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THE IDEAL STRUCTURE OF THE C∗-ALGEBRAS OF
INFINITE GRAPHS

TERESA BATES, JEONG HEE HONG, IAIN RAEBURN, AND WOJCIECH

SZYMAŃSKI

Abstract. We classify the gauge-invariant ideals in the C∗-algebras of
infinite directed graphs, and describe the quotients as graph algebras.

We then use these results to identify the gauge-invariant primitive ideals
in terms of the structural properties of the graph, and describe the K-
theory of the C∗-algebras of arbitrary infinite graphs.

1. Introduction

There has recently been a great deal of interest in generalisations of the
Cuntz-Krieger algebras associated to infinite directed graphs [16], [9] and infi-
nite matrices [6]. The basic theorems of Cuntz and Krieger [3], [2] on unique-
ness and ideal structure have elegant extensions to the C∗-algebras of the
row-finite graphs in which each vertex emits only finitely many edges [16],
[15], [13], [1]. Various authors have investigated the C∗-algebras of arbitrary
infinite graphs from different points of view, obtaining satisfactory versions of
the uniqueness theorems [9], [20], [26]. However, these articles do not provide
a complete description of the ideal structure of graph algebras, as is given
in [12] for the Cuntz-Krieger algebras of finite matrices. Indeed, even for
row-finite graphs the ideal structure has only been well-understood when the
graph satisfies the Condition (K) introduced in [16] (see [1]).

The analysis in [12] shows that to understand the ideal structure of graph
algebras we first need to describe the gauge-invariant ideals. The main pur-
pose of this paper is to provide such a description for arbitrary infinite graphs.
We give a complete list of the gauge-invariant ideals of C∗(E) for an arbitrary
infinite graph E (Theorem 3.6), and then use it to identify all the gauge-
invariant primitive ideals (Theorem 4.7). When the graph satisfies Condition
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(K) all ideals are gauge-invariant and our results give their complete classifi-
cation.

The key tool in our approach is a realisation of the quotient C∗(E)/J by
a gauge-invariant ideal as the graph algebra of a quotient graph (Proposition
3.4). This result is of considerable interest in its own right, because we are able
to explicitly describe the quotient graph. As a further application, we show
how to extend the description of K∗(C∗(E)) obtained in [20] for row-finite E
to arbitrary infinite graphs (Theorem 6.1).

There are several reasons for the current interest in graph algebras apart
from the elegance of their theory. First, they provide good test problems
in the general theories of groupoid algebras [16], [15], [18], Cuntz-Pimsner
algebras [19], [21], [13], [9], [10], and partial crossed products [6], [8]. Second,
the simple graph algebras provide a rich family of accessible models for purely
infinite simple C∗-algebras. Indeed, Szymański has shown in [25] that every
stable, purely infinite, simple and classifiable C∗-algebra with K1 torsion-free
can be realised as a graph algebra. Although there is some debate about what
‘purely infinite’ should mean for non-simple C∗-algebras [14], there is already
considerable interest in their classification, and it is likely that the non-simple
graph algebras will again provide an important family of models.

We have had the main results of the present paper for some time (see [11]),
and had wanted to include them in a complete analysis of the ideal structure
of infinite graph algebras. However, we have received many enquires about
this work, and in response have decided to publish it in stages. There is some
overlap between the present article and the work of Drinen and Tomforde
[4], who describe the primitive ideal space of the C∗-algebras of graphs sat-
isfying Condition (K) by reducing to the row-finite case. Our methods are
quite different from theirs: we work directly with quotients of graph algebras
rather than algebras Morita equivalent to them. In the sequel, we use these
techniques to obtain a complete generalisation of the program of [12] to the
C∗-algebras of arbitrary infinite graphs.

2. Preliminaries

Let E = (E0, E1, r, s) be a (countable) directed graph, consisting of a set
E0 of vertices, a set E1 of edges, and range and source maps r, s : E1 → E0.
A Cuntz-Krieger E-family consists of mutually orthogonal projections {Pv :
v ∈ E0} and partial isometries {Se : e ∈ E1} with mutually orthogonal ranges
satisfying

(G1) S∗eSe = Pr(e),
(G2) SeS

∗
e ≤ Ps(e), and

(G3) Pv =
∑
s(e)=v SeS

∗
e if s−1(v) is finite and non-empty.

The C∗-algebra C∗(E) of E is the universal C∗-algebra generated by a Cuntz-
Krieger E-family {se, pv}. If {Se, Pv} is a Cuntz-Krieger E-family, we denote
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by πS,P the representation of C∗(E) such that πS,P (pv) = Pv and πS,P (se) =
Se.

We denote by γ : T→ AutC∗(E) the gauge action, which is characterised
on generators by γz(pv) = pv and γz(se) = zse for v ∈ E0, e ∈ E1, z ∈ T.
Existence of the gauge action is equivalent to universality in the definition
of C∗(E), as the following gauge-invariant uniqueness theorem shows. This
result was proved for finite graphs in [12, Theorem 2.3], for row-finite graphs
in [1, Theorem 2.1], and generalised in [20, Theorem 2.7] to the Cuntz-Krieger
algebras of infinite matrices and in [10, Theorem 4.1] to Cuntz-Pimsner alge-
bras. Unfortunately, the existing versions do not cover all infinite graphs with
sources or sinks.

Theorem 2.1. Let E be an arbitrary directed graph, let {Se, Pv} ⊂ B(HE)
be a Cuntz-Krieger E-family, and let π = πS,P be the representation of C∗(E)
such that π(se) = Se and π(pv) = Pv. Suppose that each Pv is non-zero,
and that there is a strongly continuous action β of T on C∗(Se, Pv) such that
βz ◦ π = π ◦ γz for z ∈ T. Then π is faithful.

