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QUASI- ISOMORPHISMS OF A.-ALGEBRAS AND
ORIENTED PLANAR TREES

MANABU AKAHO

ABSTRACT. We construct quasi-isomorphisms of A-infinity algebras by
using oriented planar trees and give an analog of Hodge decompositions
for A-infinity algebras.

1. Introduction

In this paper we prove a minimal model theorem for A..-algebras in the
sense of Kontsevich [3], and construct the following quasi-isomorphisms
through oriented planar trees introduced by Stasheff [6]:

THEOREM 1.1. Let (V,m) and (V',m') be Ay -algebras which have har-
monic projections and F an As-morphism from (V,m) to (V',m'). If F
is a quasi-isomorphism, then there is a quasi-isomorphism from (V' ,m') to
(V,m) which induces the inverse of (F1)« between the cohomology groups of
the cochain complezes (V[1],m1) and (V'[1],m}).

In [4] Kontsevich gives a similar theorem for L..-algebras, which follows
from the minimal model theorem in [3].

The content of our paper is as follows: Section 2 recalls some A..-algebraic
notions. Section 3 contains the statement of the two main theorems of this
paper; the proofs are given in Sections 6 and 7, respectively. Section 4 de-
scribes the minimal model theorem of A-algebras, and Section 5 contains
the proof of Theorem 1.1.

2. Preliminaries

We recall without proof some fundamental lemmas and propositions; see
[2].
Let V := @, .z V" be a graded vector space. We define T"(V) := V®---®
V' (n times), and T'(V) := €D,,5, T"(V), and denote v1 ® - -- ®@ v, € T™(V)
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by vy - - - v, for simplicity. Note that the grading of v; - - - v, is the sum of the
gradings of the v}s. We define a linear map A : T(V) — T(V) @ T(V) by

n—1

Avy - -vp) = Z('Ul © 1) @ (Vi - Un)-

i=1
For graded vector spaces V and V', let f : T(V) — T(V’) be a linear map
which satisfies the following conditions:
(i) Af =(f® fA.
(ii) f preserves the grading.
We have a natural projection 7 : (V') — V' and define grading-preserving
linear maps by

fni=m0 flpnyy : THV) =V, n=1,2,---.

LEMMA 2.1. We have

f(vl"'vn) :Z Z fh1('U1""Uh1)"'fhl(vh1+---+hl—1+1""Un)'

=1 hi+--+h;=n,h; >1

Conversely, a linear map f : T(V) — T(V') expressed in the above form with
grading-preserving linear maps fn : T"(V) — V' satisfies (1) and (ii).

Let m : T(V) — T(V) be a linear map which satisfies the following condi-
tions:
(iii) (m®id+id ®@m)A = Am, where (id @m)(z @ y) := (=1)Fz @ m(y)
for x of grading k.
(iv) m increases the grading by 1.
We have a natural projection 7 : T(V) — V and define grading-1-increasing
linear maps

My :=TOMm

Tn(V) ZT"(V) — ‘/, n = 1,2, et

LEMMA 2.2.  We have
n n—Il+1

m('l)l . 'Un) = Z Z (71)k1+"'+k]'71v1 e vj—lml(vj e Uj+l—1)vj+l c Uy,
=1 j=1

where v; € V¥i. Conversely, a linear map m : T(V) — T(V) expressed in the
above form with grading-1-increasing linear maps m,, : T™(V) — V satisfies
(iil) and (iv).

