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NEW FUNCTION SPACES OF MORREY-CAMPANATO
TYPE ON SPACES OF HOMOGENEOUS TYPE

LIN TANG

Abstract. In the context of spaces of homogeneous type, we intro-
duce and develop some new function spaces of Morrey-Campanato type.
The new function spaces are defined by variants of maximal functions
associated with generalized approximations to the identity, and they
generalize the classical Morrey-Campanato spaces. We show that the
John-Nirenberg inequality holds on these spaces. We also establish the
endpoint boundedness of fractional integrals.

1. Introduction

The Morrey-Campanato spaces on Euclidean spaces Rn play an important
role in the study of partial differential equation; see [11], [13] and [15]. The
concept of spaces of homogeneous type, which is a natural generalization of
Euclidean spaces Rn, was introduced in [3]. In this paper, we will study
Morrey-Campanato spaces on spaces of homogeneous type. Let χ be a space
of homogeneous type equipped with a metric d and measure µ satisfying the
doubling property. Following [14], we will say that a locally integral function
f is a Morrey-Campanato space L(α, χ) function (α > 0) on χ if

sup
B

1
µ(B)1+α

∫
B

|f(x)− fB | dµ(x) < ∞,

where the supremum is taken over all balls B ⊂ χ and fB stands for the mean
of f over B with respect to µ, that is,

fB =
1

µ(B)

∫
B

f(y) dµ(y).

It is well known that for α = 0 the space L(α, χ) coincides with the BMO(χ)
space. Moreover, L(α, χ) coincides with Lip(α, χ), the Lipschitz integral
space, when 0 < α < 1/n, where n denotes the homogeneous dimension
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of homogeneous space χ. Recently, X. T. Duong and L. X. Yan [7] intro-
duced new function spaces of BMO type that generalize the classical BMO
space in the context of spaces of homogeneous type. More precisely, they con-
sidered Atf(x), for certain families of operators At with kernel at(x, y) with
appropriate decay, as an average version of f and used

AtB
f(x) =

∫
χ

atB
(x, y)f(y) dµ(y)

in place of the mean value fB in the definition of the classical BMO space,
where tB is scaled to the radius of the ball B. Similarly, D. G. Deng, X.
T. Duong and L. X. Yan [4] also gave a new characterization of the Morrey-
Campanato spaces on the Euclidean space Rn.

In this paper, motivated by [4] and [7], we introduce new function spaces
of Morrey-Campanato type on spaces of homogeneous type. We study and
establish important features for these spaces such as the John-Nirenberg in-
equality on spaces of homogeneous type. Finally, we prove endpoint estimates
for new fractional integrals.

In the sequel, C is a positive constant which is independent of the main
parameters and not necessary the same at each occurrence.

2. Definition of LipA(α, χ) and basic properties

2.1. Preliminaries. We briefly recall some basic definitions and facts
about spaces of homogeneous type. A quasi-metric d on a set χ is a func-
tion from χ× χ to [0,∞) satisfying the following:

(i) d(x, y) = 0 if and only if x = y.
(ii) d(x, y) = d(y, x) for all x, y ∈ χ.
(iii) There exists a constant C1 ≥ 1 such that

d(x, y) ≤ C1(d(x, z) + d(z, y)), for all x, y, z ∈ χ.

By a result in [14], for any quasi-metric d there exists another quasi-metric
d′, continuous and equivalent to d, for which every ball is open. So, without
loss of generality, the quasi-metric d can be assumed to be continuous and the
balls to be open.

A space of homogeneous type (χ, d, µ) is a set χ together with a quasi-
metric d and a nonnegative Borel measure µ such that the doubling property

µ(B(x, 2r)) ≤ C2µ(B(x, r)) < ∞
holds for all x ∈ χ and r > 0, where the constant C2 ≥ 1 is independent of
x and r, and B(x, r) = {y ∈ χ : d(x, y) < r} is the ball with center x and
radius r.

Note that the doubling property implies the following strong homogeneity
property:

(2.1) µ(B(x, λr)) ≤ Cλnµ((B(x, r))
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for some C, n > 0, uniformly for all λ ≥ 1 and x ∈ χ. The parameter n is a
measure of the dimension of the space. There also exist C and N, 0 ≤ N ≤ n,
such that

(2.2) µ(B(y, r)) ≤ C

(
1 +

d(x, y)
r

)N

µ(B(x, r))

uniformly for all x, y ∈ χ and r > 0. See also [7].
As in [7], we will work with a class of integral operators {At}t>0, which

plays the role of generalized approximations to the identity. We assume that
the operators At are defined by kernels at(x, y) in the sense that

Atf(x) =
∫

χ

at(x, y)f(y) dµ(y)

for every function f that satisfies the growth condition (2.5) below.
We also assume that the kernels at(x, y) satisfy the estimate

|at(x, y)| ≤ ht(x, y)

for all x, y ∈ χ, where ht(x, y) is given by

(2.3) ht(x, y) =
1

µ(B(x, t1/m))
g

(
dm(x, y)

t

)
,

in which m is a positive constant and g is a positive, bounded, decreasing
function satisfying

(2.4) lim
r→∞

rn+2N+(n+N)α+εg(rm) = 0

for some ε > 0, where N is the power appearing in property (2.2), and n the
dimension entering the strong homogeneity property. Here and in the sequel
α denotes a positive constant.

