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THE ISOMETRIC EXTENSION OF THE INTO MAPPING
FROM A L∞(Γ)-TYPE SPACE TO SOME BANACH SPACE

GUANG-GUI DING

Abstract. We give some conditions under which an “into” isometric
mapping from the unit sphere of an L∞(Γ)-type space (in particular,
the atomic AM -space) to the unit sphere of some Banach space can be
(real) linearly extended.

1. Introduction

After the extension problem of isometries between unit spheres was posed
by D. Tingley in [8], almost all of papers concerning this problem considered
only “onto”(surjective) mappings between two spheres (see [1], [3]).

In [2], we first considered the isometric extension problem of “into” map-
pings between two unit spheres. In [9], some conditions were given under
which an isometry between unit spheres of “atomic” ALp-spaces (1 < p <
∞, p 6= 2) can be linearly isometrically extended. Moreover, in [5], Z. Hou ob-
tained an affirmative answer for an “into” isometry between the unit spheres
of arbitrary ALp-spaces without any condition. In [4], we considered the iso-
metric extension problem of “onto” mappings between two unit spheres of
`∞-type spaces.

In the present paper, we will obtain some natural and useful conditions
under which an isometry from the unit sphere of an L∞(Γ)-type space into
the unit sphere of some Banach space E can be (real) linearly isometrically
extended. Here, an L∞(Γ)-type space is a normed space of functions on an
index set Γ equipped with the sup norm. For example, the spaces `∞(Γ), c(Γ)
and c0(Γ) (in particular, `∞, c and c0) are all L∞(Γ)-type spaces (or L∞(Γ)
spaces, in brief).

In this paper, all spaces are over the real field.
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2. Some lemmas

We first give a lemma which is similar to Lemma 2.1 in [2].

Lemma 1. Let E be a normed space, V0 be an isometric mapping from
the unit sphere of L∞(Γ) into the unit sphere S(E). If −V0[S(L∞(Γ))] ⊂
V0[S(L∞(Γ))], then

V0(−x) = −V0(x) ∀x ∈ S(L∞(Γ)).

Proof. First, we will show that V0(−eγ) = −V0(eγ) for all γ ∈ Γ. In fact,
for each γ ∈ Γ and γ′ 6= γ (γ′ ∈ Γ), by the hypothesis on V0, we have
V0x = −V0eγ , V0x

′ = −V0eγ′ and V0y
′ = −V0(−eγ′) (where, x, x′ and y′ are

elements in S(L∞(Γ))). From the equalities

‖x− eγ‖ = ‖V0(x)− V0(eγ)‖ = ‖ − 2V0eγ‖ = 2

and (similarly) ‖x′ − eγ′‖ = 2 we immediately get, by the definition of norm
in L∞(Γ), that

(1) x(γ) = −1, x′(γ′) = −1.

Moreover, notice that

‖x− x′‖ = ‖V0x− V0x
′‖ = ‖ − V0eγ + V0eγ′‖ = ‖eγ′ − eγ‖ = 1,

which implies by (1) that

(2) x(γ′) ≤ 0, ∀ γ′ 6= γ, γ′ ∈ Γ.

On the other hand, from

‖y′ + eγ′‖ = ‖y′ − (−eγ′)‖ = ‖V0(y′)− V0(−eγ′)‖ = ‖ − 2V0(−eγ′)‖ = 2

and

‖x− y′‖ = ‖V0x− V0y
′‖ = ‖ − V0eγ + V0(−eγ′)‖ = ‖ − eγ′ − eγ‖ = 1

we get y′(γ′) = 1 and

(3) x(γ′) ≥ 0, ∀γ′ 6= γ, γ′ ∈ Γ.

From (1), (2) and (3) we obtain x = −eγ . Thus we have proved that

(4) V0(−eγ) = −V0(eγ), ∀ γ ∈ Γ.

Now, we complete the proof of the lemma. For each x ∈ L∞(Γ), by the
hypothesis on V0, let V0y = −V0x (where y is some element in L∞(Γ)). From
the equalities (noticing (4))

‖eγ + y‖ = ‖y − (−eγ)‖ = ‖ − V0x− V0(−eγ)‖ = ‖V0eγ − V0x‖ = ‖eγ − x‖

and

‖eγ − y‖ = ‖V0eγ − V0y‖ = ‖V0eγ + V0x‖ = ‖V0x− V0(−eγ)‖ = ‖eγ + x‖
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we get

x(γ) ≤ 0 ⇒ ‖eγ + y‖ = 1 + |x(γ)| ⇒ y(γ) = |x(γ)| = −x(γ)

and

x(γ) > 0 ⇒ ‖eγ − y‖ = 1 + |x(γ)| ⇒ y(γ) = −|x(γ)| = −x(γ), ∀ γ ∈ Γ.

