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ARGUMENT OF OUTER FUNCTIONS ON THE REAL LINE

JAVAD MASHREGHI AND MOHAMAD REZA POURYAYEVALI

Abstract. A complete description of the modulus of an outer function
on the real line is well known. Indeed, this characterization is considered
as one of the classical results of the theory of Hardy spaces. However,
a satisfactory characterization of the argument of an outer function on
the real line is not available yet. In this paper, we define some classes
of real functions which can serve as the argument of an outer function.
In particular, for any 0 < p ≤ ∞, an increasing bi-Lipschitz function is
the argument of an outer function in Hp(R).

1. Introduction

Let h ≥ 0, log h ∈ L1
(

dt
1+t2

)
, and let γ be a real constant. Then, the

function

O(z) = ei γ exp
(
i

π

∫ ∞

−∞

(
1

z − t
+

t

1 + t2

)
log h(t) dt

)
,

is an outer function in the upper half plane. If, moreover, h ∈ Lp(dt), 0 <
p ≤ ∞, then O is also in the Hardy space Hp(C+) [1, page 279]. Taking the
limit of both sides of

O(z) = exp
(

1
π

∫ ∞

−∞

y

(x− t)2 + y2
log h(t) dt

)
× exp

(
i

π

∫ ∞

−∞

(
x− t

(x− t)2 + y2
+

t

1 + t2

)
log h(t) dt+ iγ

)
as z non-tangentially tends to x ∈ R, we get

(1.1) O(x) = h(x) exp
(
i l̃og h (x) + iγ

)
for almost all x ∈ R, where

l̃og h (x) =
1
π

∫
R
−

(
1

x− t
+

t

1 + t2

)
log h(t) dt
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is the Hilbert transform of log h [8, page 98], [2, page 192]. In particular, we
have

|O(x) | = h(x)
for almost all x ∈ R. Therefore, the conditions h ≥ 0, log h ∈ L1

(
dt

1+t2

)
and

h ∈ Lp(dt) provide a complete description of the modulus of an outer function
in Hp(R). On the other hand, there is a natural question about the argument
of an outer functions on R:

Open Question. For which measurable functions ψ : R −→ R is there
a nonnegative function h 6≡ 0 such that h eiψ represents an outer function on
the real line?

In other words, which real function ψ can serve as the argument of an outer
function on R? The representation (1.1) immediately implies the following
result.

Theorem 1.1. Let ψ be a real measurable function. Then, ψ is the argu-
ment of an outer function on the real line if and only if there exists a real con-
stant γ, a positive measurable function h : R −→ [0,∞) with log h ∈ L1

(
dt

1+t2

)
,

and a measurable step function S : R −→ 2πZ such that

(1.2) ψ(x) = γ + ˜log h (x) + S(x)

for almost all x ∈ R. Moreover, ψ is the argument of an outer function in
Hp(R), 0 < p ≤ ∞, if and only if h satisfies the extra condition h ∈ Lp(dt).

Even though this theorem provides a necessary and sufficient condition for
ψ to be the argument of an outer function, it is not so useful in practice. To
apply this theorem, we are supposed to find a positive function h so that,
among other things, the Hilbert transform of log h fulfills (1.2). Explicit
evaluation of l̃og h is somewhat difficult [7], and thus there is normally no
clue to ensure that h exists.

A satisfactory answer to the open question is not available and the question
is still considered widely open. However, in this paper, we define explicitly
several classes of real functions which can serve as the argument of outer
functions. We show that a distorted sawtooth function, a mainly increasing
Lipschitz function, and an increasing bi-Lipschitz function are arguments of
outer functions in any Hp spaces. Using Levinson distribution, we give an-
other family of arguments generated by zeros of functions in the Cartwright
class.

2. A representation theorem

Suppose that {dn}n∈Z is a strictly increasing sequence of real numbers with

lim
n→−∞

dn = −∞ and lim
n→∞

dn = ∞.
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Put `n = (dn − dn−1)/2 and cn = (dn + dn−1)/2. Suppose, furthermore,
there are two positive constants ` and L such that

(2.1) 0 < ` ≤ `n ≤ L <∞

for all n ∈ Z. In other words, the intervals (dn, dn+1) get neither too big nor
too small. In more technical terms, the family { (dn, dn+1) }n∈Z is a system
of short intervals, a notion occurring in some theorems of Fourier analysis.