We will also use the Hardy-Littlewood maximal operator Mf , which is
defined by

Mf(x) = sup
x∈B

1
µ(B)

∫
B

|f(y)| dµ(y),

where the supremum is taken over all balls containing x.

2.2. Definition of LipA(α, χ). Let {At}t>0 be a generalized approxima-
tion to the identity whose kernels at(x, y) satisfy conditions (2.3) and (2.4).
For a ball B we will use the notation 2kB, k ≥ 0, to denote the ball having
the same center as B and radius 2krB , and 2−1B denotes the empty set ∅.

Let ε be the constant in (2.4) and 0 < β < ε. A function f ∈ L1
loc(χ) is

said to be a function of type (x0, β) centered at x0 ∈ χ if f satisfies

(2.5)
∫

χ

|f(x)|
(1 + d(x0, x))2N+(n+N)α+βµ(B(x0, 1 + d(x0, x)))

dµ(x) ≤ C < ∞.
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We denote by Mx0,β the collection of all function of type (x0, β). If f ∈
Mx0,β , the norm of f in Mx0,β is defined by

‖f‖Mx0,β
= inf{C ≥ 0 : (2.5) holds}.

For a fixed x0 ∈ χ it is easy to see that Mx0,β is a Banach space under
the norm ‖f‖Mx0,β

< ∞. For any x1 ∈ χ, Mx1,β = Mx0,β with equivalent
norms. We set

M =
⋃

x0∈χ

⋃
β:0<β<ε

Mx0,β ,

where ε is the constant in (2.4).

Lemma 2.1. We have the following properties:

(i) If f ∈ L(α, χ), then f ∈M.
(ii) For each t > 0 and f ∈ M we have |Atf(x)| < ∞ for almost all

x ∈ χ.
(iii) For each t, s > 0 and f ∈ M we have |At(Asf)(x)| < ∞ for almost

all x ∈ χ.

As a consequence, if

at+s(x, y) =
∫

χ

at(x, z)as(z, y) dµ(z),

then for any f ∈ M, At+sf(x) = At(Asf)(x) for almost all x ∈ χ, and we
say that the class At satisfies the semigroup property.

The proof of Lemma 2.1 is similar to that of Lemma 2.3 in [7]. We omit
the details.

We now introduce the space LipA(α, χ) associated with a generalized ap-
proximation to the identity {At}t>0.

Definition 2.1. We say that f ∈ M is in LipA(α, χ), the space of func-
tions of Lipschitz type associated with a generalized approximation to the
identity {At}t>0, if there exists some C such that for any ball B

(2.6) sup
B

1
µ(B)1+α

∫
B

|f(x)−AtB
f(x)| dµ(x) ≤ C,

where tB = rm
B and rB is the radius of the ball B.

The smallest bound C for which (2.6) is satisfied is then taken to be the
norm of f in this space and is denoted by ‖f‖LipA(α,χ).

Note that when α = 0, LipA(0, χ) = BMOA(χ); see [7].
Next, we give a relation between LipA(α, χ) and L(α, χ).
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Proposition 2.1. Assume that for every t > 0, At(1) = 1 almost ev-
erywhere, that is,

∫
χ

at(x, y) dµ(y) = 1 for almost all x ∈ χ. Then, we have
L(α, χ) ⊂ LipA(α, χ) and there exists a positive constant C > 0 such that

‖f‖LipA(α,χ) ≤ C‖f‖L(α,χ).

However, the converse inequality does not hold in general.

Proof. We fix f ∈ L(α, χ), x0 ∈ χ and a ball B 3 x0. Then

1
µ(B)1+α

∫
B

|f(x)−AtB
f(x)| dµ(x)

≤ 1
µ(B)1+α

∫
B

∫
χ

htB
(x, y)|f(x)− f(y)| dµ(y) dµ(x)

=
1

µ(B)1+α

∫
B

∫
2B

htB
(x, y)|f(x)− f(y)| dµ(y) dµ(x)

+
∞∑

k=1

1
µ(B)1+α

∫
B

∫
2k+1B\2kB

× htB
(x, y)|f(x)− f(y)| dµ(y) dµ(x)

= I+ II .

We first estimate I. By the doubling property (2.1), we know that µ(B) ≤
2Nµ(B(x, rB)) since x ∈ B. For y ∈ 2B we then have

htB
(x, y) =

g(dm(x, y)t−1
B )

µ(B(x, t
1/m
B ))

≤ g(0)
µ(B(x, rB))

≤ C

µ(2B)
.

Thus,

I ≤ C

µ(B)1+αµ(2B)

∫
B

∫
2B

|f(x)− f(y)| dµ(y) dµ(x)

≤ C

µ(B)1+αµ(2B)

∫
B

∫
2B

|f(x)− f2B | dµ(y) dµ(x)

+
C

µ(B)1+αµ(2B)

∫
B

∫
2B

|f(y)− f2B | dµ(y) dµ(x)

≤ C

µ(B)1+α

∫
B

|f(x)− f2B | dµ(x)

+ C
µ(2B)α

µ(B)α

1
µ(2B)1+α

∫
2B

|f(y)− f2B | dµ(y)

≤ C‖f‖L(α,χ).
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Regarding II, for x ∈ B and y ∈ 2k+1B \ 2kB, we have d(x, y) ≥ 2k−1rB .
Therefore,

htB
=

g(dm(x, y)r−m
B )

µ(B(x, rB))
≤ C

g(2(k−1)m)
µ(B)

≤ C
g(2(k−1)m)2(k+1)n

µ(2k+1B)
,

where we used (2.1). Thus,

II ≤ C

∞∑
k=1

2kn g(2(k−1)m)
µ(B)1+αµ(2k+1B)

∫
B

∫
2k+1B

|f(x)− f(y)| dµ(y) du(x).

