ

= π(ak)
(
π(h)Pnµ − Pnµ

)
+ π(ak)Pnµ − Pn+k

µ
s−−−−→

n→∞
0.

This proves (iii). �

Lemma 6.6. Suppose that µ̃ is π-regular. Let ω ∈ Γ be such that ω0 = e
and ωn ∈ supp µ̃n for every n ≥ 1. Then L(ω) = Dµ and for every k =
0, 1, . . . , Lk(ω) = Dµπ(ωk). Furthermore, for every g ∈ suppµ, V ∗(ω) =
π(g)Dµ.

Proof. We have L∗n(ω) = P ∗µL
∗
n+1(ω) = Pµ̃L

∗
n+1(ω) for every n ≥ 0. Hence,

if x ∈ H then xn = L∗n(ω)x is a µ̃-harmonic sequence. Since x0 = Pµ̃nxn,
Lemma 3.1 and π-regularity yield x0 = π(ωn)xn, i.e., L∗0(ω)x = π(ωn)L∗n(ω)x.
Thus L∗0(ω) = π(ωn)L∗n(ω) and therefore L(ω) = s-limn→∞ π(ωn)L∗n(ω) =
L∗0(ω). This implies Ln(ω) = L(ω)π(ωn) for every n ≥ 0. We need to show
that L(ω) = Dµ.

Suppose that Dµx = x, i.e., x ∈ Mµ. Then, by Proposition 3.2(ii),
π(ωn)Pnµ x = π(ωn)π(ω−1

n )x = x and, hence, L(ω)x = L0(ω)x = x. Thus
Dµ ≤ L(ω). Conversely, suppose that L(ω)x = x. Then x = L(ω)x =
L0(ω)x = limn→∞ π(ωn)Pnµ x. Since Pµ is a contraction, we must have
‖Pnµ x‖ = ‖x‖ for all n ≥ 0. So by Proposition 3.2(ii), x ∈ Mµ. Thus
L(ω) ≤ Dµ and we conclude that L(ω) = Dµ.

It remains to prove the last statement. Let N be the subgroup described in
Lemma 6.5 and z ∈ G be such that µ(zN) = 1. Clearly, µ(zN ∩ suppµ) = 1
and so zN ∩ suppµ is dense in suppµ. Hence, it suffices to prove that
V ∗(ω) = π(g)Dµ for every g ∈ zN ∩ suppµ. But by Lemmas 6.5 and
6.3, for such g, V ∗(ω) = s-limn→∞ π(ωngω−1

n )Dµ. Now, g ∈ suppµ implies
ωngω

−1
n = g(ω−1

n g)−1gω−1
n ∈ g(suppµn+1)−1(suppµ)n+1 ⊆ gMµ. Hence,

π(ωngω−1
n )Dµ = π(g)Dµ and we are done. �

Proposition 6.7. µ is π-neat if and only if µ̃ is π-regular.

Proof. Let a ∈ G be an element with µ(aNµ) = 1.
⇒: Note that α = {a−n}∞n=0 ∈ Γ , Lk(α) = π(a−k)Eµ, and using the fact

that Eµ commutes with every π(g), g ∈ G, we obtain L(α) = Eµ. Hence, by
Proposition 6.2, given a µ̃-harmonic sequence {xn}∞n=0 there exists x ∈ EµH
such that xk = L∗k(α)x for every k = 0, 1, . . . . But L∗k(α)x = Eµπ(ak)x =
π(ak)Eµx = π(ak)x, and so ‖xk‖ = ‖x‖ for every k.
⇐: Let Q be the Markov measure of the right random walk of law µ̃ started

from e. Note that the set Γ ′ = {ω ∈ Γ ; ω0 = e and ωn ∈ supp µ̃n for every
n ≥ 1} has Q-measure 1, in particular, is nonempty. Pick an ω ∈ Γ ′.
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By Lemma 6.6 we have L0(ω) = s-limn→∞ π(ωn)Pnµ = Dµ, equivalently,
s-limn→∞

(
Pnµ − π(ω−1

n )Dµ

)
= 0. Since ω−1

n ∈ suppµn ⊆ anNµ, π(ω−1
n )Eµ =

π(a)nEµ. Hence, it suffices to show that Eµ = Dµ. It is clear that Eµ ≤ Dµ.
We will prove that Eµ ≥ Dµ.

By Lemma 6.6, L(ω) = Dµ and π(g)Dµ = V ∗(ω) for every g ∈ suppµ.
Hence, π(g)Dµπ(g)−1 = V ∗(ω)V (ω) = L(ω) = Dµ, and by adaptedness of µ
we get π(g)Dµπ(g)−1 = Dµ for every g ∈ G. This means that Mµ = DµH is
a π-invariant subspace. The subrepresentation π′ of π on Mµ has Mµ in its
kernel. Since by Proposition 3.3 Nµ is the smallest closed normal subgroup
of G containing Mµ , it follows that Nµ ⊆ Kerπ′. Consequently, Mµ ⊆ Nµ,
i.e., Dµ ≤ Eµ. �

Remark 6.8. It may be of interest to note how neatness of every almost
aperiodic spread out probability measure (Corollary 3.14) follows from Lemma
6.5 without using the work of Derriennic and Lin [11]: When µ is spread
out then the subgroup N of Lemma 6.5 and the subgroup Nµ must have
nonzero Haar measure and, hence, be open. Thus when µ is almost aperiodic
and k = [G : Nµ], it follows from Parts (i) and (iii) of the lemma that
s-limn→∞(Pnµ − Pn+k

µ ) = 0. Having this one can use the decomposition H =
Ker(I − P kµ )⊕Ran(I − P kµ ) to conclude that s-limn→∞ Pnkµ is the projection
onto Ker(I − P kµ ). As we saw in the proof of Corollary 3.14, this implies
π-neatness of µ. Alternatively, one could use Lemma 6.3 to conclude that
V ∗k(ω) = L(ω); this implies that every µ̃-harmonic sequence in H is periodic
and Proposition 6.7 applies.

7. Ergodic probability measures

Given a locally compact group G, we shall denote by L1(G) the space of
regular complex measures on G, absolutely continuous with respect to the
Haar measure, and by L1

0(G) the subspace consisting of those ϕ ∈ L1(G) for
which ϕ(G) = 0. A probability measure µ on G is called left (resp., right)
ergodic if

lim
n→∞

∥∥∥∥ 1
n

n∑
j=1

µj ∗ ϕ
∥∥∥∥ = 0

(
resp., lim

n→∞

∥∥∥∥ 1
n

n∑
j=1

ϕ ∗ µj
∥∥∥∥ = 0

)
.

for every ϕ ∈ L1
0(G). Ergodic probability measures are necessarily adapted

and can exists only on σ-compact amenable locally compact groups [28], [36].
Of course, left ergodicity of µ is equivalent to right ergodicity of µ̃. We note
that left ergodicity of µ does not imply right ergodicity of µ [28, Proposition
6.5].