Proof. If E is an infinite directed graph without sinks or sources (that is,
each vertex emits and receives some edges), then C∗(E) is naturally isomor-
phic to the Cuntz-Krieger algebra of a suitable infinite matrix [9, Theorem 10].
Thus [20, Theorem 2.7] applies to such graphs.

To extend the theorem to graphs with sinks, it suffices to add tails as in
[1]. Indeed, let F be the graph obtained by adding a tail (with extra vertices
{vi : i = 1, 2, . . .}) to a sink w of E as in [1, §1], letHT =

⊕∞
i=1Hi be the direct

sum of copies Hi of PwHE , let {Te, Qv} be the Cuntz-Krieger F -family on
HF = HE ⊕HT obtained by extending the Cuntz-Krieger E-family {Se, Pv}
as in [1, Lemma 1.2], and let U : T → U(HE) be a unitary representation
such that (πS,P , U) is covariant for the gauge action on C∗(E). Then there is
a unitary representation V : T→ U(HF ) such that (πT,Q, V ) is covariant for
the gauge action on C∗(F ). For example, it suffices to set

Vzξ :=
{
Uzξ if ξ ∈ HE
z−iUzξ if ξ ∈ QviHT = Hi ∼= PwHE .

The same argument works for graphs with sources: add heads as in [20, §1]
and set Vzξ := ziUzξ instead. �

We finish this preliminary section by recalling the basic definitions and
notation about paths in a directed graph E. If α1, . . . , αn are (not necessarily
distinct) edges such that r(αi) = s(αi+1) for i = 1, . . . , n − 1, then α =
(α1, . . . , αn) is a path of length |α| = n, with source s(α) = s(α1) and range
r(α) = r(αn). The set of paths of length n is denoted by En, E∗ :=

⋃∞
n=0E

n

(so that vertices in E0 are identified with paths of length 0), and the set of
infinite paths is denoted E∞. A loop is a path of positive length whose source
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and range coincide. A loop α has an exit if there exist an edge e ∈ E1 and
index i such that s(e) = s(αi) but e 6= αi. A graph is said to satisfy Condition
(K) if every vertex v ∈ E0 either lies on no loops, or there are two loops α, β
such that s(α) = s(β) = v and neither α nor β is an initial subpath of the
other [16].

3. Gauge-invariant ideals

For a row-finite graph E, the gauge-invariant ideals in the graph algebra
C∗(E) are in one-to-one correspondence with the saturated hereditary subsets
of E0 [1, Theorem 4.1]; indeed, if H is saturated and hereditary, then the
corresponding ideal IH is generated by {pv : v ∈ H}, and if I is a gauge-
invariant ideal, then H := {v ∈ E0 : pv ∈ I} is saturated and hereditary
with I = IH . When some vertices emit infinitely many edges, not every
gauge-invariant ideal arises this way: in the graph

• • • • • •· · · · · ·
(∞)v−2 v−1 v0 v1 v2 v3

(where the symbol (∞) indicates infinitely many edges from v0 to v1) the
projections pvi associated to H := {vi : i > 0} generate a gauge-invariant
ideal IH with H = {v : pv ∈ IH}, but H is not saturated in the sense of [1].
So we have to adjust the notion of saturation.

Let E be a directed graph which is not necessarily row-finite. As usual,
we write v ≥ w when there is a path from v to w, and say that a subset H
of E0 is hereditary if v ∈ H and v ≥ w imply w ∈ H. Now we say that a
subset X of E0 is saturated if every vertex v which satisfies 0 < |s−1(v)| <∞
and s(e) = v =⇒ r(e) ∈ X itself belongs to X. (With this definition, the set
H = {vi : i > 0} in the above example is saturated.) The saturation Σ(X) of
a set X is the smallest saturated set containing X, and ΣH(X) denotes the
smallest saturated hereditary subset of E0 containingX. If v ∈ Σ(X)\X, then
0 < |s−1(v)| <∞; otherwise, Σ(X) \ {v} is a smaller saturated set containing
X. If v ∈ Σ(X), then there is a path α with s(α) = v and r(α) ∈ X. To see
this, note that the elements of Σ(X) with this property form a saturated set
containing X.

If H is hereditary, so is its saturation Σ(H). To see this, suppose v ∈ Σ(H)
and v ≥ w, so that there is a path α = (α1, . . . , αr) with s(α) = v and
r(α) = w. If the path enters H, then it stays there. So suppose r(αi) 6∈
H for all i. Since 0 < |s−1(v)| < ∞, the saturation property implies that
r(α1) ∈ Σ(H), for otherwise Σ(H) \ {r(α1)} would be a smaller saturated set
containing H. Since r(α1) ∈ Σ(H), it also satisfies 0 < |s−1(r(α1))| < ∞;
repeating this argument shows that r(αi) ∈ Σ(H) for all i, and in particular
that w = r(α) ∈ Σ(H).
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Remark 3.1. For X ⊂ E0 we can construct ΣH(X) as the union of the
sequence Σn(X) of subsets of E0 defined inductively as follows:

Σ0(X) := X ∪
{
w ∈ E0 : there is a path from a vertex in X to w

}
,

Σn+1(X) := Σn(X) ∪
{
w ∈ E0 : 0 < |s−1(w)| <∞, r(s−1(w)) ⊂ Σn(X)

}
The next lemma provides evidence that our notion of saturation is the right

one.

Lemma 3.2. Suppose E is a directed graph and I is an ideal in C∗(E).
Then

HI := {v ∈ E0 : pv ∈ I}
is a saturated hereditary subset of E0.

