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WEIGHTED INEQUALITIES FOR SOME SPHERICAL
MAXIMAL OPERATORS

JAVIER DUOANDIKOETXEA AND EDURNE SEIJO

Abstract. Given a set E ⊂ (0,∞), the spherical maximal operator
associated to the parameter set E is defined as the supremum of the

spherical means of a function when the radii of the spheres are in E. The
aim of the paper is to study boundedness properties of these operators on

the spaces Lp(|x|α). It is shown that the range of values of α for which
boundedness holds behaves essentially as follows: (i) for p > n/(n− 1)
and negative α the range does not depend on E; (ii) when α is positive

it depends only on the Minkowski dimension of E; (iii) if p < n/(n− 1)
and α is negative, sets with the same Minkowski dimension can give

different ranges of boundedness.

1. Introduction

Given a function f defined in Rn, a point x in Rn, and t > 0, the mean of
f over the sphere centered at x of radius t is given by

Stf(x) =
∫
Sn−1

f(x− ty)dσ(y)

where dσ is the normalized Lebesgue measure on the unit sphere Sn−1. Let
E be any subset of (0,∞); associated to E we define a maximal operator by

MEf = sup
t∈E
|Stf | .

When E = (0,∞) the operator is the usual spherical maximal operator which
is known to be bounded on Lp(Rn) if and only if p > n/(n− 1). This result
was first proved by E. Stein [6] for n ≥ 3 and by J. Bourgain [1] for n = 2.
There are several alternative proofs for both results. When E is a lacunary
set the associated operator is bounded on Lp(Rn) for all p > 1, which was
first proved by C. Calderón [2] and R. Coifman and G. Weiss [3]. For general
sets E we need the concept of (upper) Minkowski dimension.
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When E is a parameter set contained in [1, 2] we define d(E) as its (upper)
Minkowski dimension given by

(1) d(E) = lim sup
δ→0

logN(E, δ)
− log δ

,

where N(E, δ) is the minimum number of intervals of length δ needed to
cover E. Thus 0 ≤ d(E) ≤ 1. Among the several equivalent definitions of
this number (see [7]) the following is a convenient one for our purposes: Let
E(δ) = {x ∈ R : d(x,E) < δ} be the δ-neighbourhood of E. Then

(2) d(E) = inf
{
a : lim

δ→0
δa−1|E(δ)| = 0

}
.

From the definitions we have the following inequalities, which will be useful
in the calculations: If d(E) = d and ε > 0, there exist Cε and cε such that

N(E, δ) ≤ Cεδ−(d+ε) and |E(δ)| ≤ Cεδ1−(d+ε)

for small δ, and

N(E, δ) ≥ cεδ−(d−ε) and |E(δ)| ≥ cεδ1−(d−ε) ,

for a sequence of values of δ tending to 0.
For a general set E in (0,∞), we write Ek = E ∩ [2k, 2k+1] and define

d(E) as in (1) with N(E, δ) = supkN(2−kEk, δ). (N(2−kEk, δ) coincides
with the minimum number of intervals of length 2kδ needed to cover Ek.)
The equivalent definition (2) can be modified accordingly. We refer to d(E)
as the dimension of E and write it simply as d when the set to which it refers
has been fixed.

In [8], A. Seeger, S. Wainger and J. Wright proved thatME is bounded on
Lp(Rn) for p > 1+d(E)/(n−1) and unbounded for p < 1+d(E)/(n−1). (A
second proof in [4] is closer to the methods we will use in this paper.) Here
we are interested on the boundedness properties of ME on Lp(|x|α), that is,
we look for inequalities of the type

(3)
∫

Rn

|MEf(x)|p|x|αdx ≤ C
∫

Rn

|f(x)|p|x|αdx,

where C can depend on p, α, and E, but not on f . The case of the spherical
maximal operator and its lacunary version were studied in [5], where it was
proved that (3) holds for E = (0,∞) if 1 − n < α < p(n − 1) − n, which is
sharp except perhaps at the left-hand endpoint, and for lacunary E if and
only if 1− n ≤ α < (n− 1)(p− 1).