Consider a random walk of law µ on a σ-compact locally compact group G.
Let α denote the Markov measure of the random walk started with an initial
distribution equivalent to the Haar measure. Left (resp., right) ergodicity of µ
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is equivalent to the condition that every invariant random variable f : G∞ →
C of the left (resp., right) random walk be constant α-a.e. [10]. We note that
α is quasiinvariant with respect to the canonical action of G on G∞, as follows
from Eqs (4.1.6), and (4.1.8) or (4.1.9).

Theorem 7.1. Every left ergodic probability measure on a locally compact
group is neat.

Proof. Let µ be a left ergodic probability measure on G. It is easy to
see that if H is a closed normal subgroup of G then the quotient measure
µH(A) on G/H is left ergodic too. Therefore in view of Lemmas 3.7, 3.8, and
Proposition 3.6, we may assume that G is second countable and that π acts
in a separable Hilbert space H. Then by Proposition 6.7 it suffices to show
that µ̃ is π-regular.

Consider the right random walk of law µ̃ on G. Recall that by Corollary
4.3.3 there exists a B(i)-measurable function V : G∞ → B(H) such that for
each ω ∈ G∞, V (ω) is a partial isometry with the initial and final projection
equal to L(ω), V (ω)Lk(ω) = Lk+1(ω) for every k = 0, 1, . . . , and V (gω) =
π(g)V (ω)π(g)−1 for every g ∈ G. Now, since µ̃ is right ergodic and B(H) is
a standard Borel space [33, Chap. 2], there is an α-conull Borel set Ω ⊆ G∞

and a partial isometry W with V (ω) = W for all ω ∈ Ω. Let g ∈ G. Since
α is quasiinvariant, Ω ∩ g−1Ω 6= ∅. With γ ∈ Ω ∩ g−1Ω we then obtain
W = V (gγ) = π(g)V (γ)π(g)−1 = π(g)Wπ(g)−1. Thus W commutes with
every π(g), g ∈ G. Hence, it commutes also with Pµ and, consequently, also
with L0(ω), ω ∈ G∞. The same is true for the projection E = W ∗W = WW ∗,
equal to L(ω) for each ω ∈ Ω.

Note that the set Γ of Theorem 4.3.1, being universally conull, is also
α-conull. So Γ ∩ Ω 6= ∅. Let {xn}∞n=0 ⊆ H be a µ̃-harmonic sequence.
Choose any ω ∈ Γ ∩ Ω. By Proposition 6.2 there exists x ∈ L(ω)H = EH
such that xn = L∗n(ω)x for every n ≥ 0. But Ln(ω) = WnL0(ω) and as W
and E commute with L0(ω), and EL0(ω) = L0(ω), we obtain that Ln(ω) =
L0(ω)Wn = L0(ω)EWn. Consequently, xn = W ∗nEL∗0(ω)x. Since W is a
partial isometry with the initial and final projections equal to E, we conclude
that ‖xn‖ = ‖x0‖ for every n ≥ 0. �

Remark 7.2. (a) Theorem 7.1 does not follow from the assumption that
G be neat. This is because ergodic probability measures, while automatically
adapted, need not be almost aperiodic. Recall that there are examples of
adapted measures which fail to be π-neat for some π. By Theorem 7.1 such
measures cannot be left ergodic.

(b) For spread out measures, in particular, for every probability measure
on a discrete group, Theorem 7.1 can be proven by more elementary means,
using the connection between ergodicity and mixing [14], [25], [20], [21]. Given
a closed normal subgroup H of G let L1

0(G,H) = {ϕ ∈ L1(G) ; ϕ(p−1(A)) =
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0 for every Borel set A ⊆ G/H}, where p : G → G/H denotes the canonical
homomorphism. It can be shown that for an adapted spread out probability
measure µ left ergodicity is equivalent to the condition that

(7.1) lim
n→∞

‖µn ∗ ϕ‖ = 0 for every ϕ ∈ L1
0(G,Nµ).4

Condition (7.1) implies that limn→∞ ‖Pnµ Pϕ‖ = 0 for every continuous unitary
representation π. Hence, SPϕ = 0 where S = s-limn→∞ P ∗nµ Pnµ . Let εi be an
approximate identity in L1(G). Then for every g ∈ Nµ, gεi − εi ∈ L1

0(G,Nµ)
and it easily follows that Sπ(g) = S. Next, since the measure µ̃n ∗ µn is
carried on Nµ, we obtain SP ∗nµ Pnµ = SPµ̃n∗µn = S and, hence, S = S2, i.e.,
S is a projection. By Corollary 3.9, S = Dµ. So S ≥ Eµ. But as π(g)S = S
for every g ∈ Nµ, it is clear that S ≤ Eµ. Thus S = Eµ and µ is π-neat by
Corollary 3.10.

It is not known whether the characterization of ergodicity by means of
Condition (7.1) remains generally true when µ is not spread out. Theorem
7.1 is consistent with the conjecture that this is so.

8. [SIN] groups are neat

Recall that [SIN] denotes the class of those locally compact groups which
admit a neighbourhood base at e consisting of neighbourhoods invariant under
the group Int(G) of the inner automorphisms of G. A result of Lin and
Wittmann [30, Theorem 3.6] shows that every aperiodic probability measure
on G ∈ [SIN] is neat. The goal of the present section is to prove that every
almost aperiodic probability measure on G ∈ [SIN] is neat, i.e., that every
[SIN] group is neat.

By an invariant set in G we shall mean a set invariant under Int(G).

Lemma 8.1. Let µ be an adapted probability measure on a second count-
able [SIN] group G and π a continuous unitary representation of G in a sep-
arable Hilbert space H. Then there exists a closed normal subgroup H such
that :

(i) Nµ ⊆ H.
(ii) µ(zH) = 1 for some z ∈ G.
(iii) If µ(zH) = 1 then s-limn→∞

(
π(g)Pnµ − Pn+k

µ

)
= 0 for every k =

0, 1, . . . and every g ∈ zkH.

Proof. Let N denote the subgroup described in Lemma 6.5. Put H = N .
Then H is normal and satisfies (i). It is also immediate that (ii) holds for any
z ∈ G with µ(zNµ) = 1.