For a graded vector space V = @, ., V¥ we introduce a new graded vector
space V[1] whose grading is defined by (V[1])¥ := V*+1 If m : T(V[1]) —
T(V[1]) satisfies (iii), (iv) and mm = 0, then we call (V,m) an As-algebra
and m an A-structure of V. From Lemma 2.2 we obtain the following
proposition; see [2]:
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ProPOSITION 2.3. m : T(V[1]) — T(V[1]) is an Ax-structure if and only

n
Do GO (g oam (g @) T ) = 0,

When n = 1, the above equation is
(1) mimy = 0.
Hence we obtain a cochain complex (V[1],m1). Let (V,m) and (V',m’) be
Aso-algebras. If f: T(V[1]) — T(V'[1]) satisfies (i), (ii) and m’f = fm, then
we call f an A,-morphism. From Lemma 2.1 and Lemma 2.2 we obtain the
following proposition:

ProposITION 2.4. f : T(V[1]) — T(V'[1]) is an As-morphism if and
only if

n
> > My (fro (@1 any) o o (Thgtothg g1 @)
=1 hlJr---Jrhl:’ﬂ,hjZl
n n—I+1
(71)k1+...+kj71fn—l+l (xl e Ij—lml(xj - 1;]_"_[_1)1;]_"_[ I xn)’

l

1 j=1
where x; € (V[1])%:.

<

When n = 1, the above equation is
(2) myfi = fimi.

Hence f1 induces a homomorphism (f1), between the cohomology groups of
(V[1],mq) and (V'[1],m}). If (f1).« is an isomorphism, then we call f a quasi-
isomorphism.

LEMMA 2.5. Let f: T(V) — T(V') satisfy (i) and (ii). If f1 : V = V'
is an isomorphism of vector spaces, then f has an inverse g : T(V') — T(V),
which also satisfies (1) and (ii).

Proof. We construct g,, inductively. Define g; := f; ! and assume that we
have obtained gy for h < k—1. It is easy to see that fg = gf = id if and only
if the following equations hold:

fi(gr(z1---xp))
k
= —Zfl( > ghl(ffl"'xhl)"'9h;($h1+---+h171+1"‘xk))~

=2 hlJrJth:k,klehJZl
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Since f; is an isomorphism, gx(z1 ---x) can be defined. Hence, by the in-
ductive step, we obtain g, for all n so that fg = gf = id. ]

From Lemma 2.5 we obtain the following lemma:

LEMMA 2.6. Let f be an A-morphism from (V,m) to (V',m/). If f1 :
V(1] — V'[1] is an isomorphism of vector spaces, then f is an isomorphism of
Aso-algebras, i.e., there is an Aso-morphism g : (V' ,m') — (V,m) such that
fg=gf =id.

3. Main constructions

We assume that an A..-algebra (V,m) has a grading-preserving linear map
IT: V[1] — V1] and a grading-1-decreasing linear map H : V[1] — V[1] such
that

(3) 1% =11,

(4) id-II=mH + Hm,.
From (1) and (4) we obtain

(5) mqIl = IIm; .

Next, we introduce oriented planar trees; see Figure 1 below and [5]. An
oriented planar tree is a finite, connected, simply connected and oriented 1-
dimensional graph which has some tail vertices and exactly one root vertex.
We call the number of edges coming into a vertex v the arity of v. The arity of
an internal vertex is greater than or equal to 2, and that of a root vertex is 1.
The number of edges starting from a tail vertex is 1; similarly the number of
edges starting from an internal vertex is 1. We denote the number of internal
vertices of an oriented planar tree T' by I(T).

We construct a tree T from an oriented planar tree T as in Figure 2, by
inserting a new vertex as the midpoint of each internal edge of T. Because
the arity of a new vertex is one, T is not an oriented planar tree in our sense.
Then we assign II to each tail vertex and to the root vertex, —H to each
new vertex and my to each internal vertex of arity k, and we define a map
M, : T"(V[1]) — V[1] by the compositions of the maps along the oriented
edges of T. For example, if T is as in Figure 2,

ms, (1 x5) = Uma ((—=Hme) (I (21) (= Hma)(IL(22)11(z3)(24)))IL(25)).

