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QUASI-ISOMORPHISMS OF A∞-ALGEBRAS AND
ORIENTED PLANAR TREES

MANABU AKAHO

Abstract. We construct quasi-isomorphisms of A-infinity algebras by
using oriented planar trees and give an analog of Hodge decompositions
for A-infinity algebras.

1. Introduction

In this paper we prove a minimal model theorem for A∞-algebras in the
sense of Kontsevich [3], and construct the following quasi-isomorphisms
through oriented planar trees introduced by Stasheff [6]:

Theorem 1.1. Let (V,m) and (V ′,m′) be A∞-algebras which have har-
monic projections and F an A∞-morphism from (V,m) to (V ′,m′). If F
is a quasi-isomorphism, then there is a quasi-isomorphism from (V ′,m′) to
(V,m) which induces the inverse of (F1)∗ between the cohomology groups of
the cochain complexes (V [1],m1) and (V ′[1],m′

1).

In [4] Kontsevich gives a similar theorem for L∞-algebras, which follows
from the minimal model theorem in [3].

The content of our paper is as follows: Section 2 recalls some A∞-algebraic
notions. Section 3 contains the statement of the two main theorems of this
paper; the proofs are given in Sections 6 and 7, respectively. Section 4 de-
scribes the minimal model theorem of A∞-algebras, and Section 5 contains
the proof of Theorem 1.1.

2. Preliminaries

We recall without proof some fundamental lemmas and propositions; see
[2].

Let V :=
⊕

k∈Z V k be a graded vector space. We define Tn(V ) := V ⊗· · ·⊗
V (n times), and T (V ) :=

⊕
n≥1 Tn(V ), and denote v1 ⊗ · · · ⊗ vn ∈ Tn(V )
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by v1 · · · vn for simplicity. Note that the grading of v1 · · · vn is the sum of the
gradings of the v′is. We define a linear map ∆ : T (V ) → T (V )⊗ T (V ) by

∆(v1 · · · vn) :=
n−1∑
i=1

(v1 · · · vi)⊗ (vi+1 · · · vn).

For graded vector spaces V and V ′, let f : T (V ) → T (V ′) be a linear map
which satisfies the following conditions:

(i) ∆f = (f ⊗ f)∆.
(ii) f preserves the grading.

We have a natural projection π : T (V ′) → V ′ and define grading-preserving
linear maps by

fn := π ◦ f |T n(V ) : Tn(V ) → V ′, n = 1, 2, · · · .

Lemma 2.1. We have

f(v1 · · · vn) =
n∑

l=1

∑
h1+···+hl=n,hi≥1

fh1(v1 · · · vh1) · · · fhl
(vh1+···+hl−1+1 · · · vn).

Conversely, a linear map f : T (V ) → T (V ′) expressed in the above form with
grading-preserving linear maps fn : Tn(V ) → V ′ satisfies (i) and (ii).

Let m : T (V ) → T (V ) be a linear map which satisfies the following condi-
tions:

(iii) (m⊗̂ id+ id ⊗̂m)∆ = ∆m, where (id ⊗̂m)(x ⊗ y) := (−1)kx ⊗ m(y)
for x of grading k.

(iv) m increases the grading by 1.
We have a natural projection π : T (V ) → V and define grading-1-increasing
linear maps

mn := π ◦m|T n(V ) : Tn(V ) → V, n = 1, 2, · · · .

Lemma 2.2. We have

m(v1 · · · vn) =
n∑

l=1

n−l+1∑
j=1

(−1)k1+···+kj−1v1 · · · vj−1ml(vj · · · vj+l−1)vj+l · · · vn,

where vi ∈ V ki . Conversely, a linear map m : T (V ) → T (V ) expressed in the
above form with grading-1-increasing linear maps mn : Tn(V ) → V satisfies
(iii) and (iv).

For a graded vector space V =
⊕

k∈Z V k, we introduce a new graded vector
space V [1] whose grading is defined by (V [1])k := V k+1. If m : T (V [1]) →
T (V [1]) satisfies (iii), (iv) and mm = 0, then we call (V,m) an A∞-algebra
and m an A∞-structure of V . From Lemma 2.2 we obtain the following
proposition; see [2]:
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Proposition 2.3. m : T (V [1]) → T (V [1]) is an A∞-structure if and only
if

n∑
l=1

n−l+1∑
j=1

(−1)k1+···+kj−1mn−l+1(x1 · · ·xj−1ml(xj · · ·xj+l−1)xj+l · · ·xn) = 0,

where xj ∈ (V [1])kj .

