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AN IRREGULARITY IN THE CLASS OF WEAK HILBERT
SPACES

RAZVAN ANISCA

Abstract. In the regular class of weak Hilbert spaces we exhibit a
complex space which is not isomorphic to its complex conjugate. Thus
there exists a real weak Hilbert space with at least two non-isomorphic
complex structures.

1. Introduction and preliminaries

Using random techniques, several infinite dimensional Banach spaces with
some interesting irregularities were constructed in the late 80’s:

(1) a real Banach space with at least two non-isomorphic complex struc-
tures (J. Bourgain [B], with a variant by S. Szarek [S1]),

(2) a real Banach space which does not admit a complex structure (S.
Szarek [S1]),

(3) a Banach space with a finite dimensional decomposition which does
not have a basis (S. Szarek [S2]).

P. Mankiewicz and N. Tomczak-Jaegermann [MT-J] showed later, also by
random methods, that these phenomena can be found in a general situation,
namely as infinite dimensional quotients of subspaces of l2(X), for every non-
Hilbertian X. (In [MT-J] condition (3) is replaced by

(3’) a Banach space without a basis.
Nevertheless, in many cases the infinite dimensional quotients obtained satisfy
also (3).) In addition, they produced some other results which provide strong
evidence towards the following conjecture.

Conjecture ([MT-J]). If X is not a weak Hilbert space, there is an infi-
nite dimensional quotient of a subspace of X which satisfies (3’) (respectively
(1), respectively (2)).
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If we now pass to the regular class of weak Hilbert spaces (which were
introduced by G. Pisier in [P1]; see also [P2]), it is interesting to see if such
irregularities still survive in this context. In fact, an important open problem
in the area asks whether or not there exists a weak Hilbert space without a
basis ([C], [P2]).

In this paper, we will show that the phenomenon (1) mentioned above can
be observed in the class of weak Hilbert spaces. Namely, we will exhibit a
complex weak Hilbert space X not isomorphic to its complex conjugate X
(which is the Banach space with the same elements and norm as X, the same
addition of vectors, while the multiplication by scalars is given by λ�x = λ x,
for λ ∈ C and x ∈ X). In particular, this is a stronger irregularity than
being without an unconditional basis (such examples were obtained by R.
Komorowski [Ko], R. Komorowski and N. Tomczak-Jaegermann [KoT-J]).

For the actual construction, the random methods are no longer suitable in
the context of weak Hilbert spaces. We will employ some intuition from our
previous work [A] and from [K].

A weak Hilbert spaces X is characterized by the property that every finite
dimensional subspace contains a further subspace of fixed proportional dimen-
sion which is uniformly Euclidean and uniformly complemented: there exist
constants C > 0 and 0 < δ < 1 such that for every finite dimensional E ⊂ X
there is F ⊂ E, with dim F ≥ δ dim E, and there is a projection P : X → F
satisfying d(F, `dim F

2 ) ≤ C and ‖P‖ ≤ C (here d stands for the Banach-Mazur
distance). The original definition is different and the characterization men-
tioned above is chosen out of many equivalent properties proved by Pisier.
Weak Hilbert spaces are stable under passing to subspaces, dual spaces and
quotient spaces. The canonical example of a weak Hilbert space which is not
a Hilbert space is the 2-convexification of Tsirelson’s space (most precisely,
of the space T introduced by T. Figiel and W. B. Johnson in [FJ]), whose
construction and properties are presented bellow.

Throughout this paper we write E ≤ F (respectively E < F ) when E
and F are subsets of the natural numbers and max E ≤ minF (respectively,
max E < minF ). If n is a positive integer, we write n ≤ F if {n} ≤ E. Let
c00 be the space of all sequences of complex numbers which are eventually
zero and let {tn}∞n=1 be the unit vector basis of c00. For x =

∑∞
n=1 antn ∈ c00

and a subset E of the positive integers, we put Ex =
∑

n∈E antn.
For 0 < θ < 1, Tθ is the completion of c00 with respect to the norm

‖ · ‖ := limm ‖ · ‖m, where {‖ · ‖m}m is the monotone sequence of norms on
c00 given by (for x =

∑
n antn ∈ c00)

‖x‖0 = max
n

|an|,

‖x‖m+1 = max
{
‖x‖m, θ max

k∑
j=1

‖Ejx‖m

}
(for m ≥ 0),
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where the inner maximum is taken over all choices k ≤ E1 < E2 < · · · < Ek

and k = 1, 2, . . . .
In this way we obtain a family {Tθ} of totally incomparable “Tsirelson-

like” spaces (see [CS], Chapter X.A). When θ = 2−1, Tθ is the space which
appears in [FJ]. Next we consider the 2-convexification of each of the spaces
Tθ, following the procedure introduced in [J] (see also [CS], Chapter X.E).
Namely, for a fixed 0 < θ < 1, we define the space Xθ (this notation is
consistent with the one used by Pisier in [P2], Chapter 13) as the set of all
x =

∑∞
n=1 antn with

∑
n |an|2tn ∈ Tθ, endowed with the norm

‖x‖Xθ
=
∥∥∥∥∑

n

|an|2tn
∥∥∥∥1/2

Tθ

.

