QUASI-ISOMORPHISMS OF A_{∞}-ALGEBRAS AND ORIENTED PLANAR TREES

MANABU AKAHO

Abstract

We construct quasi-isomorphisms of A-infinity algebras by using oriented planar trees and give an analog of Hodge decompositions for A-infinity algebras.

1. Introduction

In this paper we prove a minimal model theorem for A_{∞}-algebras in the sense of Kontsevich [3], and construct the following quasi-isomorphisms through oriented planar trees introduced by Stasheff [6]:

Theorem 1.1. Let (V, m) and $\left(V^{\prime}, m^{\prime}\right)$ be A_{∞}-algebras which have harmonic projections and F an A_{∞}-morphism from (V, m) to (V^{\prime}, m^{\prime}). If F is a quasi-isomorphism, then there is a quasi-isomorphism from $\left(V^{\prime}, m^{\prime}\right)$ to (V, m) which induces the inverse of $\left(F_{1}\right)_{*}$ between the cohomology groups of the cochain complexes $\left(V[1], m_{1}\right)$ and $\left(V^{\prime}[1], m_{1}^{\prime}\right)$.

In [4] Kontsevich gives a similar theorem for L_{∞}-algebras, which follows from the minimal model theorem in [3].

The content of our paper is as follows: Section 2 recalls some A_{∞}-algebraic notions. Section 3 contains the statement of the two main theorems of this paper; the proofs are given in Sections 6 and 7, respectively. Section 4 describes the minimal model theorem of A_{∞}-algebras, and Section 5 contains the proof of Theorem 1.1.

2. Preliminaries

We recall without proof some fundamental lemmas and propositions; see [2].

Let $V:=\bigoplus_{k \in \mathbf{Z}} V^{k}$ be a graded vector space. We define $T^{n}(V):=V \otimes \cdots \otimes$ $V(n$ times $)$, and $T(V):=\bigoplus_{n \geq 1} T^{n}(V)$, and denote $v_{1} \otimes \cdots \otimes v_{n} \in T^{n}(V)$

Received November 6, 2002; received in final form August 20, 2006.
2000 Mathematics Subject Classification. Primary 16E45. Secondary 18G55.
Supported by JSPS Grant-in-Aid for Scientific Research (Wakate (B)).
by $v_{1} \cdots v_{n}$ for simplicity. Note that the grading of $v_{1} \cdots v_{n}$ is the sum of the gradings of the $v_{i}^{\prime} s$. We define a linear map $\Delta: T(V) \rightarrow T(V) \otimes T(V)$ by

$$
\Delta\left(v_{1} \cdots v_{n}\right):=\sum_{i=1}^{n-1}\left(v_{1} \cdots v_{i}\right) \otimes\left(v_{i+1} \cdots v_{n}\right)
$$

For graded vector spaces V and V^{\prime}, let $f: T(V) \rightarrow T\left(V^{\prime}\right)$ be a linear map which satisfies the following conditions:
(i) $\Delta f=(f \otimes f) \Delta$.
(ii) f preserves the grading.

We have a natural projection $\pi: T\left(V^{\prime}\right) \rightarrow V^{\prime}$ and define grading-preserving linear maps by

$$
f_{n}:=\left.\pi \circ f\right|_{T^{n}(V)}: T^{n}(V) \rightarrow V^{\prime}, n=1,2, \cdots
$$

Lemma 2.1. We have

$$
f\left(v_{1} \cdots v_{n}\right)=\sum_{l=1}^{n} \sum_{h_{1}+\cdots+h_{l}=n, h_{i} \geq 1} f_{h_{1}}\left(v_{1} \cdots v_{h_{1}}\right) \cdots f_{h_{l}}\left(v_{h_{1}+\cdots+h_{l-1}+1} \cdots v_{n}\right)
$$

Conversely, a linear map $f: T(V) \rightarrow T\left(V^{\prime}\right)$ expressed in the above form with grading-preserving linear maps $f_{n}: T^{n}(V) \rightarrow V^{\prime}$ satisfies (i) and (ii).

Let $m: T(V) \rightarrow T(V)$ be a linear map which satisfies the following conditions:
(iii) $(m \hat{\otimes} \mathrm{id}+\mathrm{id} \hat{\otimes} m) \Delta=\Delta m$, where $(\mathrm{id} \hat{\otimes} m)(x \otimes y):=(-1)^{k} x \otimes m(y)$ for x of grading k.
(iv) m increases the grading by 1 .

We have a natural projection $\pi: T(V) \rightarrow V$ and define grading-1-increasing linear maps

$$
m_{n}:=\left.\pi \circ m\right|_{T^{n}(V)}: T^{n}(V) \rightarrow V, n=1,2, \cdots
$$

Lemma 2.2. We have

$$
m\left(v_{1} \cdots v_{n}\right)=\sum_{l=1}^{n} \sum_{j=1}^{n-l+1}(-1)^{k_{1}+\cdots+k_{j-1}} v_{1} \cdots v_{j-1} m_{l}\left(v_{j} \cdots v_{j+l-1}\right) v_{j+l} \cdots v_{n}
$$

where $v_{i} \in V^{k_{i}}$. Conversely, a linear map $m: T(V) \rightarrow T(V)$ expressed in the above form with grading-1-increasing linear maps $m_{n}: T^{n}(V) \rightarrow V$ satisfies (iii) and (iv).