When n = 1, the above equation is

m1m1 = 0.(1)

Hence we obtain a cochain complex (V [1],m1). Let (V,m) and (V ′,m′) be
A∞-algebras. If f : T (V [1]) → T (V ′[1]) satisfies (i), (ii) and m′f = fm, then
we call f an A∞-morphism. From Lemma 2.1 and Lemma 2.2 we obtain the
following proposition:

Proposition 2.4. f : T (V [1]) → T (V ′[1]) is an A∞-morphism if and
only if
n∑

l=1

∑
h1+···+hl=n,hj≥1

m′
l

(
fh1(x1 · · ·xh1) · · · fhl

(xh1+···+hl−1+1 · · ·xn)
)

=
n∑

l=1

n−l+1∑
j=1

(−1)k1+···+kj−1fn−l+1

(
x1 · · ·xj−1ml(xj · · ·xj+l−1)xj+l · · ·xn

)
,

where xi ∈ (V [1])ki .

When n = 1, the above equation is

m′
1f1 = f1m1.(2)

Hence f1 induces a homomorphism (f1)∗ between the cohomology groups of
(V [1],m1) and (V ′[1],m′

1). If (f1)∗ is an isomorphism, then we call f a quasi-
isomorphism.

Lemma 2.5. Let f : T (V ) → T (V ′) satisfy (i) and (ii). If f1 : V → V ′

is an isomorphism of vector spaces, then f has an inverse g : T (V ′) → T (V ),
which also satisfies (i) and (ii).

Proof. We construct gn inductively. Define g1 := f−1
1 and assume that we

have obtained gh for h ≤ k−1. It is easy to see that fg = gf = id if and only
if the following equations hold:

f1

(
gk(x1 · · ·xk)

)
= −

k∑
l=2

fl

( ∑
h1+···+hl=k,k−1≥hj≥1

gh1(x1 · · ·xh1) · · · ghl
(xh1+···+hl−1+1 · · ·xk)

)
.
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Since f1 is an isomorphism, gk(x1 · · ·xk) can be defined. Hence, by the in-
ductive step, we obtain gn for all n so that fg = gf = id. �

From Lemma 2.5 we obtain the following lemma:

Lemma 2.6. Let f be an A∞-morphism from (V,m) to (V ′,m′). If f1 :
V [1] → V ′[1] is an isomorphism of vector spaces, then f is an isomorphism of
A∞-algebras, i.e., there is an A∞-morphism g : (V ′,m′) → (V,m) such that
fg = gf = id.

3. Main constructions

We assume that an A∞-algebra (V,m) has a grading-preserving linear map
Π : V [1] → V [1] and a grading-1-decreasing linear map H : V [1] → V [1] such
that

Π2 = Π,(3)

id−Π = m1H + Hm1.(4)

From (1) and (4) we obtain

m1Π = Πm1.(5)

Next, we introduce oriented planar trees; see Figure 1 below and [5]. An
oriented planar tree is a finite, connected, simply connected and oriented 1-
dimensional graph which has some tail vertices and exactly one root vertex.
We call the number of edges coming into a vertex v the arity of v. The arity of
an internal vertex is greater than or equal to 2, and that of a root vertex is 1.
The number of edges starting from a tail vertex is 1; similarly the number of
edges starting from an internal vertex is 1. We denote the number of internal
vertices of an oriented planar tree T by I(T ).

We construct a tree T from an oriented planar tree T as in Figure 2, by
inserting a new vertex as the midpoint of each internal edge of T . Because
the arity of a new vertex is one, T is not an oriented planar tree in our sense.
Then we assign Π to each tail vertex and to the root vertex, −H to each
new vertex and mk to each internal vertex of arity k, and we define a map
mn,T : Tn(V [1]) → V [1] by the compositions of the maps along the oriented
edges of T . For example, if T is as in Figure 2,

m5,T (x1 · · ·x5) := Πm2((−Hm2)(Π(x1)(−Hm3)(Π(x2)Π(x3)Π(x4)))Π(x5)).

Definition 3.1. We define grading-1-increasing linear maps
m̃n : Tn(V [1]) → V [1] by

• m̃1 := m1,
• m̃n :=

∑
T mn,T , n ≥ 2,

where the sum is over the oriented planar trees with n tail vertices.
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Since we assign Π to each tail vertex and to the root vertex of T , we obtain:

Lemma 3.2. Πm̃n(x1 · · ·xn) = m̃n(Πx1 · · ·Πxn).

