A BRUNN-MINKOWSKI THEORY FOR MINIMAL SURFACES

YVES MARTINEZ-MAURE

Abstract

The aim of this paper is to motivate the development of a Brunn-Minkowski theory for minimal surfaces. In 1988, H. Rosenberg and E. Toubiana studied a sum operation for finite total curvature complete minimal surfaces in \mathbb{R}^{3} and noticed that minimal hedgehogs of \mathbb{R}^{3} constitute a real vector space [14]. In 1996, the author noticed that the square root of the area of minimal hedgehogs of \mathbb{R}^{3} that are modelled on the closure of a connected open subset of \mathbb{S}^{2} is a convex function of the support function [5]. In this paper, the author (i) gives new geometric inequalities for minimal surfaces of \mathbb{R}^{3}; (ii) studies the relation between support functions and Enneper-Weierstrass representations; (iii) introduces and studies a new type of addition for minimal surfaces; (iv) extends notions and techniques from the classical BrunnMinkowski theory to minimal surfaces. Two characterizations of the catenoid among minimal hedgehogs are given.

1. Introduction and statement of results

The set \mathcal{K}^{n+1} of convex bodies of the $(n+1)$-Euclidean vector space \mathbb{R}^{n+1} is usually equipped with Minkowski addition and multiplication by nonnegative real numbers. The theory of hedgehogs consists of considering \mathcal{K}^{n+1} as a convex cone of the vector space $\left(\mathcal{H}^{n+1},+, \cdot\right)$ of formal differences of convex bodies of \mathbb{R}^{n+1}. More precisely, it consists of:

1. considering each formal difference of convex bodies of \mathbb{R}^{n+1} as a hypersurface of \mathbb{R}^{n+1} (possibly with singularities and self-intersections), called a 'hedgehog';
2. extending the mixed volume $V:\left(\mathcal{K}^{n+1}\right)^{n+1} \rightarrow \mathbb{R}$ to a symmetric $(n+1)$-linear form on \mathcal{H}^{n+1};
3. considering the Brunn-Minkowski theory in \mathcal{H}^{n+1}.

The relevance of this theory can be illustrated by the following two principles:

[^0]1. to study convex bodies by splitting them into a sum of hedgehogs to reveal their structure;
2. to convert analytical problems into geometrical ones by considering certain real functions on the unit sphere \mathbb{S}^{n} of \mathbb{R}^{n+1} as support functions of a hedgehog (or of a 'multi-hedgehog', see below).
The first principle permitted the author to disprove an old conjectured characterization of the $2-$ sphere [9] and the second one to give a geometrical proof of the Sturm-Hurwitz theorem [11]. The reader will find a short introduction of the theory in [12]. For an elementary survey of hedgehogs with a smooth support function, see [8].

The idea of defining geometrical differences of convex bodies goes back to H. Geppert who gave a first study of hedgehogs in \mathbb{R}^{2} and \mathbb{R}^{3} (under the German names 'stützbare Bereiche' and 'stützbare Flächen') [1]. The name 'hedgehog' came from a paper by R. Langevin, G. Levitt and H. Rosenberg [3] who implicitly considered differences of convex bodies of class C_{+}^{2} (i.e., of convex bodies whose boundary is a C^{2}-hypersurface with positive Gauss curvature) as envelopes parametrized by their Gauss map. Let us recall the main points of their approach.

The boundary of a convex body $K \subset \mathbb{R}^{n+1}$ of class C_{+}^{2} is determined by its support function $h: \mathbb{S}^{n} \rightarrow \mathbb{R}, u \mapsto \sup \{\langle x, u\rangle \mid x \in K\}$ (which must be of class C^{2}) as the envelope \mathcal{H}_{h} of the family of hyperplanes given by

$$
\langle x, u\rangle=h(u)
$$

Now, this envelope \mathcal{H}_{h} is well defined for any $h \in C^{2}\left(\mathbb{S}^{n} ; \mathbb{R}\right)$ (which is not necessarily the support function of a convex hypersurface). Its natural parametrization $x_{h}: \mathbb{S}^{n} \rightarrow \mathcal{H}_{h}, u \mapsto h(u) u+(\nabla h)(u)$, can be interpreted as the inverse of its Gauss map in the sense that, at each regular point $x_{h}(u)$ of \mathcal{H}_{h}, u is a normal vector to \mathcal{H}_{h}. This envelope \mathcal{H}_{h} is called the hedgehog with support function h.

The notion of hedgehog of \mathbb{R}^{3} can be extended by considering hedgehogs whose support function is only defined (and C^{2}) on some spherical domain $\Omega \subset \mathbb{S}^{2}$. Among hedgehogs defined on the unit sphere \mathbb{S}^{2} punctured at a finite number of points, we can consider those that are minimal, that is, those whose mean curvature H is zero at all the smooth points. The condition that a hedgehog $\mathcal{H}_{h} \subset \mathbb{R}^{2}$ is minimal means simply that its support function h satisfies the equation

$$
\triangle_{S} h+2 h=0,
$$

where \triangle_{S} is the spherical Laplace operator on \mathbb{S}^{2} (see [4]). In other words, a minimal hedgehog \mathcal{H}_{h} (modelled on \mathbb{S}^{2} punctured at a finite number of points) is a trivial hedgehog (i.e., a point) or a (possibly branched) minimal surface with total curvature -4π that is parametrized by the inverse of its Gauss map.

A study of minimal hedgehogs has been given by H. Rosenberg and E. Toubiana [14]. Concerning linear structures on the collections of minimal surfaces in \mathbb{R}^{3} and \mathbb{R}^{4}, the reader is also referred to the paper by A. Small [17].

Geometric inequalities for minimal hedgehogs (resp. N-hedgehogs) in \mathbb{R}^{3}. In this paper, we are interested in the extension to minimal surfaces of notions and techniques from the Brunn-Minkowski theory. The idea of developing a Brunn-Minkowski theory for minimal surfaces of \mathbb{R}^{3} arises naturally from the fact that a (reversed) Brunn-Minkowski type inequality holds for minimal hedgehogs.

Let K be the closure of a (nonempty) connected open subset of \mathbb{S}^{2} and let \mathcal{H}_{k} be a minimal hedgehog modelled on K. Then the area of $x_{k}(K)$ is finite and given by

$$
\operatorname{Area}\left[x_{k}(K)\right]=-\int_{K} R_{k} d \sigma
$$

where σ is the spherical Lebesgue measure on \mathbb{S}^{2} and R_{k} the 'curvature function' of \mathcal{H}_{k}, that is, $1 / K_{k}$, where K_{k} is the Gauss curvature of \mathcal{H}_{k} (regarded as a function of the normal). Now, if \mathcal{H}_{l} is another minimal hedgehog modelled on K, then

$$
\begin{equation*}
\sqrt{A(k+l)} \leq \sqrt{A(k)}+\sqrt{A(l)} \tag{1.1}
\end{equation*}
$$

where $A(h)=$ Area $\left[x_{h}(K)\right]$. In fact, we can regard the set of hedgehogs modelled (up to a translation) on K as a real vector space endowed with a prehilbertian structure for which the norm is given by the square root of the area. Consider the set of support functions (of a minimal hedgehog) modelled on K and identify two such functions k and l when $x_{k}(K)$ and $x_{l}(K)$ are translates of each other. Then the quotient set $\mathcal{H}(K)$ inherits a real vector space structure and we have the following result.

