# OMEGA-LIMIT SETS CLOSE TO SINGULAR-HYPERBOLIC ATTRACTORS 

C. M. CARBALLO AND C. A. MORALES


#### Abstract

We study the omega-limit sets $\omega_{X}(x)$ in an isolating block $U$ of a singular-hyperbolic attractor for three-dimensional vector fields $X$. We prove that for every vector field $Y$ close to $X$ the set $\{x \in U$ : $\omega_{Y}(x)$ contains a singularity $\}$ is residual in $U$. This is used to prove the persistence of singular-hyperbolic attractors with only one singularity as chain-transitive Lyapunov stable sets. These results generalize well known properties of the geometric Lorenz attractor [GW] and the example in [MPu].


## 1. Introduction

The omega-limit set of $x$ with respect to a vector field $X$ with generating flow $X_{t}$ is the accumulation point set $\omega_{X}(x)$ of the positive orbit of $x$, namely

$$
\omega_{X}(x)=\left\{y: y=\lim _{t_{n} \rightarrow \infty} X_{t_{n}}(x) \text { for some sequence } t_{n} \rightarrow \infty\right\}
$$

The structure of the omega-limit sets is well understood for vector fields on compact surfaces. In fact, the Poincaré-Bendixon Theorem asserts that the omega-limit set for vector fields with finitely many singularities in $S^{2}$ is either a periodic orbit or a singularity or a graph. The Schwartz Theorem implies that the omega-limit set of a $C^{\infty}$ vector field on a compact surface either contains a singularity or an open set or is a periodic orbit. Another result is the Peixoto Theorem asserting that open dense subsets of vector fields on any closed orientable surface are Morse-Smale, i.e., their nonwandering set is formed by a finite union of closed orbits all of whose invariant manifolds are in general position. A direct consequence this result is that, for open-dense subsets of vector fields on closed orientable surfaces, most omega-limit sets are contained in the attracting closed orbits. This provides a complete description of the omega-limit sets on closed orientable surfaces.

[^0]The above results are known to be false in dimension $>2$. Hence in general additional hypotheses are needed to understand the omega-limit sets. An important such hypothesis is the hyperbolicity introduced by Smale in the sixties. Recall that a compact invariant set is hyperbolic if it exhibits contracting and expanding directions, which together with the flow's direction form a continuous tangent bundle decomposition. This definition leads to the concept of an Axiom A vector field, defined as one whose non-wandering set is both hyperbolic and the closure of its closed orbits. The Spectral Decomposition Theorem describes the non-wandering set for Axiom A vector fields, namely that such a set decomposes into a finite disjoint union of hyperbolic basic sets. A direct consequence of the Spectral Theorem is that for every Axiom A vector field $X$ there is an open-dense subset of points whose omegalimit sets are contained in the hyperbolic attractors of $X$. By attractor we mean a compact invariant set $\Lambda$ which is transitive (i.e., $\Lambda=\omega_{X}(x)$ for some $x \in \Lambda)$ and satisfies $\Lambda=\bigcap_{t>0} X_{t}(U)$ for some compact neighborhood $U$ of it, called the isolating block. On the other hand, the structure of the omega-limit sets in an isolating block $U$ of a hyperbolic attractor is well known: For every vector field $Y$ close to $X$ the set

$$
\left\{x \in U: \omega_{Y}(x)=\bigcap_{t \geq 0} Y_{t}(U)\right\}
$$

is residual in $U$. In other words, the omega-limit sets in a residual subset of $U$ are uniformly distributed in the maximal invariant set of $Y$ in $U$. This result is a direct consequence of the structural stability of the hyperbolic attractors.

There are many examples of non-hyperbolic vector fields $X$ with a large set of trajectories going to the attractors of $X$. Actually, a conjecture by Palis $[\mathrm{P}]$ claims that this is true for a dense set of vector fields on any compact manifold (although he used a different definition of attractor). A strong evidence for this conjecture is the fact that there is a residual subset of $C^{1}$ vector fields $X$ on any compact manifold exhibiting a residual subset of points whose omegalimit sets are contained in the chain-transitive Lyapunov stable sets of $X$ ([MPa2]). We recall that a compact invariant set $\Lambda$ is chain-transitive if any pair of points on it can be joined by a pseudo-orbit with arbitrarily small jumps. In addition, $\Lambda$ is Lyapunov stable if the positive orbit of a point close to $\Lambda$ remains close to $\Lambda$. The result [ MPa 2 ] is weaker than the Palis conjecture since every attractor is a chain-transitive Lyapunov stable set, but not vice versa.

In this paper we study the omega-limit sets in an isolating block of an attractor for vector fields on compact three-manifolds. Instead of hyperbolicity we shall assume that the attractor is singular-hyperbolic, namely that it has singularities (all hyperbolic) and is partially hyperbolic with volume expanding central direction [MPP1]. These attractors were considered in [MPP1]
for a characterization of $C^{1}$ robust transitive sets with singularities for vector fields on compact three-manifolds (see also [MPP3]). The singular-hyperbolic attractors are not hyperbolic although they have some properties resembling hyperbolic attractors. In particular, they do not have the pseudo-orbit tracing property and are neither expansive nor structural stable.

The motivation for our investigation is the fact that if $U$ is an isolating block of the geometric Lorenz attractor with vector field $X$, then for every $Y$ close to $X$ the set $\left\{x \in U: \omega_{Y}(x)=\bigcap_{t \geq 0} Y_{t}(U)\right\}$ is residual in $U$ (this is precisely the property of the hyperbolic attractors mentioned above). It is then natural to expect that such a conclusion holds if $U$ is an isolating block of a singular-hyperbolic attractor. The answer, however, is negative as the example [MPu, Appendix] shows. Nonetheless we shall prove that if $U$ is the isolating block of a singular-hyperbolic attractor of $X$, then the following alternative property holds: For every vector field $Y C^{r}$ close to $X$ the set

$$
\left\{x \in U: \omega_{Y}(x) \text { contains a singularity }\right\}
$$

is residual in $U$. In other words, the positive orbits in a residual subset of $U$ seem to be "attracted" to the singularities of $Y$ in $U$. This fact can be observed with the computer in the classical polynomial Lorenz equation [L]. It contrasts with the fact that the union of the stable manifolds of the singularities of $Y$ in $U$ is not residual in any open set. We use this property to prove the persistence (as chain-transitive Lyapunov stable sets) of singularhyperbolic attractors with only one singularity.

We now state our result in a precise way. Hereafter $M$ denotes a compact Riemannian three-manifold unless otherwise stated. If $U \subset M$ we say that $R \subset U$ is residual if it can be realized as a countable intersection of open-dense subsets of $U$. It is well known that every residual subset of $U$ is dense in $U$. Let $X$ be a $C^{r}$ vector field in $M$ and let $X_{t}$ be the flow generated by $X, t \in \mathbb{R}$. A compact invariant set is singular if it contains a singularity.

Definition 1.1 (Attractor). An attracting set of $X$ is a compact, invariant, non-empty subset of $X$ that is equal to $\bigcap_{t>0} X_{t}(U)$ for some compact neighborhood $U$ of it. This neighborhood is called an isolating block. An attractor is a transitive attracting set.

Remark 1.2. $[\mathrm{Hu}]$ calls attractor what we call attracting set. Several other definitions of attractor are considered in [Mi].