For a graded vector space $V=\bigoplus_{k \in \mathbf{Z}} V^{k}$, we introduce a new graded vector space $V[1]$ whose grading is defined by $(V[1])^{k}:=V^{k+1}$. If $m: T(V[1]) \rightarrow$ $T(V[1])$ satisfies (iii), (iv) and $m m=0$, then we call (V, m) an A_{∞}-algebra and m an A_{∞}-structure of V. From Lemma 2.2 we obtain the following proposition; see [2]:

Proposition 2.3. $m: T(V[1]) \rightarrow T(V[1])$ is an A_{∞}-structure if and only if

$$
\sum_{l=1}^{n} \sum_{j=1}^{n-l+1}(-1)^{k_{1}+\cdots+k_{j-1}} m_{n-l+1}\left(x_{1} \cdots x_{j-1} m_{l}\left(x_{j} \cdots x_{j+l-1}\right) x_{j+l} \cdots x_{n}\right)=0
$$

where $x_{j} \in(V[1])^{k_{j}}$.
When $n=1$, the above equation is

$$
\begin{equation*}
m_{1} m_{1}=0 \tag{1}
\end{equation*}
$$

Hence we obtain a cochain complex $\left(V[1], m_{1}\right)$. Let (V, m) and $\left(V^{\prime}, m^{\prime}\right)$ be A_{∞}-algebras. If $f: T(V[1]) \rightarrow T\left(V^{\prime}[1]\right)$ satisfies (i), (ii) and $m^{\prime} f=f m$, then we call f an A_{∞}-morphism. From Lemma 2.1 and Lemma 2.2 we obtain the following proposition:

Proposition 2.4. $\quad f: T(V[1]) \rightarrow T\left(V^{\prime}[1]\right)$ is an A_{∞}-morphism if and only if

$$
\begin{aligned}
& \sum_{l=1}^{n} \sum_{h_{1}+\cdots+h_{l}=n, h_{j} \geq 1} m_{l}^{\prime}\left(f_{h_{1}}\left(x_{1} \cdots x_{h_{1}}\right) \cdots f_{h_{l}}\left(x_{h_{1}+\cdots+h_{l-1}+1} \cdots x_{n}\right)\right) \\
& \quad=\sum_{l=1}^{n} \sum_{j=1}^{n-l+1}(-1)^{k_{1}+\cdots+k_{j-1}} f_{n-l+1}\left(x_{1} \cdots x_{j-1} m_{l}\left(x_{j} \cdots x_{j+l-1}\right) x_{j+l} \cdots x_{n}\right) \\
& \text { where } x_{i} \in(V[1])^{k_{i}}
\end{aligned}
$$

When $n=1$, the above equation is

$$
\begin{equation*}
m_{1}^{\prime} f_{1}=f_{1} m_{1} \tag{2}
\end{equation*}
$$

Hence f_{1} induces a homomorphism $\left(f_{1}\right)_{*}$ between the cohomology groups of $\left(V[1], m_{1}\right)$ and $\left(V^{\prime}[1], m_{1}^{\prime}\right)$. If $\left(f_{1}\right)_{*}$ is an isomorphism, then we call f a quasiisomorphism.

LEMMA 2.5. Let $f: T(V) \rightarrow T\left(V^{\prime}\right)$ satisfy (i) and (ii). If $f_{1}: V \rightarrow V^{\prime}$ is an isomorphism of vector spaces, then f has an inverse $g: T\left(V^{\prime}\right) \rightarrow T(V)$, which also satisfies (i) and (ii).

Proof. We construct g_{n} inductively. Define $g_{1}:=f_{1}^{-1}$ and assume that we have obtained g_{h} for $h \leq k-1$. It is easy to see that $f g=g f=\mathrm{id}$ if and only if the following equations hold:

$$
\begin{aligned}
& f_{1}\left(g_{k}\left(x_{1} \cdots x_{k}\right)\right) \\
& =-\sum_{l=2}^{k} f_{l}\left(\sum_{h_{1}+\cdots+h_{l}=k, k-1 \geq h_{j} \geq 1} g_{h_{1}}\left(x_{1} \cdots x_{h_{1}}\right) \cdots g_{h_{l}}\left(x_{h_{1}+\cdots+h_{l-1}+1} \cdots x_{k}\right)\right) .
\end{aligned}
$$

Since f_{1} is an isomorphism, $g_{k}\left(x_{1} \cdots x_{k}\right)$ can be defined. Hence, by the inductive step, we obtain g_{n} for all n so that $f g=g f=\mathrm{id}$.

From Lemma 2.5 we obtain the following lemma:
LEmma 2.6. Let f be an A_{∞}-morphism from (V, m) to $\left(V^{\prime}, m^{\prime}\right)$. If f_{1} : $V[1] \rightarrow V^{\prime}[1]$ is an isomorphism of vector spaces, then f is an isomorphism of A_{∞}-algebras, i.e., there is an A_{∞}-morphism $g:\left(V^{\prime}, m^{\prime}\right) \rightarrow(V, m)$ such that $f g=g f=\mathrm{id}$.