Theorem $1.1([5])$. The map $\sqrt{A}: \mathcal{H}(K) \rightarrow \mathbb{R}_{+}, h \longmapsto \sqrt{\operatorname{Area}\left[x_{h}(K)\right]}$, is a norm associated with a scalar product $A: \mathcal{H}(K)^{2} \rightarrow \mathbb{R}$, which may be interpreted as an algebraic mixed area:

$$
\forall(k, l) \in \mathcal{H}(K)^{2},(\text { Mixed Area })\left[x_{k}(K), x_{l}(K)\right]:=A(k, l)
$$

By the Cauchy-Schwarz inequality we have

$$
\begin{equation*}
A(k, l)^{2} \leq A(k) \cdot A(l) \tag{1.2}
\end{equation*}
$$

Corollary 1.2. As a consequence, the area $A: \mathcal{H}(K) \rightarrow \mathbb{R}_{+}, h \longmapsto$ Area $\left[x_{h}(K)\right]$, is a strictly convex map, and thus, for any nonempty convex subset \mathcal{K} of $\mathcal{H}(K)$, the problem of minimizing A over \mathcal{K} has at most one optimal solution.

Remark 1.1. Inequality (1.1) (resp. (1.2)) has to be compared with the following Brunn-Minkowski inequality (resp. Minkowski inequality). For any pair (K, L) of convex bodies of \mathbb{R}^{3}, we have (see, for instance, [15])

$$
\sqrt{A(K+L)} \geq \sqrt{A(K)}+\sqrt{A(L)}
$$

and

$$
A(K, L)^{2} \geq A(K) \cdot A(L)
$$

where $A(H)$ (resp. $A(K, L)$) is the surface area (resp. the mixed surface area) of the convex body $H \subset \mathbb{R}^{3}$ (resp. of the pair (K, L)).

The author has obtained similar inequalities for various classes of hedgehogs as a consequence of an extension of the Alexandrov-Fenchel inequality [6].

REmARK 1.2. Let $\mathcal{H}\left(\mathbb{S}^{2}\right)$ be the real vector space of support functions of minimal hedgehogs defined (up to a translation) on the unit sphere punctured at a finite number of points. To each $h \in \mathcal{H}\left(\mathbb{S}^{2}\right)$ let us assign the positive Borel measure μ_{h} defined on \mathbb{S}^{2} by

$$
\forall \Omega \in \mathcal{B}\left(\mathbb{S}^{2}\right), \mu_{h}(\Omega)=-\int_{\Omega} R_{h} d \sigma
$$

where $\mathcal{B}\left(\mathbb{S}^{2}\right)$ denotes the σ-algebra of Borel subsets of \mathbb{S}^{2}. Then we notice that the map

$$
m: \mathcal{H}\left(\mathbb{S}^{2}\right) \rightarrow\left\{\sqrt{\mu} \mid \mu \text { is a positive Borel measure on } \mathbb{S}^{2}\right\}, h \longmapsto \sqrt{\mu_{h}},
$$

satisfies the following properties:
(i) $\forall h \in \mathcal{H}\left(\mathbb{S}^{2}\right), m(h)=0 \Longleftrightarrow h=0_{\mathcal{H}\left(\mathbb{S}^{2}\right)}$;
(ii) $\forall \lambda \in \mathbb{R}, \forall h \in \mathcal{H}\left(\mathbb{S}^{2}\right), m(\lambda h)=|\lambda| m(h)$;
(iii) $\forall(k, l) \in \mathcal{H}\left(\mathbb{S}^{2}\right)^{2}, m(k+l) \leq m(k)+m(l)$.

Remark 1.3. Let \mathcal{H}_{k} and \mathcal{H}_{l} be two hedgehogs whose support function is defined (and C^{2}) on some spherical domain $\Omega \subset \mathbb{S}^{2}$. On this domain, we can define their mixed curvature function by

$$
R_{(k, l)}:=\frac{1}{2}\left(R_{k+l}-R_{k}-R_{l}\right) .
$$

The symmetric map $(\alpha, \beta) \mapsto R_{(\alpha, \beta)}$ is bilinear on the vector space of hedgehogs modelled on Ω [10]. Given any $u \in \Omega$, the polynomial function $P_{u}(t)=$ $R_{k+t l}(u)$ thus satisfies $P_{u}(t)=R_{k}(u)+2 t R_{(k, l)}(u)+t^{2} R_{l}(u)$ for all $t \in \mathbb{R}$.

When k and l are the support functions of two convex bodies of class C_{+}^{2}, $P_{u}(t)$ must have a zero, so that

$$
R_{(k, l)}(u)^{2} \geq R_{k}(u) \cdot R_{l}(u)
$$

and hence

$$
\sqrt{R_{k+l}(u)} \geq \sqrt{R_{k}(u)}+\sqrt{R_{l}(u)}
$$

by noticing that $R_{(k, l)}>0$.
When \mathcal{H}_{k} and \mathcal{H}_{l} are minimal hedgehogs, $P_{u}(t)$ is nonpositive on \mathbb{R}, so that

$$
R_{(k, l)}(u)^{2} \leq R_{k}(u) \cdot R_{l}(u)
$$

and hence

$$
\sqrt{-R_{k+l}(u)} \leq \sqrt{-R_{k}(u)}+\sqrt{-R_{l}(u)}
$$

Note that $A(k, l)=\int_{K} R_{(k, l)} d \sigma$ for all $(k, l) \in \mathcal{H}(K)^{2}$ and that inequality (1.2) can be deduced from the inequality $R_{(k, l)}^{2} \leq R_{k} \cdot R_{l}$.

Inequality (1.1) can be extended to some asymptotic areas of embedded ends in \mathbb{R}^{3}. The (possibly branched) complete minimal surfaces of finite nonzero total curvature in \mathbb{R}^{3} can be regarded as 'multi-hedgehogs' provided they have only a finite number of branch points [14]: the (possibly singular) envelope of a family of cooriented planes of \mathbb{R}^{3} is called an N-hedgehog if, for an open dense set of $u \in \mathbb{S}^{2}$, it has exactly N cooriented support planes with normal vector u. Hedgehogs with a C^{2} support function are merely 1-hedgehogs.