Denote by $m(L)$ and $\operatorname{Det}(L)$ the minimum norm and the Jacobian of a linear operator $L$, respectively.

Definition 1.3. A compact invariant set $\Lambda$ of $X$ is partially hyperbolic if there is a continuous invariant tangent bundle decomposition $T_{\Lambda} M=E^{s} \oplus E^{c}$ and positive constants $K, \lambda$ such that:
(1) $E^{s}$ is contracting: $\left\|D X_{t}(x) / E_{x}^{s}\right\| \leq K e^{-\lambda t}$, for every $t>0$ and $x \in \Lambda$;
(2) $E^{s}$ dominates $E^{c}:\left\|D X_{t}(x) / E_{x}^{s}\right\| / m\left(D X_{t}(x) / E_{x}^{c}\right) \leq K e^{-\lambda t}$, for every $t>0$ and $x \in \Lambda$.
We say that $\Lambda$ has volume expanding central direction if

$$
\left|\operatorname{Det}\left(D X_{t}(x) / E_{x}^{c}\right)\right| \geq K^{-1} e^{\lambda t}
$$

for every $t>0$ and $x \in \Lambda$.
A singularity $\sigma$ of $X$ is hyperbolic if its eigenvalues are not purely imaginary complex numbers.

Definition 1.4 (Singular-hyperbolic set). A compact invariant set of a vector field $X$ is singular-hyperbolic if it has singularities (all hyperbolic) and is partially hyperbolic with volume expanding central direction [MPP1]. A singular-hyperbolic attractor is an attractor which is also a singular-hyperbolic set.

Singular-hyperbolic attractors cannot be hyperbolic; the most representative example is the geometric Lorenz [GW]. Our main result is the following.

Theorem 1. Let $U$ be an isolating block of a singular-hyperbolic attractor of $X$. If $Y$ is a vector field $C^{r}$ close to $X$, then $\left\{x \in U: \omega_{Y}(x)\right.$ is singular $\}$ is residual in $U$.

This result is used to prove the following theorem.
THEOREM 2. Singular-hyperbolic attractors with only one singularity in $M$ are persistent as chain-transitive Lyapunov stable sets.

The precise statement of Theorem 2 (including the definitions of chain transitive set, Lyapunov stable set and persistence) will be given in Section 7.

This paper is organized as follows. In Section 2 we prove some preliminary lemmas. In particular, Lemma 2.1 introduces the continuation $A_{Y}$ of an attracting set $A$ for nearby vector fields $Y$. In Definition 2.3 we define the region of weak attraction $A_{w}(Z, C)$ of $C$, where $C$ is a compact invariant set of a vector field, as the set of points $z$ such that $\omega_{Z}(z) \cap C \neq \emptyset$. Lemma 2.4 shows that if $U$ is a neighborhood of $C$ and $A_{w}(Z, C) \cap U$ is dense in $U$, then $A_{w}(Z, C) \cap U$ is residual in $U$. We finish this section with some elementary properties of the hyperbolic sets. In Section 3 we present two elementary properties of singular-hyperbolic attracting sets.

In Section 4 we introduce the Property $(P)$ for compact invariant sets $C$ all of whose closed orbits are hyperbolic. It states that the unstable manifold of every periodic orbit in $C$ intersect transversely the stable manifold of a singularity in $C$. In [MPa1] this property has been established for all singularhyperbolic attractors $\Lambda$. In Lemma 4.3 we prove that the property is open,
i.e., it holds for the continuation $\Lambda_{Y}$ of $\Lambda$. The proof is similar to the one in [MPa1].

In Section 5 we study the topological dimension [HW] of the omega-limit sets in an isolating block $U$ of a singular-hyperbolic attracting set with the Property (P). In particular, Theorem 5.2 shows that for $x \in U$ the omega-limit set of $x$ either contains a singularity or has topological dimension one provided the stable manifolds of the singularities in $U$ do not intersect a neighborhood of $x$. The proof uses the methods of [M1] with the Property ( P ) playing the role of the transitivity. We need this theorem in order to apply Bowen's theory of one-dimensional hyperbolic sets [Bo].

In Section 6 we prove Theorem 1. The proof is based on Theorem 6.1, which shows that if $U$ is an isolating block of a singular-hyperbolic attracting set with the Property ( P ) of a vector field $Y$, then $A_{w}(Y, \operatorname{Sing}(Y, U)) \cap U$ is dense in $U$ (here $\operatorname{Sing}(Y, U)$ denotes the set of singularities of $Y$ in $U$ ). The proof follows by applying Bowen's theory (which can be used in view of Theorem 5.2) and the arguments in [MPa1, p. 371]. It will follow from Lemma 2.4 applied to $C=\operatorname{Sing}(Y, U)$ that $A_{w}(Y, \operatorname{Sing}(Y, U)) \cap U$ is residual in $U$. Theorem 1 follows because $\omega_{Y}(x)$ is singular for all $x \in A_{w}(Y, \operatorname{Sing}(Y, U)) \cap U$. In Section 7 we prove Theorem 2 (see Theorem 7.5).

## 2. Preliminary lemmas

We state some preliminary results. The first result claims a sort of stability of the attracting sets. This seems to be well known; we prove it here for completeness. If $M$ is a manifold and $U \subset M$ we denote by $\operatorname{int}(U)$ and $\operatorname{clos}(U)$ the interior and the closure of $U$, respectively.

Lemma 2.1 (Continuation of attracting sets). Let $A$ be an attracting set containing a hyperbolic closed orbit of a $C^{r}$ vector field $X$. If $U$ is an isolating block of $A$, then for every vector field $Y C^{r}$ close to $X$ the continuation

$$
A_{Y}=\bigcap_{t \geq 0} Y_{t}(U)
$$

of $A$ in $U$ is an attracting set with isolating block $U$ of $Y$.
Proof. Since $A$ contains a hyperbolic closed orbit we have $A_{Y} \neq \emptyset$ for every $Y$ close to $X$ (use, for instance, the Hartman-Grobman Theorem [dMP]). Since $U$ is compact, so is $A_{Y}$. Thus, to prove the lemma, we only need to prove that if $Y$ is close to $X$, then $U$ is a compact neighborhood of $A_{Y}$. For this we proceed as follows. Fix an open set $D$ such that

$$
A \subset D \subset \operatorname{clos}(D) \subset \operatorname{int}(U)
$$

and for all $n \in \mathbb{N}$ define

$$
U_{n}=\bigcap_{t \in[0, n]} X_{t}(U) .
$$

Clearly $U_{n}$ is a compact set sequence which is nested $\left(U_{n+1} \subset U_{n}\right)$ and satisfies $A=\bigcap_{n \in \mathbb{N}} U_{n}$. Because $U_{n}$ is nested we can find $n_{0}$ such that $U_{n_{0}} \subset D$. In other words,

$$
\bigcap_{t \in\left[0, n_{0}\right]} X_{t}(U) \subset D
$$

Taking complements, we have

$$
M \backslash D \subset \bigcup_{t \in\left[0, n_{0}\right]} X_{t}(M \backslash U)
$$