We will maintain the notation {tn}n for the unit vector basis in all the spaces
Xθ. It is easy to see that {tn}n is 1-unconditional in each Tθ and Xθ.

From the known properties of Tθ (see [CJT], [CS]) we can easily deduce
the following results about Xθ, which will be useful to the sequel.

Proposition 1.1. Let 0 < θ < 1 be fixed.

(i) For all x ∈ Xθ, ‖x‖Xθ
≤ ‖x‖l2 .

(ii) If θ < λ < 1, then ‖x‖Xθ
≤ ‖x‖Xλ

, for all x ∈ Xλ.
(iii) If {kn}n and {jn}n are two increasing sequences of positive integers

such that kn ≤ jn for all n, then∥∥∥∥∑
n

antkn

∥∥∥∥
Xθ

≤
∥∥∥∥∑

n

antjn

∥∥∥∥
Xθ

.

(iv) For every increasing sequence of positive integers {kn}n and any choice
of scalars {an}n we have∥∥∥∥∑

n

antkn

∥∥∥∥
Xθ

≤
∥∥∥∥∑

n

antk2n

∥∥∥∥
Xθ

≤ 31/2

∥∥∥∥∑
n

antkn

∥∥∥∥
Xθ

.

(v) If {kn}n and {jn}n are two increasing sequences of positive integers
such that kn < jn < kn+1 for all n, then∥∥∥∥∑

n

antkn

∥∥∥∥
Xθ

≤
∥∥∥∥∑

n

antjn

∥∥∥∥
Xθ

≤ 31/2

∥∥∥∥∑
n

antkn

∥∥∥∥
Xθ

.

(vi) Let yn =
∑pn+1

j=pn+1 ajtj, for n ≥ 1, be a normalized block basis of
{tn}n≥1 in Xθ. Then for every choice of natural numbers pn < kn ≤
pn+1, for n ≥ 1, and scalars {bn}n≥1 we have

3−1/2

∥∥∥∥∑
n≥1

bntkn

∥∥∥∥
Xθ

≤
∥∥∥∥∑

n≥1

bnyn

∥∥∥∥
Xθ

≤ 181/2

∥∥∥∥∑
n≥1

bntkn

∥∥∥∥
Xθ

.



382 RAZVAN ANISCA

(vii) Let {tkn
}n≥1 be a subsequence of {tn}n≥1. For every integer m ≥ 3

there exists x =
∑

n≥1 antkn , with {an}n≥1 real scalars, such that

λm ≤ ‖x‖Xλ
≤ m λm, ∀ θ ≤ λ < 1.

It is not hard to verify that, for any 0 < θ < 1 and x ∈ Xθ,

‖x‖Xθ
= max

{
‖x‖0, θ1/2 sup

( k∑
j=1

‖Ejx‖2Xθ

)1/2}
,

where the sup is taken over all k ≤ E1 < E2 < · · · < Ek and k = 1, 2, . . . .
We will conclude the introduction by mentioning that N. J. Nielsen and N.

Tomczak-Jaegermann [NT-J] showed that every separable weak Hilbert space
which is a Banach lattice is, in terms of tail behaviour, very much like Xθ.

2. Preliminary construction

We will work with 5-tuples η = (θ1, . . . , θ5) satisfying 0 < θ1 < · · · < θ5 < 1
and θ1/θ2 = · · · = θ4/θ5 = α for some α ∈ (0, 1).

For every η as above and every N ∈ N we construct a Banach space YN,η

as follows: we define 2-dimensional subspaces Zk of Xθ1 ⊕2 · · · ⊕2 Xθ5 which
will form an unconditional decomposition for YN,η = span {Zk}k. Namely, if
we denote by {tj,k}k the unit vector basis of each Xθj , for j = 1, . . . , 5, define
Zk ⊂ Xθ1 ⊕2 · · · ⊕2 Xθ5 as being spanned by xk and yk, where

(1)
xk = t1,k + γ1t3,k + γ2t4,k + γ3t5,k,

yk = t2,k + γ2t4,k + iγ3t5,k,

with γ1 = α4N , γ2 = α10N and γ3 = α22N .
The decomposition {Zk}k≥1 is clearly 1-unconditional, while x1, y1, x2,

y2, . . . form a Schauder basis in YN,η.
We will now explore the behavior of the (complex) linear operators acting

between YN,η and Y N,η. In fact, we will concentrate on such operators which
are block-diagonal with respect to the 2-dimensional decompositions of YN,η

and Y N,η. If W,V are Banach spaces having finite-dimensional decomposi-
tions {Wk}k and {Vj}j respectively, we say that a bounded linear operator
T : W → V is block-diagonal with respect to {Wk}k and {Vj}j if there exist
finite sets {Bk}k such that

(2)
{

max Bk < minBl if k < l,
suppTwk ⊂ Bk ∀wk ∈ Wk,

where suppTwk is taken with respect to the decomposition {Vj}j .

Proposition 2.1. Let η = (θ1, . . . , θ5) be as above and N be a positive
integer. Let I ⊂ {1, 2, . . . } be an infinite set and let Y be the subspace of
YN,η defined by Y = span {Zk}k∈I . If T : Y −→ Y N,η is a block-diagonal
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operator (with respect to {Zk}k∈I and {Zk}k≥1), with ‖T‖ ≤ 1, then there is
an infinite subset J ⊂ I such that

‖Txk‖ ≤ 250NαN , for all k ∈ J.