3. Main constructions

We assume that an A_{∞}-algebra (V, m) has a grading-preserving linear map $\Pi: V[1] \rightarrow V[1]$ and a grading-1-decreasing linear map $H: V[1] \rightarrow V[1]$ such that

$$
\begin{align*}
\Pi^{2} & =\Pi \tag{3}\\
\mathrm{id}-\Pi & =m_{1} H+H m_{1} \tag{4}
\end{align*}
$$

From (1) and (4) we obtain

$$
\begin{equation*}
m_{1} \Pi=\Pi m_{1} \tag{5}
\end{equation*}
$$

Next, we introduce oriented planar trees; see Figure 1 below and [5]. An oriented planar tree is a finite, connected, simply connected and oriented 1dimensional graph which has some tail vertices and exactly one root vertex. We call the number of edges coming into a vertex v the arity of v. The arity of an internal vertex is greater than or equal to 2 , and that of a root vertex is 1 . The number of edges starting from a tail vertex is 1 ; similarly the number of edges starting from an internal vertex is 1 . We denote the number of internal vertices of an oriented planar tree T by $I(T)$.

We construct a tree \bar{T} from an oriented planar tree T as in Figure 2, by inserting a new vertex as the midpoint of each internal edge of T. Because the arity of a new vertex is one, \bar{T} is not an oriented planar tree in our sense. Then we assign Π to each tail vertex and to the root vertex, $-H$ to each new vertex and m_{k} to each internal vertex of arity k, and we define a map $m_{n, T}: T^{n}(V[1]) \rightarrow V[1]$ by the compositions of the maps along the oriented edges of \bar{T}. For example, if \bar{T} is as in Figure 2,

$$
m_{5, T}\left(x_{1} \cdots x_{5}\right):=\Pi m_{2}\left(\left(-H m_{2}\right)\left(\Pi\left(x_{1}\right)\left(-H m_{3}\right)\left(\Pi\left(x_{2}\right) \Pi\left(x_{3}\right) \Pi\left(x_{4}\right)\right)\right) \Pi\left(x_{5}\right)\right)
$$

Definition 3.1. We define grading-1-increasing linear maps $\tilde{m}_{n}: T^{n}(V[1]) \rightarrow V[1]$ by

- $\tilde{m}_{1}:=m_{1}$,
- $\tilde{m}_{n}:=\sum_{T} m_{n, T}, n \geq 2$,
where the sum is over the oriented planar trees with n tail vertices.

Figure 1

Figure 2
Since we assign Π to each tail vertex and to the root vertex of \bar{T}, we obtain:
Lemma 3.2. $\quad \Pi \tilde{m}_{n}\left(x_{1} \cdots x_{n}\right)=\tilde{m}_{n}\left(\Pi x_{1} \cdots \Pi x_{n}\right)$.
The following is the first main theorem in this paper:
Theorem 3.3. The maps $\tilde{m}_{n}, n=1,2, \ldots$, define an A_{∞}-structure \tilde{m} of V.

Now we assign Π to each tail vertex, $-H$ to each new vertex and to the root vertex and m_{k} to each internal vertex of arity k, and we define a map $g_{n, T}: T^{n}(V[1]) \rightarrow V[1]$ by the compositions of the maps along the oriented edges of \bar{T}, i.e., we replace Π of $m_{n, T}$ at the root vertex of \bar{T} by $-H$.

Definition 3.4. We define grading-preserving linear maps $g_{n}: T^{n}(V[1]) \rightarrow V[1]$ by

- $g_{1}:=\mathrm{id}$,
- $g_{n}:=\sum_{T} g_{n, T}, n \geq 2$,
where the sum is over the oriented planar trees with n tail vertices.
The following is the second main theorem in this paper:
TheOrem 3.5. The maps $g_{n}, n=1,2, \ldots$, define an A_{∞}-morphism g : $(V, \tilde{m}) \rightarrow(V, m)$.

Using Lemma 2.6 and $g_{1}=\mathrm{id}$, we obtain the following corollary:
Corollary 3.6. The A_{∞}-algebra (V, \tilde{m}) is isomorphic to the A_{∞}-algebra (V, m).

By (3) we obtain $V[1]=\operatorname{Im} \Pi \oplus \operatorname{Im}(\mathrm{id}-\Pi)$, and define

$$
B[1]:=\operatorname{Im} \Pi, \quad C[1]:=\operatorname{Im}(\mathrm{id}-\Pi)
$$

Since we assign Π to each root vertex of an oriented planar tree in the definition of $\tilde{m}_{n}, n \geq 2$, we obtain $\operatorname{Im} \tilde{m}_{n} \subset B[1], n \geq 2$. Moreover, from (5) and $\tilde{m}_{1}:=m_{1}$ we obtain $\left.\operatorname{Im} \tilde{m}_{1}\right|_{B[1]} \subset B[1]$. Hence, the following lemma holds:

Lemma 3.7. $\left(B,\left.\tilde{m}\right|_{B[1]}\right)$ is an A_{∞}-algebra.
Definition 3.8. We define grading-preserving linear maps $i_{n}: T^{n}(B[1]) \rightarrow V[1]$ by

- $i_{1}:=\left.\mathrm{id}\right|_{B[1]}$,
- $i_{n}:=0, n \geq 2$.

LEMMA 3.9. The maps $i_{n}, n=1,2, \ldots$, define an A_{∞}-morphism i : $\left(B,\left.\tilde{m}\right|_{B[1]}\right) \rightarrow(V, \tilde{m})$.

Definition 3.10. We define grading-preserving linear maps $p_{n}: T^{n}(V[1]) \rightarrow B[1]$ by

- $p_{1}:=\Pi$,
- $p_{n}:=0, n \geq 2$.

Lemma 3.11. The maps $p_{n}, n=1,2, \ldots$, define an A_{∞}-morphism p : $(V, \tilde{m}) \rightarrow\left(B,\left.\tilde{m}\right|_{B[1]}\right)$.