DEFINITION 3.1. We define grading-1-increasing linear maps
My T*(V[1]) — V1] by
(] ’ﬁll =Mma,
o my, = ZT My, N > 2,

where the sum is over the oriented planar trees with n tail vertices.
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Since we assign II to each tail vertex and to the root vertex of T', we obtain:
LEMMA 3.2. IImy(z1---xp) = M, (Mg - - - Hay,).
The following is the first main theorem in this paper:

THEOREM 3.3. The maps m,, n = 1,2,..., define an Ay -structure m
of V.
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Now we assign II to each tail vertex, —H to each new vertex and to the
root vertex and my to each internal vertex of arity k, and we define a map
gn1 : T"(V[1]) — V1] by the compositions of the maps along the oriented
edges of T, i.e., we replace II of m,, 1 at the root vertex of T by —H.

DEFINITION 3.4. We define grading-preserving linear maps
gn : T"(V[1]) — V[1] by
e g1 :=id,
® gn = ZT gn,T, M > 2,
where the sum is over the oriented planar trees with n tail vertices.

The following is the second main theorem in this paper:

THEOREM 3.5. The maps g,, n = 1,2,..., define an Ay -morphism g :
(V,m) — (V,m).

Using Lemma 2.6 and g; = id, we obtain the following corollary:

COROLLARY 3.6. The As-algebra (V,m) is isomorphic to the A -algebra
(V.m).
By (3) we obtain V[1] = ImII & Im(id —IT), and define
B[1]:=ImII, C[1]:=Im(id—II).
Since we assign II to each root vertex of an oriented planar tree in the defini-

tion of My, n > 2, we obtain Im,, C B[1], n > 2. Moreover, from (5) and
my :=my we obtain Imy|gp; C B[1]. Hence, the following lemma holds:

LEMMA 3.7.  (B,m|gp)) is an Ax-algebra.
DEFINITION 3.8. We define grading-preserving linear maps
in : T™(B[1]) — V[1] by
o il =id |B[1],

o i,:=0, n>2.

LEMMA 3.9. The maps i,, n = 1,2,..., define an Ay-morphism i :
(B,m|pp)) — (V,m).

DEFINITION 3.10. We define grading-preserving linear maps
pa s T(V[1]) - B1] by
o pr =1L,
e p,: =0, n>2.

LEMMA 3.11. The maps p,, n = 1,2,..., define an As.-morphism p :
(V.m) — (B,m|p))-
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Proof. By Lemma 3.2 we have

n n—I+1
:p(z Z (_1)k1+~»-+/€j1x1...xj1ml(xj...xj+l1)xj+l...1-n>

=1 j=1
n n—Il+1
= Z (—1)k1+”'+kj_lnl‘1 . -Hl‘j_lﬂﬁll(l‘j . '.ifj_H_l)Hl‘j_H s H.In
=1 j=1
n n—Il+1
= Z (71)k1+”'+kj71]__[$1 cee Hl'j_l’ﬁll(ﬂl’j s sz+l—1)sz+l e H%n
=1 j=1

=m(zy - - - Txzy,)
= m|pnp(x1 - Tn),

where z; € (V[1])%. Thus p is an A-morphism from (V,m) to (B,m|p[))-
O

LEMMA 3.12. i : (B,m|gp)) — (V,m) and p : (V,m) — (B,m|pp)) are
quasi-isomorphisms.

Since we assign 11 to each tail vertex of oriented planar trees in the definition
of My, n > 2, we obtain Im my,|c;) = 0, n > 2. Moreover, from (5) and
my :=my we obtain Im 7,|cp C C[1]. Hence, the following lemma holds:

LEMMA 3.13.  (C,m|cpy) is an Ax-algebra.

DEFINITION 3.14. We define grading-preserving linear maps
Jn 2 T(C]) — V1] by
e ji:=id|op,
e j,:=0,n>2.

LEMMA 3.15. The maps jn, n = 1,2,..., define an As-morphism j :
(C,mlcpy) — (V,m).