Proof. For k ∈ I, let Bk ⊂ {1, 2, . . . } be a finite set and uk = (uk(j))j ,
vk = (vk(j))j , wk = (wk(j))j , sk = (sk(j))j be sequences of scalars so that

(3)


max Bk < minBl, ∀k, l ∈ I with k < l,

Txk =
∑

j∈Bk
(uk(j)xj + vk(j)yj) ,

T yk =
∑

j∈Bk
(wk(j)xj + sk(j)yj) .

By passing to a subsequence Ĩ of I (and disregarding the elements not belong-
ing to Ĩ) we may assume that {Bk}k∈Ĩ satisfy, besides (3), max Bk ≥ k for all
k ∈ Ĩ. Indeed, if I = {k1, k2, . . . , kn, . . . }, then choose Ĩ = {k1, kk1 , kkk1

, . . . }.
Taking into account (1) we have, for every k ∈ Ĩ

Txk =
∑

j∈Bk

uk(j)t1,j +
∑

j∈Bk

vk(j)t2,j +
∑

j∈Bk

γ1uk(j)t3,j(4)

+
∑

j∈Bk

γ2 (uk(j) + vk(j)) t4,j +
∑

j∈Bk

γ3 (uk(j) + ivk(j)) t5,j .

For 1 ≤ l ≤ 5 let Ql : Xθ1 ⊕2 · · · ⊕2 Xθ5 → Xθl
be the natural projection

(which coincides with the natural projection from Xθ1⊕2 · · ·⊕2Xθ5 onto Xθl
).

(I) We first show that there exists an infinite set J1 ⊂ Ĩ such that

(5) ‖Q2Txk‖ =
∥∥∥∥∑

j∈Bk

vk(j)t2,j

∥∥∥∥
Xθ2

≤ 8NαN , for all k ∈ J1.

Indeed, let A1 be the set of all k ∈ Ĩ such that

‖Q2Txk‖ =
∥∥∥∥∑

j∈Bk

vk(j)t2,j

∥∥∥∥
Xθ2

> 8NαN .

The conclusion will follow once we show that A1 is finite.
If A1 is infinite, take (Proposition 1.1(vii)) real scalars {ak}k∈A1 such that

(6)



θN
1 ≤

∥∥∥∥∑k∈A1
akt1,k

∥∥∥∥
Xθ1

≤ NθN
1 ,

...

θN
5 ≤

∥∥∥∥∑k∈A1
akt5,k

∥∥∥∥
Xθ5

≤ NθN
5 .
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Letting x =
∑

k∈A1
akxk and taking into account the definition of xk, we get

‖x‖Y ≤
∥∥∥∥∑

k∈A1

akt1,k

∥∥∥∥
Xθ1

+ γ1

∥∥∥∥∑
k∈A1

akt3,k

∥∥∥∥
Xθ3

+ γ2

∥∥∥∥∑
k∈A1

akt4,k

∥∥∥∥
Xθ4

+

+ γ3

∥∥∥∥∑
k∈A1

akt5,k

∥∥∥∥
Xθ5

≤ NθN
1 + α4NNθN

3 + α10NNθN
4 + α22NNθN

5 (by (6))

≤ 4NθN
1 (by definition of α).

On the other hand,

‖Tx‖ ≥
∥∥∥∥Q2T

(∑
k∈A1

akxk

)∥∥∥∥
Xθ2

=
∥∥∥∥∑

k∈A1

‖Q2Txk‖ ak Q2Txk/‖Q2Txk‖
∥∥∥∥

Xθ2

> 8NαN

∥∥∥∥∑
k∈A1

ak Q2Txk/
∥∥Q2Txk

∥∥∥∥∥∥
Xθ2

(by unconditionality)

≥ 8NαN 3−1/2

∥∥∥∥∑
k∈A1

akt2,max Bk

∥∥∥∥
Xθ2

(by Proposition 1.1(vi))

≥ 4NαN

∥∥∥∥∑
k∈A1

akt2,k

∥∥∥∥
Xθ2

(by Proposition 1.1(iii))

≥ 4NαNθN
2 ≥ 4NθN

1 (by (6) and definition of α).

Note that we have used above the fact that {suppTxk}k∈Ĩ are successive and
max Bk ≥ k, for all k ∈ Ĩ.

The above calculations show that we have obtained a contradiction, since
‖T‖ ≤ 1. Thus the set A1 must be finite.

In a similar manner we can get infinite sets J4 ⊂ J3 ⊂ J2 ⊂ J1 such that

‖Q3Txk‖ ≤ 8NαN , for all k ∈ J2,

‖Q4Txk‖ ≤ 8NαN , for all k ∈ J3,

‖Q5Txk‖ ≤ 8NαN , for all k ∈ J4,

and hence we get by (4) that

(7) ‖Txk‖ ≤
∥∥∥∥∑

j∈Bk

uk(j)t1,j

∥∥∥∥
Xθ1

+ 32NαN , ∀k ∈ J4.