Due to the fact that in the continuous parameter case d(E) = 1 and in the
lacunary case d(E) = 0, the previous results suggest that the range of values
of α (excepting endpoints) for which (3) holds depends on d(E) for positive
α and goes up to 1 − n for negative α. Notice also that in the unweighted
boundedness result the range of values of p depends only on d(E) except



SPHERICAL MAXIMAL OPERATORS 1301

perhaps at the endpoint. One of the consequences of the theorems we prove
in this paper is that in general it is not true that the dimension of the set is
enough to describe the range of boundedness: While the range of values of p
and the range of values of α ≥ 0 depend only on d(E), when α < 0 there exist
sets E1 and E2 with d(E1) = d(E2) for which (3) holds for different ranges of
values of α (the difference being not only at the endpoint). More precisely,
for a given d in (0, 1) there exist a minimal set of values of α for which the
boundedness holds for all sets E with d(E) = d and a maximal set of values
of α (up to 1−n) for which (3) is true for particular sets E with d(E) = d. In
Section 2 we study necessary conditions and in Section 3 we consider weights
valid for all sets with the same dimension; in Section 4 we show that operators
associated to sets with a regular distribution of points (like Cantor sets, for
instance) have always a maximal range of boundedness.

In Section 5 we discuss the restriction to radial functions. Here the differ-
ence between the cases n = 2 and n ≥ 3 becomes important. When n ≥ 3
and α is negative, (3) holds whenever α > 1 − n for all p > 1 + d/(n − 1);
nevertheless, for n = 2 and 1 + d < p < 2, the lower bound depends on d
and is always strictly bigger than −1. (As a consequence, sets with the same
dimension can have different ranges of boundedness even for radial functions.)

The results are sharp except for some endpoints when d = 0, 1/2, and 1,
and also for any d ∈ [0, 1] when either α is positive, the parameter set satisfies
some regularity assumption, or the functions are radial. The remaining cases
are partially open.

2. Necessary conditions

Theorem 1.

(1) Assume that inequality (3) holds for some set E of dimension d. Then
the following conditions are necessary:
(i) max(α, 0) ≤ (p− 1)(n− 1)− d;
(ii) α ≥ 1− n.

(2) If the inequality holds for all sets of dimension d and 1 + d/(n− 1) <
p < 1 + 1/(n− 1), we have moreover the conditions:
(iii) α ≥ −1 + d(1− p/2)/(1− d) if d < 1/2 and n = 2;
(iv) α ≥ 2d+ (1− n)p if d ≤ 1/2;
(v) α ≥ −1 + (1− p/2)/(1− d) if d > 1/2 and n = 2;
(vi) α ≥ 1 + (1− n)p if d > 1/2 and n ≥ 3.

Proof. (1) Assume that the set E is contained in [1, 2] and let E(δ) be as
defined in the introduction. Take as f the characteristic function of the ball
of radius δ centered at the origin; then the support of MEf is in the set
{y : |y| ∈ E(δ)}. On {y : |y| ∈ E(δ/2)}, MEf(x) is of the order δn−1. Then

(4) δ(n−1)p|E(δ/2)| ≤ C
∫

Rn

|MEf(x)|p|x|α dx ≤ Cδα+n .
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Since the inequality holds for small δ, it follows that α ≤ (n− 1)(p− 1)− d.
Translating the center of the ball away from the origin, the size of the

weight is almost the same on the ball and on the support of MEf and the
condition δ(n−1)p|E(δ/2)| ≤ Cδn implies 0 ≤ (n− 1)(p− 1)− d.

The condition α ≥ 1 − n appears for each operator St. It is enough to
consider as f the characteristic function of the annulus {y : t−δ < |y| < t+δ}
and observe that MEf(x) is 1 on {|x| < δ}.

2. For a given d ∈ (0, 1) there are sets E of dimension d such that E(δ)
contains an interval of length δ1−d, which we take as [1, 1 + δ1−d] (consider,
for instance, E = {1 + k−γ : k = 1, 2, . . .} for which d = 1/(γ + 1)). In this
part we assume that the set E has this property.

Take again as f the characteristic function of the annulus {y : t−δ < |y| <
t+ δ}; when n = 2 and 2δ < |y| < δ1−d,MEf is of the order (δ/|y|)1/2. This
gives the first restriction.