But $X_{t}(M \backslash U)$ is open (for all $t$ ) since $U$ is compact and $X_{t}$ is a diffeomorphism. Hence $\left\{X_{t}(M \backslash U): t \in\left[0, n_{0}\right]\right\}$ is an open covering of $M \backslash D$. Because $D$ is open we have $M \backslash D$ is compact and so there are finitely many numbers $t_{1}, \ldots, t_{k} \in\left[0, n_{0}\right]$ such that

$$
M \backslash D \subset X_{t_{1}}(M \backslash U) \cup \cdots \cup X_{t_{k}}(M \backslash U)
$$

By the continuous dependence of $Y_{t}(U)$ on $Y$ (with $t$ fixed) we have

$$
M \backslash D \subset Y_{t_{1}}(M \backslash U) \cup \cdots \cup Y_{t_{k}}(M \backslash U)
$$

for all $Y C^{r}$ close to $X$. Taking complements once more we obtain

$$
Y_{t_{1}}(U) \cap \cdots \cap Y_{t_{k}}(U) \subset D
$$

As $t_{1}, \ldots, t_{k} \geq 0$, we have $\bigcap_{t \in\left[0, n_{0}\right]} Y_{t}(U) \subset Y_{t_{1}}(U) \cap \cdots \cap Y_{t_{k}}(U)$ and therefore

$$
\bigcap_{t \in\left[0, n_{0}\right]} Y_{t}(U) \subset D
$$

for every $Y$ close to $X$. On the other hand, it follows from the definition that $A_{Y} \subset \bigcap_{t \in\left[0, n_{0}\right]} Y_{t}(U)$ and so $A_{Y} \subset D$ for every $Y$ close to $X$. Because $\operatorname{clos}(D) \subset \operatorname{int}(U)$ we have $A_{Y} \subset \operatorname{int}(U)$. This proves that $U$ is a compact neighborhood of $A_{Y}$ and the lemma follows.

REmARK 2.2. The above proof shows that the compact set-valued map $Y \rightarrow A_{Y}$ is continuous in the following sense: For every open set $D$ containing $A$ we have $A_{Y} \subset D$ for every $Y C^{r}$ close to $X$. Such a continuity is weaker than the continuity with respect to the Hausdorff metric. It follows from the above-mentioned continuity that if $A$ is a singular-hyperbolic attracting set of $X$ and $Y$ is close to $X$, then the continuation $A_{Y}$ in $U$ is a singular-hyperbolic attracting set of $Y$.

The following definition can be found in [BS, Chapter V].
Definition 2.3 (Region of attraction). Let $C$ be a compact invariant set of a vector field $Z$. We define the region of attraction and the region of weak attraction of $C$ by

$$
A(C)=\left\{z \in M: \omega_{Z}(z) \subset C\right\} \text { and } A_{w}(C)=\left\{z: \omega_{Z}(z) \cap C \neq \emptyset\right\}
$$

respectively. We shall write $A(Z, C)$ and $A_{w}(Z, C)$ to indicate dependence on $Z$.

The region of attraction is also called a stable set. The inclusion below is obvious:

$$
\begin{equation*}
A(Z, C) \subset A_{w}(Z, C) \tag{1}
\end{equation*}
$$

The elementary lemma below will be used in Section 6. Again we prove it for the sake of completeness.

Lemma 2.4. If $C$ is a compact invariant set of a vector field $Z$ and $U$ is a compact neighborhood of $C$, then the following properties are equivalent:
(1) $A_{w}(Z, C) \cap U$ is dense in $U$.
(2) $A_{w}(Z, C) \cap U$ is residual in $U$.

Proof. Clearly (2) implies (1). Now we assume (1), i.e., that $A_{w}(Z, C) \cap U$ is dense in $U$. Defining

$$
W_{n}=\left\{x \in U: Z_{t}(x) \in B_{1 / n}(C) \text { for some } t>n\right\}, n \in \mathbb{N},
$$

we have

$$
A_{w}(Z, C) \cap U=\bigcap_{n} W_{n}
$$

In particular, $A_{w}(Z, C) \cap U \subset W_{n}$ for all $n$. Hence $W_{n}$ is dense in $U$ (for all $n)$ since $A_{w}(Z, C) \cap U$ is dense. On the other hand, $W_{n}$ is open in $U$ [dMP, Tubular Flow-Box Theorem] because $B_{1 / n}(T)$ is open. This proves that $W_{n}$ is open-dense in $U$ and the result follows.

Next we state the classical definition of a hyperbolic set.
Definition 2.5 (Hyperbolic set). A compact, invariant set $H$ of a $C^{1}$ vector field $X$ is hyperbolic if there are a continuous, invariant tangent bundle splitting $T \Lambda=E^{s} \oplus E^{X} \oplus E^{u}$ and positive constants $C, \lambda$ such that for all $x \in H$ we have:
(1) $E_{x}^{X}$ is the direction of $X(x)$ in $T_{x} M$.
(2) $E^{s}$ is contracting: $\left\|D X_{t}(x) / E_{x}^{s}\right\| \leq C e^{-\lambda t}$, for all $t \geq 0$.
(3) $E^{u}$ is expanding: $\left\|D X_{t}(x) / E_{x}^{u}\right\| \geq C^{-1} e^{\lambda t}$, for all $t \geq 0$.

A closed orbit of $X$ is hyperbolic if it is hyperbolic as a compact, invariant set of $X$. A hyperbolic set is of saddle-type if $E^{s} \neq 0$ and $E^{u} \neq 0$.

The Invariant Manifold Theory [HPS] says that through each point $x \in$ $H$ pass smooth injectively immersed submanifolds $W^{s s}(x), W^{u u}(x)$ tangent to $E_{x}^{s}, E_{x}^{u}$ at $x$. The manifold $W^{s s}(x)$, the strong stable manifold at $x$, is characterized by the condition that $y \in W^{s s}(x)$ if and only if $d\left(X_{t}(y), X_{t}(y)\right)$ goes to 0 exponentially as $t \rightarrow \infty$. Similarly, $W^{u u}(x)$, the strong unstable manifold at $x$, is characterized by the condition that $y \in W^{u u}(x)$ if and only
if $d\left(X_{t}(y), X_{t}(x)\right)$ goes to 0 exponentially as $t \rightarrow-\infty$. These manifolds are invariant, i.e., $X_{t}\left(W^{s s}(x)\right)=W^{s s}\left(X_{t}(x)\right)$ and $X_{t}\left(W^{u u}(x)\right)=W^{u u}\left(X_{t}(x)\right)$, for all $t$. For all $x, x^{\prime} \in H$ we have that $W^{s s}(x)$ and $W^{s s}\left(x^{\prime}\right)$ either coincide or are disjoint. The maps $x \in H \rightarrow W^{s s}(x)$ and $x \in H \rightarrow W^{u u}(x)$ are continuous (in compact parts). For all $x \in H$ we define

$$
W_{X}^{s}(x)=\bigcup_{t \in \mathbb{R}} W^{s s}\left(X_{t}(x)\right) \text { and } W_{X}^{u}(x)=\bigcup_{t \in \mathbb{R}} W^{u u}\left(X_{t}(x)\right)
$$

Note that if $O \subset H$ is a closed orbit, then

$$
A(X, O)=W_{X}^{s}(O)
$$

but $A_{w}(X, O) \neq W_{X}^{s}(O)$ in general. If $H$ is of saddle-type and $\operatorname{dim}(M)=3$, then both $W_{X}^{s}(x), W_{X}^{u}(x)$ are one-dimensional submanifolds of $M$. In this case, given $\epsilon>0$, we denote by $W_{X}^{s s}(x, \epsilon)$ an interval of length $\epsilon$ in $W_{X}^{s s}(x)$ centered at $x$. (This interval is often called the local strong stable manifold of $x$.)