(II) We show that there exists an infinite set J5 ⊂ J4 such that

(8)
∥∥∥∥∑

j∈Bk

wk(j)t3,j

∥∥∥∥
Xθ3

≤ 30NαN , for all k ∈ J5.
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Let A2 be the set of all k ∈ J4 such that∥∥∥∥∑
j∈Bk

wk(j)t3,j

∥∥∥∥ > 30NαN .

If A2 is an infinite set, pick real scalars {ak}k∈A2 such that

(9)



θM
1 ≤

∥∥∥∥∑k∈A2
akt1,k

∥∥∥∥
Xθ1

≤ MθM
1 ,

...

θM
5 ≤

∥∥∥∥∑k∈A2
akt5,k

∥∥∥∥
Xθ5

≤ MθM
5 ,

where M = 5N . Let y =
∑

k∈A2
akyk. Then

‖y‖Y ≤
∥∥∥∥∑

k∈A2

akt2,k

∥∥∥∥
Xθ2

+ γ2

∥∥∥∥∑
k∈A2

akt4,k

∥∥∥∥
Xθ4

+ γ3

∥∥∥∥∑
k∈A2

akt5,k

∥∥∥∥
Xθ5

≤ MθM
2 + α10NMθM

4 + α22NMθM
5

≤ MθM
2 + α2MMθM

4 + α3MMθM
5 = 3MθM

2 ,

while

‖Ty‖ ≥ ‖Q3Ty‖ =
∥∥∥∥∑

k∈A2

akQ3Tyk

∥∥∥∥
Xθ3

= γ1

∥∥∥∥∑
k∈A2

ak

∑
j∈Bk

wk(j)t3,j

∥∥∥∥
Xθ3

> 30NαNγ1

∥∥∥∥ ∑
k∈A2

ak

(∑
j∈Bk

wk(j)t3,j

)
/

∥∥∥∥∑
j∈Bk

wk(j)t3,j

∥∥∥∥∥∥∥∥
Xθ3

(uncond.)

≥ 30NαN γ1 3−1/2

∥∥∥∥∑
k∈A2

akt3,k

∥∥∥∥
Xθ3

(by Prop 1.1(vi) and (iii))

≥ 15Nα5NθM
3 = 3MαMθM

3 = 3MθM
2 ,

which is a contradiction. Hence A2 is a finite set and we obtain (8). By Prop
1.1(ii)

(10)
∥∥∥∥∑

j∈Bk

wk(j)t1,j

∥∥∥∥
Xθ1

≤ 30NαN , ∀k ∈ J5.

(III) We show that there exists an infinite set J6 ⊂ J5 such that

(11)
∥∥∥∥∑

j∈Bk

(uk(j) + vk(j)− wk(j)− sk(j)) t4,j

∥∥∥∥
Xθ4

≤ 100NαN , ∀k ∈ J6.

Take A3 ⊂ J5 an infinite set with the property that∥∥∥∥∑
j∈Bk

(uk(j) + vk(j)− wk(j)− sk(j))t4,j

∥∥∥∥
Xθ4

> 100NαN
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for all k ∈ A3, and pick real scalars {ak}k∈A3 similarly as in (9), with M =
11N . Let z =

∑
k∈A3

ak(xk−yk). The contradiction is obtained by estimating
‖z‖ from above and ‖Tz‖(≥ ‖Q4Tz‖) from bellow.

Once (11) is shown, by Proposition 1.1(ii) we get

(12)
∥∥∥∥∑

j∈Bk

(uk(j) + vk(j)− wk(j)− sk(j)) t1,j

∥∥∥∥
Xθ1

≤ 100NαN , ∀k ∈ J6.

(IV) Finally, there exists an infinite set J7 ⊂ J6 such that∥∥∥∥∑
j∈Bk

(uk(j) + sk(j) + ivk(j)− iwk(j)) t5,j

∥∥∥∥
Xθ5

≤ 230NαN , ∀k ∈ J7,

and thus

(13)
∥∥∥∥∑

j∈Bk

(uk(j) + sk(j) + ivk(j)− iwk(j)) t1,j

∥∥∥∥
Xθ1

≤ 230NαN , ∀k ∈ J7.

This is proved as above by considering elements of the form z =
∑

k∈A4
ak(xk+

iyk), where {ak}k∈A4 are chosen similarly as in (9) (take now M = 23N). No-
tice that

Tz =
∑

k∈A4

ak(Txk + i� Tyk) =
∑

k∈A4

ak(Txk − iTyk),

since Range T ⊂ Y N,η.
This finishes the proof of Proposition 2.1 since we can conclude, by com-

bining (5), (10), (12) and (13), that∥∥∥∥∑
j∈Bk

uk(j)t1,j

∥∥∥∥
Xθ1

≤ 210NαN , for all k ∈ J7.