Let f be the characteristic function of a parallelepiped of sides δ × δ1/2 ×
. . . × δ1/2 centered at (1, 0, . . . , 0). Then MEf is of the order δ(n−1)/2 on
P (δ) = {(x1, x) : |x1| ≤ δ1−d, |x| < δ1/2/2}. Thus

(5) δp(n−1)/2

∫
P (δ)

|x|α dx ≤ Cδ1+(n−1)/2 .

The computation of the integral depends on d. If d ≤ 1/2,∫
P (δ)

|x|α dx =
∫
|x|≤δ1−d

|x|α dx

+
∫
|x1|≤δ1−d

∫
δ1−d<|x|<δ1/2/2

|x|α dx dx1

≥ C(δ(1−d)(α+n) + δ1−dδ(α+n−1)/2) .

Together with (5) this implies the condition for d ≤ 1/2 and all n.
If d > 1/2 we have∫
P (δ)

|x|α dx =
∫
|x|≤δ1/2

|x|α dx+
∫
δ1/2<|x1|≤δ1−d

∫
|x|<δ1/2/2

|x1|α dx dx1

≥ C(δ(α+n)/2 + δ(α+1)(1−d)δ(n−1)/2) .

The conditions stated in the theorem for d > 1/2 appear using again (5) with
this estimate; when n = 2 we already had the restriction α > −1 so that we
use the second summand in the last expression, while for n ≥ 3 we use the
first one. �

It is worth pointing out that a question which remains open for the contin-
uous spherical maximal operatorM (corresponding to E = (0,∞)) is whether
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the inequality∫
Rn

|Mf(x)|p u(x) dx ≤ Cs
∫

Rn

|f(x)|p (Mus(x))1/s dx

holds for p > n/(n − 1) when s = 1 (Fefferman-Stein type inequality) or
at least for all s > 1. Theorem 1 shows that the answer to an analogous
conjecture for ME is negative for 1 + d/(n− 1) < p < 1 + 1/(n− 1); indeed,
|x|α satisfies ME(|x|α) ≤ C|x|α when 1− n < α ≤ 0 and the inequality fails
for some values of α in this range.

3. Sufficient conditions

In this section we prove the following theorem.

Theorem 2. Let E be a subset of (0,∞) and d its dimension. Let ME

be the above defined maximal operator. Then ME is bounded on Lp(|x|α) if
one of the following conditions holds:

(1) p > 1 + 1/(n− 1) and 1− n < α < (n− 1)(p− 1)− d;
(2) d ∈ [0, 1), 1+d/(n−1) < p ≤ 1+1/(n−1) and 1−n+ d

1−d [n−(n−1)p] <
α < (n− 1)(p− 1)− d.

The proof will be split into several parts.

Proof for positive values of α. The method is standard and applies to any
positive operator. The operator f 7→ w−1ME(wf) is bounded on L∞ if
MEw ≤ Cw a.e. and on Lp0(wp0) ifME is bounded on Lp0 ; by interpolation,
it is bounded on Lp(wp0) if both conditions are fulfilled and p > p0. Then
ME is bounded on Lp(wp0−p) whenever it is bounded on Lp0 and w is such
that MEw ≤ Cw a.e. Particularizing to power weights w(x) = |x|β , this
condition is satisfied if 1−n < β ≤ 0; moreover, we can choose any p0 greater
than 1 + d/(n − 1). Thus we deduce the boundedness of ME on Lp(|x|α) if
0 ≤ α < (n− 1)(p− 1)− d. �

The result for p > 1 + 1/(n − 1) and negative α was proved in [5] for the
spherical maximal operator which is bigger than any ME . We only need to
consider d ∈ [0, 1).

Proof for negative α and E ⊂ [1, 2]. Write∫
Rn

sup
t∈E
|Stf(x)|p |x|α dx

≤
∫
|x|≤1/2

sup
t∈E
|Stf(x)|p |x|α dx+

∞∑
m=0

2mα
∫

2m−1<|x|<2m
sup
t∈E
|Stf(x)|p dx .
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For m ≥ 3 and 2m−1 < |x| < 2m, Stf(x) = St(fχ2m−2<|·|<2m+1)(x), and using
the unweighted boundedness of the operator,∫

|x|>4

sup
t∈E
|Stf(x)|p |x|α dx ≤ C

∫
|x|>2

|f(x)|p |x|α dx .