DEFINITION 2.6. Let $\left\{O_{n}: n \in \mathbb{N}\right\}$ be a sequence of hyperbolic periodic orbits of $X$. We say that the size of $W_{X}^{s}\left(O_{n}\right)$ is uniformly bounded away from zero if there is $\epsilon>0$ such that the local strong stable manifold $W_{X}^{s s}\left(x_{n}, \epsilon\right)$ is well defined for every $x_{n} \in O_{n}$ and every $n \in \mathbb{N}$.

REMARK 2.7. Let $O_{n}$ be a sequence of hyperbolic periodic orbits of a vector field $X$. It follows from the Stable Manifold Theorem for hyperbolic sets [HPS] that the size of $W_{X}^{s}\left(O_{n}\right)$ is uniformly bounded away from zero if all periodic orbits $O_{n}(n \in \mathbb{N})$ are contained in the same hyperbolic set $H$ of $X$.

## 3. Two lemmas for singular-hyperbolic attracting sets

Hereafter we let $M$ be a compact three-manifold. Recall that $\operatorname{clos}(\cdot)$ denotes the closure of $(\cdot)$. In addition, $B_{\delta}(x)$ denotes the (open) $\delta$-ball in $M$ centered at $x$. If $H \subset M$ we set $B_{\delta}(H)=\bigcup_{x \in H} B_{\delta}(x)$. For every vector field $X$ on $M$ we denote by $\operatorname{Sing}(X)$ the set of singularities of $X$, and if $B \subset M$ we define $\operatorname{Sing}(X, B)=\operatorname{Sing}(X) \cap B$.

Lemma 3.1. Let $\Lambda$ be a singular-hyperbolic attracting set of a $C^{r}$ vector field $Z$ on $M$. Let $U$ be an isolating block of $\Lambda$. If $x \in U$ and $\omega_{Z}(x)$ is nonsingular, then every $k \in \omega_{Z}(x)$ is accumulated by a hyperbolic periodic orbit sequence $\left\{O_{n}: n \in \mathbb{N}\right\}$ such that the size of $W_{Z}^{s}\left(O_{n}\right)$ is uniformly bounded away from zero.

Proof. For every $\epsilon>0$ we define

$$
\Lambda_{\epsilon}=\bigcap_{t \in \mathbb{R}} Z_{t}\left(\Lambda \backslash B_{\epsilon}(\operatorname{Sing}(Z, \Lambda))\right.
$$

Clearly $\Lambda_{\epsilon}$ is either $\emptyset$ or a compact, invariant, non-singular set of $Z$. If $\Lambda_{\epsilon} \neq$ $\emptyset$, then $\Lambda_{\epsilon}$ is hyperbolic [MPP2]. Observe that $\omega_{Z}(x)$ is non-singular by assumption. Therefore, there are $\epsilon>0$ and $T>0$ such that

$$
Z_{t}(x) \notin \operatorname{clos}\left(B_{\epsilon}(\operatorname{Sing}(Z, U))\right), \text { for all } t \geq T
$$

It follows that $\omega_{Z}(x) \subset \Lambda_{\epsilon}$ and so $\Lambda_{\epsilon} \neq \emptyset$ is a hyperbolic set. In addition, for every $\delta>0$ there is $T_{\delta}>0$ such that

$$
Z_{t}(x) \in B_{\delta}\left(\Lambda_{\epsilon}\right)
$$

for every $t>T_{\delta}$. Pick $k \in \omega_{Z}(x)$. The last property implies that for every $\delta>$ 0 there is a periodic $\delta$-pseudo-orbit in $B_{\delta}\left(\Lambda_{\epsilon}\right)$ ) formed by paths in the positive $Z$-orbit of $x$. Applying the Shadowing Lemma for Flows [HK, Theorem 18.1.6, pp. 569] to the hyperbolic set $\Lambda_{\epsilon}$, we obtain a periodic orbit sequence $O_{n} \subset$ $\Lambda_{\epsilon / 2}$ accumulating $k$. Then, Remark 2.7 applies since $H=\Lambda_{\epsilon / 2}$ is hyperbolic and contains $O_{n}$ (for all $n$ ). The lemma is proved.

The following is a minor modification of [M2, Theorem A].
Lemma 3.2. If $U$ is an isolating block of a singular-hyperbolic attractor of $a C^{r}$ vector field $X$ in $M$, then every attractor in $U$ of every vector field $C^{r}$ close to $X$ is singular.

Proof. Let $\Lambda$ be the singular-hyperbolic attractor of $X$ having $U$ as isolating block. By [M2, Theorem A] there is a neighborhood $D$ of $\Lambda$ such that every attractor of every vector field $Y C^{r}$ close to $X$ is singular. By Remark 2.2 we have $\bigcap_{t>0} Y_{t}(U) \subset D$ for all $Y$ close to $X$. Now if $A \subset U$ is an attractor of $Y$, then $A \subset \bigcap_{t>0} Y_{t}(U)$ by invariance. We conclude that $A \subset D$ and so $A$ is singular for all $\bar{Y}$ close to $X$. This proves the lemma.

## 4. Property (P)

We first give the definition. As usual we write $S \pitchfork S^{\prime} \neq \emptyset$ to indicate that there is a transverse intersection point between the submanifolds $S, S^{\prime}$.

Definition 4.1 (Property (P)). Let $\Lambda$ be a compact invariant set of a vector field $X$. Suppose that all closed orbits of $\Lambda$ are hyperbolic. We say that $\Lambda$ satisfies Property $(P)$ if for every point $p$ on a periodic orbit of $\Lambda$ there is $\sigma \in \operatorname{Sing}(X, \Lambda)$ such that

$$
W_{X}^{u}(p) \pitchfork W_{X}^{s}(\sigma) \neq \emptyset
$$

The lemma below is a direct consequence of the classical Inclination Lemma [dMP] and the transverse intersection in Property (P).

Lemma 4.2. Let $\Lambda$ be a compact invariant set with the Property ( $P$ ) of a vector field $Z$ in a manifold $M$ and let $I$ be a submanifold of $M$. If there is a periodic orbit $O \subset \Lambda$ of $Z$ such that

$$
I \pitchfork W_{Z}^{s}(O) \neq \emptyset
$$

then

$$
I \cap\left(\bigcup_{\sigma \in \operatorname{Sing}(Z, \Lambda)} W_{Z}^{s}(\sigma)\right) \neq \emptyset
$$

Figure 1 explains the proof of the lemma.


Figure 1.

The Property ( P ) was established in [MPa1, Theorem 4.1] for all singularhyperbolic attractors. Here we prove that such a property is open, in the sense that it holds for the continuation of a singular-hyperbolic attractor, as defined in Lemma 2.1.