4 When µ aperiodic, i.e., Nµ = G, then L1
0(G,Nµ) = L1

0(G) and Condition (7.1) defines
a left mixing probability measure. In this case the result is due to Glasner [14]; in the

general case it follow from [21, Theorem 4.4 and Remark 3 on p. 214] and [20, Theorem
1.3]; see [25] for more details.
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Let µ(z1N) = 1. If µ(zH) = 1 then z1H = zH, and hence, by Lemma
6.5, to prove (iii) it suffices to prove that for each k = 0, 1, . . . , the set
Ak =

{
g ∈ G ; s-limn→∞

(
π(g)Pnµ − Pn+k

µ

)
= 0

}
is closed in G. Suppose

g ∈ Ak. Let x ∈ H and ε > 0 be given. Choose a symmetric invariant
neighbourhood U of e such that ‖π(u)x − x‖ < 1

2ε for every u ∈ U . Clearly,
Ug contains an element a ∈ Ak, thus g = ua for some u ∈ U . Using the
invariance of U , for large enough n we obtain,

‖π(g)Pnµ x− Pn+k
µ x‖ = ‖π(u)π(a)Pnµ x− Pn+k

µ x‖

≤ ‖π(u)π(a)Pnµ x− π(u)Pn+k
µ x‖+ ‖π(u)Pn+k

µ x− Pn+k
µ x‖

≤ ‖π(a)Pnµ x− Pn+k
µ x‖+

∫
G

‖π(uh)x− π(h)x‖ µn+k(dh)

< 1
2ε+

∫
G

‖π(h−1uh)x− x‖ µn+k(dh) ≤ 1
2ε+ 1

2ε = ε.

Since ε and x are arbitrary, g ∈ Ak. �

Lemma 8.2. Let B be an open subgroup of a locally compact group G
and µ ∈ M1(G) almost aperiodic. If B ∩ Nµ = {e} then B is compact and
monothetic.

Proof. Let p : G → G/Nµ denote the canonical homomorphism. Since B
is open, p�B is an open mapping and as B ∩ Nµ = {e}, it follows that B is
topologically isomorphic to p(B). Now, p(B) is an open subgroup of G/Nµ
and G/Nµ is compact and monothetic, cf. Proposition 3.3. Hence, p(B) is
itself compact and monothetic. Therefore so is B. �

Lemma 8.3. Let µ be an almost aperiodic probability measure on a locally
compact group G and g ∈ G. Then for every neighbourhood U of e and every
k ∈ N there exists j ≥ k such that gjNµ ∩ U 6= ∅.

Proof. Let U ′ be the image of U in G/Nµ under the canonical homomor-
phism. By compactness of G/Nµ, {gnNµ}∞n=1 is a subgroup of G/Nµ. Hence,
there is a net jα in N with limα g

jαNµ = Nµ and jα → ∞. So gjNµ ∈ U ′,
equivalently, gjNµ ∩ U 6= ∅ for some j ≥ k. �

Lemma 8.4. Let µ be an almost aperiodic probability measure on a lcsc
group G and suppose that G has an open normal subgroup B such that B ∩
Nµ = {e}. Then µ is neat.

Proof. Given a continuous unitary representation π in a separable Hilbert
space H let N denote the subgroup described in Lemma 6.5 and let z ∈ G
be an element with µ(zN) = 1. By Lemma 8.3, B ∩ zkNµ 6= ∅ for some
k ≥ 1. Since Nµ ⊆ N , B ∩ zkN 6= ∅ too. Choose g ∈ B ∩ zkN and
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γ ∈ Γ = {ω ∈ G∞ ; s-limn→∞ π(ωn)Pn−kµ exists for each k = 0, 1, . . . }. By
Lemmas 6.5 and 6.3, V ∗k(γ) = s-limn→∞ π(γngγ−1

n )L(γ). But by Lemma
8.2, B is compact. Hence, g has precompact conjugacy class and it follows
that V ∗k(γ) = π(b)L(γ) for some b ∈ B. Again by compactness of B there is
a sequence {nj}∞j=1 of positive integers with nj →∞ and limj→∞ bnj = e.

Note that π(b)L(γ)π(b−1) = V ∗k(γ)V k(γ) = L(γ). Hence, V ∗ik(γ) =
π(bi)L(γ) = L(γ)π(bi) for every i ≥ 1. Therefore L∗ik(γ) = L∗0(γ)V ∗ik(γ) =
L∗0(γ)L(γ)π(bi) = L∗0(γ)π(bi). Let {xn}∞n=0 be a µ̃-harmonic sequence in H.
By Proposition 6.2, xn = L∗n(γ)x for some x ∈ L(γ)H. So xnjk = L∗njk(γ)x =
L∗0(γ)π(bnj )x −→ L∗0(γ)x = x0. Now, if n ≥ 0 then ‖x0‖ ≤ ‖xn‖ ≤ ‖xnjk‖
for large enough j. Thus ‖xn‖ = ‖x0‖. It follows that µ̃ is π-regular and so
π-neat. �

Theorem 8.5. Every [SIN] group is neat.

Proof. Note that the quotient of a [SIN] group by a closed normal subgroup
is a [SIN] group. Hence, by Proposition 3.6 and Lemmas 3.7 and 3.8, it
suffices to prove that if a second countable [SIN] group G admits an almost
aperiodic probability measure µ and a faithful continuous irreducible unitary
representation π such that Pnµ fails to converge strongly to 0, then dimπ = 1.

Pick a γ ∈ Γ . Then L(γ) 6= 0. Let x be a unit vector in L(γ)H. Let H be
the subgroup described in Lemma 8.1 and denote by λH the Haar measure
of H extended to G (so that λH(G − H) = 0). It is easy to see that λH is
invariant under Int(G). Choose an open invariant neighbourhood U of e with
compact closure and let dν = λH(U)−1χU dλH . It follows that gν = νg for
every g ∈ G and, hence, the ν-average Pν commutes with every π(g), g ∈ G.
So by irreducibility of π, Pν = cI for some c ∈ C. But for every n ≥ 0,

c = 〈Pνπ(γ−1
n )x , π(γ−1

n )x〉(8.1)

=
∫
H

〈π(gγ−1
n )x , π(γ−1

n )x〉 ν(dg) =
∫
H

〈π(γngγ−1
n )x , x〉 ν(dg).

By Lemmas 8.1 and 6.3, L(γ) = s-limn→∞ π(γngγ−1
n )L(γ) for every g ∈ H.

