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THE ∂-NEUMANN OPERATOR AND THE KOBAYASHI
METRIC

MIJOUNG KIM

Abstract. We introduce a condition, called Property -K, which en-
codes information about the holomorphic structure of fat subdomains.

We obtain an equivalence between this condition and the compactness

of the ∂-Neumann operator in any convex domain. We also exhibit a lo-
cal property of the Kobayashi metric under which the domain is locally
a product space.

1. Introduction

In this paper we study a condition on the Kobayashi metric near a boundary
point p of a pseudoconvex domain in Cn that is related to the compactness
of the ∂-Neumann operator. We call this condition Property -K. The precise
definition of Property -K is given in the next section.

If Ω is a bounded pseudoconvex domain in Cn that is Kobayashi complete
near p, and if Ω has a compact ∂-Neumann operator, then Property -K is
necessarily satisfied.

Product domains are examples of domains that have a non-compact ∂-
Neumann operator. If a domain Ω does not have Property -K near a boundary
point p, then Ω can be well approximated near p by a product domain, in a
sense made precise in Lemma 3 below.

In particular, we have the following result about the Kobayashi metric and
product domains. Let D denote the open unit disk in C1. When Ω is a
domain in Cn and v is a vector, dv(z) denotes the radius of the largest affine
disk in Ω with center z and direction v, that is, dv(z) = sup{r | z+rDv ⊂ Ω}.

Theorem 1. If Ω is a bounded domain in Cn that is Kobayashi complete
near a boundary point p and there exist ε < 1, v ∈ Cn, and a constant C > 0

Received July 18, 2003; received in final form February 10, 2004.
2000 Mathematics Subject Classification. 32W05, 32F45.

The author was supported in part by NSF grant number DMS-0100517.

c©2004 University of Illinois

635



636 MIJOUNG KIM

such that for all z close enough to p the Kobayashi metric K satisfies

K(z, v) < C
1

dv(z)ε

(when ε = 1 and C = 1, this is always true), then near p, Ω is locally a
product space.

We also give an example in which Property -K is not satisfied (and hence
the ∂-Neumann operator is not compact).

In Section 2, we define terminology. Section 3 contains the main results.
Some applications are given in Section 4.

2. Terminology and definition of Property -K

Definition (Fat subdomain with mass at p). Let G be a domain in Cn,
and let A be a subdomain of G. If there is a sequence {fj} of holomorphic
functions in the unit ball of L2(G) such that no subsequence of {fj} converges
in L2(A), then A is said to be a fat subdomain of G. In other words, A is a
fat subdomain of G if the restriction operator L2(G) ∩ O(G)→ L2(A) is not
a compact operator. If, for any open neighborhood U of p in Cn, A ∩ U is
also a fat subdomain of Ω, then we say that A has mass at p.

For example, if there is a point p in the boundary of G and a neighborhood
U of p in C

n such that A ∩ U = G ∩ U , then A is a fat subdomain of
G. This condition is not necessary, however. For instance, let D be the
unit disk {z : |z| < 1} in C and let A be {(x, y) ∈ D : 0 < x < 1 and
0 < y < (1− x)p}, where p > 0. Then A is a fat subdomain of D if (and only
if) p ≤ 1. One can easily check this by taking the sequence of holomorphic
functions {fj} to be the sequence of normalized Bergman kernel functions
{BD(z, pj)/

√
BD(pj , pj)}, where BD(z, w) is the Bergman kernel on D and

the sequence {pj} approaches the point (1, 0).
We recall the definition of the Bergman kernel function. Let H(Ω) denote

the space of square-integrable holomorphic functions on a domain Ω in Cn.
By the Riesz representation theorem, for each fixed point w in Ω there is a
unique element of H(Ω), denoted by BΩ(·, w), such that

f(w) = (f,BΩ(·, w)) =
∫

Ω

f(z)BΩ(z, w) dVz

for all f ∈ H(Ω). This function BΩ(z, w) is called the Bergman kernel function
for Ω.

The following lemma contained in [5] gives explicit and small fat subdo-
mains of a convex domain.