Together with (7) this gives the announced result. �

Remark 2.2. If N is chosen large enough, e.g., N ≥ 250, as it will be
the case later in the arguments, then the conclusion of Proposition 2.1 can be
restated as follows: there is an infinite subset J such that

‖Txk‖ ≤ N2αN , for all k ∈ J

Remark 2.3. If T : YN,η → Y N,η is a bounded operator, then, by a
classical gliding hump argument, we can find a subspace Y = span {Zk}k∈I

such that a perturbation of T |Y : Y −→ Y N,η is a block-diagonal operator.
This is due to the fact that the basis x1, y1, x2, y2, . . . of YN,η is shrinking,
and therefore w-null. Indeed, if the basis is not shrinking, we can find δ > 0
and normalized blocks {wl}l (with respect to the decomposition {Zk}k) such
that for {al}l ∈ c00 we have ‖

∑
l alwl‖ ≥ δ

∑
l |al|, This is a contradiction,

by Prop 1.1(i).
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Using Proposition 2.1 we can prove a similar result about the behavior of
block-diagonal operators with respect to some blocks of the basis in YN,η. For
the sake of clarity of the exposition, we will present the proof of this fact at
the end of the paper.

Proposition 2.4. Let η = (θ1, . . . , θ5) be as in Proposition 2.1 and let
N ≥ 250. Let I be an infinite set of positive integers and let Y be the subspace
of YN,η defined by Y = span {Zk}k∈I . Let T : Y −→ Y N,η be a block-diagonal
operator (with respect to {Zk}k∈I and {Zk}k≥1) with ‖T‖ ≤ 1.

There exist I0 ⊂ I and real scalars {βk}k∈I0 such that

(14) 1/2 θN ≤
∥∥∥∥∑

k∈I0

βktk

∥∥∥∥
Xθ

≤ 2NθN

for all θ ∈ {θ1, . . . , θ5}, and∥∥∥∥T(∑
k∈I0

βkxk

)∥∥∥∥
Y N,η

≤ N4αNθN
1 .

Moreover, given a finite set Θ of numbers from (0, 1), we can choose {βk}k∈I0

so that (14) is also satisfied for every θ ∈ Θ.

3. A weak Hilbert space

In this section we exhibit a weak Hilbert space which will be later used for
the construction which is the object of this paper. As before, we will use the
notation {tn}n for the unit vector basis in all the spaces Xθ.

Proposition 3.1. There is an absolute constant C > 0 such that, for all
1/2 ≤ θ < 1 and n ≥ 1, whenever E ⊂ span {tj}j≥n is a subspace of Xθ with
dim E ≤ n, then

d
(
E, `dim E

2

)
≤ C.

Proof. The proof is similar to the one for the case θ = 1/2 (see [CS], Propo-
sition Ab.2) and it uses the fact that Xθ is C-isomorphic to its “modified”
version, which is obtained by considering disjoint sets instead of successive
ones in the definition of Xθ ([Be], [CO]). �

We now require the introduction of some new norms on Xθ, for each 0 <
θ < 1. Namely, for every positive integer p ≥ 1, we define the Banach space
Sp

θ exactly as Xθ except that in the inner maximum of

‖x‖p,m+1 = max
{
‖x‖p,m, θ1/2 max

(2pk∑
j=1

‖Ejx‖2p,m

)1/2}
we allow the finite sets {Ej}2

pk
j=1 to satisfy k ≤ E1 < E2 < · · · < E2pk.
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It is easy to verify that for every p ≥ 1 and every choice of scalars {an}n

(15)
∥∥∥∥∑

n

antn

∥∥∥∥
Sp

θ

=
∥∥∥∥∑

n

ant2pn

∥∥∥∥
Xθ

.

Inductively, it follows from Proposition 1.1(iv) that for all p ≥ 1 and x ∈ Xθ

(16) ‖x‖Xθ
≤ ‖x‖Sp

θ
≤ 3p/2‖x‖Xθ

.

As a consequence of (15) and Proposition 3.1 we get:

Proposition 3.2. There is an absolute constant C > 0 such that, for all
1/2 ≤ θ < 1 and all positive integers p, n ≥ 1, whenever E ⊂ span {tj}j≥n is
a subspace of Sp

θ with dim E ≤ 2pn, then

d
(
E, `dim E

2

)
≤ C.

This enables us to construct a class of weak Hilbert spaces, which are close
in spirit to the ones used in [Ko].

Proposition 3.3. Let {θp}p≥1 be a sequence in [1/2, 1). Then the space
S = (

∑
p≥1⊕Sp

θp
)l2 is a weak Hilbert space.

Proof. For a positive integer n let Jn = {n + 1, n + 2, . . . }. For simplicity,
denote span {tj}j∈Jn

in Sp
θp

by Sp
θp | Jn

.

For every m = 2r (r = 1, 2, . . . ) let Sm be the following (m− 1)-codimen-
sional subspace of S:

Sm = S1
θ1 | Jm/2

⊕2 S2
θ2 | Jm/22

⊕2 · · · ⊕2 Sr
θr | Jm/2r

⊕2 (
∑
p>r

⊕Sp
θp

)l2 .

By Proposition 3.2, every m-dimensional subspace E ⊂ Sm has the property
d(E, `m

2 ) ≤ C. In a manner similar to the proof of Lemma 13.5 of [P2],
it follows that S is of weak cotype 2, and since clearly S is 2-convex as a
Banach lattice it is of type 2 by a result of Maurey. Hence S is a weak Hilbert
space. �

4. A weak Hilbert space non-isomorphic to its complex conjugate

For η = (θ1, . . . , θ5) satisfying 0 < θ1 < · · · < θ5 < 1 and θ1/θ2 = · · · =
θ4/θ5 = α, for some α ∈ (0, 1), and any positive integer N ≥ 1 we defined in
Section 2 the Banach space YN,η as a subspace of Xθ1 ⊕2 · · · ⊕2 Xθ5 . In the
view of (16), YN,η can also be seen as a subspace of Sp

θ1
⊕2 · · ·⊕2 Sp

θ5
, for every

p ≥ 1. In this case YN,η is the same vector space as before endowed with an
equivalent norm.