Proof. By Lemma 3.2 we have

$$
\begin{aligned}
& p \tilde{m}\left(x_{1} \cdots x_{n}\right) \\
& =p\left(\sum_{l=1}^{n} \sum_{j=1}^{n-l+1}(-1)^{k_{1}+\cdots+k_{j-1}} x_{1} \cdots x_{j-1} \tilde{m}_{l}\left(x_{j} \cdots x_{j+l-1}\right) x_{j+l} \cdots x_{n}\right) \\
& =\sum_{l=1}^{n} \sum_{j=1}^{n-l+1}(-1)^{k_{1}+\cdots+k_{j-1}} \Pi x_{1} \cdots \Pi x_{j-1} \Pi \tilde{m}_{l}\left(x_{j} \cdots x_{j+l-1}\right) \Pi x_{j+l} \cdots \Pi x_{n} \\
& =\sum_{l=1}^{n} \sum_{j=1}^{n-l+1}(-1)^{k_{1}+\cdots+k_{j-1}} \Pi x_{1} \cdots \Pi x_{j-1} \tilde{m}_{l}\left(\Pi x_{j} \cdots \Pi x_{j+l-1}\right) \Pi x_{j+l} \cdots \Pi x_{n} \\
& =\tilde{m}\left(\Pi x_{1} \cdots \Pi x_{n}\right) \\
& =\left.\tilde{m}\right|_{B[1]} p\left(x_{1} \cdots x_{n}\right)
\end{aligned}
$$

where $x_{j} \in(V[1])^{k_{j}}$. Thus p is an A_{∞}-morphism from (V, \tilde{m}) to $\left(B,\left.\tilde{m}\right|_{B[1]}\right)$.

Lemma 3.12. $\quad i:\left(B,\left.\tilde{m}\right|_{B[1]}\right) \rightarrow(V, \tilde{m})$ and $p:(V, \tilde{m}) \rightarrow\left(B,\left.\tilde{m}\right|_{B[1]}\right)$ are quasi-isomorphisms.

Since we assign Π to each tail vertex of oriented planar trees in the definition of $\tilde{m}_{n}, n \geq 2$, we obtain $\left.\operatorname{Im} \tilde{m}_{n}\right|_{C[1]}=0, n \geq 2$. Moreover, from (5) and $\tilde{m}_{1}:=m_{1}$ we obtain $\left.\operatorname{Im} \tilde{m}_{1}\right|_{C[1]} \subset C[1]$. Hence, the following lemma holds:

Lemma 3.13. $\left(C,\left.\tilde{m}\right|_{C[1]}\right)$ is an A_{∞}-algebra.
Definition 3.14. We define grading-preserving linear maps $j_{n}: T^{n}(C[1]) \rightarrow V[1]$ by

- $j_{1}:=\left.\mathrm{id}\right|_{C[1]}$,
- $j_{n}:=0, n \geq 2$.

Lemma 3.15. The maps $j_{n}, n=1,2, \ldots$, define an A_{∞}-morphism j : $\left(C,\left.\tilde{m}\right|_{C[1]}\right) \rightarrow(V, \tilde{m})$.

Definition 3.16. We define grading-preserving linear maps $q_{n}: T^{n}(V[1]) \rightarrow C[1]$ by

- $q_{1}:=\mathrm{id}-\Pi$,
- $q_{n}:=0, n \geq 2$.

Lemma 3.17. The maps $q_{n}, n=1,2, \ldots$, define an A_{∞}-morphism q : $(V, \tilde{m}) \rightarrow\left(C,\left.\tilde{m}\right|_{C[1]}\right)$.

Proof. We can prove this lemma in a similar fashion as Lemma 3.11.
Lemma 3.18. The cohomology of $\left(C[1], \tilde{m}_{1}\right)$ vanishes.

Proof. Since $\left(\tilde{m}_{1} H+H \tilde{m}_{1}\right) \Pi=(\mathrm{id}-\Pi) \Pi=0$, we have $H \tilde{m}_{1} \Pi=-\tilde{m}_{1} H \Pi$. Take an element $(\mathrm{id}-\Pi) x \in C[1]$ such that $\tilde{m}_{1}(\mathrm{id}-\Pi) x=0$. Then $H \tilde{m}_{1} x=$ $H \tilde{m}_{1} \Pi x=-\tilde{m}_{1} H \Pi x$. So we can conclude

$$
(\mathrm{id}-\Pi) x=\tilde{m}_{1} H x+H \tilde{m}_{1} x=\tilde{m}_{1} H x-\tilde{m}_{1} H \Pi x=\tilde{m}_{1} H(\mathrm{id}-\Pi) x
$$

and

$$
(\mathrm{id}-\Pi) x=(\mathrm{id}-\Pi)^{2} x=(\mathrm{id}-\Pi) \tilde{m}_{1} H(\mathrm{id}-\Pi) x=\tilde{m}_{1}(\mathrm{id}-\Pi) H(\mathrm{id}-\Pi) x
$$

which implies that the cohomology of $\left(C[1], \tilde{m}_{1}\right)$ vanishes.

4. Minimal model theorem for A_{∞}-algebras

We now state the minimal model theorem for A_{∞}-algebras. We first recall harmonic forms of Hodge decompositions.