We know that embedded ends of a minimal surface of \mathbb{R}^{3} are flat or of catenoid type (i.e., asymptotic to a planar or catenoid end). More precisely (see [16]), each embedded end is the graph (over the exterior of a bounded region in an (x_{1}, x_{2})-plane orthogonal to the limiting normal at the end) of a function of the form

$$
u\left(x_{1}, x_{2}\right)=a \ln (r)+b+\frac{c x_{1}+d x_{2}}{r^{2}}+O\left(\frac{1}{r^{2}}\right), r=\sqrt{x_{1}^{2}+x_{2}^{2}}
$$

with $a=0$ when the end is flat.
Let E be an embedded flat end of a minimal surface of \mathbb{R}^{3} and let P be its asymptotic plane. Define the asymptotic area of E by

$$
A_{s}[E]=\iint_{\Delta}\left(\sqrt{1+u_{x_{1}}\left(x_{1}, x_{2}\right)^{2}+u_{x_{2}}\left(x_{1}, x_{2}\right)^{2}}-1\right) d x_{1} d x_{2} \in[0,+\infty]
$$

where $u: \Delta \rightarrow \mathbb{R},\left(x_{1}, x_{2}\right) \mapsto u\left(x_{1}, x_{2}\right)$ is the function whose graph is equal to E. Given any increasing sequence $\left(K_{n}\right)$ of compact subsets of P such that $K_{n} \rightarrow \Delta, A_{s}[E]$ may be interpreted as the limit of

$$
\text { Area }\left[\pi^{-1}\left(K_{n}\right) \cap E\right]-\text { Area }\left[K_{n}\right]
$$

where π denotes the orthogonal projection onto the asymptotic plane.
Theorem 1.3 ([5]). The asymptotic area of every embedded flat end of a minimal surface $S \subset \mathbb{R}^{3}$ is finite.

Note that hedgehogs never have flat ends: if an end is flat, then the limiting normal at the end is a branch point of the Gauss map so that the surface cannot be a hedgehog (see, for instance, [4]). Let E be an embedded flat end
of a minimal N-hedgehog, where $N \geq 2$. After a rotation, we may assume the limiting normal at the end is $n=(0,0,-1)$. Then E admits a Weierstrass representation $(g(z), f(z) d z)$ of the form

$$
g(z)=z^{N} \text { and } f(z)=\frac{\alpha}{z^{2}}+\sum_{k=0}^{+\infty} c_{k} z^{k}
$$

where α is nonzero [4]. (In the next subsection, the reader will find an introduction and some remarks on the Weierstrass representation of minimal surfaces in \mathbb{R}^{3}.) Given $\left.r \in\right] 0,1[$, the pieces of minimal N-hedgehogs defined (up to a translation) by a parametrization of the form

$$
\begin{aligned}
X_{f}: D & =\left\{z \in \mathbb{C}|0<|z| \leq r\} \rightarrow \mathbb{R}^{3}\right. \\
z=x+i y \mapsto & \operatorname{Re}\left(\int \frac{1}{2} f(z)\left(1-z^{2 N}\right) d z\right. \\
& \left.\int \frac{i}{2} f(z)\left(1+z^{2 N}\right) d z, \int f(z) z^{N} d z\right)
\end{aligned}
$$

where $f(z)=\left(\alpha / z^{2}\right)+\sum_{k=0}^{+\infty} c_{k} z^{k}$ (α may be 0), constitute a real vector space $\left(E_{N},+, \cdot\right)$, where addition is defined by $X_{f_{1}}+X_{f_{2}}=X_{f_{1}+f_{2}}$ and scalar multiplication by $\lambda \cdot X_{f}=X_{\lambda f}$. Let us denote by S_{f} the surface parametrized by $X_{f}: D \rightarrow \mathbb{R}^{3}$.

Theorem 1.4. For every $S_{f} \in E_{N}$, define $A_{s}(f)$ by

$$
A_{s}(f):=\iint_{D}(1-\langle N(z), n\rangle)\left\|\left(\frac{\partial X_{f}}{\partial x} \times \frac{\partial X_{f}}{\partial y}\right)(z)\right\| d x d y
$$

where

$$
N(z)=\frac{2}{|z|^{2 N}+1}\left(\operatorname{Re}\left(z^{N}\right), \operatorname{Im}\left(z^{N}\right), \frac{|z|^{2 N}-1}{2}\right)
$$

is the unit normal at $X_{f}(z)$ if $\left(\frac{\partial X_{f}}{\partial x} \times \frac{\partial X_{f}}{\partial y}\right)(z) \neq 0$ and where D is identified with

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid 0<\sqrt{x^{2}+y^{2}} \leq r\right\}
$$

(i) If S_{f} is an embedded flat end, then $A_{s}(f)$ is its asymptotic area $A_{s}\left[S_{f}\right]$.
(ii) The map $\sqrt{A_{s}}: E_{N} \rightarrow \mathbb{R}_{+}, S_{f} \longmapsto \sqrt{A_{s}(f)}$, is a norm associated with a scalar product (which may be interpreted as a mixed algebraic asymptotic area).

Addition of minimal surfaces and Enneper-Weierstrass representation. It is well known that any minimal surface $S \subset \mathbb{R}^{3}$ (possibly with isolated branch points) can be locally represented in the form

$$
\left\{\begin{array}{l}
X_{1}(x, y)=\frac{1}{2} \operatorname{Re}\left[\int_{z_{0}}^{z}\left(1-g(\zeta)^{2}\right) f(\zeta) d \zeta\right]+c_{1} \tag{1.3}\\
X_{2}(x, y)=\frac{1}{2} \operatorname{Re}\left[\int_{z_{0}}^{z} i\left(1+g(\zeta)^{2}\right) f(\zeta) d \zeta\right]+c_{2} \\
X_{3}(x, y)=\operatorname{Re}\left[\int_{z_{0}}^{z} g(\zeta) f(\zeta) d \zeta\right]+c_{3}
\end{array}\right.
$$

where $f(z)$ is an arbitrary holomorphic function on an open simply connected neighbourhood \mathcal{U} of $z_{0} \in \mathbb{C}$ and $g(z)$ an arbitrary meromorphic function on \mathcal{U} such that, at each pole of order n of $g(z), f(z)$ has a zero of order at least $2 n$, the integral being taken along any path connecting z_{0} to $z=x+i y \in \mathbb{C}$ in \mathcal{U}, and naturally, c_{1}, c_{2} and c_{3} denote real constants. Recall that (see, e.g., [13])

$$
\begin{aligned}
N(z) & :=\frac{\left(\frac{\partial X}{\partial x} \times \frac{\partial X}{\partial y}\right)(x, y)}{\left\|\left(\frac{\partial X}{\partial x} \times \frac{\partial X}{\partial y}\right)(x, y)\right\|} \\
& =\frac{2}{|g(z)|^{2}+1}\left(\operatorname{Re}[g(z)], \operatorname{Im}[g(z)], \frac{|g(z)|^{2}-1}{2}\right)
\end{aligned}
$$

is the (unit) normal to the surface at $X(x, y)=\left(X_{1}(x, y), X_{2}(x, y), X_{3}(x, y)\right)$ and $g(z)$ its image under the stereographic projection $\sigma: \mathbb{S}^{2}-\{(0,0,1)\} \rightarrow \mathbb{C}$, $(x, y, t) \mapsto \frac{x+i y}{1-t}$. Thus, $X: \mathcal{U} \rightarrow \mathbb{R}^{3}, z=x+i y \mapsto\left(X_{1}(x, y), X_{2}(x, y), X_{3}(x, y)\right)$, is a hedgehog (that is, X can be interpreted as the inverse of the stereographic projection of its Gauss map) if and only if $g(z)=z$. The simplest choice of 'Weierstrass data' $(g(z), f(z) d z)=(z, d z)$ gives Enneper's surface. Recall that this surface and the catenoid, which is given by $(g(z), f(z) d z)=$ $\left(z, d z / z^{2}\right)$, are the only two complete regular minimal surfaces that are hedgehogs (see, e.g., [13]).