Proof. Suppose first that v ∈ HI and v ≥ w. Then there is a path α with
s(α) = v and r(α) = w, and then s∗αsα = pw, sαs∗α ≤ pv. So pv ∈ I implies
sαs
∗
α ∈ I, and pw = s∗α(sαs∗α)sα ∈ I. Thus HI is hereditary. If v ∈ E0

has 0 < |s−1(v)| < ∞ and pr(e) ∈ I for all e ∈ E1 with s(e) = v, then
se = sepr(e) ∈ I for all e ∈ E1 with s(e) = v, and the Cuntz-Krieger relation
(G3) at v implies that pv ∈ I; thus HI is saturated. �

For a hereditary subset H of E0, we let IH be the ideal of C∗(E) generated
by {pv : v ∈ H}; since Lemma 3.2 implies that {v ∈ E0 : pv ∈ IH} is saturated
and contains H, we immediately have that IH = IΣ(H). Since the projections
generating IH are fixed by the gauge action it follows that the ideal itself is
gauge-invariant. As in [1, Lemma 4.3], we can verify that

(1) IH = span{sαpvs∗β : α, β ∈ E∗, : v ∈ H, : r(α) = r(β) = v}.

Suppose H is a saturated hereditary subset of E0. When E is row-finite,
the ideal IH is Morita equivalent to the C∗-algebra C∗(H) of the graph
(H, s−1(H), r, s), and the quotient C∗(E)/IH is naturally isomorphic to the
C∗-algebra of the graph F := (E0 \ H, r−1(E0 \ H), r, s) [1, Theorem 4.1].
In general, to realise the quotient C∗(E)/IH as a graph algebra we have to
add extra vertices to F . The problem occurs when a vertex v sends infinitely
many edges into H but also finitely many into E0\H, in which case the image
of the projection

(2) pv,H :=
∑

s(e)=v, r(e) 6∈H

ses
∗
e

will be strictly smaller in C∗(E)/IH than the image of pv. To get round this,
we add a new sink β(v) to F 0 and extra edges β(e) with r(β(e)) = β(v) for
each edge e with r(e) = v.
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Formally, we define Hfin
∞ to be the set of such vertices; thus

Hfin
∞ := {v ∈ E0 \H : |s−1(v)| =∞ and 0 < |s−1(v) ∩ r−1(E0 \H)| <∞}.

We then define a graph E/H by

(E/H)0 := (E0 \H) ∪ {β(v) : v ∈ Hfin
∞ },

(E/H)1 := r−1(E0 \H) ∪ {β(e) : e ∈ E1, r(e) ∈ Hfin
∞ },

with r, s extended by s(β(e)) = s(e) and r(β(e)) = β(r(e)).

Example 3.3. In the following graph,
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we have Hfin
∞ = {v}, and the graph E/H looks like
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Proposition 3.4. Let H be a hereditary subset of a directed graph E.
Then the ideal IH defined in (1) is Morita equivalent to the C∗-algebra of the
graph (H, s−1(H), r, s). Let π : C∗(E) → C∗(E)/IH be the quotient map,
let {se, pv} be the canonical Cuntz-Krieger E-family, and write Se = π(se),
Pv = π(pv), Pv,H = π(pv,H), where pv,H are the projections defined in (2). If
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H is also saturated, then

Qv := Pv if v ∈ (E/H)0 \Hfin
∞

Qv := Pv,H if v ∈ Hfin
∞

Qβ(v) := Pv − Pv,H if v ∈ Hfin
∞(3)

Te := Se if r(e) ∈ (E0 \H) \Hfin
∞

Te := SePr(e),H if r(e) ∈ (E0 \H) ∩Hfin
∞

Tβ(e) := Se(Pr(e) − Pr(e),H) if r(e) ∈ (E0 \H) ∩Hfin
∞

is a Cuntz-Krieger (E/H)-family in C∗(E)/IH , and the homomorphism πT,Q
is an isomorphism of C∗(E/H) onto C∗(E)/IH .

Proof. The argument of [1, Theorem 4.1(c)] shows that there is a natural
isomorphism of C∗(H) onto the corner of IH determined by the projection
pH :=

∑
v∈H pv ∈M(IH), and that this projection is full.

It is tedious but straightforward to verify that {Te, Qv} is a Cuntz-Krieger
(E/H)-family, and hence there is a homomorphism πT,Q : C∗(E/H) →
C∗(E)/IH carrying the generating family {te, qv} of C∗(E/H) into {Te, Qv}.
To see that πT,Q is surjective, note that we can recover {Se, Pv} from {Te, Qv}:

Pv =


Qv if v 6∈ H ∪Hfin

∞
Qv +Qβ(v) if v ∈ Hfin

∞
0 if v ∈ H

Se =


Te if r(e) 6∈ H ∪Hfin

∞
Te + Tβ(e) if r(e) ∈ Hfin

∞
0 if r(e) ∈ H

(4)

The formulas (4) also show how to construct a Cuntz-Krieger E-family {Se, Pv}
from a Cuntz-Krieger (E/H)-family {Te, Qv} in such a way that the formulas
(3) recover {Te, Qv}. Thus there are Cuntz-Krieger E-families {Se, Pv} with
Pv = 0 for v ∈ H such that the projections Qv, Qβ(v) defined in (3) are all
non-zero, and in particular this must be true of those defined by the universal
family {π(se), π(pv)}. It therefore follows from gauge-invariant uniqueness
(Theorem 2.1) that the homomorphism πT,Q is injective. �

The sinks in a directed graph give rise to ideals: indeed, if B ⊂ E0 consists
of sinks, then the projections pv associated to the sinks generate a family {Iv :
v ∈ B} of mutually orthogonal ideals. Since the vertices {β(v) : v ∈ Hfin

∞ } are
sinks in E/H, they give rise to ideals in C∗(E/H) ∼= C∗(E)/IH , and hence
to ideals in C∗(E). More formally, if H is saturated and hereditary, then for
B ⊂ Hfin

∞ we let JH,B denote the ideal of C∗(E) generated by the projections
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{pv : v ∈ H} ∪ {pv − pv,H : v ∈ B}. The usual arguments show that

JH,B = span
{
sαpvs

∗
β , sµ(pw − pw,H)s∗ν :

v ∈ H, α, β ∈ r−1(v), w ∈ B, µ, ν ∈ r−1(w)
}

and that JH,B is gauge-invariant. Note also that IH = JH,∅, and that IH ⊂
JH,B for all B.