We estimate each term as follows:
1

µ(B)1+αµ(2k+1B)

∫
B

∫
2k+1B

|f(x)− f(y)| dµ(y) du(x)

≤ 1
µ(B)αµ(2k+1B)

∫
2k+1B

|f(y)− f2k+1B | dµ(y)

+
1

µ(B)1+α

∫
B

|f(x)− f2k+1B | dµ(x)

≤ 2kαn‖f‖L(α,χ) +
1

µ(B)1+α

∫
B

|f(x)− fB | dµ(x)

+
1

µ(B)α
|fB − f2B |+ · · ·+ 1

µ(B)α
|f2kB − f2k+1B |

≤ 2kαn‖f‖L(α,χ) +
k∑

l=0

2lnα‖f‖L(α,χ)

≤ C2kαn‖f‖L(α,χ).

Therefore, by (2.4), we obtain

I ≤ C‖f‖L(α,χ)

∞∑
k=0

2k(α+1)ng(2(k−1)m) ≤ C‖f‖L(α,χ).

Finally, we show that the converse inequality does not hold in general.
We consider R with the Lebesgue measure dx and the approximation of the
identity {Dt : t > 0} given by the kernel

at(x, y) =
1

2t1/m
χ(x−t1/m,x+t1/m)(y).

Let us take the function f(x) = x. For every t > 0, Dtf(x) = x and
‖f‖LipA(α,R) = 0 for α > 0, but ‖f‖L(α,R) = +∞ for 0 < α < 1. Thus,
L(α, R) ⊂ LipA(α, R) for 0 < α < 1. �

2.3. Basic properties of LipA(α, χ). In this section, let χ be a space
of homogeneous type equipped with a quasi-metric d and a measure µ. We
assume that:



NEW FUNCTION SPACES OF MORREY-CAMPANATO TYPE 631

(a) {At}t>0 is a generalized approximation to the identity with kernels
at(x, y) satisfying conditions (2.3) and (2.4).

(b) A0 is the identity operator and the operators {At}t>0 form a semi-
group, that is, for any t, s > 0 and f ∈M, AtAsf(x) = At+sf(x) for
almost all x ∈ χ.

We first prove the following proposition.

Proposition 2.2. Assume that {At}t>0 satisfies assumptions (a) and (b)
above. If f ∈ LipA(α, χ) with α > 0, then for any t > 0 and K > 1, we have

|Atf(x)−AKtf(x)| ≤ C
(
Knµ(B(x, t1/m))

)α

‖f‖LipA(α,χ)

for almost all x ∈ χ, where C > 0 is a constant independent of x and K.

To prove Proposition 2.2, we first recall a result of Christ [2], which gives
an analogue of the Euclidean dyadic cubes.

Lemma 2.2. There exists a collection of open subsets {Qk
α ⊂ χ : k ∈

Z, α ∈ Ik}, where Ik denotes some index set depending on k, and constants
δ ∈ (0, 1), α0 ∈ (0, 1), and 0 < D < ∞, such that:

(i) µ(χ \
⋃

α Qk
α) = 0 for k ∈ Z.

(ii) If l ≥ k, then either Ql
β ⊂ Qk

α or Ql
β ⊂ Qk

α = ∅.
(iii) For each (k, α) and each l < k there is a unique β such that Qk

α ⊂ Ql
β.

(iv) The diameter of (Qα)k is ≤ Dδk.
(v) Each Qk

α contains some ball B(zk
α, α0δ

k).

Proof of Proposition 2.2. For any t > 0 we choose s such that t/4 ≤ s ≤ t
with the notation as in Lemma 2.2. First fix l0 such that Dδl0 ≤ s1/m ≤
Dδl0−1 and fix a point x ∈ χ. From conditions (i) and (iv) of Lemma 2.2, we
can find a Ql0

α0
such that x ∈ Ql0

α0
and Ql0

α0
⊂ B(x,Dδl0). For any k ∈ N we

define Mk by
Mk = {β : Ql0

β

⋂
B(x,Dδl0) 6= ∅}.

Again, by (i) and (iv) of Lemma 2.2, we have

B(x,Dδl0−k) ⊂
⋃

β∈Mk

Ql0
β ⊂ B(x,Dδl0−(k+k0)),

where k0 is an integer such that δ−k0 ≥ 2C1 and C1 is the constant appearing
in the definition of a quasi-metric d.

In [7], X. T. Duong and L. X. Yan proved that there exists a constant
C > 0 independent of k such that the number of open subsets {Ql0

β }β∈Mk
is

less than Cδ−k(n+N), that is,

mk = #{Ql0
β : β ∈ Mk} ≤ Cδ−k(n+N),
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where N is the power that appeared in property (2.2) and n the “dimension”
entering the strong homogeneity property.

We now estimate the term |Atf(x) − At+sf(x)| for the case t/4 ≤ s ≤ t.
By property (b) of the semigroup {At}t>0, we can write

Atf(x)−At+sf(x) = At(f −Asf)(x).