Since L(γ)x = x, it follows that as n → ∞, the right hand side of (8.1)
converges to 1. Thus c = 1, i.e., Pν = I. Then by Proposition 3.2(i), supp ν ⊆
Kerπ. But supp ν ⊇ H ∩ U . Hence, as π is faithful, we conclude that H is
discrete.

Let B(G) = {g ∈ G ; g has precompact conjugacy class}. B(G) is an open
characteristic subgroup. Let g ∈ B(G) ∩H. As H is discrete, the conjugacy
class Cg of g is finite (and contained in H). Put T = 1

|Cg|
∑
c∈Cg π(c). Since

each inner automorphism permutes the elements of Cg, π(g)Tπ(g−1) = T for
every g ∈ G. Hence, by irreducibility, T = tI for some t ∈ C. An argument
analogous to that of Eq. (8.1) shows that T = I, which, in turn, implies that
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π(g) = I. Thus g = e by faithfulness of π. It follows that H ∩ B(G) = {e},
and hence we also have Nµ ∩ B(G) = {e}. By Lemma 8.4, µ is neat. Hence,
as Pµ

s
9 0, Proposition 3.6 yields dimπ = 1. �

9. Extensions of abelian groups

Neatness of solvable locally compact groups would follow by trivial induc-
tion if one could prove that a locally compact group G which admits a closed
normal abelian subgroup A with neat quotient G/A, is itself neat. We did not
succeed in proving such a result. Instead, in this section we obtain a weaker
result in the same direction, which combined with the results of Section 6
and special properties of solvable Lie groups, will be sufficient to prove that
solvable Lie groups are neat.

Our main tool is a rather basic result about systems of imprimitivity which
will be familiar to readers versed in Mackey’s analysis of group extensions,
especially in the special case of transitive systems. However, we have not
found this result explicitly stated and proven in the literature. Therefore we
will give it with a proof. Our main reference on systems of imprimitivity is
[39, Chap. VI].

Let G be a lcsc group. By a standard G-space we shall mean a G-space S
where S is a standard Borel space and the mapping G× S 3 (g, s)→ gs ∈ S
is Borel. Let H be a separable Hilbert space and π a continuous unitary
representation of G in H. Let Λ be a projection valued measure on the Borel
subsets of S, taking values in the set of projections of H. The pair (π,Λ) is
called a system of imprimitivity based on S and acting in H if for each g ∈ G
and each Borel set B ⊆ X ,

(9.1) π(g)Λ(B)π(g)−1 = Λ(gB).

The system (π,Λ) is called ergodic if for every G-invariant Borel set B ⊆ S
one has Λ(B) = 0 or Λ(B) = I. It is clear that (π,Λ) is ergodic whenever
π is irreducible. Two systems of imprimitivity based on the same G-space
S, (π,Λ) acting in H, and (π′,Λ′) acting in H′, are called equivalent if there
exists a unitary isomorphism U of H onto H′ such that

(9.2) π′(g) = Uπ(g)U−1 and Λ′(B) = UΛ(B)U−1

for every g ∈ G and every Borel set B ⊆ S.
Given a measure ν on S and g ∈ G, we will write gν for the measure

(gν)(B) = ν(g−1B). Let α be a σ-finite quasiinvariant measure on the stan-
dardG-space S. For each g ∈ G, let rg denote a version of the Radon-Nikodym
derivative dgα

dα . Then the formula

(9.3)
(
ρ(g)x

)
(s) = r1/2

g (s)x(g−1s)

defines a continuous unitary representation ρ of G in L2(S, α).
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Let K be a separable Hilbert space and consider the Hilbert space L2(S,K, α)
of square integrable Borel functions x : S → K modulo α. We will write 〈· , ·〉
and ‖ · ‖ for the inner product and norm in L2(S,K, α) (this will apply also
when K = C); 〈· , ·〉K and ‖ · ‖K will denote the inner product and norm in K.
Thus given x1, x2 ∈ L2(S,K, α),

〈x1, x2〉 =
∫
S

〈x1(s), x2(s)〉K α(ds).

Next, for each Borel set B ⊆ S let Λα(B) be the projection in L2(S,K, α)
given by multiplication by the characteristic function of B, i.e.,

(
Λα(B)x

)
(·) =

χB(·)x(·), x ∈ L2(S,K, α). Then Λα is a projection valued measure on S,
acting in L2(S,K, α). It is clear that Λα(B) = 0 if and only if α(B) = 0.
Given x ∈ L2(S,H, α), let ‖x‖K denote the element of L2(S, α) defined by
‖x‖K(s) = ‖x(s)‖K.

Lemma 9.1. Let (π,Λ) be an ergodic system of imprimitivity based on S
and acting in H. Then there exists an ergodic σ-finite quasiinvariant measure
α on S, a separable Hilbert space K, and a continuous unitary representa-
tion π′ of G in L2(S,K, α), such that (π′,Λα) is a system of imprimitivity
equivalent to (π,Λ) and

(9.4) ‖π′(g)x‖K = ρ(g)‖x‖K
for every g ∈ G and x ∈ L2(S,K, α).

Proof. By [39, Lemma 6.10] there exists a σ-finite measure α on S, a sep-
arable Hilbert space K, and a unitary isomorphism U of H onto L2(S,K, α)
such that UΛ(B)U−1 = Λα(B) for every Borel set B ⊆ S. α has the same
null sets as Λ, hence, is ergodic, and by Eq. (9.1) is quasiinvariant. Define
π′(g) = Uπ(g)U−1, g ∈ G. Then (π′,Λα) is a system of imprimitivity equiv-
alent to (π,Λ), and it remains to verify Eq. (9.4).

Now, with x ∈ L2(S,K, α), Eq. (9.3) can be used to define a continuous
unitary representation of G in L2(S,K, α). We will denote this representation
by ρK. The pair (ρK,Λα) is another system of imprimitivity. Hence, with
η(g) = ρK(g−1)π′(g) we have

(9.5) η(g)Λα(B)η(g)−1 = Λα(B)

for every g ∈ G and every Borel set B ⊆ S.
Given a bounded Borel function ϕ : S → B(K) let Aϕ ∈ B

(
L2(S,K, α)

)
denote the operator (Aϕx)(·) = ϕ(·)x(·). When f : S → C is a bounded Borel
function, then AfI =

∫
S f dΛα, and so Eq.(9.5) implies that η(g)AfIη(g)−1

= AfI for every g ∈ G. Then by [33, Theorem 6.2], η(g) = Aϕg for a bounded
Borel function ϕg : S → B(K). But since η(g) is unitary, ϕg(s) must be
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unitary for α-a.e. s ∈ S [33, Proposition 6.1]. Therefore given x ∈ L2(S,K, α),
we obtain

‖(π′(g)x)(s)‖K = ‖
(
ρK(g)η(g)x

)
(s)‖K = ‖r1/2

g (s)ϕg(g−1s)x(g−1s)‖K
= r1/2

g (s)‖x(g−1s)‖K =
(
ρ(g)‖x‖K

)
(s)

for α-a.e. s ∈ S. This proves (9.4). �

Let A be a closed normal abelian subgroup of G. As is well known, A
can be used to associate in a canonical way a system of imprimitivity to any
continuous unitary representation of G. Let Â denote the character group of
A. When g ∈ G, write int(g) for the inner automorphism int(g)(g′) = gg′g−1.
Recall that the canonical action of G on Â is given by

gξ = ξ ◦ int(g−1), g ∈ G, ξ ∈ Â.