We can now proceed and construct a weak Hilbert space which is not
isomorphic to its complex conjugate.
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Theorem 4.1. There exists a complex weak Hilbert space Y which is not
isomorphic to its complex conjugate. Thus Y , treated as a real space, has at
least two non- isomorphic complex structures.

Proof. Pick an increasing sequence {θk}k≥5 of numbers from the interval
[1/2, 1) such that, for all m = 1, 2, . . . ,

(17)
θ5m

θ5m+1
=

θ5m+1

θ5m+2
= · · · = θ5m+4

θ5m+5
=: αm

for some αm ∈ (0, 1). In particular, the 5-tuple ηm := (θ5m+1, . . . , θ5m+5) is of
the form considered in Section 2, for all m = 1, 2, . . . . For each m = 1, 2, . . .
let Nm be a positive integer satisfying

(18)
{

N3
m ≥ 400(m− 1),

(1/Nm)4(1/αm)Nm ≥ 16m3m.

Let Ym = YNm,ηm be the space defined in Section 2, treated as a subspace
of Sm

θ5m+1
⊕2 · · · ⊕2 Sm

θ5m+5
, as we discussed before. Let Y = (

∑
m≥1⊕Ym)`2 .

By Proposition 3.3, Y is a weak Hilbert space. We will show that Y is not
isomorphic to its complex conjugate Y = (

∑
m≥1⊕Y m)`2 .

Assume that there exists an isomorphism T : Y → Y such that ‖T‖ ≤ 1/4
and let a = ‖T−1‖. Let m ≥ 2 be arbitrarily fixed. We will show that a ≥ m,
which will clearly imply the contradiction.

To this end we will concentrate on T |Ym
. Recall that Ym = YNm,ηm

=
span {Zk}k, where each Zk is spanned by xk and yk given in (1).

(I) Denote by Rm : Y → (
∑

j>m⊕Y j)l2 the natural projection. We will
show that there exists a subsequence I such that, after some perturbations,
we get an operator (denoted again by) T : span {Zk}k∈I → Y such that

(19)
{

RmT = 0,
1
4a‖x‖ ≤ ‖Tx‖ ≤ ‖x‖, for all x ∈ span{Zk}k∈I .

Let Pj : Y → Y j be the canonical projection of Y onto its j-th term.
Let s ≥ m + 1. We first show that for every infinite set L ⊂ {1, 2, . . . } and

every εs > 0 there is k ∈ L such that

(20) ‖PsTzk‖ < εs‖zk‖, ∀zk ∈ Zk

Otherwise we can find εs > 0, an infinite set {kj}j and, for each j ≥ 1,
normalized elements zj ∈ Zkj such that

εs ≤ ‖PsTzj‖ (≤ ‖Q1,sPsTzj‖+ · · ·+ ‖Q5,sPsTzj‖) ,

where, similarly as in Section 2, we denote by Qt,s : Ss
5s+1 ⊕2 · · · ⊕2 Ss

5s+5 →
Ss

5s+t the canonical projection (t = 1, . . . , 5). By passing to a subsequence of
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j’s and perturbing the operator PsT (see Remark 2.3), we may assume that
(PsTzj)j are successive blocks in Y s and also

‖Qt,sPsTzj‖ ≥ εs/10, for all j ≥ 1

for some t ∈ {1, . . . , 5}. A similar (but less delicate) argument to the one
repeatedly used in the proof of Proposition 2.1 contradicts the fact that PsT
is continuous. The important fact here is that θ5m+5 < θ5s+1 < · · · < θ5s+5.

Using (20), by recursion and a standard diagonal argument we obtain that
for every εs ↘ 0 there exists Ĩ = {km+1, km+2, . . . } such that

‖PsT | span{Zkj
}j≥s

‖ < εs, for all s ≥ m + 1.

Therefore, after a perturbation, we get an operator (denoted again by) T :
span{Zk}k∈Ĩ → Y satisfying

(21)

 PsT | span{Zkj
}j≥s

= 0, for all s ≥ m + 1,

1
2a‖x‖ ≤ ‖Tx‖ ≤ 1

2‖x‖, for all x ∈ span{Zk}k∈Ĩ .

In order to show (19), it is now enough to prove that for all δ > 0 and
every infinite set L ⊂ Ĩ there is k ∈ L so that

(22) ‖RmTzl‖ ≤ δ‖zl‖, for all zl ∈ Zl.