Since f ∈ LipA(α, χ), we have

|Atf(x)−At+sf(x)|

≤
∫

χ

ht(x, y)|f(y)−Asf(y)| dµ(y)

=
1

µ(B(x, t1/m))

∫
χ

g

(
dm(x, y)

t

)
|f(y)−Asf(y)| dµ(y)

≤ C

µ(B(x, t1/m))

∫
B(x,t1/m)

g

(
dm(x, y)

t

)
|f(y)−Asf(y)| dµ(y)

+
c

µ(B(x, t1/m))

∫
χ\B(x,t1/m)

g

(
dm(x, y)

t

)
|f(y)−Asf(y)| dµ(y)

≤ Cµ(B(x, t1/m))α‖f‖LipA(α,χ) + I .

Noting that for any y ∈ B(x,Dδl0−(k+1)) \ B(x,Dδl0−k), we have d(x, y) ≥
Dδl0−k, we obtain∫

χ\B(x,t1/m)

g

(
dm(x, y)

t

)
|f(y)−Asf(y)| dµ(y)

≤
∫

χ\B(x,Dδl0 )

g

(
dm(x, y)

t

)
|f(y)−Asf(y)| dµ(y)

≤
∞∑

k=0

∫
B(x,Dδl0−(k+1))\B(x,Dδl0−k)

g

(
dm(x, y)

t

)
× |f(y)−Asf(y)| dµ(y)

≤
∞∑

k=0

g(δ−(k−1)m/4)
∫

B(x,Dδl0−(k+1))

|f(y)−Asf(y)| dµ(y)

≤
∞∑

k=0

∑
β∈Mk

g(δ−(k−1)m/4)
∫

Q
l0
β

|f(y)−Asf(y)| dµ(y).

Applying (iv) of Lemma 2.2, we get Ql0
β ⊂ B(zl0

β , s1/m). From property (2.2),
we have

µ(B(x, s1/m))−1 ≤ Cδ−kNµ(B(zl0
β , s1/m))
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for any β ∈ Mk+1. Thus, using the decay of function g and the estimate
mk ≤ Cδ−(k+N), we then obtain

I ≤
∞∑

k=0

∑
β∈Mk+1

g(δ−(k−1)m/4)
∫

Q
l0
β

|f(y)−Asf(y)| dµ(y)

≤
∞∑

k=0

mk+1δ
−kNg(δ−(k−1)m/4)µ(B(zl0

β , s1/m))α‖f‖LipA(α,χ)

≤
∞∑

k=0

δ−k(n+2N)δ−kNαg(δ−(k−1)m/4)µ(B(x, t1/m))α‖f‖LipA(α,χ)

≤ C

∞∑
k=0

δ−k(n+2N+2Nα)g(δ−km)µ(B(x, t1/m))α‖f‖LipA(α,χ)

≤ Cµ(B(x, t1/m))α‖f‖LipA(α,χ).

In the case 0 < s < t/4 we write

Atf(x)−At+sf(x) = (Atf(x)−A2tf(x))−At+s(f −At−sf)(x).

Noting that (t + s)/4 ≤ t− s < t + s, the same argument as above applies. In
general, for any K > 1, we let l be the integer satisfying 2l ≤ K < 2l+1, so
that l ≤ log2 K. Thus, there exists a constant C > 0 independent of t and K
such that

|Atf(x)−A2tf(x)|

≤
l−1∑
k=0

|A2ktf(x)−A2k+1tf(x)|+ |A2ltf(x)−A2l+1tf(x)|

≤
l−1∑
k=0

µ(B(x, 2kt1/m))α‖f‖LipA(α,χ) + Cµ(B(x, 2lt1/m))α‖f‖LipA(α,χ)

≤
l−1∑
k=0

2knαµ(B(x, t1/m))α‖f‖LipA(α,χ) + C2lnαµ(B(x, t1/m))α‖f‖LipA(α,χ)

≤ CKnαµ(B(x, t1/m))α‖f‖LipA(α,χ)

for all x ∈ χ. The proof of Proposition 2.2 is complete. �

Using Proposition 2.2, we can prove the following proposition.

Proposition 2.3. Let m be the positive constant in (2.3). Then there
exists a positive constant C such that

sup
t>0,x∈χ

µ(B(x, t1/m))−α |At(|f −Atf |)(x)| ≤ C‖f‖LipA(α,χ).
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Proof. Assume that f ∈ LipA(α, χ). For any fixed t > 0 and x ∈ χ we
choose a ball B centered at x and of radius rB = t1/m. Let t2kB = rm

2kB . By
Proposition 2.2 we have, for all k ≥ 0,

1
µ(2kB)

∫
2kB

|f(x)−Atf(x)| dµ(x)

≤ C

µ(2kB)

∫
2kB

∣∣f(x)−At2kB
f(x)

∣∣ dµ(x)

+ C sup
x∈2kB

∣∣At2kB
f(x)−Atf(x)

∣∣
≤ C2nkαµ(B(x, t1/m))α‖f‖LipA(α,χ).

From (2.4) we get

|At(|f −Atf |)(x)| ≤ C

∞∑
k=0

1
µ(B)

∫
2kB\2k−1B

g

(
dm(x, y)

t

)
× |f(x)−Atf(x)| dµ(x)

≤ C

∞∑
k=0

2kng(2(k−1)m)
1

µ(2kB)

×
∫

2kB

|f(x)−Atf(x)| dµ(x)

≤ C

∞∑
k=0

2kn(1+α)g(2(k−1)m)µ(B(x, t1/m))α‖f‖LipA(α,χ)

≤ Cµ(B(x, t1/m))α‖f‖LipA(α,χ).