This action is continuous in the sense that the mapping G × Â 3 (g, ξ) →
gξ ∈ Â is continuous. Let π be a continuous unitary representation of G in
a separable Hilbert space H. By [13, Theorem 4.44], there exists a unique
projection valued measure Λ on Â, acting in H, such that for every a ∈ A,
π(a) =

∫
Â
ξ(a) Λ(dξ). It follows that (π,Λ) is a system of imprimitivity

based on Â, which is ergodic whenever π is irreducible. Moreover, when
H = L2(Â,K, α) and Λ = Λα for a σ-finite quasiinvariant measure on Â and
a separable Hilbert space K, then

(
π(a)x

)
(ξ) = ξ(a)x(ξ) for every a ∈ A and

x ∈ H. Hence, Lemma 9.1 has this corollary:

Lemma 9.2. Let π be a continuous irreducible unitary representation of
the lcsc group G in a Hilbert space H and A a closed normal abelian subgroup
of G. Then there exists an ergodic σ-finite quasiinvariant measure α on Â, a
separable Hilbert space K, and a continuous unitary representation π′ of G in
L2(Â,K, α) such that:

(i) π is equivalent to π′.
(ii)

(
π′(a)x

)
(ξ) = ξ(a)x(ξ) for every a ∈ A and x ∈ L2(Â,K, α).

(iii) ‖π′(g)x‖K = ρ(g)‖x‖K for every g ∈ G and x ∈ L2(Â,K, α).

Lemma 9.2 can be useful in the study of the µ-averages because
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‖P n
µπ′x‖2 =

∫
G×G

〈π′(g1)x , π′(g2)x〉 (µn×µn)(dg1, dg2)(9.6)

≤
∫

G×G

|〈π′(g1)x , π′(g2)x〉| (µn×µn)(dg1, dg2)

=
∫

G×G

∣∣∣∣∫
Â

〈
(
π′(g1)x

)
(ξ) ,

(
π′(g2)x

)
(ξ)〉K α(dξ)

∣∣∣∣ (µn×µn)(dg1, dg2)

≤
∫

G×G

(∫
Â

‖
(
π′(g1)x

)
(ξ)‖K · ‖

(
π′(g2)x

)
(ξ)‖K α(dξ)

)
(µn×µn)(dg1, dg2)

=
∫

G×G

(∫
Â

(
ρ(g1)‖x‖K

)
(ξ) ·

(
ρ(g2)‖x‖K

)
(ξ) α(dξ)

)
(µn×µn)(dg1, dg2)

=
∥∥P n

µρ‖x‖K
∥∥2
.

Now, since A stabilizes every point of Â, ρ is the representation ρA of G/A
lifted to G, and so P n

µρ‖x‖K = P n
µAρA‖x‖K. Thus if EµAρA = 0 and µA

is ρA-neat (in particular, when G/A is neat and µ almost aperiodic), then
s-limn→∞ P n

µπ′ = 0. The problem is that it may happen that EµAρA 6= 0.
Fortunately, this case can be often handled by a careful use of the results of
Section 6 combined with structural properties of G.

Lemma 9.3. Let S be a standard ergodic G-space with a σ-finite quasiin-
variant measure α, and H a normal subgroup of G. Consider the canonical
representation ρ of G in L2(S, α). It follows that ρ admits a nonzero H-
invariant vector if and only if there exists an H-invariant probability measure
equivalent to α.

Proof. If ν � α is an H-invariant probability measure on S then
√

dν
dα is an

H-invariant unit vector in L2(S, α). Conversely, suppose that x ∈ L2(S, α)
is an H-invariant unit vector. Let ν1 be the probability measure given by
dν1 = |x|2 dα. ν1 is H-invariant. Put ν = λ1 ∗ ν1 where λ1 is a probability
measure equivalent to the Haar measure (λ1 ∗ ν1 is defined by (λ1 ∗ ν1)(B) =∫
G
ν1(g−1B)λ1(dg)). Then ν is an H-invariant, G-quasiinvariant probability

measure absolutely continuous with respect to α. Let f be a version of dν
dα

and let S ′ = {s ∈ S ; f(s) > 0}. The quasiinvariance of ν requires that
α(gS ′ M S ′) = 0 for every g ∈ G. Hence, as S is a standard G space,
ergodicity yields α(S − S ′) = 0, which means that ν ∼ α. �

Recall that when S is a locally compact space, by the weak topology on the
space M(S) of regular complex measures on S one means the σ

(
M(S), Cb(S)

)
-

topology where Cb(S) is the algebra of bounded continuous functions on S.
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Lemma 9.4. Let S be a lcsc G-space where G is a lcsc group and the
function G × S 3 (g, s) → gs ∈ S is continuous. Suppose H is a closed
cocompact normal subgroup of G and α an H-invariant probability measure
on S. Then for every probability measure ν � α, the family {gν ; g ∈ G} is
weakly relatively compact.

Proof. By Prohorov’s theorem [17, Theorem 1.1.11] it suffices to show that
for every ε > 0 there exists a compact K ⊆ S with (gν)(S − K) < ε for
every g ∈ G. But given ε > 0, by absolute continuity we can find δ > 0
such that ν(A) < ε whenever α(A) < δ. Choose a compact K1 ⊆ S with
α(S − K1) < δ. As G/H is compact, G = CH for a compact C ⊆ G. Put
K = CK1. K is compact. Given g ∈ G, write g = ch with c ∈ C and h ∈ H.
Then α

(
g−1(S − K)

)
= (gα)(S − K) = (cα)(S − K) = α(S − c−1CK1) ≤

α(S −K1) < δ. Hence, (gν)(S −K) = ν
(
g−1(S −K)

)
< ε. �

Proposition 9.5. Let µ be an almost aperiodic probability measure on
a lcsc group G, A a closed normal abelian subgroup, and π a continuous
irreducible unitary representation of G in a Hilbert space H. If the quotient
measure µA on G/A is neat and the sequence {P n

µπ}∞n=1 fails to converge
strongly to zero then:

(1) For every sequence {gn}∞n=0 in G and every x ∈ H there exists a
uniformly continuous function f : A→ C and a subsequence {gnk}∞k=0

such that f(a) = limk→∞〈π(gnkag
−1
nk

)x , x〉 for every a ∈ A.
(2) If a ∈ A and limn→∞ gnag

−1
n = e for a sequence {gn}∞n=0 in G, then

a ∈ Kerπ.