Representation (1.3) can be generalized to generate all minimal surfaces of $\mathbb{R}^{3}:$ if $S \subset \mathbb{R}^{3}$ is a minimal surface (possibly with isolated branch points), M its Riemann surface and $g=\sigma \circ N: M \rightarrow \mathbb{C} \cup\{\infty\}$ the stereographic projection (from the north pole) of its Gauss map, then S can be represented in the form (1.3) for some holomorphic function f on M and some fixed $z_{0} \in M$.

Given any two (possibly branched) minimal surfaces S_{1} and S_{2} modelled (up to a translation) by Weierstrass data $\left(g(z), f_{1}(z) d z\right)$ and $\left(g(z), f_{2}(z) d z\right)$ on a Riemann surface M (and thus sharing the same 'Gauss map' $g(z)$), we can define their sum $S_{1}+S_{2}$ as the (possibly branched) minimal surface given (up to a translation) by $\left(g(z),\left(f_{1}(z)+f_{2}(z)\right) d z\right)$. For any minimal surface
S modelled (up to a translation) by Weierstrass data $(g(z), f(z) d z)$ on M and for any complex number λ, we can define the minimal surface λS as the minimal surface given (up to a translation) by $(g(z), \lambda f(z) d z)$. Of course, in order for $z \mapsto \operatorname{Re}\left[\int \phi_{\lambda}(z) d z\right]$ to be well-defined on M, where

$$
\phi_{\lambda}(z):=\lambda f(z)\left(\frac{1}{2}\left(1-g(z)^{2}\right), \frac{i}{2}\left(1+g(z)^{2}\right), g(z)\right)
$$

we need that no component of ϕ_{λ} has a real period on M, that is,

$$
\operatorname{Period}_{\gamma}\left[\phi_{\lambda}\right]:=\operatorname{Re} \oint_{\gamma} \phi_{\lambda}(z) d z=0_{\mathbb{R}^{3}}
$$

for all closed curves γ on M, but in the case when this period condition is not satisfied, we may consider the minimal surface λS modelled on the universal covering space of M (i.e., \mathbb{C} or the open unit disc). By hypothesis, ϕ_{1} has no real period on M since S is modelled on M. It follows that for any $\lambda \in \mathbb{R}$ the surface λS is also modelled on M (since ϕ_{λ} clearly has no real period on M if $\lambda \in \mathbb{R}$). Thus, minimal surfaces modelled (up to a translation) by Weierstrass data $(g(z), f(z) d z)$ on a common Riemann surface M and sharing the same 'Gauss map' $g(z)$ constitute a real vector space E_{M} (which can be identified with the space of all holomorphic functions $f(z)$ having a zero of order at least $2 n$ at each pole of order n of $g(z)$ and satisfying

$$
\operatorname{Period}_{\gamma}\left[f\left(\frac{1}{2}\left(1-g^{2}\right), \frac{i}{2}\left(1+g^{2}\right), g\right)\right]=0_{\mathbb{R}^{3}}
$$

for all closed curves γ on M).
Recall that (i) the associate surfaces to a minimal surface S modelled (up to a translation) by Weierstrass data $(g(z), f(z) d z)$ on a Riemann surface M are the surfaces $S_{\theta}=e^{i \theta} S$ given (up to a translation) by $\left(g(z), e^{i \theta} f(z) d z\right.$), where $\theta \in\left[0, \frac{\pi}{2}\right]$; and (ii) the conjugate surface S^{*} to S is the associated surface $S_{\pi / 2}$. Clearly, S^{*} and S_{θ} are (locally) parametrized by $X^{*}(z)=-\operatorname{Im}\left[\int \phi(z) d z\right]$ and $X_{\theta}=(\cos \theta) X-(\sin \theta) X^{*}$, where $\phi:=$ $f\left(\frac{1}{2}\left(1-g^{2}\right), \frac{i}{2}\left(1+g^{2}\right), g\right)$ and $X(z):=\operatorname{Re}\left[\int \phi(z) d z\right]$. In other words, we have $S_{\theta}=(\cos \theta) S-(\sin \theta) S^{*}$, where the surfaces are modelled on the universal covering space of M in the case when ϕ has a real period on M.

Remark 1.4. Every hedgehog $\mathcal{H}_{h} \subset \mathbb{R}^{n+1}$ has a unique representation in the form

$$
\begin{equation*}
\mathcal{H}_{h}=\mathcal{H}_{c}+\mathcal{H}_{p} \tag{1.4}
\end{equation*}
$$

where \mathcal{H}_{c} is centred (i.e., centrally symmetric with centre at the origin) and \mathcal{H}_{p} projective (i.e., modelled on $\mathbb{P}^{n}(\mathbb{R})=\mathbb{S}^{n} /($ antipodal relation $\left.)\right)$. This representation is given by

$$
h=c+p
$$

where

$$
c(u)=\frac{1}{2}(h(u)+h(-u)) \text { and } p(u)=\frac{1}{2}(h(u)-h(-u)) .
$$

In the same way, every minimal hedgehog $\mathcal{H}_{h} \subset \mathbb{R}^{3}$ has a unique representation in the form (1.4). If \mathcal{H}_{h} is given by Weierstrass data $(z, f(z) d z)$, then \mathcal{H}_{c} and \mathcal{H}_{p} are given (up to a translation) by the following decomposition of $f(z)$:

$$
f(z)=f_{c}(z)+f_{p}(z)
$$

where

$$
\begin{aligned}
& f_{c}(z)=\frac{1}{2}\left(f(z)+\frac{1}{z^{4}} \overline{f\left(\frac{-1}{\bar{z}}\right)}\right) \\
& f_{p}(z)=\frac{1}{2}\left(f(z)-\frac{1}{z^{4}} \overline{f\left(\frac{-1}{\bar{z}}\right)}\right)
\end{aligned}
$$

(see [18] for the determination of $f_{p}(z)$). Let us consider the case of Enneper's surface, whose support function is given by

$$
h(u)=\frac{\left(x^{2}-y^{2}\right)(2 r-t)}{2(r-t)^{2}}
$$

where $r=\sqrt{x^{2}+y^{2}+t^{2}}$ and $u=(x, y, t) \in \mathbb{S}^{2} \subset \mathbb{R}^{3}$. In this case, we get

$$
c(u)=\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \text { and } p(u)=\frac{t\left(x^{2}-y^{2}\right)\left(2 r^{2}+x^{2}+y^{2}\right)}{2\left(x^{2}+y^{2}\right)^{2}}
$$

(resp. $f_{c}(z)=\frac{1}{2}\left(1+1 / z^{4}\right)$ and $\left.f_{p}(z)=\frac{1}{2}\left(1-1 / z^{4}\right)\right)$ and we notice that (i) \mathcal{H}_{c} has 5 planes of symmetry (with equations $x=0, y=0, z=0, x+y=0$ and $x-y=0$), 4 curves of double points lying on the plane $z=0$, and 4 branch points (namely $(1 / \sqrt{2}, 1 / \sqrt{2}, 0)$ and the points deduced from it by symmetry); (ii) \mathcal{H}_{p} is Henneberg's surface (which is thus the 'projective part' of Enneper's surface). Figure 1 below shows the central symmetrization of Enneper's surface.