Thus, Proposition 2.3 is proved. �

We next show that the average value AtB
f in Definition 2.1 of LipA(α, χ)

can be replaced by other value fB that satisfies appropriate estimates.

Definition 2.2. Suppose that for a given f ∈M there exists a constant
C and a collection of functions {fB(x)}B (that is, for each ball B, there exists
a function fB(x)) such that

(2.7) sup
B

1
µ(B)1+α

∫
B

|f(x)−AtB
f(x)| dµ(x) < ∞,

(2.8)
∣∣fB2(x)− fB1(x)

∣∣ ≤ C

(
rB2

rB1

)nα

µ(B(x, rB1))
α

for any two balls B1 = B(x, rB1) ⊂ B2 = B(x, rB2), and for almost all x ∈ χ,

(2.9)
∣∣fB(x)−AtB

fB(x)
∣∣ ≤ Cµ(B(x, rB))α,
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where tB = rm
B . We define

‖f‖
L̃ipA

= inf{C : C satisfies (2.7), (2.8) and (2.9)},

where the infimum is taken over all constants C and the sets of functions
{fB(x)} that satisfy (2.7), (2.8) and (2.9).

We have the following equivalence of norms.

Proposition 2.4. The norms ‖‖LipA(α,χ) and ‖‖
L̃ipA(α,χ)

are equivalent.

Proof. Let f ∈ M. To see that ‖f‖
L̃ipA(α,χ)

≤ C‖f‖LipA(α,χ), we set
fB(x) = AtB

f(x) for each ball B. Applying Proposition 2.2, the estimates
(2.5), (2.7) and (2.8) hold with the constant C = C1‖f‖LipA(α,χ).

It remains to prove that, for any fixed ball B centered at x0 and the radius
rB ,

sup
B

1
µ(B)1+α

∫
B

|f(x)−AtB
f(x)| dµ(x) ≤ C‖f‖

L̃ipA(α,χ)
,

where tB = rm
B . For any x ∈ B, by (2.8) we have

∣∣AtB
(f − fB)(x)

∣∣
≤ 1

µ(B(x, t
1/m
B ))

∫
χ

g

(
dm(x, y)

tB

)
|f(y)− fB(y)| dµ(y)

≤ C

∞∑
k=0

1
µ(B)

∫
2kB\2k−1B

g

(
dm(x, y)

tB

)
|f(y)− fB(y)| dµ(y)

≤ C

∞∑
k=0

2kn(1+α)g(2(k−2)m)
µ(B)α

µ(2kB)1+α

∫
2kB

|f(y)− f2kB(y)| dµ(y)

+ C

∞∑
k=0

2kng(2(k−2)m) sup
y∈2kB

∣∣∣fB(y)− f2kB(y)
∣∣∣

≤ C

∞∑
k=0

2kn(1+α)g(2(k−2)m)µ(B)α‖f‖LipA(α,χ)

+ C

∞∑
k=0

2kn+(n+N)αg(2(k−2)m)µ(B)α‖f‖LipA(α,χ)

≤ Cµ(B)α‖f‖LipA(α,χ).
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From (2.7), (2.9), and the above inequality we obtain

1
µ(B)1+α

∫
B

|f(x)−AtB
f(x)| dµ(x)

≤ 1
µ(B)1+α

∫
B

|f(x)− fB(x)| dµ(x)

+
1

µ(B)1+α

∫
B

|fB(x)−AtB
fB(x)| dµ(x)

+
1

µ(B)1+α

∫
B

|AtB
(f −AtB

f)(x)| dµ(x)

≤ C‖f‖LipA(α,χ).

Thus, the proof of Proposition 2.4 is complete. �

3. A variant of the John-Nirenberg inequality on LipA(α, χ)

We continue to assume that the operators {At}t>0 satisfy properties (a) and
(b) in Section 2. In this section, we will prove a variant of the John-Nirenberg
inequality for the space LipA(α, χ) associated with the semigroup {At}t>0 by
using Proposition 2.2 and adapting the arguments of pages 1398–1400 in [7].

Theorem 3.1. If f ∈ LipA(α, χ), there exists positive constant c1 and c2

such that for every ball B and every λ > 0, we have

(3.1) µ{x ∈ B : |f(x)−AtB
f(x)| > λ}

≤ c1µ(B) exp
{
− c2λ

‖f‖LipA(α,χ)µ(B)α

}
,

where tB = rm
B .

Proof. In order to prove (3.1), it is enough to consider the case ‖f‖LipA(α,χ)

> 0. We may assume that ‖f‖LipA(α,χ) = 1 because inequality (3.1) does not
change if we replace f by Cf , where C is a constant. We need to prove that
for a fixed B ⊂ χ,

(3.2) µ{x ∈ B : |f(x)−AtB
f(x)| > λ} ≤ c1µ(B) exp

{
− c2λ

µ(B)α

}
,

where tB = rm
B .

Denote by B = B(x0, rB) a ball centered at x0 and of radius rB . We fix
the ball B in χ and set f0 = (f − AtB

f)χ10C4
1B , where C1 is the constant

appearing in the definition of a quasi-metric d in Section 2. By Proposition
2.2 we have

‖f0‖L1(χ) ≤
∫

10C4
1B

|f(x)−AtB
f(x)| dµ(x) ≤ Cµ(B)1+α.
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Denote by M the Hardy-Littlewood maximal operator. Take β > 1 and define
two sets F and Ω as follows:

F = {x : M(f0) ≤ βµ(B)α} and Ω = F c = {x : M(f0) > βµ(B)α}.