To identify the quotient C∗(E)/JH,B , note that the set β(B) is saturated
and hereditary in (E/H)0. Since the quotient map C∗(E) → C∗(E/H) =
C∗(te, qv) takes pv − pv,H into qβ(v), it maps JH,B onto the ideal Iβ(B) of
C∗(E/H) generated by {qβ(v) : v ∈ B}. Since β(B)fin

∞ = ∅ in E/H, we
see that the second quotient (E/H)/β(B) is just equal to (E/H) \ β(B) =(
(E/H)0 \ β(B), r−1((E/H)0 \ β(B)), r, s

)
. Thus we have:

Corollary 3.5. If H is a saturated hereditary subset of E0 and B ⊂
Hfin
∞ , then C∗(E)/JH,B is naturally isomorphic to C∗((E/H) \ β(B)).

The following theorem gives a complete list of the gauge-invariant ideals of
C∗(E) for an arbitrary infinite graph E.

Theorem 3.6. Let E be a directed graph. Then the ideals{
JH,B : H is saturated and hereditary, B ⊂ Hfin

∞
}

are distinct gauge-invariant ideals in C∗(E), and every gauge-invariant ideal
is of this form. Indeed, if I is a gauge-invariant ideal in C∗(E) = C∗(se, pv),
H := {v ∈ E0 : pv ∈ I}, and B := {v ∈ Hfin

∞ : pv − pv,H ∈ I}, then I = JH,B.

We begin by showing that we can recover H and B from JH,B ; this imme-
diately implies that the ideals are distinct.

Lemma 3.7. Let E be a directed graph. Suppose that H is a saturated
hereditary subset of E0 and B ⊂ Hfin

∞ . Then H = HJH,B . If we use the
isomorphism of Proposition 3.4 to view JH,B/IH as an ideal in C∗(E/H),
then β(B) = HJH,B/IH .

Proof. We trivially have H ⊂ HJH,B . Suppose v 6∈ H. Then the image of
pv under the isomorphism of C∗(E)/JH,B onto C∗((E/H)\β(B)) = C∗(te, qv)
dominates the projection qv associated to the vertex v ∈ ((E/H) \ β(B))0,
and hence is nonzero; thus pv 6∈ JH,B . This gives the first assertion. For
the second, note that the image of JH,B under the quotient map C∗(E) →
C∗(E/H) = C∗(uf , rw) is the ideal Iβ(B), and β(B) = {w ∈ (E/H)0 : rw ∈
Iβ(B)} by the first assertion. �

Proof of Theorem 3.6. Lemma 3.7 implies that the ideals are distinct.
Given I and H,B as in the theorem, we note that JH,B ⊂ I, and consider
the image of I/JH,B in C∗((E/H) \ β(B)) = C∗(te, qv). We shall show by
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contradiction that there is no vertex w of (E/H) \ β(B) such that the cor-
responding projection qw lies in I/JH,B . If w ∈ E0 \ H and w 6∈ Hfin

∞ , then
qw ∈ I/JH,B implies pw ∈ I, which contradicts w 6∈ H. If w ∈ Hfin

∞ , then
qw ∈ I/JH,B implies pw,H ∈ I; now we can choose e ∈ E1 such that s(e) = w
and r(e) 6∈ H, and then pw,H ∈ I implies pr(e) = ses

∗
e ∈ I, which is incom-

patible with r(e) 6∈ H. If w = β(v) for some v ∈ Hfin
∞ , then qw ∈ I/JH,B

implies pv − pv,H ∈ I, and w = β(v) ∈ β(B), which is impossible because
w is a vertex of (E/H) \ β(B). Thus for all w ∈ ((E/H) \ β(B))0, qw has
non-zero image in C∗((E/H)\β(B))/(I/JH,B). Now gauge-invariant unique-
ness (Theorem 2.1) implies that the quotient map of C∗((E/H) \ β(B)) onto
C∗((E/H) \ β(B))/(I/JH,B) is injective, which says that I/JH,B = 0 and
I = JH,B . �

Corollary 3.8. Suppose E is a directed graph satisfying Condition (K).
Then every ideal of C∗(E) is gauge-invariant, and hence Theorem 3.6 gives a
complete description of the ideals of C∗(E).

Proof. Suppose I is an ideal in C∗(E). Let H := {v ∈ E0 : pv ∈ I}, which
is saturated and hereditary by Lemma 3.2, and let B := {v ∈ Hfin

∞ : pv−pv,H ∈
I}. Note that JH,B ⊂ I. Let (E/H) \ β(B) denote the graph appearing in
Corollary 3.5. As in the first paragraph of the proof of [1, Theorem 4.1],
both quotients C∗(E)/I and C∗(E)/JH,B are generated by Cuntz-Krieger
((E/H)\β(B))-families in which all the projections associated to vertices are
nonzero.