Figure 1

Relation between Enneper-Weierstrass representation and support function. We have the following result.

Theorem 1.5. Let $X: \mathcal{U} \ni z_{0} \rightarrow \mathbb{R}^{3}, z \mapsto \operatorname{Re}\left[\int_{z_{0}}^{z} \phi(\zeta) d \zeta\right]$, where

$$
\phi(z):=f(z)\left(\frac{1}{2}\left(1-g(z)^{2}\right), \frac{i}{2}\left(1+g(z)^{2}\right), g(z)\right)
$$

be the Weierstrass representation of a piece of a minimal surface (possibly with isolated branch points) such that

$$
\begin{aligned}
& N: \mathcal{U} \rightarrow N(\mathcal{U}) \subset \mathbb{S}^{2} \\
& z \mapsto N(z)=\frac{2}{|g(z)|^{2}+1}\left(\operatorname{Re}[g(z)], \operatorname{Im}[g(z)], \frac{|g(z)|^{2}-1}{2}\right),
\end{aligned}
$$

is a diffeomorphism of \mathcal{U} onto $N(\mathcal{U})$. Then $X(\mathcal{U})$ can be regarded as a hedgehog \mathcal{H}_{h} whose parametrization $x_{h}: N(\mathcal{U}) \rightarrow \mathcal{H}_{h} \subset \mathbb{R}^{3}$ is given by $x_{h}=\nabla \varphi$, where $\varphi: v \mapsto\|v\| h(v /\|v\|)$ is the positively 1-homogeneous extension of h to
$\left\{\right.$ tu $\mid u \in N(\mathcal{U})$ and $\left.t \in \mathbb{R}_{+}^{*}\right\}[8]$. Given $g(z)$, the support function h and the holomorphic function f are related by

$$
\begin{equation*}
\phi(z)=\frac{2 g^{\prime}(z)}{1+|g(z)|^{2}}\left(L_{\varphi}\right)_{N(z)}\left(\overline{v_{g}(z)}\right) \tag{1.5}
\end{equation*}
$$

where $\left(L_{\varphi}\right)_{N(z)}$ is the endomorphism of \mathbb{C}^{3} that is represented in the standard basis by the Hessian matrix $(\operatorname{Hess} \varphi)_{N(z)}$ of φ at $N(z)$ and $v_{g}(z)=(1, i, g(z))$, so that

$$
f(z)=\frac{2 g^{\prime}(z)}{\left(1+|g(z)|^{2}\right)^{2}}\left[{ }^{t} \overline{V_{g}(z)} \cdot(\operatorname{Hess} \varphi)_{N(z)} \cdot \overline{V_{g}(z)}\right]
$$

where $V_{g}(z)$ is the column matrix ${ }^{t} v_{g}(z)$.
Let $\mathcal{H}_{h} \subset \mathbb{R}^{3}$ be a minimal hedgehog defined by Weierstrass data $(z, f(z) d z)$ on the sphere \mathbb{S}^{2} punctured at a finite number of points. From (1.5) it follows that

$$
f(z)=\frac{2}{z\left(1+|z|^{2}\right)}\left[\left(\nabla \varphi_{t}\right)(N(z)) \cdot \overline{V_{g}(z)}\right]
$$

where φ_{t} is the partial derivative of φ with respect to the third coordinate in the standard basis of \mathbb{R}^{3} and $\nabla \varphi_{t}=\left(\varphi_{x t}, \varphi_{y t}, \varphi_{t^{2}}\right)$ is its gradient. Changing the orientation of the normal, this gives

$$
\widetilde{f}(z)=\frac{2}{z\left(1+|z|^{2}\right)}\left[\left(\nabla \widetilde{\varphi}_{t}\right)(N(z)) \cdot \overline{V_{g}(z)}\right]
$$

where $\widetilde{f}(z)=-\left(1 / z^{4}\right) \overline{f(-1 / \bar{z})}$ and $\widetilde{\varphi}(\underset{\sim}{u})=-\varphi(-u)$. Noting that $N(-1 / \bar{z})=$ $-N(z)$ and comparing $f(-1 / \bar{z})$ with $\tilde{f}(z)$, we get easily

$$
\varphi_{t^{2}}(N(z))=\operatorname{Re}\left[z^{2} f(z)\right]
$$

Now, inflection points of level curves of a hedgehog $\mathcal{H}_{h} \subset \mathbb{R}^{3}$ (with a support function of class C^{∞}) are given by

$$
\varphi_{t^{2}}(u)=0, \nabla \varphi_{t}(u) \neq 0 \text { and } R_{h}(u) \neq 0
$$

where $\varphi(u)=\|u\| h(u /\|u\|)$. (By 'inflection point' of a level curve $\mathcal{C} \subset \mathcal{H}_{h}$ we mean a point where \mathcal{C} has a contact of order ≥ 2 with its tangent line.) Therefore we have:

Corollary 1.6. Let $\mathcal{H}_{h} \subset \mathbb{R}^{3}$ be a nontrivial minimal hedgehog defined by Weierstrass data $(z, f(z) d z)$ on the unit sphere \mathbb{S}^{2} punctured at a finite number of points. The inflection points of level curves of \mathcal{H}_{h} are given by

$$
\operatorname{Re}\left[z^{2} f(z)\right]=0, z \neq 0 \text { and } f(z) \neq 0
$$

It follows easily that the hedgehog \mathcal{H}_{h} is necessarily a catenoid if it is complete and if no level curve of \mathcal{H}_{h} has an inflection point.