Let g be a real function such that, for each dn,

lim
x→d+n

g(x) = −π

and

lim
x→d−n

g(x) = π.

Moreover, suppose that, for each x1, x2 ∈ (dn, dn+1), we have

(2.2) |g(x2)− g(x1)| ≤ Lipg |x2 − x1|,

where the constant Lipg does not depend on n. Such a function is called
a distorted sawtooth function. If g is linear on each interval, then (2.2) is
automatically fulfilled. In this section, we study the Hilbert transform of
these functions.

This class of functions, and its generalizations, has been studied in [4].
Nevertheless, for the reader’s convenience, we mention a special and reduced
version of the representation theorem about the behavior of the Hilbert trans-
form of distorted sawtooth functions (as defined here).

Let us start with the linear case. Let v(x) = π xχ[−1,1](x), where χ[−1,1] is
the characteristic function of [−1, 1]. Then, by a direct calculation, we have

(2.3) ṽ(x) =
1
π

∫
R
−

(
1

x− t
+

t

1 + t2

)
vu(t)dt = −π

2
+ x log

∣∣∣∣x+ 1
x− 1

∣∣∣∣.
One can easily verify that ṽ satisfies the following properties:

ṽ(x) ≥ −π/2 for |x| < 1,
ṽ(x) > 0 for |x| > 1,
ṽ(x) = O( 1/x2 ) as |x| → ∞.

Let

u(x) =
∞∑

n=−∞
v

(
x− cn
`n

)
.

For each x ∈ R\{dn}n∈Z, at most one of the terms v( (x−cn)/`n ) is non-zero.
The sum u is thus a function with a graph shaped like a sawblade which grows
linearly from −π to π on each (dn−1, dn), and then jumps downward by 2π
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at each dn. The slope of each line is at most π/` and at least π/L. Since u
has a bounded primitive, for almost all x ∈ R, we have

ũ(x) = const+ lim
ε→0,N→∞

1
π

∫
INε

u(t)
x− t

dt,

where INε = (d−N , x − ε) ∪ (x + ε, dN ), and the passages to the limit can
be taken in any order. The constant term is created by

∫
R t/(1 + t2)u(t) dt.

Hence,

ũ(x) = const+ lim
ε→0,N→∞

1
π

∫
INε

u(t)
x− t

dt

= const + lim
ε→0,N→∞

1
π

∫
INε

∑N
n=−N v((t− cn)/`n)

x− t
dt.

If dm−1 < x < dm, the integral on the right is equal, for large N and ε > 0
small enough, to

ũ(x) = const+
1
π

∑
|n|≤N,n 6=m

∫ dn

dn−1

v((t− cn)/`n)
x− t

dt

+
1
π

∫
dm−1<t<dm, |t−x|>ε

v((t− cm)/`m)
x− t

dt.

For n 6= m, the substitution τ = (t− cn)/`n converts the corresponding term
of the summation to

1
π

∫ 1

−1

v(τ)
(x−cn

`n
)− τ

dτ = ṽ

(
x− cn
`n

)
,

and the remaining integral is similarly seen to equal

1
π

∫
|τ |<1, |τ− x−cm

`m
|> ε

`m

v(τ)
(x−cm

`m
)− τ

dτ.

Since v(τ) = 0 for |τ | > 1, this tends to ṽ( (x − cm)/`m ) when ε → 0. We
therefore have

lim
ε→0

∫
INε

u(t)
x− t

dt =
N∑

n=−N
ṽ

(
x− cn
`n

)
,

and finally

ũ(x) = const+
∞∑

n=−∞
ṽ

(
x− cn
`n

)
.