Lemma 4.3 (Openness of the Property (P)). Let $U$ be an isolating block of a singular-hyperbolic attractor of $a C^{r}$ vector field $X$ on $M$. Then the continuation

$$
\Lambda_{Y}=\bigcap_{t \geq 0} Y_{t}(U)
$$

has the Property (P) for every vector field $Y C^{r}$ close to $X$.
Proof. By Lemma 2.1 we have that $\Lambda_{Y}$ is an attracting set with isolating block $U$ since $\Lambda$ has a hyperbolic singularity. Now let $p$ be a point of a periodic
orbit $\gamma \subset \Lambda_{Y}$ of $Y$. Then

$$
\operatorname{clos}\left(W_{Y}^{u}(p)\right) \subset \Lambda_{Y}
$$

since $\Lambda_{Y}$ is attracting. We claim

$$
\operatorname{clos}\left(W_{Y}^{u}(p)\right) \cap \operatorname{Sing}(Y, U) \neq \emptyset
$$

Indeed, suppose that this is not so, i.e., there is $Y C^{r}$ close to $X$ such that $\operatorname{clos}\left(W_{Y}^{u}(p)\right) \cap \operatorname{Sing}(Y, U)=\emptyset$ for some $p$ in a periodic orbit of $Y$ in $U$. It follows from [MPP2] that $\operatorname{clos}\left(W_{Y}^{u}(p)\right)$ is a hyperbolic set. Since $W_{Y}^{u}(p)$ is a two-dimensional submanifold we can easily prove that $\operatorname{clos}\left(W_{Y}^{u}(p)\right)$ is an attracting set of $Y$. This attracting set necessarily contains a hyperbolic attractor $A$ of $Y$. Since $A \subset \operatorname{clos}\left(W_{Y}^{u}(p)\right) \subset \Lambda_{Y} \subset U$ we conclude that $A \subset U$. By Lemma 3.2 we have that $A$ is singular as well. We conclude that $A$ is an attracting singularity of $Y$ in $U$. This contradicts the volume expanding condition at Definition 1.4 and the claim follows. One completes the proof of the lemma using the claim as in [MPa1, Theorem 4.1].

## 5. Topological dimension and the Property (P)

In this section we study the topological dimension of the omega-limit set in an isolating block of a singular-hyperbolic attracting set with the Property (P). First we recall the classical definition of topological dimension [HW].

Definition 5.1. The topological dimension of a space $E$ is either -1 (if $E=\emptyset$ ) or the last integer $k$ for which every point has arbitrarily small neighborhoods whose boundaries have dimension less than $k$. A space with topological dimension $k$ is said to be $k$-dimensional.

The main result of this section is the following.
TheOrem 5.2. Let $U$ be an isolating block of a singular-hyperbolic attracting set with the Property $(P)$ of a $C^{r}$ vector field $Y$ on $M$. If $x \in U$ and there is $\delta>0$ such that

$$
B_{\delta}(x) \cap\left(\bigcup_{\sigma \in \operatorname{Sing}(Y, U)} W_{Y}^{s}(\sigma)\right)=\emptyset
$$

then $\omega_{Y}(x)$ is either singular or a one-dimensional hyperbolic set.
Proof. Let $\Lambda_{Y}$ be the singular-hyperbolic attracting set of $Y$ having $U$ as isolating block. Obviously $\operatorname{Sing}(Y, U)=\operatorname{Sing}\left(Y, \Lambda_{Y}\right)$. Let $x, \delta$ be as in the statement. Define

$$
H=\omega_{Y}(x)
$$

We shall assume that $H$ is non-singular. Then $H$ is a hyperbolic set by [MPP2]. To prove that $H$ is one-dimensional we shall use the arguments in
[M1]. However we have to take some care because $\Lambda$ is not transitive. The Property ( P ) will supply an alternative argument. Let us present the details.

We first note that by Lemma 3.1 every point $k \in H$ is accumulated by a periodic orbit sequence $O_{n}$ satisfying the conclusion of that lemma. Second, by the Invariant Manifold Theory [HPS], there is an invariant contracting foliation $\left\{\mathcal{F}^{s}(w): w \in \Lambda_{Y}\right\}$ which is tangent to the contracting direction of $Y$ in $\Lambda_{Y}$. A cross-section of $Y$ will be a 2-disk transverse to $Y$. When $w \in \Lambda_{Y}$ belongs to a 2 -disk $D$ transverse to $Y$, we define $\mathcal{F}^{s}(w, D)$ as the connected component containing $w$ of the projection of $\mathcal{F}^{s}(w)$ onto $D$ along the flow of $Y$. The boundary and the interior of $D$ (as a submanifold of $M$ ) are denoted by $\partial D$ and $\operatorname{int}(D)$, respectively. $D$ is a rectangle if it is diffeomorphic to the square $[0,1] \times[0,1]$. In this case $\partial D$ as a submanifold of $M$ is formed by four curves $D_{h}^{t}, D_{h}^{b}, D_{v}^{l}, D_{v}^{r}(v$ for vertical, $h$ for horizontal, $l$ for left, $r$ for right, $t$ for top and $b$ for bottom). One defines vertical and horizontal curves in $D$ in the natural way.

Now we prove a sequence of lemmas corresponding to Lemmas 1-4 in [M1], respectively.

Lemma 5.3. For every regular point $z \in \Lambda_{Y}$ of $Y$ there is a rectangle $\Sigma$ such that the following properties hold:
(1) $z \in \operatorname{int}(\Sigma)$.
(2) If $w \in \Lambda_{Y}$ then $\mathcal{F}^{s}(w, \Sigma)$ is a horizontal curve in $\Sigma$.
(3) If $\Lambda_{Y} \cap \Sigma_{h}^{t} \neq \emptyset$ then $\Sigma_{h}^{t}=\mathcal{F}^{s}(w, \Sigma)$ for some $w \in \Lambda_{Y} \cap \Sigma$.
(4) If $\Lambda_{Y} \cap \Sigma_{h}^{b} \neq \emptyset$ then $\Sigma_{h}^{b}=\mathcal{F}^{s}(w, \Sigma)$ for some $w \in \Lambda_{Y} \cap \Sigma$.

Proof. The proof of this lemma is similar to [M1, Lemma 1]. Observe that the corresponding proof in [M1] does not use the transitivity hypothesis.

Definition 5.4. If $w \in H \cap \Sigma$, we denote by $(H \cap \Sigma)_{w}$ the connected component of $H \cap \Sigma$ containing $w$.

With this definition we shall prove the following lemma.
Lemma 5.5. If $w \in H \cap \Sigma$ and $(H \cap \Sigma)_{w} \neq\{w\}$, then $(H \cap \Sigma)_{w}$ contains a non-trivial curve in the union $\mathcal{F}^{s}(w, \Sigma) \cup \partial \Sigma$.