We claim that all loops in (E/H) \β(B) have exits. Suppose α is a loop in
(E/H)\β(B). Since all the new vertices added to E0\H to form (E/H)\β(B)
are sinks, the loop α must come from a loop α̃ in E. Because E satisfies (K),
each vertex in α̃ must lie on another loop. Since this loop cannot enter the
hereditary set H, there must be an exit from α̃ which lies in r−1(E0 \H), and
hence gives an exit from α in (E/H) \ β(B). This justifies the claim.

Now two applications of the Cuntz-Krieger uniqueness theorem [20, Theo-
rem 1.5] show that both quotients C∗(E)/I and C∗(E)/JH,B are canonically
isomorphic to C∗((E/H)\β(B)). Thus the quotient map of C∗(E)/JH,B onto
C∗(E)/I is an isomorphism, and I = JH,B . The corollary now follows from
Theorem 3.6. �

We need the following proposition in the proof of Lemma 4.1 below, and
in the analysis of the hull-kernel topology on the primitive ideal space in our
sequel.

Proposition 3.9. Suppose E is a directed graph, {Hi : i ∈ Λ} is a family
of saturated hereditary subsets of E0, and Bi ⊂ (Hi)fin

∞ for i ∈ Λ. Let H =⋂
i∈ΛHi and B =

(⋂
i∈ΛHi ∪Bi

)
∩Hfin

∞ . Then⋂
i∈Λ JHi,Bi = JH,B .
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Proof. Since the intersection of gauge-invariant ideals is gauge-invariant,
Theorem 3.6 says that

⋂
i∈Λ JHi,Bi = JK,C for

K =
{
v : pv ∈

⋂
i∈Λ JHi,Bi

}
, C =

{
w ∈ Kfin

∞ : pw − pw,K ∈
⋂
i∈Λ JHi,Bi

}
.

By two applications of Lemma 3.7, we have

K = HJK,C =
⋂
i∈ΛHJHi,Bi

=
⋂
i∈ΛHi = H.

It remains to identify C with B. Let w ∈ Kfin
∞ ; we want to show that w ∈⋂

i∈ΛHi ∪Bi if and only if w ∈ C.
Suppose w ∈ C and i ∈ Λ is fixed. Then pw − pw,K ∈ JK,C ⊂ JHi,Bi .

For each of the finitely many e with s(e) = w and r(e) 6∈ K, r(e) ∈ Hi

implies pr(e) ∈ JHi,Bi and ses
∗
e ∈ JHi,Bi . If r(e) ∈ Hi for all such e, then

pw,K ∈ JHi,Bi , pw = (pw − pw,K) + pw,K ∈ JHi,Bi , and w ∈ Hi. If r(e) 6∈ Hi

for some such e, then

pw − pw,Hi = pw − pw,K +
∑

s(e)=w, r(e)∈Hi\K

ses
∗
e ∈ JHi,Bi ,

and w ∈ Bi. Either way, w ∈ Hi ∪Bi.
For the converse, suppose w ∈ Hi ∪Bi for all i, and fix i; we want to show

pw − pw,K ∈ JHi,Bi . If w ∈ Hi, then pw ∈ JHi,Bi , so this is trivially true. If
w ∈ Bi, then pw − pw,Hi ∈ JHi,Bi , and

pw − pw,K = pw − pw,Hi +
∑

s(e)=w, r(e)∈Hi\K

ses
∗
e ∈ JHi,Bi ,

as required. �

Corollary 3.10. If E is a directed graph, H1 and H2 are saturated hered-
itary subsets of E0, and Bi ⊂ (Hi)fin

∞ for i = 1, 2, then JH1,B1 ⊂ JH2,B2 if
and only if H1 ⊂ H2 and B1 ⊂ H2 ∪B2.

4. Gauge-invariant primitive ideals

The primitive ideal spaces of the C∗-algebras of row-finite graphs satisfying
Condition (K) were described in [1, §6]. In particular, [1, Corollary 6.5] gives
a bijection between the primitive ideals and certain subsets of the vertex set,
called maximal tails. The concept of a maximal tail also plays a crucial role in
our analysis of primitive gauge-invariant ideals in C∗(E). However, we need
to adjust the definition to accommodate non-row-finite graphs.

Lemma 4.1. Suppose I is an ideal in C∗(E). Then M := E0\HI satisfies:
(a) if v ∈ E0, w ∈M , and v ≥ w in E, then v ∈M , and
(b) if v ∈M and 0 < |s−1(v)| <∞, then there exists e ∈ E1 with s(e) = v

and r(e) ∈M .
If I is a primitive ideal, then in addition:



IDEAL STRUCTURE OF GRAPH ALGEBRAS 1169

(c) for every v, w ∈M there exists y ∈M such that v ≥ y and w ≥ y.

Proof. Conditions (a) and (b) say that HI is hereditary and saturated, so
the first part follows from Lemma 3.2.