By Theorem 1.3 of Chapter III in [3] there exists a collection of balls B1,1, B1,2,
. . . , B1,i, . . . , satisfying;

(i)
⋃

i B1,i = Ω.
(ii) Each point of Ω is contained in at most a fine number L of the balls

B1,i.
(iii) There exists c > 1 such that cB1,i

⋂
F 6= ∅ for each i.

Property (i) implies that for any x ∈ B \ (∪iB1,i),

|f(x)−AtB
f(x)| = |f0(x)|χF (x) ≤ M(f0)(x)χF (x) ≤ βµ(B)α.

Since the Hardy-Littlewood maximal operator is of weak type (1,1), it follows
from (i) and (ii) that∑

i

µ(B1,i) ≤ Lµ(Ω) ≤ C

βµ(B)α
‖f0‖1 ≤

c3

β
µ(B)

for some c3 > 0.
For any B1,i

⋂
B 6= ∅ we denote by B1,i = B(xB1,i

, rB1,i
) a ball centered

at xB1,i and of radius rB1,i . Then we have

µ(B) ≤ C

(
rB

rB1,i

)n

µ(B(x0, rB1,i)) ≤
c4

β

(
rB

rB1,i

)n+N

µ(B)

for some c4 > 0 and n and N as above.
We choose β such that β > min{c4(10C1)n+N , c2

3}. Obviously, rB >
10C1rB1,i . This implies that for any B1,i

⋂
B 6= ∅ we have B1,i ⊂ 2C1B.

We now prove that for any B1,i

⋂
B 6= ∅ there exists a constant c5 such that

(3.3) |AtB1,i
f(x)−AtB

f(x)| ≤ c5βµ(B)α for all x ∈ B1,i.

Using property (b) of the semigroup {At}t>0, we write

AtB1,i
f(x)−AtB

f(x) = AtB1,i
(f −AtB

f)(x) + (AtB1,i
+tB

f(x)−AtB
f(x)).

Because tB1,i + tB and tB have comparable sizes, applying Proposition 2.2 we
obtain

|AtB1,i
+tB

f(x)−AtB
f(x)| ≤ Cµ(B(x, rB))α ≤ Cβµ(B(x0, rB))α for x ∈ B1,i.

Hence, in order to prove (3.3), we need only to show that

(3.4) |AtB1,i
(f −AtB

f)(x)| ≤ Cµ(B(x0, rB))α for all x ∈ B1,i.

Let qi be minimal so that 2C2
1B ⊂ 2qi+1B1,i and 2C2

1B
⋂

(2qi+1B1,i)c 6= ∅.
For any z ∈ 2qi+1B1,i we have d(x0, z) ≤ 10C4

1rB and 2qi+1B1,i ⊂ 10C4
1B.



638 LIN TANG

Therefore

|AtB1,i
(f −AtB

f)(x)|

≤ C
1

µ(B1,i)

∫
χ

g

(
dm(x, y)

tB1,i

)
|f(y)−AtB

f(y)| dµ(y)

≤ C
1

µ(B1,i)

∫
χ

g

(
dm(x, y)

tB1,i

)
|f(y)−AtB

f(y)| dµ(y)

≤ C

qi+1∑
k=1

1
µ(B1,i)

∫
2kB1,i\2k−1B1,i

g

(
dm(x, y)

tB1,i

)
× |f(y)−AtB

f(y)| dµ(y)

+ C
1

µ(B1,i)

∫
χ\2qi+1B1,i

g

(
dm(x, y)

tB1,i

)
× |f(y)−AtB

f(y)| dµ(y)
= I+ II .

It follows immediately from property (iii) of the balls B1,i that there is a
positive constant C independent of k such that

1
µ(2kB1,i)

∫
2kB1,i

|f0(x)| dµ(x) ≤ Cβµ(B)α.

Hence, for k = 0, 1, 2, . . . , qi + 1 we have
1

µ(2kB1,i)

∫
2kB1,i

|f(x)−AtB
f(x)| dµ(x)(3.5)

=
1

µ(2kB1,i)

∫
2kB1,i

|f0(x)| dµ(x) ≤ Cβµ(B)α,

since 2qi+1B1,i ⊂ 10C4
1B. For any x ∈ B1,i and y ∈ 2kB1,i \ 2k−1B1,i, k =

[log2 C1] + 2, . . . there exists a constant c6 > 0 such that d(y, x) ≥ c62krB1,i .
(Here [log2 C1] denotes the integer part of log2 C1.) Hence, from (3.5) and
(2.4) we get

I ≤ C

[log2 C1]+1∑
k=0

2kng(0)
1

µ(2kB1,i)

∫
2kB1,i

|f(x)−AtB
f(x)| dµ(x)

+
qi+1∑

k=[log2 C1]+2

2kng(cm
6 2km)

1
µ(2kB1,i)

∫
2kB1,i

|f(x)−AtB
f(x)| dµ(x)

≤ Cβµ(B)α

[log2 C1]+1∑
k=0

2kng(0) + Cβµ(B)α

qi+1∑
k=[log2 C1]+2

2kng(cm
6 2km)

≤ Cβµ(B)α.
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To estimate II, we let pi be an integer such that 2pirB1,i ≤ rB < 2pi+1rB1,i .
Set 2−1B1,i = ∅. We then have µ(B(x0, rB1,i