Proof. We follow the steps of the proof of Lemma 2 in [M1]. We first observe that $(H \cap \Sigma)_{w} \cap\left(\operatorname{int}(\Sigma) \backslash \mathcal{F}^{s}(w, \Sigma)\right) \neq \emptyset$. Hence we can fix $w^{\prime} \in$ $(H \cap \Sigma)_{x} \cap\left(\operatorname{int}(\Sigma) \backslash \mathcal{F}^{s}(x, \Sigma)\right)$. Clearly $\mathcal{F}^{s}\left(w^{\prime}, \Sigma\right)$ is a horizontal curve which together with $\mathcal{F}^{s}(w, \Sigma)$ form the horizontal boundary curves of a rectangle $R$ in $\Sigma$. We have $H \cap \operatorname{int}(R) \neq \emptyset$, for otherwise $w$ and $w^{\prime}$ would be in different connected components of $H \cap \Sigma$, a contradiction. Hence we can choose $h \in H \cap \operatorname{int}(R)$. Since $H=\omega_{Y}(x)$, there is $y^{\prime}$ in the positive $Y$-orbit of $x$ arbitrarily close to $h$. In particular, $y^{\prime} \in \operatorname{int}(R)$. By the continuity of
the foliation $\mathcal{F}^{s}$ we have that $\mathcal{F}^{s}\left(y^{\prime}, \Sigma\right)$ is a horizontal curve separating $\Sigma$ in two connected components containing $w$ and $w^{\prime}$, respectively. Since $w, w^{\prime}$ belong to the same connected component of $H \cap \Sigma$ we conclude that there is $k \in \mathcal{F}^{s}\left(y^{\prime}, \Sigma\right) \cap H \neq \emptyset$.

On the one hand, by Lemma $3.1, k \in H$ is accumulated by a hyperbolic periodic orbit sequence $O_{n}$ such that the size of $W_{Y}^{s}\left(O_{n}\right)$ is uniformly bounded away from zero. On the other hand, $y^{\prime}$ belongs to the positive orbit of $y$ and $y \in B_{\delta}(x)$. By the uniform size of $W_{Y}^{s}\left(O_{n}\right)$ we have $B_{\delta}(x) \cap W_{Y}^{s}\left(O_{n}\right) \neq \emptyset$ for some $n \in \mathbb{N}$. Since $B_{\delta}(x)$ is open we conclude that

$$
B_{\delta}(x) \pitchfork W_{Y}^{s}\left(O_{n}\right) \neq \emptyset
$$

Then,

$$
B_{\delta}(x) \cap\left(\bigcup_{\sigma \in \operatorname{Sing}(Y, U)} W_{Y}^{s}(\sigma)\right) \neq \emptyset
$$

by Lemma 4.2 , since $\Lambda_{Y}$ has the Property (P). This is a contradiction, which proves the lemma.

LEMMA 5.6. For every $w \in H$ there is a rectangle $\Sigma_{w}$ containing $w$ in its interior such that $H \cap \Sigma_{w}$ is 0-dimensional.

Proof. This lemma corresponds to Lemma 3 in [M1] and has a similar proof. Let $\Sigma_{w}=\Sigma$, where $\Sigma$ is given by Lemma 5.5. Let $J \subset \mathcal{F}^{s}(w, \Sigma) \cap \partial \Sigma$ be the curve in the conclusion of this lemma. We can assume that $J$ is contained in either $\mathcal{F}^{s}(w, \Sigma)$ or $\partial \Sigma$. If $J \subset \mathcal{F}^{s}(w, \Sigma)$, we can show as in the proof of [M1, Lemma 3] that $y \in H$, and so $y$ is accumulated by periodic orbits whose unstable and stable manifolds have uniform size. We arrive at a contradiction by Lemma 4.3 as in the last part of the proof of Lemma 5.5. Hence we can assume that $J \subset \partial \Sigma$. We can further assume that $J \subset \Sigma_{v}^{l}$ (say), for otherwise we get a contradiction as in the previous case. Now if $J \subset \Sigma_{v}^{l}$, then we obtain a contradiction as before, again using the Property (P) and Lemma 4.2. This proves the result.

The following lemma corresponds to [M1, Lemma 4].
Lemma 5.7. $H$ can be covered by a finite collection of closed one-dimensional subsets.

Proof. If $w \in H$ we consider the cross-section $\Sigma_{w}$ in Lemma 5.7. By saturating forward and backward $\Sigma_{w}$ by the flow of $Y$ we obtain a compact neighborhood of $w$ which is one-dimensional (see [HW, Theorem III.4, p. 33]). Hence there is a neighborhood covering of $H$ by compact one-dimensional sets. Such a covering has a finite subcovering since $H$ is compact. This subcovering proves the result.

Theorem 5.2 now follows from Lemma 5.7 and [HW, Theorem III.2, p. 30].

## 6. Proof of Theorem 1

The proof is based on the following result.
Theorem 6.1. Let $U$ be an isolating block of a singular-hyperbolic attracting set with the Property $(P)$ of a vector field $Y$ on $M$. Then $A_{w}(Y, \operatorname{Sing}(Y, U))$ $\cap U$ is residual in $U$.

Proof. By Lemma 2.4 it suffices to prove that $A_{w}(Y, \operatorname{Sing}(Y, U)) \cap U$ is dense in $U$. Let $\Lambda_{Y}$ be the singular-hyperbolic attracting set of $Y$ having $U$ as isolating block. Obviously $\operatorname{Sing}(Y, U)=\operatorname{Sing}\left(Y, \Lambda_{Y}\right)$. To simplify the notation, we write $R_{Y}=A_{w}(Y, \operatorname{Sing}(Y, U)) \cap U$. Suppose by contradiction that $R_{Y}$ is not dense in $U$. Then there is $x \in U$ and $\delta>0$ such that $B_{\delta}(x) \cap R_{Y}=\emptyset$. In particular, $\omega_{Y}(x) \cap \operatorname{Sing}(Y, U)=\emptyset$ and so $\omega_{Y}(x)$ is non-singular. Recalling the inclusion (1) from Section 2 we have

$$
U \cap\left(\bigcup_{\sigma \in \operatorname{Sing}(Y, U)} W_{Y}^{s}(\sigma)\right) \subset R_{Y}
$$

Thus

$$
\begin{equation*}
B_{\delta}(x) \cap\left(\bigcup_{\sigma \in \operatorname{Sing}(Y, U)} W_{Y}^{s}(\sigma)\right)=\emptyset \tag{2}
\end{equation*}
$$

It then follows from Theorem 5.2 that $H=\omega_{Y}(x)$ is a one-dimensional hyperbolic set. This allows us to apply Bowen's Theory [Bo] of one-dimensional hyperbolic sets. More precisely, there is a family of (disjoint) cross-sections $\mathcal{S}=\left\{S_{1}, \ldots, S_{r}\right\}$ of small diameter such that $H$ is the flow-saturated set of $H \cap \operatorname{int}\left(\mathcal{S}^{\prime}\right)$, where $\mathcal{S}^{\prime}=\cup S_{i}$ and $\operatorname{int}\left(\mathcal{S}^{\prime}\right)$ denotes the interior of $\mathcal{S}^{\prime}$ (as a submanifold). Next we choose an interval $I$ tangent to the central direction $E^{c}$ of $Y$ in $U$ such that