Let (V, m) be an A_{∞}-algebra. If $m_{1}=0$, then we call (V, m) minimal. If $m_{n}=0, n \geq 2$, and the cohomology group of the cochain complex ($V[1], m_{1}$) vanishes, then we call (V, m) linear contractible. Note that $\left(C,\left.\tilde{m}\right|_{C[1]}\right)$ is linear contractible. If (V, m) has linear maps Π and H such that $\left.m_{1}\right|_{B[1]}=0$, then we call Π a harmonic projection. Note that $\left.m_{1}\right|_{B[1]} \neq 0$ in general; for example, if $\Pi=$ id and $H=0$, then Π and H satisfy (3) and (4), but $\left.m_{1}\right|_{B[1]} \neq 0$ in general.

Theorem 4.1 (Minimal model theorem for A_{∞}-algebras). If (V, m) has a harmonic projection, then $\left(B[1],\left.\tilde{m}\right|_{B[1]}\right)$ is minimal and $\left(C[1],\left.\tilde{m}\right|_{C[1]}\right)$ is linear contractible.

5. Proof of Theorem 1.1

In Theorem 1.1 we obtain the following sequence of quasi-isomorphisms:

$$
\left(B,\left.\tilde{m}\right|_{B[1]}\right) \xrightarrow{i}(V, \tilde{m}) \xrightarrow{g}(V, m) \xrightarrow{F}\left(V^{\prime}, m^{\prime}\right) \xrightarrow{\left(g^{\prime}\right)^{-1}}\left(V^{\prime}, \tilde{m^{\prime}}\right) \xrightarrow{p^{\prime}}\left(B^{\prime},\left.\tilde{m}^{\prime}\right|_{B^{\prime}[1]}\right) .
$$

Since our A_{∞}-algebras have harmonic projections, $\left(B,\left.\tilde{m}\right|_{B[1]}\right)$ and $\left(B^{\prime},\left.\tilde{m^{\prime}}\right|_{B^{\prime}[1]}\right)$ are minimal, and hence the linear map $\left(p^{\prime} \circ\left(g^{\prime}\right)^{-1} \circ F \circ g \circ i\right)_{1}$: $B[1] \rightarrow B^{\prime}[1]$ is an isomorphism of vector spaces. Therefore, by Lemma 2.6, $K=\left(p^{\prime} \circ\left(g^{\prime}\right)^{-1} \circ F \circ g \circ i\right)^{-1}:\left(B^{\prime},\left.\tilde{m^{\prime}}\right|_{B[1]}\right) \rightarrow\left(B,\left.\tilde{m}\right|_{B[1]}\right)$ is an isomorphism of A_{∞}-algebras, and we obtain the following sequence of quasi-isomorphisms:

$$
\left(V^{\prime}, m^{\prime}\right) \xrightarrow{\left(g^{\prime}\right)^{-1}}\left(V^{\prime}, \tilde{m^{\prime}}\right) \xrightarrow{p^{\prime}}\left(B^{\prime},\left.\tilde{m}^{\prime}\right|_{B^{\prime}[1]}\right) \xrightarrow{K}\left(B,\left.\tilde{m}\right|_{B[1]}\right) \xrightarrow{i}(V, \tilde{m}) \xrightarrow{g}(V, m) .
$$

Hence the map $G:\left(V^{\prime}, m^{\prime}\right) \rightarrow(V, m)$ defined by $g \circ i \circ K \circ p^{\prime} \circ\left(g^{\prime}\right)^{-1}$ is a quasi-isomophism, as claimed in the theorem.

type (I) tail edge

type (III) + internal edge

type (II) root edge

Figure 3

6. Proof of Theorem 3.3

We prove that the maps $\tilde{m}_{n}: T^{n}(V[1]) \rightarrow V[1], n=1,2, \cdots$, in Definition 3.1 satisfy the equations in Proposition 2.3.

Let T be an oriented planar tree with n tail vertices. We denote by $E(\bar{T})$ the set of the edges of \bar{T}. We take an edge $e \in E(\bar{T})$, insert a new vertex at the midpoint of e and denote the new tree by \bar{T}_{e}; there are four types of such trees \bar{T}_{e} as shown in Figure 3, where the new vertex is indicated by a small circle with a dot in the center. We assign m_{1} to the new vertex and assign the same maps of $m_{n, T}$ to the other vertices. Then we define a map $m_{n, \bar{T}_{e}}: T^{n}(V[1]) \rightarrow V[1]$ by the compositions of the maps along the oriented edges of \bar{T}_{e}.

Next, we define $\operatorname{sgn}\left(\bar{T}_{e}, x_{1} \cdots x_{n}\right) \in\{-1,1\}$ as follows. Let $e \in E(\bar{T})$. If the trace of oriented edges starting from i-th tail vertex, $1 \leq i \leq j$, does not go through e and the trace of oriented edges starting from $(j+1)$-th tail vertex goes through e, then we define

$$
\operatorname{sgn}\left(\bar{T}_{e}, x_{1} \cdots x_{n}\right):=(-1)^{k_{1}+\cdots+k_{j}},
$$

where $x_{i} \in(V[1])^{k_{i}}$. For example, for the type (I) tree in Figure 3 we have $\operatorname{sgn}\left(\bar{T}_{e}, x_{1} x_{2} x_{3}\right)=(-1)^{k_{1}+k_{2}}$.