Lemma 1. If Ω is a bounded convex domain in Cn and 0 < R ≤ 1, then:
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(1) For any points p0 ∈ ∂Ω and p1 ∈ Ω there exist positive constants C
and δ0 such that the Bergman kernel function BΩ satisfies the inequal-
ity

BΩ(pδ, pδ) > CBΩ(pδ/R, pδ/R)

for any δ ∈ (0, δ0), where pδ := p0 + δ(p1 − p0)/‖p1 − p0‖.
(2) If 0 ∈ ∂Ω, then the scaled domain RΩ is a fat subdomain of Ω.

We now introduce briefly the ∂-Neumann operator. When a domain Ω is
bounded and pseudoconvex, the (unbounded) self-adjoint, surjective operator
∂∂
∗
+∂
∗
∂ has a bounded inverse operator acting on (0, q)-forms. This operator

N = Nq is called the ∂-Neumann operator. We refer the reader to [4] and
[7], the recent survey [1], and the book [2] for background on the ∂-Neumann
problem. In this paper we consider only N1. The compactness condition can
be reformulated in the following way.

Lemma 2. Let Ω be a bounded pseudoconvex domain. Then the following
are equivalent.

(1) The ∂-Neumann operator N1 is compact from L2
(0,1)(Ω) to itself.

(2) The canonical solution operators ∂̄∗N1 : L2
(0,1)(Ω) → L2

(0,0)(Ω) and
∂̄∗N2 : L2

(0,2)(Ω)→ L2
(0,1)(Ω) are compact.

Let Ω be a domain in Cn and (p, v) ∈ Ω × Cn. The Kobayashi metric
K(p, v) is defined by

K(p, v) = inf
{

1
|c|

: there exists f : D → Ω holomorphic,

f(0) = p, f ′(0) = cv

}
.

For z′, z′′ ∈ Ω, we put

kΩ(z′, z′′) = inf
{∫ 1

0

K(r(t), r′(t))dt : r is a piecewise C1-curve

in Ω from z′ to z′′
}
.

We call kΩ the Kobayashi pseudodistance on Ω.
A domain Ω is called Kobayashi complete if any Cauchy sequence {zj}j∈N

with respect to the Kobayashi pseudodistance converges to a point z0 ∈ Ω,
i.e., if {kΩ(zj , z0)} converges to 0.

Examples of Kobayashi complete domains are strongly pseudoconvex do-
mains, convex domains and bounded pseudoconvex Reinhart domains con-
taining 0. It is an open problem whether every bounded balanced domain
with C∞-Minkowski function is Kobayashi complete. It is also still open
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whether every bounded pseudoconvex domain with C∞-smooth boundary is
Kobayashi complete [8].

Definition (Property -K). We say that Ω has Property -K near a point
p ∈ ∂Ω if the following condition is satisfied:

For any fat subdomain A having mass at p and for all v ∈ Cn, C > 0, and
ε < 1, there is a sequence {qn} approaching p in Ω ∩ (A+ vD) such that

K(qn, v) ≥ C 1
dv(qn)ε

.

The following theorem gives examples of domains that have Property -K
and examples of domains that do not have this property. We will prove this
theorem in Section 4.

Theorem 2. If Ω is a bounded convex domain in Cn, then the following
are equivalent:

(1) Ω has Property -K at any point p in ∂Ω.
(2) The ∂-Neumann operator N1 is compact.
(3) There is no affine complex disc in the boundary of Ω.

Although in convex domains Property -K and the compactness of N1 are
equivalent, this equivalence does not hold in general. An example of a pseu-
doconvex Reinhart domain in C2 with compact ∂-Neumann operator N1 is

Ω = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 < 1, 0 < |z1| < 1}.

This domain is not Kobayashi complete and also does not have Property -K
near (0, 0) in ∂Ω [6, p. 150].

3. The main result

Theorem 3. If Ω is a bounded pseudoconvex domain in C
n that is

Kobayashi complete near p and has smooth boundary near p in ∂Ω and Ω
does not satisfy Property -K, then Ω has a non-compact ∂-Neumann operator.