For 1/2 < |x| < 4, |x|α < 2−α and Stf(x) = St(fχ|·|<6)(x); then∫
1/2<|x|<4

sup
t∈E
|Stf(x)|p |x|α dx

≤ C
∫
|x|<6

|f(x)|p dx ≤ C
∫
|x|<6

|f(x)|p |x|α dx .

We are left with the integral over |x| < 1/2. In this range, Stf(x) =
St(fχ1/2<|·|<3)(x), so that we only need to prove∫

|x|<1/2

sup
t∈E
|Stf(x)|p |x|α dx ≤ C

∫
|f(x)|p dx(6)

for functions f supported on 1/2 ≤ |x| ≤ 3, which will be assumed in the rest
of the proof for E ⊂ [1, 2].

Choose a C∞ function Φ, compactly supported, with integral 1, and null
moments up to the order M with M ≥ (n− 1)/2, that is,∫

Rn

xβΦ(x) dx = 0, for |β| ≤M .

Define Φi(x) = 2inΦ(2ix); this is an approximation of the identity, and for
smooth f we have

lim
i→∞

Φi ∗ f(x) = f(x)

pointwise. Then it is enough to prove (6) for St(Φi ∗ f) instead of Stf with
bounds independent of i and to use Fatou’s lemma to obtain the desired
conclusion. Define now Ψj = Φj − Φj−1, so that Φi = Φ +

∑i
j=1 Ψj . Since

the functions St(Φ) for t ∈ [1, 2] have a common compact support and are
uniformly bounded by ‖Φ‖∞, we have |St(Φ ∗ f)(x)| ≤ CMf(x), where M
denotes the Hardy-Littlewood maximal operator and C is independent of t.
Then

|St(Φi ∗ f)(x)| ≤ CMf(x) +
i∑

j=1

|St(Ψj ∗ f)(x)| .

We do not need to consider the first term because the Hardy-Littlewood max-
imal operator already satisfies the required estimates; consequently, we define
Sjt f(x) = St(Ψj ∗ f)(x) and work with these operators. An important obser-
vation is the following: The kernel Kj

t of Sjt is the function St(Ψj)(x) which
is supported in the annulus t− 2−j+2 < |x| < t+ 2−j+2 and is bounded by a
constant (in t) times 2j . The following is the crucial lemma.
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Lemma 3.

(1) For j > 0, p ≥ 1, t, t′ ∈ [1, 2], 1− n < α ≤ 0 and δ > 2−j, we have∫
|x|<δ

|Sjt f(x)− Sjt′f(x)|p |x|α dx

≤ Cδ(α+n−1) min{2j |t− t′|, 1}
∫
|f(x)|p |x|α dx .

(2) For j > 0, 1 ≤ p ≤ 2, t, t′ ∈ [1, 2] and δ > 2−j, we have(∫
|x|<δ

|Sjt f(x)− Sjt′f(x)|pdx

)1/p

≤ Cpδ(n−1)((2/p)−1)2−j(n−1)(1−1/p) min{2j |t− t′|, 1}||f ||p .

Proof of the lemma. For the first part it is enough to prove the result for
p = 1 and to interpolate with the (trivial) uniform bound for L∞. Assume
first that we have Sjt f instead of the difference inside the integrals. Then∫

|x|<δ
|Sjt f(x)| |x|α dx ≤

∫
|f(x)|(|Kj

t | ∗ | · |αχB(0,δ))(x) dx

and the estimate follows from the above observation about the localization
and size of Kj

t . To get the estimate with the difference Sjt f−S
j
t′f we consider

its kernel and see that

|Kj
t (x)−Kj

t′(x)| ≤
∫
|Ψj(x− ty)−Ψj(x− t′y)| dσ(y) ≤ C22j |t− t′|

by applying the mean value theorem. Moreover, when |t − t′| < 2−j , the
left-hand side is supported on an annulus of width 26−j . The estimate follows
as before.

The estimate of the second part for p = 1 is contained in the first one; we
only need to prove the corresponding one for p = 2 and interpolate. We use
now Plancherel’s theorem so that∫

Rn

|Sjt f(x)− Sjt′f(x)|2 dx ≤ C
∫

Rn

|σ̂(tξ)− σ̂(t′ξ)|2|Ψ̂j(ξ)|2|f̂(ξ)|2 dξ .