Thus we obtain that y = −x, which completes the proof. �

Lemma 2. Let Y be a normed space, y1, y2, . . . , yn be in the unit sphere
S(Y ). If for every θk = ± 1 (1 ≤ k ≤ n),

(5) ‖θ1y1 + θ2y2 + · · ·+ θmym‖ = 1 (1 ≤ m ≤ n),

then for every λk ∈ R (1 ≤ k ≤ n),

(6)

∥∥∥∥∥
n∑

k=1

λkyk

∥∥∥∥ = max
1≤k≤n

|λk|.

Proof. Without loss of generality, we may assume that λk 6= 0 (1 ≤ k ≤ n)
and |λ1| = max1≤k≤n |λk|.

By the Hahn-Banach theorem, there exists y∗1 in the unit sphere S(Y ∗)
such that

(7) y∗1(y1) = ‖y1‖ = 1, y∗1(yk) = 0 (2 ≤ k ≤ n)

by hypothesis (5). Thus we get

(8)

∥∥∥∥∥
n∑

k=1

λkyk

∥∥∥∥∥ ≥
∣∣∣∣∣y∗1
(

n∑
k=1

λkyk

)∣∣∣∣∣ = |λ1| = max
1≤k≤n

|λk|.

On the other hand, notice that every normed space Y can be embedded
linearly and isometrically into a C(Ω) space with Ω being a compact subset
of the unit ball of Y ∗ (see, for example, Corollary 2.6.22 in [7]). So, we can
consider Y as a linear subspace C(Ω), and we get by (5) that

|y1(t)|+ |y2(t)|+ · · ·+ |yn(t)| ≤ 1, ∀ t ∈ Ω,

and ∣∣∣∣∣
(

n∑
k=1

λkyk

)
(t)
∣∣∣∣ ≤ n∑

k=1

|λkyk(t)| ≤ max
1≤k≤n

|λk|, ∀ t ∈ Ω.

Thus,

(9)

∥∥∥∥∥
n∑

k=1

λkyk

∥∥∥∥∥ ≤ max
1≤k≤n

|λk|.

The result follows from (8) and (9). �
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Lemma 3. Let E be a normed space, V0 be an isometric mapping from the
unit sphere S(L∞(Γ)) into the unit sphere S(E). Let Γ1,Γ2, . . . ,Γn be mutu-
ally disjoint subsets of the index set Γ. Suppose that the following conditions
hold:

(i) ‖
∑n

k=1 θkV0(χΓk
)‖ = 1 for every θk = ± 1 (1 ≤ k ≤ n). (Here, χΓk

is
the characteristic function of Γk, 1 ≤ k ≤ n.)

(ii) If V0x =
∑n

k=1 λkV0(χΓk
), then x =

∑n
k=1 λ′kχΓk

+x0 with suppx0 ⊂
(
⋃n

k=1 Γk)c.
(iii) −V0[S(L∞(Γ))] ⊂ V0[S(L∞(Γ))].
Then we have that λ′k = λk (1 ≤ k ≤ n) and x0 is zero element.

Proof. Using hypothesis (i) and Lemma 2, we get, for all λ1, λ2, . . . , λn in
R,

(10)

∥∥∥∥∥
n∑

k=1

λkV0(χΓk
)

∥∥∥∥∥ = max
1≤k≤n

|λk|.

Without loss of generality, we may assume that λ′1 6= 0 in the hypothesis (ii).
By (10), we have∥∥∥∥V0x +

λ′1
|λ′1|

V0(χΓ1)
∥∥∥∥ =

∥∥∥∥∥
n∑

k=2

λkV0(χΓk
) +

(
λ1 +

λ′1
|λ′1|

)
V0(χΓ1)

∥∥∥∥∥(11)

= max
2≤k≤n

(
|λk|, |λ1 +

λ′1
|λ′1|

|
)

= max
2≤k≤n

(
|λk|, 1 +

λ′1λ1

|λ′1|

)
.

Using the assumption on V0 and Lemma 1, we can continue the above equal-
ities by

=
∥∥∥∥x +

λ′1
|λ′1|

χΓ1

∥∥∥∥ =

∥∥∥∥∥
n∑

k=1

λ′kχΓk
+ x0 +

λ′1
|λ′1|

χΓ1

∥∥∥∥∥(12)

= max
2≤k≤n

(
|λ′k|, |λ′1 +

λ′1
|λ′1|

|, ‖x0‖
)

= 1 + |λ′1| (> 1).

By (11) and (12), since |λk| ≤ 1 (2 ≤ k ≤ n), we have

1 +
λ′1λ1

|λ′1|
= 1 + |λ′1|.