In order to prove this result, we need two lemmas.

Lemma 3. Suppose that Ω is a bounded domain in Cn that is Kobayashi
complete near p, and Ω does not have Property -K near p in ∂Ω. Then
there is a fat subdomain A having mass at p such that after linearly changing
the coordinate system there is a coordinate system (z1, . . . , zn) on some open
neighborhood U0 of p in Cn such that there exists a constant C0 for which
(1/4)C0D × π({A ∩ U0 | |z1| < (1/2)C0}) ⊂ Ω, where π : Ω → C

n−1 is the
natural projection π(z) = (z2, . . . , zn).
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Proof. By the hypotheses there is a fat subdomain A having mass at p, a
non-zero vector v ∈ Cn, a number ε < 1, and a constant Cε, such that

(1) K(z, v) ≤ Cε
dv(z)ε

when z ∈ (A+Dv)∩ (Ω∩U), where U is a small enough open neighborhood
of p in Cn. (When ε = 1, the above inequality is always true.) To establish
the lemma, we need to prove the following two steps.

Step 1. There is an open set U0 ⊂⊂ U containing p such that for all
z ∈ U0 ∩A we have C0Dv + z ⊂ Ω.

Step 2. After linearly changing the coordinate system, v is a unit vector
in z1-direction and (1/4)C0D × π({A ∩ U0 | |z1| < (1/2)C0}) ⊂ Ω.

Proof of Step 1. Fix an open set U0 ⊂⊂ U in Cn. We may assume that
Ω ∩ U is Kobayashi complete. Choose C0 such that C0 = 1

‖v‖ min(d(U0,Ω ∩
U c), 1). Suppose that there exists q ∈ A ∩ U0 such that C0Dv + q 6⊂ Ω.
Let |z0| be the minimum value in {|z| | zv + q ∈ ∂Ω}; obviously |z0| < C0.
We define a curve r from q to z0v + q in Cn by r(s) = sz0v + q. We have
r(0) = q, r(1) = z0v+q, and r′(s) = z0v. Then ‖sz0v‖ < d(U0,Ω∩U c) implies
r(s) ∈ (A+ C0Dv) ∩ (Ω ∩ U) if s < 1. We choose a sequence sj approaching
1. By the property of the Kobayashi pseudodistance, inequality (1) and the
inequality dv(r(s)) ≥ (1− s)(|z0|) we have

kΩ(q, r(sj)) ≤
∫ sj

0

K(r(s), r′(s))ds ≤ |z0|
∫ sj

0

K(r(s), v)ds

≤ |z0|
∫ sj

0

Cε
dv(r(s))ε

ds ≤ |z0|
|z0|ε

∫ sj

0

Cε
(1− s)ε

ds ≤M.

Now r(sj) is approaching z0v + q ∈ ∂Ω as j goes to infinity, contradicting
the Kobayashi completeness of Ω near p. So we have C0Dv + z ⊂ Ω for all
z ∈ U0 ∩A. �

Proof of Step 2. We choose coordinates (z1, . . . , zn), such that v is a unit
vector in z1 -direction. By Step 1 we have, for fixed z = (z1, . . . , zn) ∈ U0 ∩A
and |w| < C0, wv + z ∈ Ω, that is, wv + z = (w + z1, z2, .., zn) ∈ Ω. If
we choose any (z1, z

′) ∈ (1/4)C0D × π({A ∩ U0 | |z1| < (1/2)C0}), then
there is a point (z0

1 , z
′) ∈ A ∩ U0 with |z0

1 | < (1/2)C0. This implies that
|z1− z0

1 | ≤ C0. By the above argument, (z1, z
′) = (z1− z0

1)v+ (z0
1 , z
′) ∈ Ω, so

(1/4)C0D × π({A ∩ U0 | |z1| < (1/2)C0}) ⊂ Ω. �

With Steps 1 and 2 the proof of Lemma 3 is complete. �

Lemma 4. If Ω has a fat subdomain A having mass at p in ∂Ω which is
a product space and has smooth boundary near p, then Ω has non-compact
∂-Neumann operator.
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Proof. We give a sketch of the proof, which is based on a standard argu-
ment [6]. We may assume that there is a coordinate system (z1, . . . , zn) on
a neighborhood U of p such that p = 0 and A = C0D × W , where W is
an open set in Cn−1. The set (C0/2)D ×W is still a fat subdomain having
mass at p. We may also assume that there is a holomorphic sequence {fj}∞j=1