)) ≤ C2piNµ(B1,i). For any
x ∈ B1,i and y ∈ 2kB1,i \ 2k−1B1,i, k = [2 log2 C1] + 2, . . . there exists a
constant c7 > 0 such that d(y, x) ≥ c72k+pirB1,i . Thus,

II ≤ C

∞∑
k=[2 log2 C1]+1

1
µ(B1,i)

∫
2kB1,i\2k−1B1,i

g

(
dm(x, y)

tB1,i

)
× |f(y)−AtB

f(y)| dµ(y)

≤ C

∞∑
k=[2 log2 C1]+1

2piN2(k+pi)ng(cm
7 2(k+pi)m)

× 1
µ(2k+1B)

∫
2k+1B

|f(x)−AtB
f(x)| dµ(x)

≤ C

∞∑
k=[2 log2 C1]+1

2(k+pi)(n+N+(n+N)α)g(cm
7 2(k+pi)m)‖f‖LipA(α,χ)

≤ Cµ(B)α ≤ Cβµ(B)α.

Combining the above estimates of I and II, we obtain (3.4). Estimate (3.3)
then follows.

On each B1,i, we again use the decomposition in Theorem 1.3 of Chapter
III in [2] of the function

f1,i(x) = (f −AB1,if)(x)χ10C4
1B1,i

(x)

with same value βµ(B)α. We then obtain a collection of balls {B2,m} for any
x ∈ B1,i \ (

⋃
m B2,m) such that |f(x)−AtB1,i

f(x)| ≤ βµ(B)α and∑
m

µ(B2,m) ≤ c3

βµ(B)α
µ(B1,i)1+α ≤ c3

β
µ(B1,i).

Also, for any B2,m

⋂
B1,i 6= ∅ we have

|AtB1,i
f(x)−AtB2,m

f(x)| ≤ c5βµ(B)α for all x ∈ B2,m.

Now we combine all families {B2,m} corresponding to different B1,i’s and still
call the resulting family {B2,m}. Then we have

|f(x)−AtB
f(x)| ≤ |f(x)−AtB1,i

f(x)|+ |AtB
f(x)−AtB1,i

f(x)| ≤ 2c5βµ(B)α

for x ∈ B \ (
⋃

m B2,m), and so

∑
m

µ(B2,m) ≤
(

c3

β

)2

µ(B).
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We then obtain for each natural number K a family of balls {Bk,m} such that
outside of their union we have

|f(x)−AtB
f(x)| ≤ Kc5βµ(B)α, x ∈ B \

(⋃
m

BK,m

)
and ∑

m

µ(BK,m) ≤
(

c3

β

)K

µ(B).

If Kc5βµ(B)α ≤ λ < (K +1)c5βµ(B)α with K = 1, 2, . . . , using the condition
β > c2

3, we then obtain

µ{x ∈ B : |f(x)−AtB
f(x)| > λ} ≤

∑
m

µ(BK,m) ≤
(

c3

β

)K

µ(B)

≤ e−(K log2)/2µ(B)

≤
√

βe−
λ log β
4c5β µ(B).

On the other hand, if λ < c5βµ(B)α, we have

µ{x ∈ B : |f(x)−AtB
f(x)| > λ} ≤ µ(B) ≤ e

1− λ
c5βµ(B)α µ(B).

Thus, we obtain (3.2) by choosing

c1 = max(e,
√

β) and c2 =
min{(log β)/4, 1}

c5β
.

Thus, Theorem 3.1 is proved. �

As a consequence of Theorem 3.1, we obtain the following theorem, which
is equivalent to Theorem 3.1.

Theorem 3.2. Suppose that f is in LipA(α, χ). There exist positive con-
stants λ and C such that

sup
B

1
µ(B)

∫
B

exp
{

λ

‖f‖LipA(α,χ)µ(B)α
|f(x)−AtB

f(x)|
}

dµ(x) ≤ C,

where tB = rm
B .

Proof. We choose λ = c2/2, where c2 is the constant in Theorem 3.1. We
then have
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B

exp
{

λ

‖f‖LipA(α,χ)µ(B)α
|f(x)−AtB

f(x)|
}

dµ(x)

=
∫ ∞

0

µ

{
x ∈ B : exp

{
λ

‖f‖LipA(α,χ)µ(B)α
|f(x)−AtB

f(x)|
}

> t

}
dt

≤ µ(B)

+
∫ ∞

1

µ

{
x ∈ B : |f(x)−AtB

f(x)| >
log t‖f‖LipA(α,χ)µ(B)α

λ

}
dt

≤ µ(B) + c1µ(B)
∫ ∞

1

exp
{
−c2 log t

λ

}
dt

≤ µ(B) + c1µ(B)
∫ ∞

1

t−c2/λ dt

≤ Cµ(B).

Thus, Theorem 3.2 is proved. �

Definition 3.1. Given p ∈ [1,∞), we now define the space Lipp
A(α, χ) as

follows: f ∈M is in Lipp
A(α, χ) if there exists some constant C such that for

any ball B,

(3.6) sup
B

1
µ(B)α

(
1

µ(B)

∫
B

|f(x)−AtB
f(x)|p

)1/p

µ(x) < ∞,

where tB = rm
B and rB is the radius of the ball.

The smallest bound C for which (3.6) is satisfied is then taken to be the
norm of f in this space and is denoted by ‖f‖Lipp

A(α,χ).

We have the following result.