On (cm − `m, cm + `m), ṽ( (x − cm)/`m ) ≥ −π/2. All other terms in the
summation are positive. Thus ũ is also bounded below.
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Let us look at the local behaviour of ũ. Clearly, on R \ {dn}n∈Z, ũ is a C∞
function. Now, fix dn = cn + `n = cn+1 − `n+1. Here, for x ∈ (cn, cn+1), a
neighbourhood of dn, we have, by (2.3),

ṽ

(
x− cn
`n

)
= −π

2
+

(
x− dn + `n

`n

)
log

∣∣∣∣x− dn + 2`n
x− dn

∣∣∣∣
= − log |x− dn|+ vl(x),

and again

ṽ

(
x− cn+1

`n+1

)
= −π

2
+

(
x− dn − `n+1

`n+1

)
log

∣∣∣∣ x− dn
x− dn − 2`n+1

∣∣∣∣
= − log |x− dn|+ vr(x),

where vl and vr are continuous functions on (cn, cn+1). For x ∈ (cn, cn+1)
and m ≥ n+ 2 we also have

0 < ṽ

(
x− cm
`m

)
≤ C

(x−cm

`m
)2
≤ C

( cn+1−cm

`m
)2

=
C(

`n+1+2`n+2+···+2`m−1+`m
`m

)2 ,

and, for large values of m,

1(
`n+1+2`n+2+···+2`m−1+`m

`m

)2 ≤
1(

2(m−n−1)`
`max

)2

− 1

= O

(
1
m2

)
.

Thus
∞∑

m=n+2

ṽ

(
x− cm
`m

)
,

and similarly
n−1∑

m=−∞
ṽ
(x− cm

`m

)
,

are continuous functions on (cn, cn+1). Therefore, for each x ∈ (cn, cn+1),

ũ(x) = −2 log |x− dn|+ w(x),

where w is a continuous function. Hence, for any m ≥ 0, the ratio

(2.4)
e−ũ(x)∏m

k=1(x− djk)2
,

formed using arbitrary distinct djk from among the dn, is a bounded contin-
uous function.
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Now, we consider an arbitrary distorted sawtooth function. By (2.1) and
(2.2), we have

| g(x) | ≤ | g(d−n ) |+ Lipg |x− dn| ≤ π + 2 Lipg L <∞

for each x ∈ (dn−1, dn). Therefore, g is a bounded function. Let u be the
linear sawtooth function constructed with discontinuities at the dn, and let

(2.5) r = g − u,

with r(dn) = 0, n ∈ Z. Then r is a bounded continuous function on R.
Moreover, for x1, x2 ∈ (dn−1, dn), we have

|r(x2)− r(x1)|
|x2 − x1|

≤ |g(x2)− g(x1)|
|x2 − x1|

+
|u(x2)− u(x1)|

|x2 − x1|

≤ Lipg +
|u(dn)− u(dn−1)|

|dn − dn−1|

= Lipg +
2π

|dn − dn−1|
≤ Lipg +

π

`
.

Since r is continuous, this inequality holds for all x1, x2 ∈ [dn−1, dn]. Hence
it holds for all x1, x2 ∈ R, i.e., for all x1, x2 ∈ R,

(2.6) |r(x2)− r(x1)| ≤ Lipr |x2 − x1|,

where

(2.7) Lipr ≤ Lipg +
π

`
.

Since r is of bounded variation on finite intervals, r′(x) exists for almost all
x ∈ R, and

(2.8) |r′(x)| ≤ Lipr .

Lemma 2.1. The Hilbert transform of r grows logarithmically as |x| → ∞,
i.e.,

|r̃(x)| ≤ 1
π

(
4 ‖r‖∞ + 6L Lipr

)
log |x|+O(1) for |x| → ∞.

Proof. Without loss of generality assume that r(0) = 0, since otherwise we
can work with r(x + d0). Since r is Lipschitz, and r(0) = 0, we can replace
t/(1 + t2) by 1/t in the definition of Hilbert transform, i.e.,

(2.9) r̃(x) = const+
1
π

∫
R
−

(
1

x− t
+

1
t

)
r(t) dt.

Let x be a large positive number and suppose that dn < x < dn+1. We esti-
mate the latter integral over three disjoint intervals (−∞, dn−1), (dn−1, dn+2)
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and (dn+2,∞). By (2.1), we have∣∣∣∣ ∫ ∞

dn+2

(
1

x− t
+

1
t

)
r(t) dt

∣∣∣∣ ≤ ∫ ∞

dn+2

(
1

t− x
− 1
t

)
‖r‖∞ dt

≤ ‖r‖∞
∫ ∞

x+2 `

(
1

t− x
− 1
t

)
dt

= ‖r‖∞ log
∣∣∣∣x+ 2 `

2 `

∣∣∣∣.
Therefore,

(2.10)
∣∣∣∣ ∫ ∞

dn+2

(
1

x− t
+

1
t

)
r(t) dt

∣∣∣∣ ≤ ‖r‖∞ log |x|+O(1).