The following is the first main theorem in this paper:

Theorem 3.3. The maps m̃n, n = 1, 2, . . . , define an A∞-structure m̃
of V .
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Now we assign Π to each tail vertex, −H to each new vertex and to the
root vertex and mk to each internal vertex of arity k, and we define a map
gn,T : Tn(V [1]) → V [1] by the compositions of the maps along the oriented
edges of T , i.e., we replace Π of mn,T at the root vertex of T by −H.

Definition 3.4. We define grading-preserving linear maps
gn : Tn(V [1]) → V [1] by

• g1 := id,
• gn :=

∑
T gn,T , n ≥ 2,

where the sum is over the oriented planar trees with n tail vertices.

The following is the second main theorem in this paper:

Theorem 3.5. The maps gn, n = 1, 2, . . . , define an A∞-morphism g :
(V, m̃) → (V,m).

Using Lemma 2.6 and g1 = id, we obtain the following corollary:

Corollary 3.6. The A∞-algebra (V, m̃) is isomorphic to the A∞-algebra
(V,m).

By (3) we obtain V [1] = Im Π⊕ Im(id−Π), and define

B[1] := Im Π, C[1] := Im(id−Π).

Since we assign Π to each root vertex of an oriented planar tree in the defini-
tion of m̃n, n ≥ 2, we obtain Im m̃n ⊂ B[1], n ≥ 2. Moreover, from (5) and
m̃1 := m1 we obtain Im m̃1|B[1] ⊂ B[1]. Hence, the following lemma holds:

Lemma 3.7. (B, m̃|B[1]) is an A∞-algebra.

Definition 3.8. We define grading-preserving linear maps
in : Tn(B[1]) → V [1] by

• i1 := id |B[1],
• in := 0, n ≥ 2.

Lemma 3.9. The maps in, n = 1, 2, . . ., define an A∞-morphism i :
(B, m̃|B[1]) → (V, m̃).

Definition 3.10. We define grading-preserving linear maps
pn : Tn(V [1]) → B[1] by

• p1 := Π,
• pn := 0, n ≥ 2.

Lemma 3.11. The maps pn, n = 1, 2, . . ., define an A∞-morphism p :
(V, m̃) → (B, m̃|B[1]).
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Proof. By Lemma 3.2 we have

pm̃(x1 · · ·xn)

= p

( n∑
l=1

n−l+1∑
j=1

(−1)k1+···+kj−1x1 · · ·xj−1m̃l(xj · · ·xj+l−1)xj+l · · ·xn

)

=
n∑

l=1

n−l+1∑
j=1

(−1)k1+···+kj−1Πx1 · · ·Πxj−1Πm̃l(xj · · ·xj+l−1)Πxj+l · · ·Πxn

=
n∑

l=1

n−l+1∑
j=1

(−1)k1+···+kj−1Πx1 · · ·Πxj−1m̃l(Πxj · · ·Πxj+l−1)Πxj+l · · ·Πxn

= m̃(Πx1 · · ·Πxn)

= m̃|B[1]p(x1 · · ·xn),

where xj ∈ (V [1])kj . Thus p is an A∞-morphism from (V, m̃) to (B, m̃|B[1]).
�

Lemma 3.12. i : (B, m̃|B[1]) → (V, m̃) and p : (V, m̃) → (B, m̃|B[1]) are
quasi-isomorphisms.

Since we assign Π to each tail vertex of oriented planar trees in the definition
of m̃n, n ≥ 2, we obtain Im m̃n|C[1] = 0, n ≥ 2. Moreover, from (5) and
m̃1 := m1 we obtain Im m̃1|C[1] ⊂ C[1]. Hence, the following lemma holds:

Lemma 3.13. (C, m̃|C[1]) is an A∞-algebra.

Definition 3.14. We define grading-preserving linear maps
jn : Tn(C[1]) → V [1] by

• j1 := id |C[1],
• jn := 0, n ≥ 2.

Lemma 3.15. The maps jn, n = 1, 2, . . ., define an A∞-morphism j :
(C, m̃|C[1]) → (V, m̃).

Definition 3.16. We define grading-preserving linear maps
qn : Tn(V [1]) → C[1] by

• q1 := id−Π,
• qn := 0, n ≥ 2.

Lemma 3.17. The maps qn, n = 1, 2, . . . , define an A∞-morphism q :
(V, m̃) → (C, m̃|C[1]).