$$
x \in I \subset B_{\delta}(x)
$$

We choose $I$ to be transverse to the direction $E^{Y}$ induced by $Y$. Since $E^{c}$ is volume expanding and $H$ is non-singular we have that the Poincaré map induced by $X$ on $\mathcal{S}^{\prime}$ is expanding along $I$. As in [MPa1, p. 371] we can find $\delta^{\prime}>0$ and an open arc sequence $J_{n} \subset \mathcal{S}^{\prime}$ in the positive orbit of $I$ with length $\geq \delta^{\prime}$ such that there is $x_{n}$ in the positive orbit of $x$ contained in the interior of $J_{n}$. We can fix $S=S_{i} \in \mathcal{S}$ in order to assume that $J_{n} \subset S$ for every $n$. Let $w \in S$ be a limit point of $x_{n}$. Then $w \in H \cap \operatorname{int}\left(\mathcal{S}^{\prime}\right)$. Because $I$ is tangent to $E^{c}$, the interval sequence $J_{n}$ converges to an interval $J \subset W_{Y}^{u}(w)$ in the $C^{1}$ topology. ( $W_{Y}^{u}(w)$ exists because $w \in H$ and $H$ is hyperbolic.) $J$ is not trivial since the length of $J_{n}$ is $\geq \delta^{\prime}$. It follows from this lower
bound that $J_{n}$ intersects $W_{Y}^{s}(w)$ for some large $n$. Now, by Lemma 3.1, $w$ is accumulated by periodic orbits $O_{n}$ satisfying the conclusion of this lemma. The continuous dependence in compact parts of the stable manifolds implies $J_{n} \pitchfork W_{Y}^{s}\left(O_{n}\right) \neq \emptyset$. Since $J_{n}$ is in the positive orbit of $I$ and $I \subset B_{\delta}(x)$, we obtain

$$
B_{\delta}(x) \pitchfork W_{Y}^{s}\left(O_{n}\right) \neq \emptyset
$$

Then,

$$
B_{\delta}(x) \cap\left(\bigcap_{\sigma \in \operatorname{Sing}(Y, U)} W_{Y}^{s}(\sigma)\right) \neq \emptyset
$$

by Lemma 4.2, since $\Lambda_{Y}$ has the Property (P). This is a contradiction in view of equation (2). This contradiction proves that $R_{Y}$ is dense in $U$ for all $Y C^{r}$ close to $X$.

Proof of Theorem 1. Let $U$ be an isolating block of a singular-hyperbolic attractor of a $C^{r}$ vector field $X$ on $M$. By Lemma 2.1 we have that $\Lambda_{Y}=$ $\bigcap_{t \geq 0} Y_{t}(U)$ is a singular-hyperbolic attracting set with isolating block $U$ for all vector fields $Y C^{r}$ close to $X$. In addition, $\Lambda_{Y}$ has the Property (P) by Lemma 4.3. It follows from Theorem 6.1 that $A_{w}(Y, \operatorname{Sing}(Y, U)) \cap U$ is residual in $U$. The result follows because $\omega_{Y}(x)$ is singular for all $x \in A_{w}(Y, \operatorname{Sing}(Y, U)) \cap U$ (recall Definition 2.3).

Remark 6.2. Let $Y$ be a vector field in a manifold $M$. In [BS, Chapter V] the authors defined a weak attractor of $Y$ as a closed set $C \subset M$ such that $A_{w}(Y, C)$ is a neighborhood of $C$. Similarly one can define a generic weak attractor of $Y$ as a closed set $C \subset M$ such that $A(Y, C) \cap U$ is residual in $U$ for some neighborhood $U$ of $C$. (Compare this with the definition of a generic attractor [Mi, Appendix 1, p. 186].) A direct consequence of Theorem 6.1 is that the set of singularities of a singular-hyperbolic attractor of $Y$ is a generic weak attractor of $Y$.

## 7. Persistence of singular-hyperbolic attractors

In this section we prove Theorem 2 as an application of Theorem 1. The idea is to address the question below which is a weaker local version of the Palis' conjecture [P].

Question 7.1. Let $\Lambda$ be an attractor of a $C^{r}$ vector field $X$ on $M$ and let $U$ be an isolating block of $\Lambda$. Does every vector field $C^{r}$ close to $X$ exhibit an attractor in $U$ ?

This question has a positive answer for hyperbolic attractors, the geometric Lorenz attractors and the example in $[\mathrm{MPu}]$. In general we give a partial positive answer for all singular-hyperbolic attractors with only one singularity in terms of chain-transitive Lyapunov stable sets.

Definition 7.2. A compact invariant set $\Lambda$ of a vector field $X$ is Lyapunov stable if for every open set $U \supset \Lambda$ there is an open set $\Lambda \subset V \subset U$ such that $\bigcup_{t>0} X_{t}(V) \subset U$.

Recall that $B_{\delta}(x)$ denotes the (open) ball centered at $x$ with radius $\delta>0$.
Definition 7.3. Given $\delta>0$ we define a $\delta$-chain of $X$ as a pair of finite sequences $q_{1}, \ldots, q_{n+1} \in M$ and $t_{1}, \ldots, t_{n} \geq 1$ such that

$$
X_{t_{i}}\left(B_{\delta}\left(q_{i}\right)\right) \cap B_{\delta}\left(q_{i+1}\right) \neq \emptyset, \text { for all } i=1, \ldots, n
$$

The $\delta$-chain joins $p, q$ if $q_{1}=q$ and $q_{n+1}=p$. A compact invariant set $\Lambda$ of $X$ is chain-transitive if every pair of points $p, q \in \Lambda$ can be joined by a $\delta$-chain, for all $\delta>0$.

Every attractor is a chain-transitive Lyapunov stable set, but not vice versa. The following definition generalizes the concept of a robust transitive attractor (see, for instance, $[\mathrm{MPa} 4]$ ).

Definition 7.4. Let $\Lambda$ be a chain-transitive Lyapunov stable set of a $C^{r}$ vector field $X, r \geq 1$. We say that $\Lambda$ is $C^{r}$ persistent if for every neighborhood $U$ of $\Lambda$ and every vector field $Y C^{r}$ close to $X$ there is a chain-transitive Lyapunov stable set $\Lambda_{Y}$ of $Y$ in $U$ such that $A\left(Y, \Lambda_{Y}\right) \cap U$ is residual in $U$.

Compare this definition with the one in $[\mathrm{Hu}]$, which requires the continuity of the map $Y \rightarrow \Lambda_{Y}$ (with respect to the Hausdorff metric) instead of the residual condition of the stable set. Another related definition is that of $C^{r}$ weakly robust attracting sets given in [CMP]. The main result of this section is the following theorem, which is precisely Theorem 2 stated in the Introduction.

TheOrem 7.5. Singular-hyperbolic attractors with only one singularity for $C^{r}$ vector fields on $M$ are $C^{r}$ persistent.

Proof. Let $\Lambda$ be a singular-hyperbolic attractor of a $C^{r}$ vector field $X$ on $M$. Suppose that $\Lambda$ contains a unique singularity $\sigma$. Let $U$ be a neighborhood of $\Lambda$. We can suppose that $U$ is an isolating block. Let $\sigma(Y)$ be the continuation of $\sigma$ for every vector field $Y$ close to $X$. Note that $\sigma(X)=\sigma$. Clearly $\operatorname{Sing}(Y, U)=\{\sigma(Y)\}$ for every $Y$ close to $X$.

For every vector field $Y C^{r}$ close to $X$ we define
$\Lambda(Y)=\left\{q \in \Lambda_{Y}:\right.$ for all $\delta>0$ there exists a $\delta$-chain joining $\sigma(Y)$ and $\left.q\right\}$.
Recall that $\Lambda_{Y}$ is the continuation of $\Lambda$ in $U$ for $Y$ close to $X$ as in Lemma 2.1. We note that $\Lambda(Y) \neq \Lambda_{Y}$ in general [MPu].