Theorem 3.3. For 1 ≤ p < ∞ the spaces ‖f‖Lipp
A(α,χ) coincide, and the

norms ‖ · ‖Lipp
A

are equivalent for different values of p.

Proof. For any f ∈ M, by Hölder’s inequality we have ‖f‖LipA(α,χ) ≤
C‖f‖Lipp

A(α,χ). To obtain the converse inequality, we apply Theorem 3.1. If
f ∈ LipA(α, χ), then∫

B

|f(x)−AtB
f(x)|p dµ(x)

= p

∫ ∞

0

λp−1µ{x ∈ B : |f(x)−AtB
f(x)| > λ} dλ

≤ Cp

∫ ∞

0

λp−1 exp
{
− c2λ

‖f‖LipA(α,χ)µ(B)α

}
dλµ(B)

≤ Cp‖f‖p
LipA(α,χ)µ(B)pαµ(B).

Hence ‖f‖Lipp
A(α,χ) ≤ Cp‖f‖LipA(α,χ). �
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4. Applications

In this section, we consider the LipA(α, χ)-boundedness (α > 0) of a frac-
tional integral that is similar to the singular integral introduced in [5]; see
also [8]. The fractional integral is defined in the following way:

Iβf(x) =
∫

χ

k(x, y)f(y) dµ(y) for 0 < β < 1,

if the kernel k(x, y) satisfies the following two conditions:
(a) There exists a positive constant C1 such that

|k(x, y)| ≤ C1µ(x, d(x, y))β−1 for all x, y ∈ χ;

(b) There exists a generalized approximation to the identity {At}t>0 satis-
fying (2.3) and (2.4) such that the operator (Iβ−AtIβ) has associated
kernels kt(x, y) and

|kt(x, y)| ≤ C2
1

µ(B(x, d(x, y)))1−β

tδ/m

dδ(x, y)
, when d(x, y) ≥ C3t

1/m,

for some C2, C3, δ > 0. (In fact, without loss of generality, in what
follows we will assume that C3 = 1.)

It is well known that Iβ is bounded from Lp(χ) to Lq(χ) with 1/q = 1/p− β
and 1 < p < 1/β. See page 91 in [1].

Next we will prove the boundedness of fractional integrals on the space
LipA(α, χ).

Theorem 4.1. Let 0 < β < 1, 1/β ≤ p < ∞, and α = β − 1/p. Assume
that Iβ is an operator satisfying the above conditions (a) and (b) with δ > nα.
Then there exists a constant C such that

‖Iβf‖LipA(α,χ) ≤ C‖f‖Lp(χ)

for all f ∈ L1(χ)
⋂

Lp(χ).

Proof. It suffices to prove that for any ball

1
µ(B)1+α

∫
B

|Iβf(x)−AtB
Iβf(x)| dµ(x) ≤ C‖f‖Lp(χ),

where tB = rm
B .

Let f ∈ L1(χ)
⋂

Lp(χ). Since

AtB
Iβf(x) =

∫
χ

atB
(x, y)Iβf(y) dµ(y)

and the kernels atB
(x, y) of AtB

satisfy (2.3) and (2.4), we have

|AtB
Iβf(x)| ≤ CM(Iβf)(x)
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for all x ∈ χ, where M denotes the Hardy-Littlewood maximal operator; see
[12] and [7]. Let f1 = fχ4C1B and f2 = f − f1. We write

Iβf −AtB
Iβf = (Iβf1 −AtB

Iβf1) + (Iβ −AtB
Iβ)f2.

We then have∫
B

|Iβf(x)−AtIβf(x)| dµ(x)

≤
∫

B

|Iβf1(x)−AtB
Iβf1(x)|+ |(Iβ −AtB

Iβ)f2(x)| dµ(x)

≤ C

∫
B

M(Iβf1)(x) dµ(x) +
∫

B

|(Iβ −AtB
Iβ)f2(x)| dµ(x)

= I+ II .

For I, let 1/q = 1/p1 − β and 1 < p1 < 1/β. Then

I ≤ Cµ(B)1/q′
(∫

χ

Mq(Iβf1)(x) dµ(x)
)1/q

≤ Cµ(B)1/q′
(∫

χ

|Iβf1(x)|q dµ(x)
)1/q

≤ Cµ(B)1/q′
(∫

4C1B

|f(x)|p1 dµ(x)
)1/p1

≤ Cµ(B)1+α‖f‖Lp(χ),

where 1/q + 1/q′ = 1.
For II, using (2.1), condition (b), and Hölder’s inequality, we have

II ≤
∫

B

∫
(4C1B)c

|kt(x, y)||f(y)| dµ(y) dµ(x)

≤ C‖f‖Lp(χ)

∫
B

(∫
(4C1B)c

|kt(x, y)|1/p′ dµ(y)

)1/p′

dµ(x)

≤ C‖f‖Lp(χ)

∫
B

( ∞∑
k=1

rδp′

B

∫
2k−1rB≤d(x,y)<2krB

×µ(B(x, d(x, y))(β−1)p′d(x, y)−δp′ dµ(y)
)1/p′

dµ(x)

≤ Cµ(B)1+α‖f‖Lp(χ)

( ∞∑
k=1

2−kδp′2kn[1+p′(β−1)]

)1/p′

≤ Cµ(B)1+α‖f‖Lp(χ),

since δ > n(β − 1/p) and 1/p + 1/p′ = 1.
Thus, the proof of Theorem 4.1 is complete. �
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