which lies in the unit ball of L2(Ω) and has no subsequence that converges in
L2((C0/2)D×W ). Denote by χ(t) a smooth cut-off function that is identically
1 for 0 ≤ t ≤ (C0/2) and identically 0 for t ≥ 2C0/3. Let z′ = (z2, . . . , zn). Let
αj be ∂(χ(|z1|)fj((z1, z

′))), which is ∂ closed on Ω, and let gj = ∂
∗
Nαj . Sup-

pose that N is a compact operator. By Lemma 2 we may assume that ∂
∗
N is

also a compact operator. After passing to a subsequence, we may assume that
{gj}∞j=1 converges in L2(Ω). Let hj((z1, z

′)) = χ(|z1|)fj((z1, z
′))−gj((z1, z

′)).
Then hj is holomorphic. If |z1| ≥ 2C0/3 on A, then hj = gj . Using the mean
value property of holomorphic functions, we see that hj converges in L2(A),
and hence that χfj converges on L2((C0/2)D × W ). This is a contradic-
tion. �

Proof of Theorem 3. Lemma 3 implies that Ω has a fat subdomain with
mass at p that is a product domain. By Lemma 4, Ω has a non-compact
∂-Neumann operator. �

4. Application

Theorem 1 and Theorem 4 below are both applications of Lemma 3. We
first prove Theorem 1.

Proof of Theorem 1. By the hypotheses there is a sufficiently small open
neighborhood U of p in Cn and a constant Cε such that for z ∈ U ∩ Ω

K(z, v) ≤ Cε
dv(z)ε

.

We may assume that U∩Ω is Kobayashi complete. The hypothesis of Theorem
1 gives inequality (1) in the proof of Lemma 3 with the set A replaced by the
set U ∩ Ω. We may assume that v is a unit vector in z1 -direction.

Now we can follow directly the argument of Lemma 3. There is a constant
C0 and an open neighborhood U0 of p in Cn such that (1/4)C0D×π({Ω∩U0 |
|z1| < (1/2)C0}) ⊂ Ω. Hence, if we suppose that for all z = (z1, . . . , zn) ∈ U0,
we have |z1| ≤ (1/4)C0, then we get Ω ∩ U0 = U0 ∩ ((1/4)C0D × π({Ω ∩ U0 |
|z1| < (1/2)C0})). Near p = 0, Ω is locally a product space. �

Theorem 4. Suppose that Ω is K-complete near p in ∂Ω and a bounded
domain. The following are equivalent.

(1) For z close enough to p there exist ε < 1 and a constant Cε such that

K(z, v) ≤ Cε
dv(z)ε

.
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(2) For z close enough to p and for all ε < 1 there exists a constant Cε
such that

K(z, v) ≤ Cε
dv(z)ε

.

(3) There is a small open neighborhood U of p in Cn such that there exists
M so that for all z ∈ U ∩ Ω

K(z, v) ≤M.

(4) Ω is locally a product space as follows. Let p = 0. After linearly chang-
ing the coordinate system, there is a constant C0, an open neighbor-
hood U of 0 in Cn, and an open set W in Cn−1 such that U ∩ (C0D×
W ) = Ω ∩ U .

Proof. By Theorem 1, (1) implies (4). We next show that (4) implies (3).
Suppose that (4) is true. Then there is a constant C and an open neighborhood
U0 of 0 such that if z = (z1, z

′) ∈ U0 ∩ ((C/2)D ×W ), then dv(z) ≥ C/2. So
we get K(z, v) ≤ 1/dv(z) ≤ 2/C. Hence (3) is satisfied.