To estimate the integral in (2.9) over (dn−1, dn+2), we integrate by parts:( ∫ x−ε

dn−1

+
∫ dn+2

x+ε

)(
1

x− t
+

1
t

)
r(t) dt

= log
∣∣∣∣ t

x− t

∣∣∣∣ r(t) ∣∣∣∣x−ε
dn−1

+ log
∣∣∣∣ t

x− t

∣∣∣∣ r(t) ∣∣∣∣dn+2

x+ε

−
( ∫ x−ε

dn−1

+
∫ dn+2

x+ε

)
log

∣∣∣∣ t

x− t

∣∣∣∣ r′(t) dt.
Since r(dn−1) = r(dn+2) = 0,∣∣∣∣ log

∣∣∣∣ t

x− t

∣∣∣∣ r(t) ∣∣∣∣x−ε
t=dn−1

+ log
∣∣∣∣ t

x− t

∣∣∣∣ r(t) ∣∣∣∣dn+2

t=x+ε

∣∣∣∣
=

∣∣∣∣ log
∣∣∣∣x− ε

ε

∣∣∣∣ r(x− ε)− log
∣∣∣∣x+ ε

ε

∣∣∣∣ r(x+ ε)
∣∣∣∣

≤ log
(
x− ε

ε

)
|r(x− ε)− r(x)|

+ log
(
x+ ε

ε

)
|r(x+ ε)− r(x)|

+
∣∣∣∣ log

(
x− ε

ε

)
− log

(
x+ ε

ε

) ∣∣∣∣ |r(x)|
≤ Lipr ε log

(
x− ε

ε

)
+ Lipr ε log

(
x+ ε

ε

)
+

∣∣∣∣ log
(
x− ε

x+ ε

) ∣∣∣∣ ‖r‖∞ −→ 0 as ε→ 0.
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On the other hand, by (2.1) and (2.8), we have∣∣∣∣ ( ∫ x−ε

dn−1

+
∫ dn+2

x+ε

)
log

∣∣∣∣ t

x− t

∣∣∣∣ r′(t) dt ∣∣∣∣ ≤ ∫ dn+2

dn−1

∣∣∣∣ log
∣∣∣∣ t

x− t

∣∣∣∣ ∣∣∣∣ ‖r′‖∞ dt

≤ ‖r′‖∞
∫ dn+2

dn−1

log t dt+ 2 ‖r′‖∞
∫ dn+2−dn−1

0

∣∣ log τ
∣∣ dτ

≤ ‖r′‖∞ (dn+2 − dn−1) log dn+2 + 2 ‖r′‖∞
∫ dn+2−dn−1

0

∣∣ log τ
∣∣ dτ

≤ 6L ‖r′‖∞ log
(
x+ 4L

)
+ 2 ‖r′‖∞

∫ 6L

0

∣∣ log τ
∣∣ dτ

≤ 6L Lipr log
(
x+ 4L

)
+ 2 Lipr

∫ 6L

0

∣∣ log τ
∣∣ dτ.

Therefore,

(2.11)
∣∣∣∣ ∫ dn+2

dn−1

−
(

1
x− t

+
1
t

)
r(t) dt

∣∣∣∣ ≤ 6L Lipr log |x|+O(1).

To estimate the integral in (2.9) over (−∞, dn−1), due to the presence of
the term 1/t, we break this interval to three subintervals (−∞,−1), (−1, 1)
and (1, dn−1). We thus have∣∣∣∣ ∫ −1

−∞

(
1

x− t
+

1
t

)
r(t) dt

∣∣∣∣ ≤ ∫ −1

−∞

(
1

t− x
− 1
t

)
‖r‖∞ dt(2.12)

= ‖r‖∞ log |x|+ o(1),

∣∣∣∣ ∫ 1

−1

(
1

x− t
+

1
t

)
r(t) dt

∣∣∣∣ ≤ ∫ 1

−1

|r(t)|
x− t

dt+
∫ 1

−1

|r(t)|
|t|

dt(2.13)