Definition 6.1. We define degree-2-increasing linear maps $\hat{m}_{n}: T^{n}(V[1]) \rightarrow V[1], n \geq 2$, by

$$
\hat{m}_{n}\left(x_{1} \cdots x_{n}\right):=\sum_{\bar{T}_{e}} \operatorname{sgn}\left(\bar{T}_{e}, x_{1} \cdots x_{n}\right) m_{n, \bar{T}_{e}}\left(x_{1} \cdots x_{n}\right)
$$

By using \hat{m}_{n} we will prove that the maps $\tilde{m}_{n}, n=1,2, \cdots$, satisfy the equations in Proposition 2.3. We take an edge E of an oriented planar tree T and a new vertex at the midpoint of E. We take an edge $E_{+} \in E(\bar{T})$ whose starting point is the new vertex and an edge $E_{-} \in E(\bar{T})$ whose end point is the new vertex. Note that $m_{n, \bar{T}_{E_{+}}}$and $m_{n, \bar{T}_{E_{-}}}$are linear maps corresponding to type (III) and type (IV), respectively, and that $\operatorname{sgn}\left(\bar{T}_{E_{+}}, x_{1} \cdots x_{n}\right)=$ $\operatorname{sgn}\left(\bar{T}_{E_{-}}, x_{1} \cdots x_{n}\right)$. From (4) we obtain

$$
m_{n, \bar{T}_{E_{+}}}+m_{n, \bar{T}_{E_{-}}}=m_{n, T, E}^{\Pi}-m_{n, T, E}^{\mathrm{id}}
$$

where $m_{n, T, E}^{\Pi}$ is the map in which we replace $-H$ of $m_{n, T}$ at the midpoint of E by Π and $m_{n, T, E}^{\mathrm{id}}$ is the map in which we replace $-H$ of $m_{n, T}$ at the midpoint of E by id. Hence we obtain

$$
\begin{aligned}
\hat{m}_{n}\left(x_{1} \cdots x_{n}\right)= & \sum_{\bar{T}_{e}, \text { type (I), (II) }} \operatorname{sgn}\left(\bar{T}_{e}, x_{1} \cdots x_{n}\right) m_{n, \bar{T}_{e}}\left(x_{1} \cdots x_{n}\right) \\
& +\sum_{T} \sum_{E, \text { internal edge }} \operatorname{sgn}\left(\bar{T}_{E_{ \pm}}, x_{1} \cdots x_{n}\right) m_{n, T, E}^{\Pi}\left(x_{1} \cdots x_{n}\right) \\
& -\sum_{T} \sum_{E, \text { internal edge }} \operatorname{sgn}\left(\bar{T}_{E_{ \pm}}, x_{1} \cdots x_{n}\right) m_{n, T, E}^{\text {id }}\left(x_{1} \cdots x_{n}\right)
\end{aligned}
$$

Proposition 6.2. We have

$$
\begin{aligned}
& -\sum_{T} \sum_{E, \text { internal edge }} \operatorname{sgn}\left(\bar{T}_{E_{ \pm}}, x_{1} \cdots x_{n}\right) m_{n, T, E}^{\mathrm{id}}\left(x_{1} \cdots x_{n}\right) \\
& \quad=\sum_{\bar{T}_{e}} \operatorname{sgn}\left(\bar{T}_{e}, x_{1} \cdots x_{n}\right) m_{n, \bar{T}_{e}}\left(x_{1} \cdots x_{n}\right)
\end{aligned}
$$

Proof. We take an oriented planar tree T and an internal edge e of T. Then we remove the edge e to decompose T into two pieces and glue these two pieces together at the vertices which were the starting point and the end point of e. We thus obtain a new oriented planar tree $C_{e}(T)$, which we call the contraction of T at e. Note that $I\left(C_{e}(T)\right)=I(T)-1$. Fix an oriented planar tree T^{\prime} with n tail vertices and fix an internal vertex v of T^{\prime}. Let $\left\{T^{i}\right\}$
be the set of the oriented planar trees such that $C_{E^{i}}\left(T^{i}\right)=T^{\prime}$ with the end point of E^{i} corresponding to v. Consider the sum

$$
-\sum_{T^{i}} \operatorname{sgn}\left(\overline{T^{i}} E^{i}, x_{1} \cdots x_{n}\right) m_{n, T^{i}, E^{i}}^{\mathrm{id}}\left(x_{1} \cdots x_{n}\right)
$$

Since m is an A_{∞}-structure, by Proposition 2.3, the sum is

$$
\sum_{e \in E\left(\overline{T^{\prime}}\right)} \operatorname{sgn}\left(\overline{T^{\prime}} e, x_{1} \cdots x_{n}\right) m_{n, \overline{T^{\prime}} e}\left(x_{1} \cdots x_{n}\right)
$$

where e has v as a starting or end point. By considering the above sums for all oriented trees and all internal vertices, we obtain the identities asserted in the proposition.

The right hand side of the identity in Proposition 6.2 is \hat{m}_{n}. Hence

$$
\begin{aligned}
0= & \sum_{\bar{T}_{e}, \text { type (I), (II) }} \operatorname{sgn}\left(\bar{T}_{e}, x_{1} \cdots x_{n}\right) m_{n, \bar{T}_{e}}\left(x_{1} \cdots x_{n}\right) \\
& +\sum_{T} \sum_{E, \text { internal edge }} \operatorname{sgn}\left(\bar{T}_{E_{ \pm}}, x_{1} \cdots x_{n}\right) m_{n, T, E}^{\Pi}\left(x_{1} \cdots x_{n}\right) .
\end{aligned}
$$