Proof. We can prove this lemma in a similar fashion as Lemma 3.11. �

Lemma 3.18. The cohomology of (C[1], m̃1) vanishes.
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Proof. Since (m̃1H+Hm̃1)Π = (id−Π)Π = 0, we have Hm̃1Π = −m̃1HΠ.
Take an element (id−Π)x ∈ C[1] such that m̃1(id−Π)x = 0. Then Hm̃1x =
Hm̃1Πx = −m̃1HΠx. So we can conclude

(id−Π)x = m̃1Hx + Hm̃1x = m̃1Hx− m̃1HΠx = m̃1H(id−Π)x

and

(id−Π)x = (id−Π)2x = (id−Π)m̃1H(id−Π)x = m̃1(id−Π)H(id−Π)x,

which implies that the cohomology of (C[1], m̃1) vanishes. �

4. Minimal model theorem for A∞-algebras

We now state the minimal model theorem for A∞-algebras. We first recall
harmonic forms of Hodge decompositions.

Let (V,m) be an A∞-algebra. If m1 = 0, then we call (V,m) minimal. If
mn = 0, n ≥ 2, and the cohomology group of the cochain complex (V [1],m1)
vanishes, then we call (V,m) linear contractible. Note that (C, m̃|C[1]) is linear
contractible. If (V,m) has linear maps Π and H such that m1|B[1] = 0, then we
call Π a harmonic projection. Note that m1|B[1] 6= 0 in general; for example,
if Π = id and H = 0, then Π and H satisfy (3) and (4), but m1|B[1] 6= 0 in
general.

Theorem 4.1 (Minimal model theorem for A∞-algebras). If (V,m) has
a harmonic projection, then (B[1], m̃|B[1]) is minimal and (C[1], m̃|C[1]) is
linear contractible.

5. Proof of Theorem 1.1

In Theorem 1.1 we obtain the following sequence of quasi-isomorphisms:

(B, m̃|B[1])
i→ (V, m̃)

g→ (V,m) F→ (V ′,m′)
(g′)−1

→ (V ′, m̃′)
p′→ (B′, m̃′|B′[1]).

Since our A∞-algebras have harmonic projections, (B, m̃|B[1]) and
(B′, m̃′|B′[1]) are minimal, and hence the linear map

(
p′ ◦ (g′)−1 ◦ F ◦ g ◦ i

)
1

:
B[1] → B′[1] is an isomorphism of vector spaces. Therefore, by Lemma 2.6,
K =

(
p′ ◦ (g′)−1 ◦ F ◦ g ◦ i

)−1 : (B′, m̃′|B[1]) → (B, m̃|B[1]) is an isomorphism
of A∞-algebras, and we obtain the following sequence of quasi-isomorphisms:

(V ′,m′)
(g′)−1

→ (V ′, m̃′)
p′→ (B′, m̃′|B′[1])

K→ (B, m̃|B[1])
i→ (V, m̃)

g→ (V,m).

Hence the map G : (V ′,m′) → (V,m) defined by g ◦ i ◦ K ◦ p′ ◦ (g′)−1 is a
quasi-isomophism, as claimed in the theorem.
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6. Proof of Theorem 3.3

We prove that the maps m̃n : Tn(V [1]) → V [1], n = 1, 2, · · · , in Definition
3.1 satisfy the equations in Proposition 2.3.

Let T be an oriented planar tree with n tail vertices. We denote by E(T )
the set of the edges of T . We take an edge e ∈ E(T ), insert a new vertex
at the midpoint of e and denote the new tree by T e; there are four types of
such trees T e as shown in Figure 3, where the new vertex is indicated by a
small circle with a dot in the center. We assign m1 to the new vertex and
assign the same maps of mn,T to the other vertices. Then we define a map
mn,T e

: Tn(V [1]) → V [1] by the compositions of the maps along the oriented
edges of T e.

Next, we define sgn(T e, x1 · · ·xn) ∈ {−1, 1} as follows. Let e ∈ E(T ). If
the trace of oriented edges starting from i-th tail vertex, 1 ≤ i ≤ j, does
not go through e and the trace of oriented edges starting from (j + 1)-th tail
vertex goes through e, then we define

sgn(T e, x1 · · ·xn) := (−1)k1+···+kj ,
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where xi ∈ (V [1])ki . For example, for the type (I) tree in Figure 3 we have
sgn(T e, x1x2x3) = (−1)k1+k2 .