Hence we have λ′1 = λ1. Similarly, we obtain λ′k = λk (2 ≤ k ≤ n).
Finally, notice that for each Γ0 ⊂ (

⋃n
k=1 Γk)c, and suppose that λ′0 6= 0 and

x0 = λ′0χΓ0 + x00 with supp x00 ⊂ (
⋃n

k=0 Γk)c. Then, similarly to the above



ISOMETRIC EXTENSION OF THE INTO MAPPING 449

argument, from the contradiction

(13)
∥∥∥∥x +

λ′0
|λ′0|

χΓ0

∥∥∥∥ = 1 + |λ′0| > 1 =
∥∥∥∥V0x +

λ′0
|λ′0|

V0(χΓ0)
∥∥∥∥ ,

we obtain x0 = θ. This completes this proof. �

3. Main results

Theorem 1. Let E be a Banach space, V0 be an isometric mapping from
the unit sphere S(L∞(Γ)) into the unit sphere S(E). Then V0 can be extended
to a linear isometry defined on the whole space L∞(Γ) if and only if the
following conditions hold:

(i) For every x1 and x2 in S(L∞(Γ)), λ1 and λ2 in R,

‖λ1V0x1 + λ2V0x2‖ = 1 =⇒ λ1V0x1 + λ2V0x2 ∈ V0[S(L∞(Γ))].

(ii) If V0(x) =
∑n

k=1 λkV0(χΓk
), then x =

∑n
k=1 λ′kχΓk

+ x0. Here
Γ1,Γ2, . . . ,Γn are mutually disjoint subsets of Γ and suppx0 ⊂
(
⋃n

k=1 Γk)c.

Proof. If V0 can be extended to a linear isometry on the whole L∞(Γ), it
is clear that the conditions (i) and (ii) hold.

Conversely, assume that both (i) and (ii) hold. Firstly, by the equality
n∑

k=1

λkV0xk =
∥∥∥∥n−1∑

k=1

λkV0xk

∥∥∥∥∥
n−1∑
k=1

λk∥∥∑n−1
k=1 λkV0xk

∥∥V0xk + λnV0xn,

we get by induction that∥∥∥∥∥
n∑

k=1

λkV0xk

∥∥∥∥∥ = 1 =⇒
n∑

k=1

λkV0xk ∈ V0[S(L∞(Γ))],(14)

∀xk ∈ S(L∞(Γ)), λk ∈ R (1 ≤ k ≤ n), n ∈ N.

Secondly, we shall show that for each n ∈ N, all mutually disjoint charac-
teristic functions χΓ1 , χΓ2 , . . . , χΓn and θk = ± 1 (1 ≤ k ≤ n),

(15) ‖θ1V0(χΓ1) + θ2V0(χΓ2) + · · ·+ θnV0(χΓn)‖ = 1.

Indeed, we will prove (15) by induction. For n = 2, this is easy to verify using
the fact that V0 is isometric and Lemma 1. Now assume that (15) holds for
n = m− 1. By (14), there exists x̂ ∈ S(L∞(Γ)) such that

(16) V0x̂ =
m−1∑
k=1

θkV0(χΓk
).

Now let n = m, and suppose that (15) does not hold. Without loss of gener-
ality, let ‖

∑m
k=1 θkV0(χΓk

)‖ > 1. Then it follows by Lemma 1 that

‖x̂ + θmχΓm
‖ = ‖V0x̂ + θmV0(χΓm

)‖ > 1.



450 GUANG-GUI DING

Hence there is an index γm ∈ Γm such that

(17) |x̂(γm) + θm| > 1.

Moreover, by the induction assumption and (14), there exists x̃ ∈ S(L∞(Γ))
such that

(18) V0x̃ = −
m−1∑
k=2

θkV0(χΓk
) + θmV0(χΓk

).

By Lemma 3, (18) implies

(19) x̃ = −
m−1∑
k=2

θkχΓk
+ θmχΓk

.

Thus, by Lemma 1, (17) and (19) we have

(20) ‖V0x̂ + V0x̃‖ = ‖x̂ + x̃‖ ≥ |x̂(γm) + x̃(γm)| = |x̂(γm) + θm| > 1,

while, by (16) and (18), we also have

(21) ‖V0x̂ + V0x̃‖ = ‖θ1V0(χΓ1) + θmV0(χΓm)‖ = ‖θ1χΓ1 + θmχΓm‖ = 1.

The contradiction between (20) and (21) proves (15).
Now, using Lemma 2 and Lemma 3, we obtain that for each n ∈ N, all mu-

tually disjoint subsets Γ1,Γ2, . . . ,Γn of the index set Γ, and any λ0
1, λ

0
2, . . . , λ

0
n

in R with max1≤k≤n |λ0
k| = 1,

V0

(
n∑

k=1

λ0
kχΓk

)
=

n∑
k=1

λ0
kV0(χΓk

).

That is, V0 is linear on the subset which consists of all simple functions of the
unit sphere S(L∞(Γ)).