Now suppose I is primitive, v, w ∈ M , and there is no y as in (c). The
sets Hv = {x ∈ E0 : v ≥ x} and Hw = {x ∈ E0 : w ≥ x} are hereditary
and satisfy Hv ∩ Hw ⊂ HI . The set HI ∪ (E0 \ Hw) is saturated. Indeed,
let x ∈ E0 be such that 0 < |s−1(x)| < ∞ and r(e) ∈ HI ∪ (E0 \ Hw) for
each edge e with s(e) = x. Then either x ∈ HI or there is at least one e
with s(e) = x and r(e) 6∈ Hw, in which case x ∈ E0 \ Hw because Hw is
hereditary. Thus ΣH(v) = Σ(Hv) ⊂ HI ∪ (E0 \ Hw). The same argument
shows ΣH(w) ⊂ HI ∪ (E0 \ Hv), and the hypothesis Hv ∩ Hw ⊂ HI forces
ΣH(v) ∩ ΣH(w) ⊂ HI . It follows from Lemma 3.9 that

IΣH(v) ∩ IΣH(w) = IΣH(v)∩ΣH(w) ⊂ I,
which is impossible because neither IΣH(v) nor IΣH(w) is contained in I. Thus
there must exist y ∈M such that v ≥ y and w ≥ y. �

We now define a maximal tail in E to be a nonempty subset M of E0

satisfying conditions (a), (b) and (c) of Lemma 4.1. If M is a maximal tail in
E then we say that every loop in M has an exit if every loop with vertices in
M has an exit e ∈ E1 with r(e) ∈M .

Proposition 4.2. Let E be a directed graph. Then C∗(E) is primitive if
and only if every loop in E has an exit and for every v, w ∈ E0 there exists
y ∈ E0 such that v ≥ y and w ≥ y.

Proof. Suppose that C∗(E) is primitive. Then E0 is a maximal tail by
Lemma 4.1. If there is a loop L in E without exits and L0 is the set of
vertices on L, then the ideal IL0 is Morita equivalent to C(T) (cf. [15, §2] and
formula (1) above), contradicting primitivity of C∗(E).

Conversely, suppose the two conditions of the proposition are satisfied. It
suffices to show that {0} is a prime ideal of C∗(E). Indeed, let I1, I2 be
two non-zero ideals of C∗(E). Since all loops in E have exits, [9, Theorem 2]
implies that there exist v, w ∈ E0 such that pv ∈ I1 and pw ∈ I2. If y ∈ E0

satisfies v ≥ y and w ≥ y, then we have py ∈ I1 ∩ I2, so I1 ∩ I2 6= {0}, and
{0} is prime. �

Remark 4.3. The conditions of Proposition 4.2 are equivalent to:
(1) for every v, w ∈ E0 we have ΣH(v) ∩ ΣH(w) 6= ∅, and
(2) every loop in E has an exit.

The above two conditions should be compared with the criterion of simplicity
for graph algebras [23, Theorem 12]:

(1) for every v ∈ E0 we have ΣH(v) = E0, and
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(2) every loop in E has an exit.

Corollary 4.4. Let E be a directed graph and let H be a saturated hered-
itary subset of E0. Then C∗(E \H) is primitive if and only if M := E0 \H
is a maximal tail such that all loops in M have exits.

By Theorem 3.6, we can determine all the gauge-invariant primitive ideals
of C∗(E) by deciding which of the ideals JH,B are primitive. To this end, we
use Corollary 4.4 to see which quotient algebras C∗(E)/JH,B ∼= C∗((E/H) \
β(B)) are primitive. If Hfin

∞ \ B contains distinct vertices v, w, there are at
least two sinks β(v), β(w) in (E/H) \ β(B) and C∗((E/H) \ β(B)) cannot be
primitive by Proposition 4.2. So we only need to consider two possibilities:
B = Hfin

∞ and B = Hfin
∞ \ {v} for some v ∈ Hfin

∞ .

Lemma 4.5. Let E be a directed graph and let H be a saturated and hered-
itary subset of E0. Then JH,Hfin

∞
is primitive if and only if M := E0 \H is a

maximal tail such that all loops in M have exits.

Proof. Since C∗(E)/JH,Hfin
∞

is isomorphic to C∗((E/H)\β(Hfin
∞ )) = C∗(E\

H), this follows from Corollary 4.4. �

For any non-empty subset X of E0 we denote by Ω(X) the collection of
vertices w ∈ E0 \ X such that there is no path from w to any vertex in X.
That is,

Ω(X) :=
{
w ∈ E0 \X : w 6≥ v for all v ∈ X

}
.

Note that we have Ω(M) = E0 \M for any maximal tail M . The following
lemma shows that it is important to look at the sets Ω(v) corresponding to
certain vertices v.

Lemma 4.6. Let E be a directed graph, let H be a saturated hereditary
subset of E0, and let v ∈ Hfin

∞ . Then JH,Hfin
∞ \{v} is primitive if and only if

H = Ω(v).

Proof. The ideal JH,Hfin
∞ \{v} is primitive if and only if the corresponding

quotient algebra C∗((E/H) \ β(Hfin
∞ \ {v})) is primitive. Since the graph

(E/H)\β(Hfin
∞ \{v}) contains a sink β(v), Corollary 4.4 implies that JH,Hfin

∞ \{v}
is primitive if and only if for any vertex w ∈ E0 \H there exists a path from
w to v. This, however, is equivalent to H = Ω(v). �

We call a vertex v ∈ E0 with the property described in Lemma 4.6 a
breaking vertex, and write v ∈ BV (E). More formally, we define

BV (E) :=
{
v ∈ E0 : |s−1(v)| =∞ and 0 < |s−1(v) \ r−1(Ω(v))| <∞

}
.

Note that if a vertex v emits infinitely many edges then Ω(v) is automatically
saturated and hereditary, and hence v is a breaking vertex if and only if
v ∈ Ω(v)fin

∞ . If the graph E is row-finite, there are no breaking vertices.
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Theorem 4.7. Let E be a directed graph. Then the gauge-invariant prim-
itive ideals in C∗(E) are the ideals JΩ(M),Ω(M)fin

∞
associated to the maximal

tails M in which all loops have exits, and the ideals JΩ(v),Ω(v)fin
∞ \{v} associated

to breaking vertices v ∈ BV (E). These ideals are distinct.