DEFINITION 3.16. We define grading-preserving linear maps
g : T"(V[1]) — C[1] by
® (g = id —H,
e g, =0, n>2

LEMMA 3.17. The maps g,, n = 1,2,..., define an A.,-morphism q :
(V,m) — (C,mlcp)-

Proof. We can prove this lemma in a similar fashion as Lemma 3.11. O

LEMMA 3.18. The cohomology of (C[1],7m1) vanishes.
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Proof. Since (m1H+ Hmq)II = (id —II)II = 0, we have Hm 11 = —m HII.
Take an element (id —II)x € C[1] such that m4(id —=II)x = 0. Then Hm x =
HmIlx = —my HIlz. So we can conclude

(id—II)x = myHx + Hiyxe = myHx — my Hllz = mqy H(id -1z
and
(id =Mz = (id )%z = (id —11)7my H (id —I1)z = 7y (id —IT) H (id — 1)z,

which implies that the cohomology of (C[1], 1) vanishes. O

4. Minimal model theorem for A..-algebras

We now state the minimal model theorem for A..-algebras. We first recall
harmonic forms of Hodge decompositions.

Let (V,m) be an As-algebra. If my; = 0, then we call (V,m) minimal. If
m, =0, n > 2, and the cohomology group of the cochain complex (V[1],m;)
vanishes, then we call (V,m) linear contractible. Note that (C,m|c) is linear
contractible. If (V,m) has linear maps IT and H such that m; |Bj1] = 0, then we
call T a harmonic projection. Note that m1|p[) # 0 in general; for example,
if IT = id and H = 0, then IT and H satisfy (3) and (4), but mi|pp # 0 in
general.

THEOREM 4.1 (Minimal model theorem for A.-algebras). If (V,m) has
a harmonic projection, then (B[1],m|pgp) is minimal and (C[1],m|cp) is
linear contractible.

5. Proof of Theorem 1.1

In Theorem 1.1 we obtain the following sequence of quasi-isomorphisms:
~ i ~\ 9 F N CONE TN r Ty
(B,m|ppn) = (V,m) = (V,m) = (VI,m') "= (V',m") = (B, m’|g/pyy).-

Since our As-algebras have harmonic projections, (B,m|pgp;) and
(B, 773/\}3'[1]) are minimal, and hence the linear map (p’ o(¢)toFogo i)l :
B[1] — B’[1] is an isomorphism of vector spaces. Therefore, by Lemma 2.6,
K= (p’ o(g"H! oFogoi)_1 : (B’,n:/|3[1]) — (B, m|pp) is an isomorphism
of A-algebras, and we obtain the following sequence of quasi-isomorphisms:
=1 B , ~ .
(V') 5 (V) (B |y 5 (Bl pp) > (Vi) & (Vim).

Hence the map G : (V/,m') — (V,m) defined by goio K op' o (g )71 isa
quasi-isomophism, as claimed in the theorem.
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6. Proof of Theorem 3.3

We prove that the maps m,, : T"(V[1]) — V[1], n=1,2,-- -, in Definition
3.1 satisfy the equations in Proposition 2.3.

Let T be an oriented planar tree with n tail vertices. We denote by E(T)
the set of the edges of T. We take an edge e € E(T), insert a new vertex
at the midpoint of e and denote the new tree by T.; there are four types of
such trees T, as shown in Figure 3, where the new vertex is indicated by a
small circle with a dot in the center. We assign m; to the new vertex and
assign the same maps of m,, r to the other vertices. Then we define a map
m,, 7.+ T"(V[1]) — V[1] by the compositions of the maps along the oriented
edges of T,.