≤ ‖r‖∞ log
∣∣∣∣x+ 1
x− 1

∣∣∣∣ + 2 Lipr = O(1),

∣∣∣∣ ∫ dn−1

1

(
1

x− t
+

1
t

)
r(t) dt

∣∣∣∣ ≤ ∫ dn−1

1

(
1

x− t
+

1
t

)
‖r‖∞ dt(2.14)

= ‖r‖∞ log
(
dn−1 (x− 1)
x− dn−1

)
≤ ‖r‖∞ log

(
x (x− 1)

2 `

)
= 2 ‖r‖∞ log |x|+O(1).
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Finally, by (2.10), (2.11), (2.12), (2.13) and (2.14),

|r̃(x)| =
∣∣∣∣ 1
π

∫
R
−

(
1

x− t
+

1
t

)
r(t) dt

∣∣∣∣
≤ 1
π

(
4 ‖r‖∞ + 6L Lipr

)
log |x|+O(1),

for |x| large enough. �

The following representation theorem, by itself, is an interesting result.
Moreover, it plays a major role in characterizing some classes of the argu-
ments of outer functions. Further generalizations with applications in model
subspaces are available in [3], [4], and [6].

Theorem 2.2 (Representation Theorem). Let g be a distorted sawtooth
function, and let p > 0. Then, there are a step function S(x) with values all
equal to integral multiples of 2π and also a measurable function m ≥ 0 with
m ∈ L∞(dt) ∩ Lp(dt) and logm ∈ L1

(
dt

1+t2

)
, and a real constant γ, such that

g = γ + l̃ogm+ S.

Proof. Let

αr =
1
π

(
4 ‖r‖∞ + 6L Lipr

)
,

and choose n ∈ N such that n > αr/2 + 1/2p, and choose any n different
points djk from among the {dj}j∈Z. Put

m(x) =
e− g̃(x)∏n

k=1(x− djk)2
.

Write g = u+ r as in (2.5). By (2.4), the function

e−r̃(x) · e−ũ(x)∏n
k=1(x− djk)2

is bounded and continuous on any bounded interval. For large values of |x|,
by (2.4) and Lemma 2.1,

e−ũ(x) · e
−r̃(x)

|x|αr

is bounded. Hence, for large values of |x|,

m(x) ≤ C

|x|2n−αr
.

Therefore, m ∈ Lp(R) ∩ L∞(R), and

logm(x) = −g̃(x)− 2
n∑
k=1

log |x− djk | ∈ L1

(
dt

1 + t2

)
.
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The Hilbert transform of log |t| equals to −π/2 sgn(t). Hence

l̃ogm (x) = −˜̃g(x)− 2
n∑
k=1

(
− π

2
sgn(x− djk)

)

= −nπ + const +g(x) + π

n∑
k=1

(
1 + sgn(x− djk)

)
.

Thus
g = γ + l̃ogm+ S,

where

S(x) = −π
n∑
k=1

(
1 + sgn(x− djk)

)
is a step function with values in 2πZ. �

Let f be a real function defined on R. Then, f is called a mainly increasing
Lipschitz function if f is Lipschitz, i.e.,

| f(x2)− f(x1) | ≤ Lipf |x2 − x1|,

and there is an increasing sequence {dn}n∈Z such that, for each n,

f(dn) = 2π n,

and
sup
n∈Z

(dn+1 − dn) <∞.

In particular, a real function ϕ : R −→ R is an increasing bi-Lipschitz function
if there are c, C > 0 such that

c |x2 − x1| ≤ |ϕ(x2)− ϕ(x1) | ≤ C |x2 − x1|

for every x1, x2 ∈ R, and

lim
x→±∞

ϕ(x) = ±∞.

Then, according to the intermediate value theorem, there is dn, for each n ∈ Z,
such that ϕ(dn) = 2π n. Since ϕ is bi-Lipschitz, we have

2π
C

≤ dn+1 − dn ≤
2π
c
.

Therefore, ϕ is a mainly increasing Lipschitz function.
Let f be any mainly increasing Lipschitz function. Put S1(x) = 2nπ for

x ∈ (dn, dn+1). Then g = f − S1 − π is a distorted sawtooth function.
According to Theorem 2.2, there are m, γ1 and S2 satisfying the required
properties and, moreover, g = γ1 + l̃ogm+ S2. Hence

(2.15) f = π + γ1 + l̃ogm+ (S1 + S2).
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3. A class of arguments of an outer functions

We are now ready to apply our representation theorem to show that a
distorted sawtooth function, a mainly increasing Lipschitz function and, in
particular, an increasing bi-Lipschitz function can serve as the argument of
an outer function.