Proof. By Theorem 3.6, all gauge-invariant ideals in C∗(E) have the form
JH,B , with H a saturated hereditary subset of E0 and B a subset of Hfin

∞ , and
these ideals are distinct. So we only need to decide which of these ideals are
primitive. If Hfin

∞ \B has two or more vertices then JH,B is not primitive, since
C∗(E)/JH,B ∼= C∗((E/H) \ β(B)) and the graph (E/H) \ β(B) contains at
least two sinks, contradicting the conditions of Proposition 4.2. Thus we may
assume that either B = Hfin

∞ or B = Hfin
∞ \{v} for some v ∈ Hfin

∞ . If B = Hfin
∞ ,

the ideal JH,B is primitive if and only if H = Ω(M) for some maximal tail M
in which all loops have exits by Lemma 4.5. If B = Hfin

∞ \ {v}, the ideal JH,B
is primitive if and only if H = Ω(v) for some breaking vertex v ∈ BV (E) by
Lemma 4.6. �

The following corollary now follows from Corollary 3.8 and Theorem 4.7.

Corollary 4.8. If E is a directed graph satisfying Condition (K) then
Theorem 4.7 gives a complete description of the primitive ideals of C∗(E).

5. Examples

We illustrate our results with four examples which are not covered by the
existing literature.

Example 5.1. The following directed graph satisfies Condition (K) but
is not row-finite.

•

•

• • • • . . .
(∞) (∞)

(∞)

.......................................................................................................................................................................................................................... .................. ......................... .................. ......................... ..................

...............................................................................................................................................................................................................
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....................................

..........................
.....................

..................
...............

..............
............
...

............
............

............
............

............
............
............
............
............
............
............
............
............
............

............
........................................................................................................................................................................................................

.................................... ..............
....

....................................
..................

..........................
..................

...........

........

..

.........
.........

v

w

x1 x2 x3 x4

There are only two maximal tails, M1 = E0 and M2 = {v, w}, and in both
every loop has an exit. The primitive ideal corresponding to M1 is {0},
and hence C∗(E) is primitive. The primitive ideal corresponding to M2 is
JX,{w}, where X = {x1, x2, x3, . . .}. The only breaking vertex is w, and the
corresponding primitive ideal is IX .

Since IX is infinite-dimensional and Morita equivalent to C∗(X) [15, §2],
and C∗(X) is isomorphic to the C∗-algebra K of compact operators on a sepa-
rable infinite-dimensional Hilbert space, we have IX ∼= K also. By Proposition
3.4, the quotient graph E/X contains one sink β(w), and β(w) is the range of
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infinitely many paths. Thus JX,{w}/IX ∼= K. The ideal JX,{w} is an extension
of K by K, and is the unique essential extension by [26, Lemma 1.1]. Another
application of Proposition 3.4 shows that C∗(E)/JX,{w} ∼= C∗(E \ X) ∼=
M2(C)⊗O∞.

Example 5.2. Let E be the following graph:

• • • • • •

• • • • • •
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This is an infinite row-finite graph which does not satisfy Condition (K). There
are four families of maximal tails indexed by the integers n ≥ 1:

Mn = {vi,j : 1 ≤ i ≤ n, : 1 ≤ j <∞},
M2n−1 = {vi,j : 1 ≤ i <∞, : 1 ≤ j ≤ 2n− 1} ∪ {v1,2n},
M2n = {vi,j : 1 ≤ i <∞, : 1 ≤ j ≤ 2n},
Rn = {v1,j : 1 ≤ j ≤ 2n}.

In addition, E0 is a maximal tail. Each maximal tail Rn contains a loop
without exits. On the other hand, all loops in Mn and Mn have exits. Since E
is row-finite there are no breaking vertices. Thus the gauge-invariant primitive
ideals in C∗(E) are IΩ(Mn), IΩ(Mn) and {0}.

Example 5.3. The following infinite graph E is row-finite but does not
satisfy Condition (K).

• • •
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· · ·
...
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The maximal tails are M = {vi : i ≥ 1} and Mn = {wn, v1, . . . , vn} for all
n ≥ 1. Each Mn contains a loop without exits, but M does not contain any
loops. Thus IΩ(M) is the only gauge-invariant primitive ideal in C∗(E).

Example 5.4. It was suggested in [10, Remark 3.11] that describing the
ideals of the C∗-algebra of the following graph would be an interesting test
question:

• • •
(∞)

............................................................................................................................................................................................................................................................................................................................................ .................. ................................. ..........................

........
.........
..........

.............
..............................................................................................................................................................................................
............
..........
.........
........
..... .................................................................................................

............
..........
.........
........
........
........
.........
.........
...........

.................
............................................................................................

..........................
.................. ........

..........................
..................

u v w

This graph is not row-finite and does not satisfy Condition (K). There are no
breaking vertices, and there are three maximal tails: M1 = {u}, M2 = {u, v}
and M3 = {u, v, w}. All loops in M2 have exits, but M1 and M3 contain loops
without exits. Thus there is exactly one gauge-invariant primitive ideal Iw,
which corresponds to M2, .

We have pwC∗(E)pw ∼= C(T) and there are infinitely many paths ending
at w, so Iw ∼= C(T) ⊗ K. By Proposition 3.4, the quotient C∗(E)/Iw ∼=
C∗(E \ {w}) is isomorphic to the Toeplitz algebra.

6. An application to K-theory

One of our original motivations for analysing ideals in graph algebras was
to extend [20, Theorem 3.2] to arbitrary graphs, and we now do this; the only
difference between Theorem 6.1 below and [20, Theorem 3.2] is the definition
of W . Recall that γ̂ is the dual action of Z = T̂ on the crossed product
C∗(E)oγ T by the gauge action γ, and that applying the integrated form of
the canonical embedding u : T→ M(C∗(E)oγ T) to the function z ∈ L1(T)
yields a projection χ1 =

∫
zuz dz ∈ C∗(E)oγ T.