On the one hand we have |σ̂(ξ)| ≤ C min(1, |ξ|(1−n)/2), and |σ̂(tξ)− σ̂(t′ξ)| ≤
C|t− t′||ξ|min(1, |ξ|(1−n)/2) (using the mean value theorem and the fact that
the derivative of σ̂ has its same decay). On the other hand, we built our Φ
function so that

|Ψ̂0(ξ)| ≤ C|ξ|(n−1)/2 for |ξ| ≤ 1

(using the assumption on the null moments), and Ψ̂0 is rapidly decreasing at
infinity because it belongs to the Schwartz class. From these size estimates
the desired inequality for p = 2 follows. �
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We continue with the proof of the theorem. Without loss of generality we
shall work with finite sets. Indeed, we can consider our general set as a limit
of finite sets. If the condition we get for Lp-boundedness is independent of
the finite sets involved, a limiting argument will complete the proof.

Let E be a finite set and assume that we have a decreasing family of sets
contained in E, E = EN ⊃ EN−1 ⊃ · · · ⊃ Em0 , and a function τ such that
for each t ∈ Em \Em−1, τ(t) is in Em−1. Our approach (presented also in [4]
and used previously by S. Wainger) is based on the following observation:

sup
t∈Em

|Sjt f(x)| ≤

 ∑
t∈Em\Em−1

|Sjt f(x)− Sjτ(t)f(x)|p
1/p

+ sup
t∈Em−1

|Sjt f(x)| .

Raising both sides to the p-th power and adding the inequalities from m =
m0 + 1 to m = N we get

sup
t∈EN

|Sjt f(x)|p(7)

≤
N∑

m=m0+1

∑
t∈Em\Em−1

|Sjt f(x)− Sjτ(t)f(x)|p + sup
t∈Em0

|Sjt f(x)|p .

The sets Em,m < N , are built in such a way that the length of the smallest
interval of [1, 2] \Em is at least 2−m. Given a finite set E contained in [1, 2],
let N be the largest integer for which the length of all the component intervals
of [1, 2] \E is bigger than 2−N , and put EN = E. To pass from Em to Em−1

we look at the intervals of [1, 2] \ Em whose length is smaller than 2−m+1. If
there are no such intervals, define Em−1 = Em; when intervals of this type
exist, two cases can occur: (i) an interval of length smaller than 2−m+1 is
adjacent to two intervals of length larger than 2−m+1; (ii) several intervals of
length smaller than 2−m+1 are next to each other. In the first case, remove
one endpoint of the small interval; in the second case, label consecutively the
endpoints of the intervals and remove those with even label. The remaining
points form Em−1. (This defines Em up to m = 1; in (7) we stop at Em0 for
convenience.)

For each t ∈ Em \ Em−1 define τ(t) as the point (or one of the points) in
Em−1 closest to t. It is clear that the smallest number of intervals of length
2−m needed to cover E is essentially #Em (where # denotes the cardinality
of the set). Note also that by construction #(Em \Em−1) ≤ #Em−1, so that
#Em ≤ 2#Em−1.

To find a bound for the Lp(|x|α) norm of supt∈E |S
j
t f(x)| we decompose

the integral as
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|x|<1/2

sup
t∈E
|Sjt f(x)|p|x|α dx =

∫
|x|<2−j

sup
t∈E
|Sjt f(x)|p|x|α dx

+
j∑

k=3

2−kα
∫

2−k≤|x|<2−k+1
sup
t∈E
|Sjt f(x)|pdx .

Define E(l) = E ∩ [1 + 2−j(l − 1), 1 + 2−j l) for l = 1, . . . , 2j . Then

∫
|x|<2−j

sup
t∈E
|Sjt f(x)|p|x|α dx =

2j∑
l=1

∫
|x|<2−j

sup
t∈E(l)

|Sjt fl(x)|p|x|α dx ,

where fl = f ·χA(l) and A(l) = {x : 1 + 2−j(l−3) ≤ x ≤ 1 + 2−j(l+ 3)}. This
is due to the fact that only this part of f gives a nonzero contribution when
t ∈ E(l) and |x| < 2−j .