Proof. By Lemma 9.2 we may assume that π is the representation π′ in
L2(Â,K, α) described in the lemma.

Suppose that there exists no Nµ-invariant probability measure equivalent
to α. Then by Lemma 9.3 the canonical representation ρ of G in L2(Â, α)
has no nonzero Nµ-invariant vectors. By Lemma 3.7 the representation ρA
of G/A also has no nonzero NµA -invariant vectors. Thus EµAρA = 0 and as
µA is assumed neat, it follows from Eq.(9.6) that s-limn→∞ P n

µπ = 0, which
contradicts our assumption. So there must exist an Nµ-invariant probabil-
ity measure α′, equivalent to α. Passing to the equivalent representation in
L2(Â,K, α′) we may as well assume that α = α′. To prove (1) it suffices to
show that for each sequence {gn}∞n=0 ⊆ G and each x ∈ L2(Â,K, α) with
‖x‖=1, there exists a uniformly continuous function f : A→ C and a subse-
quence {gnk}∞k=0 such that f(a) = limk→∞

〈
π(gnkag

−1
nk

)x , x
〉

for every a ∈ A.
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Now, using Lemma 9.2 we obtain〈
π(gnag−1

n )x , x
〉

=
〈
π(ag−1

n )x , π(g−1
n )x

〉
(9.7)

=
∫
Â

〈(
π(ag−1

n )x
)
(ξ) ,

(
π(g−1

n )x
)
(ξ)
〉

K
α(dξ)

=
∫
Â

ξ(a)
∥∥(π(g−1

n )x
)
(ξ)
∥∥2

K
α(dξ)

=
∫
Â

ξ(a)
(
ρ(g−1

n )‖x‖K
)2(ξ) α(dξ)

=
∫
Â

ξ(a)rg−1
n

(ξ)
∥∥x(gnξ)

∥∥2

K
α(dξ).

If dν = ‖x‖2K dα, then

dg−1
n ν

dα
(ξ) = rg−1

n
(ξ)
∥∥x(gnξ)

∥∥2

K
,

and so Eq.(9.7) becomes

〈π(gnag−1
n )x , x〉 =

∫
Â

ξ(a) (g−1
n ν)(dξ).

Since the weak topology of M1(Â) is metrizable, by Lemma 9.4 there exists
a subsequence {gnk}∞k=0 such that the sequence g−1

nk
ν converges weakly to a

probability measure ν0. It is clear that the function f(a) =
∫
Â
ξ(a) ν0(dξ),

a ∈ A (the Fourier-Stieltjes transform of ν0) has the desired properties.
We proceed to prove (2). Since G/Nµ is compact, we have G = CNµ for a

compact C ⊆ G. Hence, we can write gn = cnhn with cn ∈ C and hn ∈ Nµ.
It follows that limn→∞ hnah

−1
n = e. Consequently, limn→∞(h−1

n ξ)(a) = 1
for every ξ ∈ Â, and so limn→∞

∫
Â

(h−1
n ξ)(a)α(dξ) = 1. But due to the

Nµ-invariance of α,
∫
Â

(h−1
n ξ)(a)α(dξ) =

∫
Â
ξ(a)α(dξ) for every n, and thus∫

Â
ξ(a)α(dξ) = 1. This implies that ξ(a) = 1 for α-a.e. ξ ∈ Â. Consequently,

π(a) = I by Lemma 9.2(ii). Thus a ∈ Kerπ. �

Theorem 9.6. A locally compact group which admits an open normal
abelian subgroup is neat.

Proof. We may assume that G is σ-compact. Now, if G has an open normal
abelian subgroup then the same is true about every quotient of G. Hence, in
view of Proposition 3.6 and Lemmas 3.7 and 3.8, it suffices to show that if
a lcsc group G with an open normal abelian subgroup A admits an almost
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aperiodic probability measure µ and a faithful continuous irreducible unitary
representation π such that Pnµ

s
9 0, then G is itself abelian.

Let N be the subgroup described in Lemma 6.5 and z ∈ G an element
with µ(zN) = 1. By Lemma 8.3, for every neighbourhood U of e and every
k ∈ N there exists j ≥ k with U ∩ zjNµ 6= ∅. Since Nµ ⊆ N , the same is
true with Nµ replaced by N . Let {Uk}∞k=1 be a nonincreasing sequence of
neighbourhoods of e, contained in A and forming a base at e. It follows that
for each k ∈ N there exists jk ≥ k such that Uk ∩ zjkN 6= ∅. Let {hk}∞k=1 be
a sequence in N with zjkhk ∈ Uk for every k ∈ N. Clearly, limk→∞ zjkhk = e.

Choose an ω ∈ Γ . By Lemma 6.5, s-limn→∞
(
π(zjkhk)Pnµ − Pn+jk

µ

)
= 0,

and so Lemma 6.3 yields V ∗jk(ω) = s-limn→∞ π(ωnzjkhkω−1
n )L(ω) for every

k ∈ N. Let {xi}∞i=0 be a µ̃-harmonic sequence in H. By Proposition 6.2 and
Corollary 4.3.3 there exists x ∈ L(ω)H with xi = L∗i (ω)x = L∗0(ω)V ∗i(ω)x for
every i ≥ 0.