Then (19) follows by recursion and a perturbation argument. If (22) does not
hold true, then we can find δ > 0, an infinite set L ⊂ Ĩ and, for each l ∈ L,
a normalized element zl ∈ Zl such that ‖RmTzl‖ > δ. If L = {l1, l2, . . . }
with l1 < l2 < · · · , then, by (21), we have suppRmTzl1 ⊃ suppRmTzl2 ⊃
. . . , where the supports are considered with respect to the decomposition
{Y s}s≥m+1. After a gliding hump argument we may assume that (RmTzl)l∈L

are successive blocks in (
∑

s≥m+1⊕Y s)l2 . We can now take real scalars
{al}l∈L such that

∑
l∈L |al|2 = ∞, while

∑
l∈L altl is convergent in Xθ5m+5

(and therefore also in Xθ5m+1 , . . . , Xθ5m+4). Thus z =
∑

l∈L alzl is conver-
gent in Xθ5m+1 ⊕2 · · · ⊕2 Xθ5m+5 (and hence also in Sm

θ5m+1
⊕2 · · · ⊕2 Sm

θ5m+5
),

while RmTz =
∑

l∈L alRmTzl is divergent in Y . This shows that the above
assumption is false and completes the first stage of the proof.

(II) We may assume (see Remark 2.3) that, in addition to (19), each of
the operators P1T : span{Zk}k∈I −→ Y 1, . . . , PmT : span{Zk}k∈I −→ Y m is
block-diagonal. In fact we may assume that there are finite sets of integers
{Bk}k∈I such that{

max Bk < minBl if k < l,
suppPsTzk ⊂ Bk ∀zk ∈ Zk, ∀k ∈ I,

for every s = 1, . . . ,m (we consider suppPsTzk with respect to the 2-dimen-
sional decomposition of Y s). After some further passing to a subsequence of
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I we may also assume that we also have

(23) k < max Bk < l if k < l.

We will now use Proposition 2.4 for PmT . Thus we can find I0 ⊂ I and
real scalars {βk}k∈I0 such that

(24) 1/2θNm

≤
∥∥∥∥∑

k∈I0

βktk

∥∥∥∥
Xθ

≤ 2NmθNm

for all θ ∈ {θj : 5 ≤ j ≤ 5m + 5} and also, if we let x =
∑

k∈I0
βkxk ∈ Ym, in

the view of (16),

(25) ‖PmTx‖ ≤ 3mN4
mαNm

m θNm
5m+1.

Now there exists q ∈ {1, . . . ,m− 1} such that

‖PqTx‖ ≥ 1
m− 1

‖(P1 + · · ·+ Pm−1)Tx‖ ≥ 1
m− 1

(‖Tx‖ − ‖PmTx‖)

≥ 1
m− 1

(
1
4a
‖x‖Ym − 3mN4

mαNm
m θNm

5m+1

)
(by (19), (25))

≥ 1
m− 1

(
1
8a
− 3mN4

mαNm
m

)
θNm
5m+1 (by (16), (1), (24)).

Assuming that 1/(16a)− 3mN4
mαNm

m ≥ 0 we get a contradiction. Indeed,

‖PqTx‖ ≥ 1
m− 1

1
16a

θNm
5m+1

≥ 1
m− 1

3mN4
mαNm

m θNm
5m+1

≥ 400 · 3mNmθNm
5m (by (13), (14)),

while, on the other hand, in Y q ⊂ S
q

θ5q+1
⊕2 · · ·⊕2 S

q

θ5q+5
we can write by (16)
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‖PqTx‖ =
∥∥∥∥∑

k∈I0

βkPqTxk

∥∥∥∥
≤
∥∥∥∥∑

k∈I0

βkQ1,qPqTxk

∥∥∥∥+ · · ·+
∥∥∥∥∑

k∈I0

βkQ5,qPqTxk

∥∥∥∥
≤ 3q

(∥∥∥∥∑
k∈I0

βkQ1,qPqTxk

∥∥∥∥
Xθ5q+1

+ · · ·+
∥∥∥∥∑

k∈I0

βkQ5,qPqTxk

∥∥∥∥
Xθ5q+5

)

≤ 4 · 3q

(∥∥∥∥∑
k∈I0

βk
Q1,qPqTxk∥∥∥∥Q1,qPqTxk‖

∥∥∥∥
Xθ5q+1

+ · · ·+

+
∥∥∥∥∑

k∈I0

βk
Q5,qPqTxk

‖Q5,qPqTxk‖

∥∥∥∥
Xθ5q+5

)

≤ 4 · 3q · 181/2

(∥∥∥∥∑
k∈I0

βktmax Bk

∥∥∥∥
Xθ5q+1

+ · · ·+
∥∥∥∥∑

k∈I0

βktmax Bk

∥∥∥∥
Xθ5q+5

)

≤ 20 · 3q · 31/2

(∥∥∥∥∑
k∈I0

βktk

∥∥∥∥
Xθ5q+1

+ · · ·+
∥∥∥∥∑

k∈I0

βktk

∥∥∥∥
Xθ5q+5

)
(Prop 1.1(v))

≤ 400 · 3qNmθNm
5q+5 (by (24)).

Notice that in the third line of inequalities we have used

‖Qt,qPqTxk‖Xθ5q+t
≤ ‖Qt,qPqTxk‖Sq

θ5q+t
≤ ‖Txk‖ ≤ ‖xk‖Ym

≤ 4,

for each t = 1, . . . , 5.
Since we have obtained a contradiction, we must have

a ≥ 1/(16 · 3m)(1/Nm)4(1/αm)Nm ≥ m (by (18)). �

5. Additional proofs

Proof of Proposition 2.4. We will use the notations from Section 2.
Let {Bk}k∈I be finite sets of integers such that{

max Bk < minBl if k < l,
suppTzk ⊂ Bk ∀zk ∈ Zk, ∀k ∈ I.