With m0 = j multiply both sides of the inequality (7) by |x|α, integrate
over |x| < 2−j and use the first inequality of the previous lemma (with δ = 2−j

and |t− τ(t)| < 2−m for t ∈ E(l)m \ E(l)m−1) to get

2j∑
l=1

∫
|x|<2−j

sup
t∈E(l)

|Sjt fl(x)|p|x|α dx(8)

≤C
2j∑
l=1

[
∑
m≥j

N(E(l), 2−m)2m−j +N(E(l), 2−j)]2−j(α+n−1)

∫
|fl(x)|p dx .

Since N(E(l), 2−m) ≤ min(C2m(d+ε), 2m−j), we introduce this bound in
the previous sum and get

∫
|x|<2−j

sup
t∈E
|Sjt f(x)|p|x|αdx ≤ Cj2−j(α+n−1)‖f‖pp .

For k < j decompose E into smaller sets as before using now intervals of
length 2−k to get the sets E(l) with l = 1, . . . , 2k. (Although the decomposi-
tion depends on k we will not show explicitly this dependence in the notation.)
We have

∫
|x|<2−k

sup
t∈E
|Sjt f(x)|p dx =

2k∑
l=1

∫
|x|<2−k

sup
t∈E(l)

|Sjt fl(x)|p dx .
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From the second inequality of the previous lemma we have

2k∑
l=1

∫
|x|<2−j

sup
t∈E(l)

∣∣∣Sjt fl(x)
∣∣∣p dx(9)

≤C
2j∑
l=1

∑
m≥j

N(E(l), 2−m)2(j−m)p +N(E(l), 2−j)

 ·
· 2−k(n−1)(2−p) 2−j(n−1)(p−1)

∫
|fl(x)|p dx .

Since N(E(l), 2−m) ≤ min(C2m(d+ε), 2m−k), we must use the first bound for
m > max(j, k/(1−d−ε)), and the second one for j < m < k/(1−d−ε). (This
situation appears only for those k satisfying k > j(1 − d − ε).) Introducing
these bounds we get

j∑
k=−2

∫
2−k≤|x|<2−k+1

sup
t∈E
|Sjt f(x)|p|x|α dx

≤ C2−j(n−1)(p−1)(2j(d+ε) B1 + 2j B2)||f ||pp ,

with

B1 =
j(1−d−ε)∑
k=−2

2−k(α+(n−1)(2−p)) and B2 =
j∑

k=j(1−d−ε)

2−k(α+(n−1)(2−p)+1) .

It is enough to consider the case α < 1− n + d. Then the exponent in B1 is
positive and that in B2 is negative and we conclude that∫

|x|<1/2

sup
t∈E
|Sjt f(x)|p dx ≤ C2−j[(α+n−1)(1−d−ε)+(d+ε)(n−(n−1)p)]

∫
|f |p .

The sum in j of the Lp-norms is finite if α > 1 − n + d
1−d [n − (n − 1)p] as

stated in the theorem. �

Proof for general E and negative α. For a general set E ⊂ (0,∞) define
Ek = E ∩ [2k, 2k+1] and write MEf = supkMEkf .

Lemma 4. Assume that ME is bounded on Lp(Rn) and that∫
|MEkf(x)|p |x|α dx ≤ C

∫
|f(x)|p |x|α dx

for some α < 0 and C independent of k. Then ME is bounded on Lp(|x|α).
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Proof of the lemma. Let Aj = {x : 2j < |x| ≤ 2j+1} and Bj = {x : |x| ≤
2j}. Decompose f as f = fj + f j , where fj = fχBj+1 .∫
|MEf(x)|p |x|α dx ≤

∞∑
j=−∞

2jα
∫
Aj

|MEf(x)|p dx

≤ 2p

 ∞∑
j=−∞

2jα
∫
Aj

|MEfj(x)|p dx+
∞∑

j=−∞
2jα

∫
Aj

|MEf
j(x)|p dx

 .
Applying the boundedness of ME on Lp to the first summand we get the
bound

∞∑
j=−∞

2jα
∫
Bj+1

|f(x)|p dx

and this sum is bounded by the Lp(|x|α) norm of f (because α < 0). For the
second summand we proceed as follows:

∞∑
j=−∞

2jα
∫
Aj

|MEf
j(x)|p dx ≤

∞∑
j=−∞

2jα
∫
Aj

∞∑
k=−∞

|MEkf
j(x)|p dx.