Theorem 6.1. Let E be a directed graph, let W be the set of those vertices
w ∈ E0 that s−1(w) is either empty or infinite, and let V = E0 \W . With
respect to the decomposition E0 = V ∪W , the E0 × E0 vertex matrix

M(v, w) := #{e ∈ E1 : s(e) = v and r(e) = w},

takes the block form

M =
(
B C
∗ ∗

)
where B and C have nonnegative integer entries. We define K : ZV →
Z
V⊕ZW by K(x) =

(
(1−Bt)x,−Ctx

)
, and φ : ZV⊕ZW → K0(C∗(E)oγT) in

terms of the usual basis by φ(v) = [pvχ1]. Then φ restricts to an isomorphism
φ| of kerK onto K1(C∗(E)), and induces an isomorphism φ of cokerK onto
K0(C∗(E)) such that the following diagram commutes:
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kerK Z
V

Z
V ⊕ ZW cokerK

K1(C∗(E)) K0(C∗(E)oγ T) K0(C∗(E)oγ T) K0(C∗(E)).

-

?

φ|

-K

?

φ

-

?

φ

?

φ

- -
1−γ̂−1

∗ -

Almost the entire proof of [20, Theorem 3.2] applies in this more general
situation, and indeed only one point needs a different argument. Recall that
for integers m ≤ n we denote by E ×1 [m,n] the subgraph of E ×1 Z with
vertices {(v, k) : m ≤ k ≤ n, v ∈ E0} and edges {(e, k) : m < k ≤ n, e ∈
E1}. It is essential for the proof of the theorem to know the K-theory of the
corresponding algebra C∗(E ×1 [m,n]). We claim that K0(C∗(E ×1 [m,n]))
is a free abelian group with free generators

{[p(v,n)] : v ∈ V } ∪ {[p(v,k)] : v ∈W, m ≤ k ≤ n}.

In the row-finite case this algebra is a direct sum of copies of the compacts
(on Hilbert spaces of varying dimensions), and the claim is quite obvious.
In general it is an AF -algebra with a more complicated structure. However,
since any path in E ×1 [m,n] has length at most n−m the following lemma
applies.

Lemma 6.2. Let E be a directed graph such that the length of any path α ∈
E∗ does not exceed a fixed number d. Then K1(C∗(E)) = 0 and K0(C∗(E))
is the free abelian group generated by

{[pv] : s−1(v) is either empty or infinite}.

Proof. We proceed by induction on d. If d = 0 then C∗(E) is a direct
sum of copies of C, and the claim is clear. Suppose the lemma holds for all
graphs with the maximum path length at most d, and let E be a graph with
the maximum path length at most d+ 1. We denote by F the set of sinks in
E. By Lemma 3.4 C∗(E)/IΣ(F )

∼= C∗(E \ Σ(F )), and thus there is an exact
sequence

(5) 0 −→ IΣ(F ) −→ C∗(E) −→ C∗(E \ Σ(F )) −→ 0.

In the graph E \ Σ(F ), the maximum path length is at most d. Thus the
inductive hypothesis implies that K1(C∗(E \ Σ(F ))) = 0 and K0(C∗(E \
Σ(F ))) is free abelian with free generators corresponding to vertices which
emit infinitely many edges and sinks in E \Σ(F ). Moreover, the sinks in this
quotient graph are the vertices v ∈ E which emit infinitely many edges but
for which there is no path in E from v to another vertex which emits infinitely
many edges. If v ∈ F then the ideal of C∗(E) generated by pv is isomorphic
to K, with {sµs∗ν : µ, ν ∈ E∗, r(µ) = r(ν) = v} as a system of matrix units.
Moreover, any two such ideals corresponding to different sinks have trivial
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intersection. Thus IΣ(F ) is the direct sum of these ideals, K1(IΣ(F )) = 0, and
K0(IΣ(F )) is the free abelian group generated by {[pv] : v ∈ F}. Thus the
six-term exact sequence of K-theory associated to (5) yields K1(C∗(E)) = 0
and the short exact sequence

(6) 0 −→ K0(IΣ(F )) −→ K0(C∗(E)) −→ K0(C∗(E \ Σ(F ))) −→ 0.

Since K0(C∗(E \Σ(F ))) is free abelian, the sequence (6) splits. Furthermore,
such a splitting K0(C∗(E\Σ(F )))→ K0(C∗(E)) may be determined by lifting
free generators; we choose to lift [pv] to [pv]. This completes the proof of the
inductive step and the lemma. �

The rest of the proof of Theorem 6.1 is exactly the same as in [20, Theorem
3.2].

Remark 6.3. Of course this computation of K-theory is not entirely new,
though we believe the approach taken in [20] has much to commend it. Cuntz’s
original calculation of K-theory for Cuntz-Krieger algebras applies as it stands
to finite graphs without sinks or sources in which every loop has an exit [2,
Proposition 3.1]. This was extended to locally finite graphs in [17] and [16],
and to arbitrary row-finite graphs in [20, Theorem 3.2]; for non-row-finite
graphs without sinks or sources, we can apply the computations of K-theory
for the Cuntz-Krieger algebras of infinite matrices ([7, Theorem 4.5], [22, §6],
[20, Theorem 4.1]). Infinite graphs with finitely many vertices are covered
by [24, Proposition 2], and arbitrary graphs by [5, Theorem 3.1], which was
proved by reducing to the row-finite case and applying [20, Theorem 3.2].
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