On the other hand, from (5) and $\tilde{m}_{1}:=m_{1}$, we obtain

$$
\begin{aligned}
& \quad \sum_{\bar{T}_{e}, \text { type (I) }} \operatorname{sgn}\left(\bar{T}_{e}, x_{1} \cdots x_{n}\right) m_{n, \bar{T}_{e}}\left(x_{1} \cdots x_{n}\right) \\
& \quad=\sum_{T} \sum_{j=1}^{n}(-1)^{k_{1}+\cdots+k_{j-1}} m_{n, T}\left(x_{1} \cdots m_{1}\left(x_{j}\right) \cdots x_{n}\right) \\
& \quad=\sum_{j=1}^{n}(-1)^{k_{1}+\cdots+k_{j-1}} \tilde{m}_{n}\left(x_{1} \cdots \tilde{m}_{1}\left(x_{j}\right) \cdots x_{n}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{\bar{T}_{e}, \text { type (II) }} \operatorname{sgn}\left(\bar{T}_{e}, x_{1} \cdots x_{n}\right) m_{n, \bar{T}_{e}}\left(x_{1} \cdots x_{n}\right) \\
& \quad=\sum_{T} m_{1}\left(m_{n, T}\left(x_{1} \cdots x_{n}\right)\right)=\tilde{m}_{1}\left(\tilde{m}_{n}\left(x_{1} \cdots x_{n}\right)\right) .
\end{aligned}
$$

Let T_{1} and T_{2} be oriented planar trees. By gluing the root vertex of T_{2} to the j-th tail vertex of T_{1}, we obtain an oriented planar tree denoted by $T_{1} \circ_{j} T_{2}$.

From (3) we get

$$
\begin{aligned}
& \sum_{T} \sum_{E, \text { internal edge }} \operatorname{sgn}\left(\bar{T}_{E_{ \pm}}, x_{1} \cdots x_{n}\right) m_{n, T, E}^{\Pi}\left(x_{1} \cdots x_{n}\right) \\
& \quad=\sum_{T} \sum_{T=T_{1} \circ_{j} T_{2}}(-1)^{k_{1}+\cdots+k_{j-1}} m_{n-l+1, T_{1}}\left(x_{1} \cdots m_{l, T_{2}}\left(x_{j} \cdots x_{j+l-1}\right) \cdots x_{n}\right) \\
& \quad=\sum_{l=2}^{n-1} \sum_{j=1}^{n-l+1}(-1)^{k_{1}+\cdots+k_{j-1}} \tilde{m}_{n-l+1}\left(x_{1} \cdots \tilde{m}_{l}\left(x_{j} \cdots x_{j+l-1}\right) \cdots x_{n}\right)
\end{aligned}
$$

Summing up the above equations, we obtain

$$
\sum_{l=1}^{n} \sum_{j=1}^{n-l+1}(-1)^{k_{1}+\cdots+k_{j-1}} \tilde{m}_{n-l+1}\left(x_{1} \cdots x_{j-1} \tilde{m}_{l}\left(x_{j} \cdots x_{j+l-1}\right) x_{j+l} \cdots x_{n}\right)=0
$$

By Proposition 2.3 this means that $\tilde{m}_{n}, n=1,2, \ldots$, define an A_{∞}-structure \tilde{m} of V. This completes the proof of Theorem 3.3.

7. Proof of Theorem 3.5

We prove that the functions $g_{n}: T^{n}(V[1]) \rightarrow V[1], n=1,2, \cdots$, in Definition 3.4 satisfy the equations in Proposition 2.4.

Let T be an oriented planar tree. We define maps $g_{n, \bar{T}_{e}}: T^{n}(V[1]) \rightarrow V[1]$ by replacing Π of $m_{n, \bar{T}_{e}}$ at the root vertex of \bar{T}_{e} by $-H$.

Definition 7.1. We define degree-1-increasing linear maps $\hat{g}_{n}: T^{n}(V[1]) \rightarrow V[1], n \geq 2$, by

$$
\hat{g}_{n}\left(x_{1} \cdots x_{n}\right):=\sum_{\bar{T}_{e}} \operatorname{sgn}\left(\bar{T}_{e}, x_{1} \cdots x_{n}\right) g_{n, \bar{T}_{e}}\left(x_{1} \cdots x_{n}\right) .
$$

In a similar fashion as in the previous section, we obtain

$$
\begin{aligned}
0= & \sum_{\bar{T}_{e}, \text { type (I), (II) }} \operatorname{sgn}\left(\bar{T}_{e}, x_{1} \cdots x_{n}\right) g_{n, \bar{T}_{e}}\left(x_{1} \cdots x_{n}\right) \\
& +\sum_{T} \sum_{E, \text { internal edge }} \operatorname{sgn}\left(\bar{T}_{E_{ \pm}}, x_{1} \cdots x_{n}\right) g_{n, T, E}^{\Pi}\left(x_{1} \cdots x_{n}\right) .
\end{aligned}
$$

On the other hand, from (5) and $\tilde{m}_{1}:=m_{1}$, we obtain

$$
\begin{aligned}
& \quad \sum_{\bar{T}_{e}, \text { type (I) }} \operatorname{sgn}\left(\bar{T}_{e}, x_{1} \cdots x_{n}\right) g_{n, \bar{T}_{e}}\left(x_{1} \cdots x_{n}\right) \\
& \quad=\sum_{T} \sum_{j=1}^{n}(-1)^{k_{1}+\cdots+k_{j-1}} g_{n, T}\left(x_{1} \cdots m_{1}\left(x_{j}\right) \cdots x_{n}\right) \\
& \quad=\sum_{j=1}^{n}(-1)^{k_{1}+\cdots+k_{j-1}} g_{n}\left(x_{1} \cdots \tilde{m}_{1}\left(x_{j}\right) \cdots x_{n}\right)
\end{aligned}
$$