For x ∈ Aj , MEkf
j(x) = 0 if k < j, and for fixed k > j, MEkf

j =
MEk(fχAk). Then the last sum is bounded by

C

∞∑
j=−∞

2jα
∫
Aj

∞∑
k=j

|MEk(fχAk)(x)|p dx

≤ C
∞∑

k=−∞

∫
Bk

|MEk(fχAk)(x)|p |x|α dx

≤ C
∞∑

k=−∞

∫
Ak

|f(x)|p |x|α dx . �

Since we are under the hypotheses of the lemma, the proof of Theorem 2
is complete. �

Observe that we have proved the boundedness for α > 1 − n + d for all
p > 1 + d/(n− 1) and that the result we get in the range 1 + d/(n− 1) < p <
1 + 1/(n− 1) is the interpolation between this and the range α > 1− n, valid
for p > 1 + 1/(n − 1). When d = 1/2 the necessary and sufficient conditions
are the same except at the endpoint α = 1−n; when d < 1/2 this is only true
in the limit (when p tends to either 1 + d/(n− 1) or 1 + 1/(n− 1)).

4. Regular sets of parameters

Compare the ternary Cantor set in [1, 2] and the set Eγ = {1 + n−γ , n =
1, 2, . . . } with the same dimension. When both sets are covered with intervals
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of length δ, the amount of intervals needed for the covering is essentially the
same in both cases, but their distributions are rather different. They are
quite regularly distributed in the case of the Cantor set, while half of them
are packed together in the second case. A different way of looking at this
property is to remark that the δ-neighbourhood of the Cantor set is formed
by equal intervals with big “holes” and the δ-neighbourhood of the second set
contains a very big interval.

We say that a parameter set E contained in [1, 2] is regular if for any
interval I in [1, 2], the number of intervals of length δ needed to cover E ∩ I
is bounded by Cε(|I|/δ)d+ε for all ε > 0. A general set E will be regular if
2−k(E ∩ [2k, 2k+1]) is regular for all k.

Theorem 5. Let E be a regular set of parameters and d its dimension.
Then ME is bounded on Lp(|x|α) if p > 1 + d/(n − 1) and 1 − n < α <
(n− 1)(p− 1)− d.

To obtain this result, repeat the proof of the previous theorem with the fol-
lowing changes: In inequality (8) use the boundN(E(l), 2−m) ≤ C2(m−j)(d+ε),
and in (9) use N(E(l), 2−m) ≤ C2(m−k)(d+ε).

5. Radial functions

The action of the spherical maximal operators on radial functions has been
carefully studied in [9] for the unweighted case. The examples used in Section 2
to describe necessary conditions are radial only in the first part of the theorem
when n ≥ 3; for n = 2, the characteristic function of an annulus gives an extra
restriction which appeared in the second part of Theorem 1. We show that
these conditions are also sufficient except maybe at the endpoints.

Theorem 6. Inequality (3) holds for radial functions if p > 1 +d/(n− 1)
and 1 − n < α < (n − 1)(p − 1) − d when either n ≥ 3 or n = 2 and p ≥ 2.
When n = 2 and 1 + d < p < 2, it holds if −1 + d(1 − p/2)/(1 − d) < α <
(n− 1)(p− 1)− d.

Proof. We can assume E ⊂ [1, 2] and use Lemma 4 as before to extend the
result to E ⊂ (0,∞). According to the preparation of the proof of Theorem
2 for negative α, we only need to check inequality (6) for radial functions
supported in 1/2 < |x| < 3. Write |f(x)| = f0(|x|). Then the Lp(|x|α)-norm
of f is essentially the same as

∫
f0(s)p ds. Using [9, Lemma 3.1] for n ≥ 3

and [9, Lemma 5.1] for n = 2, the maximal operator can be bounded by a
sum of one-dimensional operators acting on f0. Moreover, when |x| < 1/4
and t ∈ [1, 2], some of these vanish and we are left with

MEf(x) ≤ C sup
t∈E

1
|x|

∫ t+|x|

t−|x|
f0(s) ds
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if n ≥ 3, and

MEf(x) ≤ C sup
t∈E

1
|x|1/2

[∫ t

t−|x|
f0(s)(s− t+ |x|)−1/2 ds(10)

+
∫ t+|x|

t

f0(s)(|x|+ t− s)−1/2 ds

]
if n = 2.