Note that the quotient measure µA is neat because G/A is discrete. Since
Pnµ

s
9 0, by Proposition 9.5 there exists a continuous function f : A→ C and a

subsequence ωnl such that f(a) = liml→∞〈π(ωnlaω
−1
nl

)x , x〉 for every a ∈ A.
So f(zjkhk) = liml→∞〈π(ωnlz

jkhkω
−1
nl

)x , x〉 = 〈V ∗jk(ω)x , x〉 for every k.
As limk→∞ zjkhk = e and f(e) = ‖x‖2, it follows that limk→∞〈V ∗jk(ω)x , x〉
= ‖x‖2. Since ‖V ∗jk(ω)x‖ = ‖x‖, we obtain that limk→∞ V ∗jk(ω)x = x.
Therefore x0 = L∗0(ω)x = limk→∞ L∗0(ω)V ∗jk(ω)x = limk→∞ xjk . Now, given
i ≥ 0, for large enough k we have ‖x0‖ ≤ ‖xi‖ ≤ ‖xjk‖. Consequently,
‖x0‖ = ‖xi‖. We conclude that µ̃ is π-regular, and so µ is π-neat. Since
Pnµ

s
9 0, Nµ 6= {0}. By irreducibility, Nµ = H, and therefore Nµ ⊆ Kerπ. So

Nµ = {e} by faithfulness. Hence, G ∼= G/Nµ is indeed abelian. �

10. Solvable Lie groups are neat

Proposition 9.5 suggests that a detailed knowledge of the action of the
group of inner automorphisms of G on A can play an important role in de-
ducing neatness of G given neatness of the quotient G/A. In the case of Lie
groups the study of this action can be to a large extent reduced to the study of
the adjoint action of G on the Lie algebra of G. To proceed we will need a few
auxiliary results about finite dimensional representations. Although our focus
is the adjoint representation of a solvable Lie group, it seems convenient to
work in the setting of continuous finite dimensional representations of locally
compact groups.

Let G be a locally compact group and ρ a continuous representation of G
in GL(V ) where V is a real finite dimensional vector space. Let Ṽ denote the
complexification of V and ρ̃ the complexification of ρ. We will write for
the complex conjugation in Ṽ (and in C).
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Let H be a closed normal subgroup of G. We will denote by Hρ and H ρ̃ the
restrictions of ρ and ρ̃ to H. Let W̃ be a G-invariant subspace of Ṽ . Given a
function λ : G → C, let W̃λ = W̃ ∩

⋂
g∈H Ker

(
H ρ̃(g) − λ(g)

)
. If W̃λ 6= {0},

we will call λ a weight of Hρ in W̃ . Clearly, every weight is a continuous
homomorphism of H into the multiplicative group C − {0}. Furthermore, if

W̃ = W̃ then W̃λ̄ = W̃λ, and so λ is a weight if and only if the conjugate
λ̄ is. The set of all weights of H ρ̃ in W̃ , denoted Λ

W̃
, is finite because the

subspaces W̃λ, λ ∈ Λ
W̃

, are linearly independent [8, Chap. VII, §1.1].

Definition 10.1. The invariant subspace W̃ will be called anH-primitive
invariant subspace if:

(i) W̃ 6= {0}.
(ii) W̃ = W̃ .
(iii) W̃ =

⊕
λ∈Λ

W̃
W̃λ.

We will say that W̃ is of type R, if each λ ∈ Λ
W̃

is a character of H. Otherwise,
we will say that W̃ is of type E.

Note that condition (ii) ensures that there exists a unique subspace W of
V such that W̃ = W ⊕ iW . W is a G-invariant subspace which will be called
the R-H-primitive invariant subspace associated with W̃ .

Lemma 10.2. Suppose that the operators ρ̃(h), h ∈ H, admit a common
eigenvector. Then there exists an H-primitive invariant subspace.

Proof. Let z be the common eigenvector. Define W̃ to be the subspace of
Ṽ spanned (over C) by the set ρ̃(G)z ∪ ρ̃(G)z. W̃ is clearly a G-invariant
subspace satisfying (i) and (ii). Next, observe that every vector in ρ̃(G)z ∪
ρ̃(G)z is an eigenvector of every ρ̃(h), h ∈ H. Let S be a maximal linearly
independent subset of ρ̃(G)z ∪ ρ̃(G)z. Then S is a basis for W̃ , diagonalizing
the subrepresentation of H ρ̃ on W̃ . Hence, (iii) is true. �

Lemma 10.3. Let W̃ be an H-primitive invariant subspace and W the
associated R-H-primitive invariant subspace. If W̃ is of type E then there
exists a nonzero vector x ∈ W and h ∈ H, such that limn→∞ ρ(hn)x = 0. If
W̃ is of type R and G/H is compact then the closure of {ρ(g)�W ; g ∈ G} in
GL(W ) is compact.

Proof. Type E means that one of the weights of Hρ in W̃ , say λ1, fails to
be a character. So there exists h ∈ H with |λ1(h)| < 1. Let x̃ ∈ W̃λ1 − {0}.
Since ρ̃(hn)x̃ = λ1(h)nx̃, it is clear that limn→∞ ρ̃(hn)x̃ = 0. If x̃ ∈ W , put
x = x̃, otherwise put x = 1

2i (x̃− x̃) = Im x̃.
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To prove the second statement, it suffices to show that for every x ∈W the
orbit ρ(G)x has compact closure in W , or, what is equivalent, in W̃ = W⊕iW .
But as x =

∑
λ∈Λ

W̃
xλ, where xλ ∈ W̃λ, ρ(h)x =

∑
λ∈Λ

W̃
λ(h)xλ for every

h ∈ H. Since all the λ’s are characters, it follows that ρ(H)x is contained in
a compact K ⊆ W̃ . But G = CH where C ⊆ G is compact. Hence, ρ(G)x is
contained in the compact set ρ(C)K. �

Theorem 10.4. Every solvable Lie group is neat.

Proof. Let G be a solvable Lie group with Lie algebra g. We proceed by
induction on d = dimG. When d = 0, the result is true because G is discrete.
So assume that all solvable Lie groups of dimension at most d are neat and
consider G of dimension d+ 1. By Proposition 3.6 it suffices to prove that if
µ is an almost aperiodic probability measure on G, then s-limn→∞ P n

µπ = 0
for every continuous irreducible unitary representation of G in a Hilbert space
H of dimension greater than 1. Recall that Pµπ = PµKerππKerπ (Lemma 3.7).
So it suffices to consider the faithful representation πKerπ of G/Kerπ and the
almost aperiodic measure µKerπ on G/Kerπ. If dim(G/Kerπ) ≤ d, we are
done by induction. So we suppose that dim(G/Kerπ) = d+ 1. Of course, we
may as well work with G assuming that π is a faithful representation. We will
write Be for the connected component of the identity of a subgroup B ⊆ G.

Let N be the subgroup described in Lemma 6.5.