After passing to a subsequence of I if necessary, we may assume that {Bk}k∈I

also satisfy

(26) k < max Bk < l for all k, l ∈ I with k < l

and, by Proposition 2.1 and Remark 2.2,

(27) ‖Txk‖ ≤ N2αN , for all k ∈ I.
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Using Proposition 1.1(vii) and a standard gliding hump procedure we can
find subsets I1 < I2 < · · · of I and sequences {β1(k)}k∈I1 , {β2(k)}k∈I2 , . . . of
real numbers such that, for every m ≥ 1,

(28) 1/2 θN ≤
∥∥∥∥∑

k∈Im

βm(k)tk

∥∥∥∥
Xθ

≤ 2NθN ∀θ ∈ Θ ∪ {θ1, . . . , θ5}.

Let x̃m =
∑

k∈Im
βm(k)xk, for m ≥ 1. We will show that we can find m0 so

that ‖T x̃m0‖ ≤ N4αNθN
1 , thus proving Proposition 2.4. For each m ≥ 1

‖Q1T x̃m‖ =
∥∥∥∥∑

k∈Im

βm(k)Q1Txk

∥∥∥∥
≤ N2αN

∥∥∥∥∑
k∈Im

βm(k)
Q1Txk∥∥∥∥Q1Txk‖

∥∥∥∥ (by (27))

≤ 181/2N2αN

∥∥∥∥∑
k∈Im

βm(k)tmax Bk

∥∥∥∥
Xθ1

(by Prop. 1.1(vi))

≤ 541/2N2αN

∥∥∥∥∑
k∈Im

βm(k)tk

∥∥∥∥
Xθ1

(by Prop. 1.1(v) and (26))

≤ 16N3αNθN
1 (by (28)).

We will show now that there is an infinite set M ⊂ {1, 2, . . . } such that

(29) ‖Q2T x̃m‖ ≤ 80N2αNθN
1 , ∀m ∈ M.

Indeed, let M1 be the set of all m such that ‖Q2T x̃m‖ > 80N2αNθN
1 . The

conclusion will follow once we prove that M1 is finite. If M1 is infinite, pick
real scalars {am}m∈M1 such that

(30)



θN
1 ≤

∥∥∥∥∑m∈M1
amtmax Im

∥∥∥∥
Xθ1

≤ NθN
1 ,

...

θN
5 ≤

∥∥∥∥∑m∈M1
amtmax Im

∥∥∥∥
Xθ5

≤ NθN
5 .

Let x =
∑

m∈M1
amx̃m. Taking into account (1) we get

‖x‖ ≤
∥∥∥∥ ∑

m∈M1

am

∑
k∈Im

βm(k)tk

∥∥∥∥
Xθ1

+ γ1

∥∥∥∥ ∑
m∈M1

am

∑
k∈Im

βm(k)tk

∥∥∥∥
Xθ3

+

+ γ2

∥∥∥∥ ∑
m∈M1

am

∑
k∈Im

βm(k)tk

∥∥∥∥
Xθ4

+ γ3

∥∥∥∥ ∑
m∈M1

am

∑
k∈Im

βm(k)tk

∥∥∥∥
Xθ5

.
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By unconditionality, Proposition 1.1(vi), (28) and (30) we get∥∥∥∥ ∑
m∈M1

am

∑
k∈Im

βm(k)tk

∥∥∥∥
Xθ1

≤ 2NθN
1 181/2

∥∥∥∥ ∑
m∈M1

amtmax Im

∥∥∥∥
Xθ1

≤ 10N2θ2N
1 .

We can argue similarly in Xθ3 , . . . , Xθ5 and hence obtain

‖x‖ ≤ 10N2θ2N
1 + γ1 · 10N2θ2N

3 + γ2 · 10N2θ2N
4 + γ3 · 10N2θ2N

5

= 10N2θ2N
1 (1 + γ1α

−4N + γ2α
−6N + γ3α

−8N ) ≤ 40N2θ2N
1 .

On the other hand,

‖Tx‖ ≥ ‖Q2Tx‖ =
∥∥∥∥ ∑

m∈M1

amQ2T x̃m

∥∥∥∥
> 80N2αNθN

1 · 3−1/2

∥∥∥∥ ∑
m∈M1

amtmax supp T x̃m

∥∥∥∥
Xθ2

(Prop. 1.1 (vi))

≥ 40N2αNθN
1

∥∥∥∥ ∑
m∈M1

amtmax Im

∥∥∥∥
Xθ2

(by Prop. 1.1(iii) and (26))

≥ 40N2θN
1 αNθN

2 = 40N2θ2N
1 ,

which is a contradiction with ‖T‖ ≤ 1. Hence (29) must hold.
Similarly we can find an infinite set M̃ ⊂ M such that 80N2αNθN

1 is an
upper bound for each of ‖Q3T x̃m‖, ‖Q4T x̃m‖ and ‖Q5T x̃m‖, for all m ∈ M̃ .
This ends the proof of Proposition 2.4. �
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