To prove the theorem we shall prove that $\Lambda(Y)$ satisfies the following properties (for all $Y C^{r}$ close to $X$ ):
(1) $\Lambda(Y)$ is Lyapunov stable.
(2) $\Lambda(Y)$ is chain-transitive.
(3) $A(Y, \Lambda(Y)) \cap U$ is residual in $U$.

One can easily prove (1). To prove (2) we pick $p, q \in \Lambda(Y)$ for $Y$ close to $X$ and fix $\delta>0$. By Theorem 1 there is $x \in B_{\delta}(p)$ such that $\omega_{Y}(x)$ contains $\sigma(Y)$. Hence there is $t>1$ such that $X_{t}(x) \in B_{\delta}(\sigma)$. On the other hand, since $q \in \Lambda(Y)$, there is a $\delta$-chain $\left(\left\{t_{1}, \ldots, t_{n}\right\},\left\{q_{1}, \ldots, q_{n+1}\right\}\right)$ joining $\sigma$ and $q$. Then (2) follows since the $\delta$-chain $\left(\left\{t, t_{1}, \ldots, t_{n}\right\},\left\{x, q_{1}, \ldots, q_{n+1}\right\}\right)$ joins $p$ and $q$. To finish we prove (3). It follows from well known properties of Lyapunov stable sets [BS] that $\Lambda(Y)=\bigcap_{n} O_{n}$, where $O_{n}$ is a nested sequence of positively invariant open sets of $Y$. Obviously we can assume that $O_{n} \subset U$ for all $n$. Clearly the stable set of $O_{n}$ is open in $U$. Let us prove that such a stable set is dense in $U$. Let $O$ be an open subset of $U$. By Theorem 5.2 there is $x \in O$ such that $\omega_{Y}(x)$ contains $\sigma(Y)$. Clearly $\sigma(Y)$ belongs to $O_{n}$ and so $\omega_{Y}(x)$ intersects $O_{n}$ as well. Hence there is $t>0$ such that $X_{t}(x) \in O_{n}$. This implies that $x$ belongs to the stable set of $O_{n}$. This proves that the stable set of $O_{n}$ is dense for all $n$. But the stable set of $\Lambda(Y)$ is the intersection of $W_{Y}^{s}\left(O_{n}\right)$, which is open-dense in $U$. We conclude that the stable set of $\Lambda(Y)$ is residual and the claim follows.

Theorem 7.5 gives only a partial answer to Question 7.1 (in the case of one singularity) since chain-transitive Lyapunov stable sets are not attractors in general. However, a positive answer to the question would follow (in the case of one singularity) from a positive answer to the following questions:

Question 7.6. Is a singular-hyperbolic, Lyapunov stable set an attracting set?

Question 7.7. Is a singular-hyperbolic, chain-transitive, attracting set a transitive set?

As it is well known, these questions have positive answers if one replaces singular-hyperbolic by hyperbolic in their corresponding statements. Moreover, a positive answer to Question 7.6 holds provided the two branches of the unstable manifold of every singularity of the set are dense on the set [ MPa 3 ].

## References

[BS] N. P. Bhatia and G. P. Szegö, Stability theory of dynamical systems, Die Grundlehren der mathematischen Wissenschaften, Band 161, Springer-Verlag, New York, 1970. MR 44 \#7077
[Bo] R. Bowen, Symbolic dynamics for hyperbolic flows, Amer. J. Math. 95 (1973), 429-460. MR 49 \#4041
[CMP] C. M. Carballo, C. A. Morales, and M. J. Pacifico, Maximal transitive sets with singularities for generic $C^{1}$ vector fields, Bol. Soc. Brasil. Mat. (N.S.) 31 (2000), 287-303. MR 2002b:37075
[dMP] W. de Melo and J. Palis, Jr., Geometric theory of dynamical systems, SpringerVerlag, New York, 1982. MR 84a:58004
[GW] J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Inst. Hautes Études Sci. Publ. Math. (1979), 59-72. MR 82b:58055a
[HPS] M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Springer-Verlag, Berlin, 1977. MR 58 \#18595
[HW] W. Hurewicz and H. Wallman, Dimension Theory, Princeton Mathematical Series, v. 4, Princeton University Press, Princeton, N. J., 1941. MR 3,312b
[Hu] M. Hurley, Attractors: persistence, and density of their basins, Trans. Amer. Math. Soc. 269 (1982), 247-271. MR 83c:58049
[HK] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia of Mathematics and its Applications, vol. 54, Cambridge University Press, Cambridge, 1995. MR 96c:58055
[L] E. Lorenz, Deterministic nonperiodic flow, J. Atmospheric Sciences 20 (1963), 130-141.
[Mi] J. Milnor, On the concept of attractor, Comm. Math. Phys. 99 (1985), 177-195. MR 87i:58109a
[M1] C. A. Morales, Singular-hyperbolic sets and topological dimension, Dyn. Syst. 18 (2003), 181-189. MR 2004g:37037
[M2] , The explosion of signular-hyperbolic attractors, to appear; available at arXiv:math.DS/0303253.
[MPa1] C. A. Morales and M. J. Pacifico, Mixing attractors for 3-flows, Nonlinearity 14 (2001), 359-378. MR 2002a:37036
[MPa2] , Lyapunov stability of $\omega$-limit sets, Discrete Contin. Dyn. Syst. 8 (2002), 671-674. MR 2003b:37024
[MPa3] , A dichotomy for three-dimensional vector fields, Ergodic Theory Dynam. Systems 23 (2003), 1575-1600. MR 2018613
[MPa4] _, Sufficient conditions for robustness of attractors, Pacific J. Math., to appear; available at http://www.preprint.impa.br/cgi-bin/MMMbrowse.cgi.
[MPP1] C. A. Morales, M. J. Pacífico, and E. R. Pujals, On $C^{1}$ robust singular transitive sets for three-dimensional flows, C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), 81-86. MR 99j:58183
[MPP2] $\qquad$ Singular hyperbolic systems, Proc. Amer. Math. Soc. 127 (1999), 33933401. MR 2000c:37034
[MPP3] _ , Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math., to appear.
[MPu] C. A. Morales and E. R. Pujals, Singular strange attractors on the boundary of Morse-Smale systems, Ann. Sci. École Norm. Sup. (4) 30 (1997), 693-717. MR 98k:58137
[P] J. Palis, A global view of dynamics and a conjecture on the denseness of finitude of attractors, Astérisque (2000), xiii-xiv, 335-347. MR 2001d:37025
[PT] J. Palis and F. Takens, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge Studies in Advanced Mathematics, vol. 35, Cambridge University Press, Cambridge, 1993. MR 94h:58129
C. M. Carballo, Departamento de Matemática, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, Caixa Postal 702, Belo Horizonte, MG, 30123970, Brazil

E-mail address: carballo@mat.ufmg.br
C. A. Morales, Instituto de Matemática, Universidade Federal do Rio de Janeiro, P. O. Box 68530, 21945-970 Rio de Janeiro, Brazil

E-mail address: morales@impa.br


[^0]:    Received July 22, 2003.
    2000 Mathematics Subject Classification. Primary 37D30. Secondary 37B25.
    The first author was partially supported by FAPESP and PRPq-UFMG, Brazil; the second author was partially supported by CNPq, FAPERJ and PRONEX-Dyn. Sys./Brazil.