In the first case, using Hölder’s inequality,

|MEf(x)|p ≤ C 1
|x|

∫ 3

1/2

f0(s)p ds ,

and the integral of |MEf(x)|p|x|α is finite if α > 1− n.
For n = 2 and p < 2 we work with the first term of the right-hand side of

(10) because the other one is similar. Write

M1
Ef(x) = sup

t∈E

1
|x|1/2

∫ t

t−|x|
f0(s)(s− t+ |x|)−1/2 ds

≤
∞∑
m=0

2m/2

|x|
sup
t∈E

∫ t−|x|+2−m|x|

t−|x|+2−m−1|x|
f0(s) ds .

Then (∫
|x|<1/2

|M1
Ef(x)|p|x|αdx

)1/p

(11)

≤
∞∑
m=0

2m/2
( ∞∑
k=1

2−k(α+1−p)
∫ 2−k

2−k−1

(
sup
t∈E

∫ t−r+2−mr

t−r+2−m−1r

f0(s) ds

)p
dr

)1/p

.

The L∞ norm of the operator

f0 7→ sup
t∈E

∫ t−r+2−mr

t−r+2−m−1r

f0(s) ds

is bounded by 2−(m+k). To bound its L1 norm we have∫ 2−k

2−k−1
sup
t∈E

∫ t−r+2−mr

t−r+2−m−1r

f0(s) ds dr

≤
∫ 2−k

2−k−1
sup
t∈E

∫ t−r+2−(m+k)

t−r
f0(s) ds dr

≤
∫ 2−k

2−k−1

∫
E(2−(m+k))

f0(s+ r) ds

≤ C min(2−k, 2−(m+k)(1−d+ε)) ‖f0‖1 .
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(E(δ) has been defined in the introduction and its size is given by (2).) In-
terpolating and substituting into (11) we deduce that(∫

|x|<1/2

|M1
Ef(x)|p|x|αdx

)1/p

≤ C
∞∑
m=0

2m/2·

·

( ∞∑
k=1

2−k(α+1−p)2−(m+k)(p−1) min(2−k, 2−(m+k)(1−d+ε))

)1/p

‖f0‖p .

The sum is finite when α satisfies the condition stated in the theorem. �

References

[1] J. Bourgain, Averages in the plane over convex curves and maximal operators, J. Anal.
Math. 47 (1986), 69–85. MR 88f:42036.

[2] C. Calderón, Lacunary spherical means, Illinois J. Math. 23 (1979), 476–484. MR
80m:42029.

[3] R.R. Coifman and G. Weiss, Review of the book “Littlewood–Paley and multiplier

theory”, Bull. Amer. Math. Soc. 84 (1978), 242–250.
[4] J. Duoandikoetxea and A. Vargas, Maximal operators associated to Fourier multipliers

with an arbitrary set of parameters, Proc. Roy. Soc. Edinburgh 128A (1998), 683–696.
MR 99h:42033.

[5] J. Duoandikoetxea and L. Vega, Spherical means and weighted inequalities, J. London

Math. Soc. 53 (1996), 343–353. MR 97c:42032.
[6] E.M. Stein, Maximal functions: spherical means, Proc. Nat. Acad. Sci. U.S.A. 73

(1976), 2174–2175. MR 54#8133a.
[7] C. Tricot, Douze définitions de la densité logarithmique, C. R. Acad. Sci. Paris 293

(1981), 549–552. MR 83i:28007.

[8] A. Seeger, S. Wainger, and J. Wright, Pointwise convergence of spherical means, Math.
Proc. Camb. Phil. Soc. 118 (1995), 115–124. MR 96b:42013.

[9] , Spherical maximal operator on radial functions, Math. Nachr. 187 (1997),
241–265. MR 99a:42013.

J. Duoandikoetxea, Departamento de Matemáticas, Universidad del Páis Vasco-
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