Next, we define sgn(T.,z;y -+ x,) € {—1,1} as follows. Let e € E(T). If
the trace of oriented edges starting from ¢-th tail vertex, 1 < i < j, does
not go through e and the trace of oriented edges starting from (j + 1)-th tail
vertex goes through e, then we define

sgn(Te,xl . xn) = (_1)kl+-.-+k]‘7
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where z; € (V[1])¥. For example, for the type (I) tree in Figure 3 we have
sen(Te, v12923) = (—1)k1tke,

DEFINITION 6.1. We define degree-2-increasing linear maps
My : T"(V[1]) — V[1], n > 2, by

(1‘1 . In)

e

Mp (T Xp) 1= Z sgn(Te,xq - Tn)M,, 7
T.

By using 1, we will prove that the maps m,, n = 1,2,---, satisfy the
equations in Proposition 2.3. We take an edge F of an oriented planar tree T

and a new vertex at the midpoint of E. We take an edge E € E(T') whose

starting point is the new vertex and an edge F_ € E(T') whose end point is
the new vertex. Note that m = _and m, 7  are linear maps correspond-
ey n,le_

ing to type (III) and type (IV), respectively, and that sgn(T'g, ,z1 -+ x,) =
sen(Tg_, o1 -+ 2,). From (4) we obtain
+ mn,T;;f = mE,T E mi;iT,Ea

THTMTEJr s

where m,rL{T, g 1s the map in which we replace —H of m,, r at the midpoint
of E by II and mi,?’T’E is the map in which we replace —H of m,, 1 at the
midpoint of E by id. Hence we obtain

'ﬁ'Ln(l‘l .. I‘n) = Z sgn(Taxl --~xn)mn’76(zl xn)

T, type (I), (IT)

+Z Z sen(Tp, , 71 xn)mgTE(xlxn)

T E, internal edge

—Z Z sen(T g, , 71 ---xn)miiTE(xl C X))

T E, internal edge
ProPOSITION 6.2. We have

— Z Z sen(Tp,, o1 - ~xn)mi,?}T’E(x1 Cp)

T E, internal edge

= Z sg(Te, 1+~ )M, 7 (T1- - Tn).
T.

Proof. We take an oriented planar tree 1" and an internal edge e of T.
Then we remove the edge e to decompose T' into two pieces and glue these
two pieces together at the vertices which were the starting point and the end
point of e. We thus obtain a new oriented planar tree C.(T'), which we call
the contraction of T at e. Note that I(C.(T)) = I(T) — 1. Fix an oriented
planar tree T” with n tail vertices and fix an internal vertex v of T". Let {T"}
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be the set of the oriented planar trees such that Cpi(T%) = T’ with the end
point of E* corresponding to v. Consider the sum

- Z Sgn(ﬁE’iaxl t xn)mi?’Ti’Ei (z1 - ).
T'L

Since m is an A..-structure, by Proposition 2.3, the sum is

Z sgn(T’¢,my -+ - Tp)m, 77 (T1 0 Tn),
e€E(T")

where e has v as a starting or end point. By considering the above sums for
all oriented trees and all internal vertices, we obtain the identities asserted in
the proposition. O

The right hand side of the identity in Proposition 6.2 is m,,. Hence

0= Z sgn(Te, x1 - ~9cn)mnje (1)

Te, type (I), (IT)

Jrz Z sen(Tg, , 71 xn)mgTE(xlxn)

T E, internal edge

On the other hand, from (5) and My := my, we obtain

Z sen(Te,zy - zp)m, 7, (21 Tn)
Te, type (I)

= Z Z(_l)k1+-..+kj—lmn,T(x1 o .ml(zj) .. xn)

T j=1
n

mn(xl . "m1(17j) .. In)

(71)k1+"'+kj—1
=1
and

Z sgn(Te, 1 ), 7, (T1 - Tn)
T, type (II)

= Zml (M, (21 -+ ) = Mg (g (@1 -+ 20)).