Definition 6.1. We define degree-2-increasing linear maps
m̂n : Tn(V [1]) → V [1], n ≥ 2, by

m̂n(x1 · · ·xn) :=
∑
T e

sgn(T e, x1 · · ·xn)mn,T e
(x1 · · ·xn).

By using m̂n we will prove that the maps m̃n, n = 1, 2, · · · , satisfy the
equations in Proposition 2.3. We take an edge E of an oriented planar tree T
and a new vertex at the midpoint of E. We take an edge E+ ∈ E(T ) whose
starting point is the new vertex and an edge E− ∈ E(T ) whose end point is
the new vertex. Note that mn,T E+

and mn,T E−
are linear maps correspond-

ing to type (III) and type (IV), respectively, and that sgn(TE+ , x1 · · ·xn) =
sgn(TE− , x1 · · ·xn). From (4) we obtain

mn,T E+
+ mn,T E−

= mΠ
n,T,E −mid

n,T,E ,

where mΠ
n,T,E is the map in which we replace −H of mn,T at the midpoint

of E by Π and mid
n,T,E is the map in which we replace −H of mn,T at the

midpoint of E by id. Hence we obtain

m̂n(x1 · · ·xn) =
∑

T e, type (I), (II)

sgn(T e, x1 · · ·xn)mn,T e
(x1 · · ·xn)

+
∑
T

∑
E, internal edge

sgn(TE± , x1 · · ·xn)mΠ
n,T,E(x1 · · ·xn)

−
∑
T

∑
E, internal edge

sgn(TE± , x1 · · ·xn)mid
n,T,E(x1 · · ·xn).

Proposition 6.2. We have

−
∑
T

∑
E, internal edge

sgn(TE± , x1 · · ·xn)mid
n,T,E(x1 · · ·xn)

=
∑
T e

sgn(T e, x1 · · ·xn)mn,T e
(x1 · · ·xn).

Proof. We take an oriented planar tree T and an internal edge e of T .
Then we remove the edge e to decompose T into two pieces and glue these
two pieces together at the vertices which were the starting point and the end
point of e. We thus obtain a new oriented planar tree Ce(T ), which we call
the contraction of T at e. Note that I(Ce(T )) = I(T ) − 1. Fix an oriented
planar tree T ′ with n tail vertices and fix an internal vertex v of T ′. Let {T i}
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be the set of the oriented planar trees such that CEi(T i) = T ′ with the end
point of Ei corresponding to v. Consider the sum

−
∑
T i

sgn(T i
Ei , x1 · · ·xn)mid

n,T i,Ei(x1 · · ·xn).

Since m is an A∞-structure, by Proposition 2.3, the sum is∑
e∈E(T ′)

sgn(T ′
e, x1 · · ·xn)mn,T ′e

(x1 · · ·xn),

where e has v as a starting or end point. By considering the above sums for
all oriented trees and all internal vertices, we obtain the identities asserted in
the proposition. �

The right hand side of the identity in Proposition 6.2 is m̂n. Hence

0 =
∑

T e, type (I), (II)

sgn(T e, x1 · · ·xn)mn,T e
(x1 · · ·xn)

+
∑
T

∑
E, internal edge

sgn(TE± , x1 · · ·xn)mΠ
n,T,E(x1 · · ·xn).

On the other hand, from (5) and m̃1 := m1, we obtain∑
T e, type (I)

sgn(T e, x1 · · ·xn)mn,T e
(x1 · · ·xn)

=
∑
T

n∑
j=1

(−1)k1+···+kj−1mn,T (x1 · · ·m1(xj) · · ·xn)

=
n∑

j=1

(−1)k1+···+kj−1m̃n(x1 · · · m̃1(xj) · · ·xn)

and ∑
T e, type (II)

sgn(T e, x1 · · ·xn)mn,T e
(x1 · · ·xn)

=
∑
T

m1

(
mn,T (x1 · · ·xn)

)
= m̃1

(
m̃n(x1 · · ·xn)

)
.

Let T1 and T2 be oriented planar trees. By gluing the root vertex of T2 to the
j-th tail vertex of T1, we obtain an oriented planar tree denoted by T1 ◦j T2.
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From (3) we get

∑
T

∑
E, internal edge

sgn(TE± , x1 · · ·xn)mΠ
n,T,E(x1 · · ·xn)

=
∑
T

∑
T=T1◦jT2

(−1)k1+···+kj−1mn−l+1,T1(x1 · · ·ml,T2(xj · · ·xj+l−1) · · ·xn)

=
n−1∑
l=2

n−l+1∑
j=1

(−1)k1+···+kj−1m̃n−l+1(x1 · · · m̃l(xj · · ·xj+l−1) · · ·xn).