Now we show that (3) implies (2). The domain Ω is bounded, so there is a
M0 such that dv((z1, z

′)) ≤M0, 1 ≤M ε
0(1/dv(z)ε) for all ε. This implies that

K(z, v) ≤MM ε
0(1/dv(z)ε). Let Cε = MM ε

0 . Then K(z, v) ≤ Cε/dv(z)ε.
Obviously (2) implies (1), so the proof of Theorem 4 is complete. �

One can ask whether property (3) in Theorem 4 is invariant under biholo-
morphism. Theorem 4 gives a negative answer because the product structure
is not preserved under biholomorphism, as shown by the following example.
The domain Ω = {(z, w) : z ∈ D, |w| < R(z)} can be mapped onto the unit
dicylinder by some biholomorphism if − lnR(z) is harmonic in D [11]. This
example is enough to show that the product structure is not invariant under
biholomorphism.

We now introduce the localization principle of the Bergman Kernel in the
case of a bounded pseudoconvex domain with smooth boundary in Cn (see
[3], [10]). Let Ω be a bounded pseudoconvex domain with smooth boundary
in Cn, z0 ∈ ∂Ω. Then for any sufficiently small neighborhood U of z0 for
z ∈ U ′ ∩ Ω, where U ′ is a smaller neighborhood U ′ ⊂⊂ U , we have:

1
c
BU∩Ω(z, z) ≤ BΩ(z, z) ≤ BU∩Ω(z, z).

Corollary. If Ω is a smooth bounded pseudoconvex domain in Cn that
is Kobayashi complete near p and there is a neighborhood U , a nonzero vector
v, and a constant M > 0 such that for q ∈ Ω ∩ U ,

K(q, v) ≤M,

then, after linearly changing the coordinate system such that p = 0 and v is a
unit vector in the z1-direction, there are two constants C1 and C2 such that



642 MIJOUNG KIM

for z = (z1, z
′) ∈ Ω ∩ U1, z

′ ∈ Cn−1,

BC0D(z1, z1)×Bπ(U0)(z′, z′) < C1BΩ(z, z)

< C2BC0D(z1, z1)×Bπ(U0)(z′, z′),

where U0 and U1 ⊂ U0 are subneighborhoods of U containing p and C0 is the
constant from Theorem 4.

Geometrically, π(U0) is the intersection of the hypersurface supported by
v at p and Ω ∩ U0. The point of the Corollary is that the rate of blow-up of
the Bergman kernel BΩ(z, z) as z → p is comparable to the rate of blow-up
of the Bergman kernel Bπ(U0) of a lower-dimensional domain. Theorem 4 and
the argument above imply this Corollary.

Proof of Theorem 2. A proof of the implication (2) ⇐⇒ (3) can be found
in [5, Therem 1.1.]. We now show that (2) implies (1). Suppose that Ω
does not have Property -K near some point p in ∂Ω. The convexity of Ω
implies Kobayashi completeness. By Theorem 3 (when the domain is convex,
smoothness is not necessary), Ω has a non-compact ∂-Neumann operator.

To prove that (1) implies (3), we assume that there is an affine complex
disk on the boundary of Ω. After linearly changing the coordinate system,
we may assume that 0 ∈ ∂Ω. Let A = {z1 ∈ C1 | |z1| < 1} × Ω2 ⊂ Ω, where
Ω2 = (1/2){z′ ∈ Cn−1 | (0, z′) ∈ Ω}. By part (2) of Lemma 1, the convexity of
Ω implies that A is a fat subdomain having mass at 0 of Ω. A complete proof
of the existence of a fat subdomain, which is a product space after linearly
changing the coordinate system, is contained in [5]. Set v = (1, 0 . . . , 0). For
all z ∈ A ∩ {(z1, z

′) | |z1| < (1/4)}, dv(z) is uniformly bounded from above
and below. There exist M1,M2 such that M1 < 1/dv(z) < M2. This implies
that K(z, v) ≤ 1/dv(z) ≤M2(M−ε1 )1/dv(z)ε. Thus Ω does not have Property
-K. �
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