Let T1 and T» be oriented planar trees. By gluing the root vertex of T5 to the
Jj-th tail vertex of 77, we obtain an oriented planar tree denoted by 77 o; T5.
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From (3) we get

Z Z sen(Tp, 21 zn)mhy p p(21 - 20)

T E, internal edge
_§ : } : Eid ki
= (_1) 1 J 1mnil+17Tl(x1 “.ml,Tg(‘rj'."Tj+lfl).”xn)
T T=Ty0;T,
n—1n—I+1

=33 (R, (@ wge) - ).

1=2 j=1
Summing up the above equations, we obtain

n n—Il+1
Z Z (—1)k1+"'+kj71mn,l+1(x1 .. 'xjflml(xj .o 'xj+lfl)xj+l .o xn) = O

=1 j=

—

By Proposition 2.3 this means that m,, n =1,2,..., define an A,.-structure
m of V. This completes the proof of Theorem 3.3.

7. Proof of Theorem 3.5

We prove that the functions g, : T"(V[1]) — V[1], n =1,2,---, in Defini-
tion 3.4 satisfy the equations in Proposition 2.4.
Let T' be an oriented planar tree. We define maps g, 7 : 7" (V[1]) — V1]

by replacing II of m,, 7 at the root vertex of T. by —H.

DEFINITION 7.1. We define degree-1-increasing linear maps
gn : T™(V[1]) = V[1], n > 2, by

Gn(x1 - xp) 1= Z sen(Te, 1 Tn)Gp 7, (T1 Tn).
T.

In a similar fashion as in the previous section, we obtain

0= Z sen(Te, 1+ Tn)g, 7, (T1 Tn)

Te, type (I), (II)

+ Z Z sgn(Tpy a1+ xn)grl;[,T,E(xl e Tp).

T E, internal edge
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On the other hand, from (5) and m; := m;, we obtain

Z sgn(Te, xy - @) g, 7, (X1 Tn)
Te, type (I)

S (1R g e ma(a) - )
j=1

1= =[]

(71)’“1*"'*’”*19”@1 s () ).

<.
Il
-

From (4) and g; := id, we obtain
Z Sgn(T(ﬂxl "'mN)gn,Tﬁ(xl xn)
Te, type (II)
= —ml(gn(xl ... xn))
- Z ml(ghl(ml"'xh1)'"ghz(mh1+"'hz—1+1 l‘n))
122, hy 4+ hy=n,h; >1
+ g1 (M (1 20)).
Moreover, from (3) we obtain

Yo > sen(Tean g (@ oz

T E, internal edge
_ ki4-—+ki_
= E E (_1) 1 J 1gn—l+1,T1(x1"'ml,T2(xj"'xj—&-l—l)"'xn)
T T=Ti0;T>
n—1n—I+1

=D 3 (=nhrthg (@ (g ) - ).

=2 j=1

Summing up the above equations, we obtain

n
0= —Z Z mi(gn, (@1 Tn) - Ghy (Thygoohy 41 Tn)
=1 h1++hl:n7h121
n n—Il+1
S R g (e ) ).

=1 j=1
By Proposition 2.4 this means that g,, n =1,2,..., define an A.,-morphism
g from (V,m) to (V,m). This completes the proof of Theorem 3.5.

Appendix A. Expression of g in Lemma 2.5 by trees

In Lemma 2.5 we constructed gi, inductively. In this appendix, we exhibit a
construction for g by using oriented planar trees. Let T' be an oriented planar
tree, and assign f; ! to each vertex, — fi ! to each new vertex and to the root
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vertex, and fi, to each vertex of arity k. We define a map g, 7 : T"(V') - V
by the compositions of the maps along the oriented edges of T.

DEFINITION A.1. We define degree-preserving linear maps
gn : T"(V') =V by
® g1 = fl_la
® gn = ZT gn,T, M Z 2.
The sum is over the oriented planar trees with n tail vertices.

LEMMA A.2. The maps g, n=1,2,..., define the inverse of f in Lemma
2.5.

The proof of this lemma is left to the reader.
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