Theorem 3.1. Let ϕ be a distorted sawtooth function on R, and let p > 0.
Then there exists a function h ≥ 0, h 6≡ 0, such that h ei ϕ is an outer function
in Hp(R) ∩H∞(R).

Proof. According to Theorem 2.2, there are functions m and S and a real
constant γ, where S is a step function with values all equal to integral multiples
of 2π and m ∈ Lp(R) ∩ L∞(R) with logm ∈ L1

(
dt

1+t2

)
, such that

(3.1) ϕ = γ + l̃ogm+ S.

Hence, by Theorem 1.1, ϕ is the argument of an outer function in Hp(R) ∩
H∞(R). �

Similarly, applying Theorem 1.1 and (2.15), gives the following result:

Corollary 3.2. Let ϕ be a mainly increasing Lipschitz function on R,
and let p > 0. Then, there exists a function h ≥ 0, h 6≡ 0, such that h ei ϕ is
an outer function in Hp(R) ∩H∞(R).

Corollary 3.3. Let ϕ be an increasing bi-Lipschitz real function on R,
and let p > 0. Then, there exists a function h ≥ 0, h 6≡ 0, such that h ei ϕ is
an outer function in Hp(R) ∩H∞(R).

As a very particular example, let ψ(x) = x. On the one hand, eix is an
inner function, and on the other hand, Corollary 3.3 provides us an h ≥ 0,
h 6≡ 0, such that h(x) ei x is an outer function. Hence we have a pair of inner
and outer functions having the same argument on the real line.

4. Arguments constructed by Levinson’s distributions

Let {xn}n∈Z be an increasing sequence of real numbers satisfying
lim|n|→∞ |xn| = ∞ (repetition is allowed). The counting function ν{xn}(x)
is defined to be constant between xn−1 and xn, and at each point xn jumps
up by k units, where k is the number of times that xn repeats. The value of
ν{xn}(x) at xn is defined such that ν{xn} is continuous from the right (for our
application, this restriction is not necessary).

For a complex number z = x+ iy, y 6= 0, let

ϕz(s) =
∫ s

0

|y|
|t− z|2

dt

= arctan( (s− x)/y ) + arctan(x/y ).
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Let {zk}k≥1, zk ∈ C, be a Levinson distribution with density σ [5]. Let
{xn}n∈Z be the subsequence of real numbers in {zk}k≥1. We assume that
they are indexed so that lim|n|→∞ |xn| = ∞, and that xn ≤ xm if n ≤ m.
According to Levinson’s theorem

f(z) =
∏
k

(
1− z

zk

)
ez/zk

is an entire function of exponential type so that log |f(t)| ∈ L1
(

dt
1+t2

)
and

lim sup
y→+∞

log |f(iy)|
y

+ lim sup
y→+∞

log |f(−iy)|
y

= 2πσ.

Therefore, according to the Main Theorem in [7],

l̃og |f |(x) = πσx− πν{xn}(x)−
∑
=zk 6=0

ϕzk
(x).

Finally, in the light of Theorem 1.1, we see that, for any measurable step
function S : R −→ 2πZ,

(4.1) ψ(x) = S(x) + πσx− πν{xn}(x)−
∑
=zk 6=0

ϕzk
(x)

is the argument of an outer function.
If we know more about f on the real line, we get more information about

our outer function. For example, if f is in the Paley-Wiener space, then we
know that the outer function given in (4.1) is in H2(R).

If all the points of our sequence are on the real line, then we have somewhat
simpler conditions.

Theorem 4.1. Let {xn}n∈Z be a non-decreasing sequence of real numbers
such that lim|n|→∞ |xn| = ∞. Suppose that

lim
|x|→∞

ν{xn}(x)
x

exists, say equal to σ, and ∑
|xn|≤r, xn 6=0

1
xn

tends to a finite limit as r →∞. Then

ψ(x) = πσx− πν{xn}(x)

is the argument of an outer function.

Considering Z as our sequence, i.e., xn = n, we see that the sawtooth
function ψ(x) = π(x− [x]) is the argument of an outer function.
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