Orthogonal-projection techniques. Let $\mathcal{H}_{h} \subset \mathbb{R}^{3}$ be a hedgehog with support function $h \in C^{2}\left(\mathbb{S}^{2} ; \mathbb{R}\right)$. We can get information on \mathcal{H}_{h} by considering its images under orthogonal projections onto planes. We proceed as follows. For any $u \in \mathbb{S}^{2}$ we consider the restriction h_{u} of h to the great circle $\mathbb{S}_{u}^{1}=\mathbb{S}^{2} \cap u^{\perp}$, where u^{\perp} is the linear subspace orthogonal to u. This restriction is the support function of a plane hedgehog $\mathcal{H}_{h_{u}} \subset u^{\perp}$, which is merely the image of $x_{h}\left(\mathbb{S}_{u}^{1}\right)$ under the orthogonal projection onto u^{\perp} :

$$
\mathcal{H}_{h_{u}}=\pi_{u}\left[x_{h}\left(\mathbb{S}_{u}^{1}\right)\right]
$$

where π_{u} is the orthogonal projection onto the plane u^{\perp}. The index of a point $x \in u^{\perp}-\mathcal{H}_{h_{u}}$ with respect to $\mathcal{H}_{h_{u}}$ (i.e., the winding number of $\mathcal{H}_{h_{u}}$ around $x)$ gives us information on the curvature of \mathcal{H}_{h} on the line $\{x\}+\mathbb{R} u$:

Theorem 1.7 ([7]). Let x be a regular value of the map $x_{h}^{u}=\pi_{u} \circ x_{h}$: $\mathbb{S}^{2} \rightarrow u^{\perp}$. The index of $x \in u^{\perp}-\mathcal{H}_{h_{u}}$ with respect to $\mathcal{H}_{h_{u}}$ is given by

$$
i_{h_{u}}(x)=\frac{1}{2}\left(\nu_{h}(x)^{+}-\nu_{h}(x)^{-}\right)
$$

where $\nu_{h}(x)^{+}\left(\right.$resp. $\left.\nu_{h}(x)^{-}\right)$is the number of $v \in \mathbb{S}^{2}$ such that $x_{h}(v)$ is an elliptic (resp. a hyperbolic) point of \mathcal{H}_{h} lying on the line $\{x\}+\mathbb{R} u$.

Recall that the index $i_{h}(x)$ of a point x with respect to a plane hedgehog \mathcal{H}_{h} can be related to the number of cooriented support lines of \mathcal{H}_{h} passing through x :

Theorem 1.8 ([7]). For any hedgehog $\mathcal{H}_{h} \subset \mathbb{R}^{2}$ we have

$$
\forall x \in \mathbb{R}^{2}-\mathcal{H}_{h}, i_{h}(x)=1-\frac{1}{2} n_{h}(x),
$$

where $n_{h}(x)$ is the number of cooriented support lines of \mathcal{H}_{h} passing through x, i.e., the number of zeros of the map $h_{x}: \mathbb{S}^{1} \rightarrow \mathbb{R}, u \longmapsto h(u)-\langle x, u\rangle$.

Theorem 1.7 admits an analogue for minimal hedgehogs:
Theorem 1.9. Let $\mathcal{H}_{h} \subset \mathbb{R}^{3}$ be a complete minimal hedgehog modelled on \mathbb{S}^{2} punctured at a finite number of points e_{1}, \ldots, e_{n} (corresponding to its ends) and let $u \in \mathbb{S}^{2}$ be such that $\mathbb{S}_{u}^{1} \subset \mathbb{S}^{2}-\left\{e_{1}, \ldots, e_{n}\right\}$. Then, for any regular value $x \in u^{\perp}-\mathcal{H}_{h_{u}}$ of the map $x_{h}^{u}=\pi_{u} \circ x_{h}: \mathbb{S}^{2}-\left\{e_{1}, \ldots, e_{n}\right\} \rightarrow u^{\perp}$, we have

$$
i_{h_{u}}(x)+N_{h}^{u}(x)^{+}=\sum_{e_{k} \in \mathbb{S}_{u}^{+}} d\left(e_{k}\right),
$$

where $\mathbb{S}_{u}^{+} \subset \mathbb{S}^{2}$ is the halfsphere defined by $\langle u, v\rangle>0, N_{h}^{u}(x)^{+}$the number of $v \in \mathbb{S}_{u}^{+}-\left\{e_{j} \mid\left\langle e_{j}, u\right\rangle>0\right\}$ such that $x_{h}(v) \in\{x\}+\mathbb{R} u$ and $d\left(e_{k}\right)$ the winding
number of the end with limiting normal e_{k}. Replacing u by $-u$, it follows that

$$
i_{h_{u}}(x)+N_{h}^{u}(x)^{-}=\sum_{e_{k} \in \mathbb{S}_{u}^{-}} d\left(e_{k}\right),
$$

where $\mathbb{S}_{u}^{-} \subset \mathbb{S}^{2}$ is the halfsphere defined by $\langle u, v\rangle<0$ and $N_{h}^{u}(x)^{-}$the number of $v \in \mathbb{S}_{u}^{-}-\left\{e_{j} \mid\left\langle e_{j}, u\right\rangle<0\right\}$ such that $x_{h}(v) \in\{x\}+\mathbb{R} u$. Consequently,

$$
i_{h_{u}}(x)=\frac{1}{2}\left(N(h)-N_{h}^{u}(x)\right),
$$

where $N_{h}^{u}(x)=N_{h}^{u}(x)^{-}+N_{h}^{u}(x)^{+}$is the number of $v \in \mathbb{S}^{2}-\left\{e_{1}, \ldots, e_{n}\right\}$ such that $x_{h}(v) \in\{x\}+\mathbb{R} u$ and $N(h)$ the total spinning of \mathcal{H}_{h}, that is, $N(h)=\sum_{k=1}^{n} d\left(e_{k}\right)$.

Corollary 1.10. Let $\mathcal{H}_{h} \subset \mathbb{R}^{3}$ be a complete nontrivial minimal hedgehog. If \mathcal{H}_{h} does not intersect a pencil of lines that fill up a right circular cone, then \mathcal{H}_{h} is a catenoid.

Theorem 1.9 can be generalized as follows. Consider a minimal multihedgehog $\mathcal{H}_{h} \subset \mathbb{R}^{3}$ given by a Weierstrass representation $X: \mathcal{U} \rightarrow \mathbb{R}^{3}$ and let $N: \Omega \rightarrow \mathbb{S}^{2}$ be its Gauss map (regarded as a map defined on the set Ω of regular points of X). The support function h can be regarded as a function of $z \in \Omega$ and defined by: $\forall z \in \Omega, h(z)=\langle X(z), N(z)\rangle$. For any $u \in \mathbb{S}^{2}$ such that \mathbb{S}_{u}^{1} contains no limiting normal at an end of \mathcal{H}_{h} let h_{u} be the restriction of h to $N^{-1}\left(\mathbb{S}_{u}^{1}\right)$. If $X\left[N^{-1}\left(\mathbb{S}_{u}^{1}\right)\right]$ contains no parabolic point of \mathcal{H}_{h}, then h_{u} can be interpreted as the support function of the family of plane multihedgehogs, say $\mathcal{H}_{h_{u}}$, that constitute the image of $X\left[N^{-1}\left(\mathbb{S}_{u}^{1}\right)\right]$ under the orthogonal projection onto the plane u^{\perp}. The index of a point $x \in u^{\perp}-\mathcal{H}_{h_{u}}$ with respect to the family of multihedgehogs $\mathcal{H}_{h_{u}}$ can be defined as the algebraic intersection number of almost every oriented half-line of u^{\perp} with origin x with the family of multihedgehogs equipped with their transverse orientation.