Summing up the above equations, we obtain

n∑
l=1

n−l+1∑
j=1

(−1)k1+···+kj−1m̃n−l+1(x1 · · ·xj−1m̃l(xj · · ·xj+l−1)xj+l · · ·xn) = 0.

By Proposition 2.3 this means that m̃n, n = 1, 2, . . . , define an A∞-structure
m̃ of V . This completes the proof of Theorem 3.3.

7. Proof of Theorem 3.5

We prove that the functions gn : Tn(V [1]) → V [1], n = 1, 2, · · · , in Defini-
tion 3.4 satisfy the equations in Proposition 2.4.

Let T be an oriented planar tree. We define maps gn,T e
: Tn(V [1]) → V [1]

by replacing Π of mn,T e
at the root vertex of T e by −H.

Definition 7.1. We define degree-1-increasing linear maps
ĝn : Tn(V [1]) → V [1], n ≥ 2, by

ĝn(x1 · · ·xn) :=
∑
T e

sgn(T e, x1 · · ·xn)gn,T e
(x1 · · ·xn).

In a similar fashion as in the previous section, we obtain

0 =
∑

T e, type (I), (II)

sgn(T e, x1 · · ·xn)gn,T e
(x1 · · ·xn)

+
∑
T

∑
E, internal edge

sgn(TE± , x1 · · ·xn)gΠ
n,T,E(x1 · · ·xn).
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On the other hand, from (5) and m̃1 := m1, we obtain∑
T e, type (I)

sgn(T e, x1 · · ·xn)gn,T e
(x1 · · ·xn)

=
∑
T

n∑
j=1

(−1)k1+···+kj−1gn,T (x1 · · ·m1(xj) · · ·xn)

=
n∑

j=1

(−1)k1+···+kj−1gn(x1 · · · m̃1(xj) · · ·xn).

From (4) and g1 := id, we obtain∑
T e, type (II)

sgn(T e, x1 · · ·xn)gn,T e
(x1 · · ·xn)

= −m1

(
gn(x1 · · ·xn)

)
−

∑
l≥2,h1+···+hl=n,hj≥1

ml

(
gh1(x1 · · ·xh1) · · · ghl

(xh1+···hl−1+1 · · ·xn)
)

+ g1

(
m̃n(x1 · · ·xn)

)
.

Moreover, from (3) we obtain∑
T

∑
E, internal edge

sgn(TE± , x1 · · ·xn)gΠ
n,T,E(x1 · · ·xn)

=
∑
T

∑
T=T1◦jT2

(−1)k1+···+kj−1gn−l+1,T1(x1 · · ·ml,T2(xj · · ·xj+l−1) · · ·xn)

=
n−1∑
l=2

n−l+1∑
j=1

(−1)k1+···+kj−1gn−l+1(x1 · · · m̃l(xj · · ·xj+l−1) · · ·xn).

Summing up the above equations, we obtain

0 = −
n∑

l=1

∑
h1+···+hl=n,hj≥1

ml

(
gh1(x1 · · ·xh1) · · · ghl

(xh1+···hl−1+1 · · ·xn)
)

+
n∑

l=1

n−l+1∑
j=1

(−1)k1+···+kj−1gn−l+1(x1 · · · m̃l(xj · · ·xj+l−1) · · ·xn).

By Proposition 2.4 this means that gn, n = 1, 2, . . . , define an A∞-morphism
g from (V, m̃) to (V,m). This completes the proof of Theorem 3.5.

Appendix A. Expression of g in Lemma 2.5 by trees

In Lemma 2.5 we constructed gk inductively. In this appendix, we exhibit a
construction for gk by using oriented planar trees. Let T be an oriented planar
tree, and assign f−1

1 to each vertex, −f−1
1 to each new vertex and to the root
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vertex, and fk to each vertex of arity k. We define a map gn,T : Tn(V ′) → V

by the compositions of the maps along the oriented edges of T .

Definition A.1. We define degree-preserving linear maps
gn : Tn(V ′) → V by

• g1 := f−1
1 ,

• gn :=
∑

T gn,T , n ≥ 2.
The sum is over the oriented planar trees with n tail vertices.

Lemma A.2. The maps gn, n = 1, 2, . . ., define the inverse of f in Lemma
2.5.

The proof of this lemma is left to the reader.
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