Case I. N ∩ Ge is discrete. As Ge is open, this means that N itself is
discrete, and therefore closed. Hence, Nµ is discrete too, because Nµ ⊆ N .
So there exists a neighbourhood U of e with U ∩Nµ = {e}. Let p : G→ G/Nµ
denote the canonical homomorphism, and let U1 be a neighbourhood of e with
U−1

1 U1 ⊆ U . Note that p�U1 is injective. Let U2 be a neighbourhood of e
with U2

2 ⊆ U1. Since G/Nµ is abelian, it follows that st = ts for all s, t ∈ U2.
Consequently, gp(U2) is an abelian subgroup. Since gp(U2) is open, it contains
Ge and so Ge is an open normal abelian subgroup. Hence, by Theorem 9.6,
G is neat and so s-limn→∞ Pnµπ = 0, as required.

Case II. N ∩Ge is not discrete. Then J = N ∩Ge is not discrete either, so
being closed, J is then a Lie subgroup with nontrivial connected component
of the identity Je. Note that J = N ∩Ge because Ge is open in G. Therefore,
as N is normal (cf. Lemma 6.5), so is J . Let DiJ , i = 0, 1, . . . , denote the
i-th commutator subgroup of J . Since J is solvable there exists the largest
nonnegative integer k such that A = (DkJ)e is nontrivial. Clearly, A is

normal in G and DA ⊆ DDkJ . But by [8, Chap. III, §9.1], DDkJ = Dk+1J

and DA is connected. Hence, DA ⊆ (Dk+1J)e = {e}, and thus A is abelian.
Concluding, A is a nontrivial connected closed normal abelian Lie subgroup
of G. Let a ⊆ g be the Lie algebra of A. a is invariant under the adjoint
representation Ad of G. We let ρ denote the subrepresentation of Ad on
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a, and ρ̃ the complexification of ρ acting in the complexification ã of a. By
Kolchin-Malcev theorem [29, Theorem 21.1.5, p. 152], ρ̃(G) admits a subgroup
S of finite index, such that S is triangularizable. It follows that there exists a
subgroup H ≤ G of finite index such that ρ̃(H) is triangularizable. We may
assume that H is normal and closed. Then by Lemma 10.2 there exists an
H-primitive invariant subspace W̃ ⊆ ã.

Case II(i). W̃ is of type E. Then by Lemma 10.3, the associated R-
H-primitive invariant subspace W contains a nonzero vector X such that
limn→∞ ρ(hn)X = 0 for some h ∈ H. Clearly, limn→∞ hn exp(X)h−n =
limn→∞ exp

(
ρ(hn)X

)
= e and we may assume that exp(X) 6= e. Now, by in-

duction, the quotientG/A is neat. Hence, Proposition 9.5 forces s-limn→∞ P n
µπ

= 0, for otherwise Part (2) of the proposition would contradict our assumption
that π be faithful.

Case II(ii). W̃ is of type R. We will suppose that the sequence P n
µπ fails

to converge strongly to 0 and arrive at a contradiction using Part (1) of
Proposition 9.5.

Let ρ1 denote the subrepresentation of ρ in W . By Lemma 10.3, the closure
K of ρ1(G) in GL(W ) is a compact subgroup of GL(W ). Let ν be the measure
ν(·) = µ

(
ρ−1

1 (·)
)

on K. Consider the right random walk of law µ̃ on G. The
image of this random walk under the homomorphism ρ1 : G→ K is the right
random walk of law ν̃ on K. Let Q and Q′ denote the Markov measures of the
two random walks, started from the identity elements of G and K, respectively
(cf. Section 4.1). Then Q′(B) = Q

(
F−1(B)

)
for every Borel subset of K∞

(the space of paths of the random walk on K), where F : G∞ → K∞ is the
mapping F

(
{ωn}∞n=0

)
= {ρ1(ωn)}∞n=0. Now, since ρ1(G) is dense in K, the

measure ν̃ is adapted and therefore the random walk on K is topologically
recurrent, i.e., there exists a Borel subset Ω of K∞ with Q′(Ω) = 1, such that
for every ω = {ωn}∞n=0 ∈ Ω and every nonempty open set U ⊆ K, ωn ∈ U for
infinitely many values of n [35, Chap. 3, §3]. Since Q

(
F−1(Ω)

)
= 1 = Q(Γ ),

F−1(Ω)∩Γ 6= ∅ (Γ is defined in Theorem 4.3.1). Pick an ω ∈ F−1(Ω)∩Γ and
let {Uj}∞j=1 be a nonincreasing sequence of neighbourhoods of e in K forming
a base at e. It follows that there exists an increasing sequence {nj}∞j=1 in N
such that ρ1(ωnj ) ∈ Uj for each j. Thus

(10.2) lim
j→∞

ρ1(ωnj ) = I.

Now, as ω ∈ Γ and Pnµ
s
9 0, L(ω) 6= 0. Pick a nonzero x ∈ H with L(ω)x = x.

If g ∈ N then by Lemmas 6.5 and 6.3, limn→∞ π(ωngω−1
n )x = x. This

holds, in particular, for every g ∈ A ∩ N . Thus limj→∞ π(ωnjgω
−1
nj )x = x

for every g ∈ A ∩ N . But by Proposition 9.5(i) there exists a continuous
function f : A → C and a further subsequence {ωnjk }

∞
k=1 with f(g) =

limk→∞
〈
π(ωnjk gω

−1
njk

)x , x
〉

for every g ∈ A. Clearly, f(g) = ‖x‖2 for all
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g ∈ A ∩N . So by continuity the same remains true for all g ∈ A ∩N . Thus
f is constant, equal to ‖x‖2, on A ∩N .

Now, trivially, A ⊇ A ∩N ⊇ A ∩Dk(N ∩Ge). But by [8, Chap. III, §9.1],
Dk(N ∩Ge) = DkN ∩Ge = DkJ and as A is open in DkJ , A ∩Dk(N ∩Ge)
⊇ A. Hence, A ∩N = A, and we conclude that f(g) = ‖x‖2 for every g ∈ A.

Let X ∈W . Then using Eq.(10.2) we obtain

‖x‖2 = f
(
exp(X)

)
= lim
k→∞

〈
π(ωnjk exp(X)ω−1

njk
)x , x

〉
= lim
k→∞

〈
π
(
exp(ρ1(ωnjk )X)

)
x , x

〉
=
〈
π
(
exp(X)

)
x , x

〉
.

Consequently, π
(
exp(X)x

)
= x for every X ∈W . Let HW = {y ∈ H ; π(g)y =

y for every g ∈ exp(W )}. Since exp(W ) is a normal subgroup of G, HW is
then a nonzero closed π-invariant subspace. Thus HW = H by irreducibility
of π. So exp(W ) ⊆ Kerπ, contradicting the faithfulness of π. �
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