From (4) and $g_{1}:=\mathrm{id}$, we obtain

$$
\begin{aligned}
& \sum_{\bar{T}_{e}, \text { type (II) }} \operatorname{sgn}\left(\bar{T}_{e}, x_{1} \cdots x_{n}\right) g_{n, \bar{T}_{e}}\left(x_{1} \cdots x_{n}\right) \\
& \quad=-m_{1}\left(g_{n}\left(x_{1} \cdots x_{n}\right)\right) \\
& \quad-\sum_{l \geq 2, h_{1}+\cdots+h_{l}=n, h_{j} \geq 1} m_{l}\left(g_{h_{1}}\left(x_{1} \cdots x_{h_{1}}\right) \cdots g_{h_{l}}\left(x_{h_{1}+\cdots h_{l-1}+1} \cdots x_{n}\right)\right) \\
& \quad+g_{1}\left(\tilde{m}_{n}\left(x_{1} \cdots x_{n}\right)\right) .
\end{aligned}
$$

Moreover, from (3) we obtain

$$
\begin{aligned}
& \sum_{T} \sum_{E, \text { internal edge }} \operatorname{sgn}\left(\bar{T}_{E_{ \pm}}, x_{1} \cdots x_{n}\right) g_{n, T, E}^{\Pi}\left(x_{1} \cdots x_{n}\right) \\
& =\sum_{T} \sum_{T=T_{1} \circ_{j} T_{2}}(-1)^{k_{1}+\cdots+k_{j-1}} g_{n-l+1, T_{1}}\left(x_{1} \cdots m_{l, T_{2}}\left(x_{j} \cdots x_{j+l-1}\right) \cdots x_{n}\right) \\
& =\sum_{l=2}^{n-1} \sum_{j=1}^{n-l+1}(-1)^{k_{1}+\cdots+k_{j-1}} g_{n-l+1}\left(x_{1} \cdots \tilde{m}_{l}\left(x_{j} \cdots x_{j+l-1}\right) \cdots x_{n}\right) .
\end{aligned}
$$

Summing up the above equations, we obtain

$$
\begin{aligned}
0= & -\sum_{l=1}^{n} \sum_{h_{1}+\cdots+h_{l}=n, h_{j} \geq 1} m_{l}\left(g_{h_{1}}\left(x_{1} \cdots x_{h_{1}}\right) \cdots g_{h_{l}}\left(x_{h_{1}+\cdots h_{l-1}+1} \cdots x_{n}\right)\right) \\
& +\sum_{l=1}^{n} \sum_{j=1}^{n-l+1}(-1)^{k_{1}+\cdots+k_{j-1}} g_{n-l+1}\left(x_{1} \cdots \tilde{m}_{l}\left(x_{j} \cdots x_{j+l-1}\right) \cdots x_{n}\right) .
\end{aligned}
$$

By Proposition 2.4 this means that $g_{n}, n=1,2, \ldots$, define an A_{∞}-morphism g from (V, \tilde{m}) to (V, m). This completes the proof of Theorem 3.5.

Appendix A. Expression of g in Lemma 2.5 by trees

In Lemma 2.5 we constructed g_{k} inductively. In this appendix, we exhibit a construction for g_{k} by using oriented planar trees. Let T be an oriented planar tree, and assign f_{1}^{-1} to each vertex, $-f_{1}^{-1}$ to each new vertex and to the root
vertex, and f_{k} to each vertex of arity k. We define a map $g_{n, T}: T^{n}\left(V^{\prime}\right) \rightarrow V$ by the compositions of the maps along the oriented edges of \bar{T}.

Definition A.1. We define degree-preserving linear maps $g_{n}: T^{n}\left(V^{\prime}\right) \rightarrow V$ by

- $g_{1}:=f_{1}^{-1}$,
- $g_{n}:=\sum_{T} g_{n, T}, n \geq 2$.

The sum is over the oriented planar trees with n tail vertices.
Lemma A.2. The maps $g_{n}, n=1,2, \ldots$, define the inverse of f in Lemma 2.5.

The proof of this lemma is left to the reader.

References

[1] K. Fukaya, Lecture at TI Tech, December 2000.
[2] V. K. A. M. Gugenheim and J. D. Stasheff, On perturbations and A_{∞}-structures, Bull. Soc. Math. Belg. Sér. A 38 (1986), 237-246 (1987). MR 885535 (88m:55023)
[3] M. Kontsevich, Formality conjecture, Deformation theory and symplectic geometry (Ascona, 1996), Math. Phys. Stud., vol. 20, Kluwer Acad. Publ., Dordrecht, 1997, pp. 139156. MR 1480721 (98m:58044)
[4] , Deformation quantization of Poisson manifolds, I, Lett. Math. Phys. 66 (2003), 157-216.
[5] M. Kontsevich and Y. Soibelman, Homological mirror symmetry and torus fibrations, Symplectic geometry and mirror symmetry (Seoul, 2000), World Sci. Publ., River Edge, NJ, 2001, pp. 203-263. MR 1882331 (2003c:32025)
[6] J. Stasheff, H-spaces from a homotopy point of view, Lecture Notes in Mathematics, Vol. 161, Springer-Verlag, Berlin, 1970. MR 0270372 (42 \#5261)

Manabu Akaho, Department of Mathematics, Tokyo Metropolitan University, Minami-Ohsawa 1-1 Hachioji, Tokyo 192-0397, Japan

E-mail address: akaho@comp.metro-u.ac.jp