Theorem 1.11. Let $\mathcal{H}_{h} \subset \mathbb{R}^{3}$ be a complete minimal multihedgehog having n ends with limiting normals e_{1}, \ldots, e_{n}. Let $X: \mathcal{U} \rightarrow \mathbb{R}^{3}$ be a Weierstrass representation of \mathcal{H}_{h} and let $N: \Omega \rightarrow \mathbb{S}^{2}$ be its Gauss map (regarded as a map defined on the set Ω of regular points of X). Let $u \in \mathbb{S}^{2}$ be such that $\mathbb{S}_{u}^{1} \subset \mathbb{S}^{2}-\left\{e_{1}, \ldots, e_{n}\right\}$ and such that $X\left[N^{-1}\left(\mathbb{S}_{u}^{1}\right)\right]$ contains no parabolic point of \mathcal{H}_{h}. Then, for any $x \in u^{\perp}-\mathcal{H}_{h_{u}}$ such that the line $\{x\}+\mathbb{R} u$ contains no branch point of \mathcal{H}_{h}, we have

$$
i_{h_{u}}(x)+N_{h}^{u}(x)^{+}=\sum_{\left\{k \mid\left\langle e_{k}, u\right\rangle>0\right\}} d_{k},
$$

where $N_{h}^{u}(x)^{+}$is the number of $z \in N^{-1}\left(\mathbb{S}_{u}^{+}\right)$such that $X(z) \in\{x\}+\mathbb{R} u$ and d_{k} the winding number of the kth end. Replacing u by $-u$, it follows that

$$
i_{h_{u}}(x)+N_{h}^{u}(x)^{-}=\sum_{\left\{k \mid\left\langle e_{k}, u\right\rangle<0\right\}} d_{k},
$$

where $N_{h}^{u}(x)^{-}$is the number of $z \in N^{-1}\left(\mathbb{S}_{u}^{-}\right)$such that $X(z) \in\{x\}+\mathbb{R} u$. Consequently,

$$
i_{h_{u}}(x)=\frac{1}{2}\left(N(h)-N_{h}^{u}(x)\right)
$$

where $N_{h}^{u}(x)=N_{h}^{u}(x)^{-}+N_{h}^{u}(x)^{+}$is the number of $z \in \mathcal{U}$ such that $X(z) \in$ $\{x\}+\mathbb{R} u$ and $N(h)$ the total spinning of \mathcal{H}_{h}, that is, $N(h)=\sum_{k=1}^{n} d_{k}$. In particular, the total spinning of \mathcal{H}_{h} has the same parity as $N_{h}^{u}(x)$.

2. Further remarks and proof of results

Proof of Theorem 1.4. (i) If S_{f} is an embedded flat end, then $A_{s}(f)$ is its asymptotic area $A_{s}\left[S_{f}\right]$ for $\langle N(z), n\rangle\left\|\left(\frac{\partial X_{f}}{\partial x} \times \frac{\partial X_{f}}{\partial y}\right)(z)\right\| d x d y$ is the area of the orthogonal projection, onto the asymptotic plane, of the element of area $\left\|\left(\frac{\partial X_{f}}{\partial x} \times \frac{\partial X_{f}}{\partial y}\right)(z)\right\| d x d y$ on the end.
(ii) We know that (see, e.g., [13])

$$
\forall z=x+i y \in D,\left\|\left(\frac{\partial X_{f}}{\partial x} \times \frac{\partial X_{f}}{\partial y}\right)(z)\right\|=\left(|f(z)| \frac{\left(1+|z|^{2 N}\right)}{2}\right)^{2}
$$

so that

$$
\begin{aligned}
A_{s}(f) & =\iint_{D}(1-\langle N(z), n\rangle)\left\|\left(\frac{\partial X_{f}}{\partial x} \times \frac{\partial X_{f}}{\partial y}\right)(z)\right\| d x d y \\
& =\iint_{D}|f(z)|^{2}|z|^{2 N} \frac{1+|z|^{2 N}}{2} d x d y
\end{aligned}
$$

Consequently, $\sqrt{A_{s}}: E_{N} \rightarrow \mathbb{R}_{+}$is a norm associated with the scalar product given by

$$
A_{s}\left(f_{1}, f_{2}\right)=\iint_{D} \operatorname{Re}\left[f_{1}(z) \overline{f_{2}(z)}\right]|z|^{2 N} \frac{1+|z|^{2 N}}{2} d x d y
$$

Remark 2.1. Recall that the Gauss curvature of a minimal surface S modelled (up to a translation) by Weierstrass data $(g(z), f(z) d z)$ on a Riemann surface M is given by (see, e.g., [13])

$$
K_{S}=-\left[\frac{4\left|g^{\prime}\right|}{|f|\left(1+|g|^{2}\right)^{2}}\right]^{2}
$$

If the surface S is different from a plane, we define its curvature function by $R_{S}:=1 / K_{S}$ outside the isolated zeros of K_{S}. Consequently, it is natural to define the mixed curvature function of two (possibly branched) minimal surfaces S_{1} and S_{2} modelled (up to a translation) by Weierstrass data $\left(g(z), f_{1}(z) d z\right)$ and $\left(g(z), f_{2}(z) d z\right)$ on M (and thus sharing the same 'Gauss map' $g(z)$) by

$$
R_{\left(S_{1}, S_{2}\right)}(z)=-\operatorname{Re}\left[f_{1}(z) \overline{f_{2}(z)}\right]\left[\frac{\left(1+|g(z)|^{2}\right)^{2}}{4\left|g^{\prime}(z)\right|}\right]^{2}
$$

Note that $R_{\left(S_{1}, S_{2}\right)}=0$ if and only if the surface S_{2} is homothetic to the conjugate surface S_{1}^{*} to S_{1}. We have obviously the inequalities $R_{\left(S_{1}, S_{2}\right)}{ }^{2} \leq$ $R_{S_{1}} \cdot R_{S_{2}}$ and $\sqrt{-R_{S+S_{2}}} \leq \sqrt{-R_{S_{1}}}+\sqrt{-R_{S_{2}}}$, which generalize those of Remark 1.3.

Remark 2.2. For any $h \in \mathcal{H}\left(\mathbb{S}^{2}\right)$, denote by $r_{h}(u)$ the common absolute value of the principal radii of curvature of \mathcal{H}_{h} at $x_{h}(u)$. In other words, define r_{h} by $r_{h}=\sqrt{-R_{h}}$, where R_{h} is the curvature function of \mathcal{H}_{h}.