Finally, we similarly define a mapping on the subspace X consisting of all
simple functions of L∞(Γ) as follows:

V1x = V1

(
n∑

k=1

λkχΓk

)
=

n∑
k=1

λkV0(χΓk
), ∀x =

n∑
k=1

λkχΓk
∈ X (⊂ L∞(Γ)).

By Lemma 2, we have

‖V1x‖ = max
1≤k≤n

|λk| = ‖x‖, ∀x =
n∑

k=1

λkχΓk
∈ X.

That is, V1 is a linear isometry on X. Notice that the subspace X is dense in
L∞(Γ), V1 is isometric on X, and the space E is complete. Hence V1 has a
unique linearly isometric extension V to the whole space L∞(Γ). Then it is
easy to see that V is an extension of V0. This completes the proof. �

In particular, using the fact that the space c0 has a Schauder basis, we get
the following theorem:
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Theorem 2. Let E be a Banach space, V0 be an isometric mapping from
the unit sphere S(c0) into the unit sphere S(E). Then V0 can be extended to
a linear isometry defined on the whole space c0 if and only if the following
condition holds:

(∗) For all x1 and x2 in S(c0), λ1 and λ2 in R,

‖λ1V0x1 + λ2V0x2‖ = 1 =⇒ λ1V0x1 + λ2V0x2 ∈ V0[S(c0)].

Proof. The proof is similar to the proof of Theorem 1. We only notice that
the simple functions

∑n
k=1 λkek, λk ∈ R, n ∈ N, are dense in the space c0,

and if V0x =
∑n

k=1 λkV0ek, then x must be of the form

x =
n∑

k=1

λ′kek + x0

with supp x0 ⊂ ({k| 1 ≤ k ≤ n})c. Then it is easy to prove the result. �

From the above theorems, we immediately get the following corollaries.

Corollary 1. Let E be a Banach space, V0 be a surjective isometric
mapping from the unit sphere S(L∞(Γ)) onto the unit sphere S(E). Then V0

can be extended to a linear isometry defined on the whole space L∞(Γ) if and
only if the following condition holds:

(∗∗) If V0(x) =
∑n

k=1 λkV0(χΓk
), then x =

∑n
k=1 λ′kχΓk

+ x0. Here
Γ1,Γ2, . . . ,Γn are mutually disjoint subsets of Γ, and suppx0 ⊂
(
⋃n

k=1 Γk)c.

Corollary 2. Let E be a Banach space, V0 be a surjective isometric
mapping from the unit sphere S(c0) onto the unit sphere S(E). Then V0 can
be extended to a linear isometry defined on the whole space c0.

Note that Corollary 2 generalizes the result of [4] when the `∞(Γ)-type
space is c0.

Recall that, by Kakutani’s representation theorem (see Theorem 1.b.6 of
[6]), an AM -space(abstract M -space) is isometric and lattice isomorphic to
a sublattice of C(Ω) space for some compact Hausdorff space Ω. Hence we
immediately have the following conclusion:

Corollary 3. Corollary 1 still holds if we replace the space L∞(Γ) by
an atomic AM -space.

From Theorem 1 we can also get the main result in [4]:

Corollary 4. Let V0 be a surjective isometric mapping from the unit
sphere S(L∞(Γ)) onto itself. Then V0 can be extended to a linear isometry
defined on the whole space L∞(Γ).
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Proof. We only need to check condition (ii) in Theorem 1. Indeed, if∑n
k=1 λkV0(χΓk

) is in the unit sphere S(L∞(Γ)), (where Γ1,Γ2, . . . ,Γn are
mutually disjoint subsets of the index set Γ), then there exists x in the unit
sphere S(L∞(Γ)) such that V0x =

∑n
k=1 λkV0(χΓk

) because V0 is a surjective
mapping.

Using the same technique as in the proof of Lemma 3, for each x = x(γ),
if γ(1) ∈ Γ1, we can obtain, similar to (11) and (12) above, that∥∥∥∥V0x +

λ1

|λ1|
V0(eγ(1))

∥∥∥∥ = 1 + |λ1| =
∥∥∥∥x +

λ1

|λ1|
eγ(1)

∥∥∥∥(22)

= sup
γ 6=γ(1)

(
|x(γ)|, |x(γ(1)) +

λ1

|λ1|
|
)

= sup
γ 6=γ(1)

(
|x(γ)|, |1 +

x(γ(1))λ1

|λ1|

)
,

which implies that x(γ(1)) = λ1. Similarly, we obtain x(γ(k)) = λk for each
γ(k) ∈ Γk (2 ≤ k ≤ n).

Thus, using the equality (13) near the end in the proof of Lemma 3, we
immediately obtain that x =

∑n
k=1 λkχΓk

. This completes this proof. �
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