Let K be the closure of a (nonempty) connected open subset of \mathbb{S}^{2} and let $\mathcal{H}_{h} \subset \mathbb{R}^{3}$ be a hedgehog modelled on K. The Cauchy-Schwarz inequality gives

$$
\text { Area }\left[x_{h}(K)\right] \geq \frac{M_{K}(h)^{2}}{\text { Area }[K]}
$$

where $M_{K}(h)=\int_{K} r_{h} d \sigma$. This inequality has to be compared with the Minkowski inequality

$$
S \leq \frac{M^{2}}{4 \pi}
$$

where S is the surface area and M the integral of mean curvature of a convex body $K \subset \mathbb{R}^{3}$ (see [15]). Recall that if K is a convex body of class C_{+}^{2}, then M is simply given by

$$
M=\frac{1}{2} \int_{\mathbb{S}^{2}}\left(R_{1}+R_{2}\right) d \sigma
$$

where R_{1} and R_{2} are the principal radii of curvature of K. The above Minkowski inequality was extended in [6] to any hedgehog whose support function is of class C^{2} on \mathbb{S}^{2}.

Proof of Theorem 1.5. For all $z=x+i y \in \mathcal{U}$ we have

$$
X(z)=x_{h}[N(z)]=(\nabla \varphi)[N(z)]
$$

and thus

$$
X_{\xi}(z)=\left(L_{\varphi}\right)_{N(z)}\left(N_{\xi}(z)\right),
$$

where $N_{\xi}(z)=\frac{\partial}{\partial \xi}[N(x+i y)], X_{\xi}(z)=\frac{\partial}{\partial \xi}[X(x+i y)]$ and $\xi=x$ or y. Note that

$$
N_{\xi}(z)=\frac{2}{1+|g(z)|^{2}}\left[\left(P_{\xi}, Q_{\xi}, P P_{\xi}+Q Q_{\xi}\right)(z)-\left(P P_{\xi}+Q Q_{\xi}\right)(z) N(z)\right]
$$

where $g(z)=P(x, y)+i Q(x, y), P_{\xi}=\frac{\partial P}{\partial \xi}$ and $Q_{\xi}=\frac{\partial Q}{\partial \xi}$. As φ is positively 1-homogeneous, we have

$$
\left(L_{\varphi}\right)_{N(z)}(N(z))=0
$$

and we thus get

$$
X_{\xi}(z)=\frac{2}{1+|g(z)|^{2}}\left(L_{\varphi}\right)_{N(z)}\left[\left(P_{\xi}, Q_{\xi}, P P_{\xi}+Q Q_{\xi}\right)(z)\right]
$$

Now, direct calculation gives

$$
\begin{aligned}
& \operatorname{Re}\left[\frac{2 g^{\prime}(z)}{1+|g(z)|^{2}}\left(L_{\varphi}\right)_{N(z)}\left(\overline{v_{g}(z)}\right)\right] \\
& \quad=\frac{2}{1+|g(z)|^{2}}\left(L_{\varphi}\right)_{N(z)}\left[\left(P_{x}, Q_{x}, P P_{x}+Q Q_{x}\right)(z)\right] \\
& \operatorname{Im}\left[\frac{2 g^{\prime}(z)}{1+|g(z)|^{2}}\left(L_{\varphi}\right)_{N(z)}\left(\overline{v_{g}(z)}\right)\right] \\
& \quad=-\frac{2}{1+|g(z)|^{2}}\left(L_{\varphi}\right)_{N(z)}\left[\left(P_{y}, Q_{y}, P P_{y}+Q Q_{y}\right)(z)\right]
\end{aligned}
$$

so that

$$
\phi(z)=X_{x}(z)-i X_{y}(z)=\frac{2 g^{\prime}(z)}{1+|g(z)|^{2}}\left(L_{\varphi}\right)_{N(z)}\left(\overline{v_{g}(z)}\right)
$$

Proof of Theorem 1.9. It suffices to prove the relation

$$
i_{h_{u}}(x)+N_{h}^{u}(x)^{+}=\sum_{e_{k} \in \mathbb{S}_{u}^{+}} d\left(e_{k}\right),
$$

for any regular value $x \in u^{\perp}-\mathcal{H}_{h_{u}}$ of $x_{h}^{u}=\pi_{u} \circ x_{h}: \mathbb{S}^{2}-\left\{e_{1}, \ldots, e_{n}\right\} \rightarrow u^{\perp}$.
Let $\left(x_{1}, x_{2}, x_{3}\right)$ be the standard coordinates in \mathbb{R}^{3}. Without loss of generality, we can identify u^{\perp} with the plane given by the equation $x_{3}=0$ (and thus with the Euclidean vector plane \mathbb{R}^{2}) and assume that x is its origin $0_{\mathbb{R}^{2}}$. The index $i_{h_{u}}(x)$ is the winding number of $\mathcal{H}_{h_{u}}$ around $x \in u^{\perp}-\mathcal{H}_{h_{u}}$. It is given by

$$
i_{h_{u}}(x)=\frac{1}{2 \pi} \int_{\mathcal{H}_{h_{u}}} \omega
$$

where ω is the closed 1-form defined by

$$
\omega_{\left(x_{1}, x_{2}\right)}=\frac{x_{1} d x_{2}-x_{2} d x_{1}}{x_{1}^{2}+x_{2}^{2}}
$$

on $\mathbb{R}^{2}-\left\{0_{\mathbb{R}^{2}}\right\}$. This index $i_{h_{u}}(x)$ can also be regarded as the winding number of $x_{h}\left(\mathbb{S}_{u}^{1}\right)$ around the oriented line, say $D_{x}(u)$, passing through x and directed by u. In other words, $i_{h_{u}}(x)$ is given by

$$
i_{h_{u}}(x)=\frac{1}{2 \pi} \int_{x_{h}\left(\mathbb{S}_{u}^{1}\right)} \omega
$$

which can be checked by an easy calculation. Writing $\Sigma_{u}^{+}=\mathbb{S}_{u}^{+}-\left\{e_{j} \mid e_{j} \in \mathbb{S}_{u}^{+}\right\}$, we thus have

$$
i_{h_{u}}(x)=\frac{1}{2 \pi} \int_{\partial S} \omega
$$

where S denotes the surface $x_{h}\left[\Sigma_{u}^{+}\right]$equipped with its transverse orientation. Let $\left\{f_{1}, \ldots, f_{L}\right\}$ be the set consisting of all e_{j} such that $\left\langle e_{j}, u\right\rangle>0$, i.e., $e_{j} \in$ \mathbb{S}_{u}^{+}. Since x is a regular value of the map $x_{h}^{u}=\pi_{u} \circ x_{h}: \mathbb{S}^{2}-\left\{e_{1}, \ldots, e_{n}\right\} \rightarrow u^{\perp}$, there exists a small closed disc, say D, centred at x whose inverse image under $\left(x_{h}^{u}\right)^{+}: \mathbb{S}_{u}^{+}-\left\{f_{1}, \ldots, f_{L}\right\} \rightarrow u^{\perp}, v \mapsto x_{h}^{u}(v)$, is empty or admits a partition of the form

$$
\left[\left(x_{h}^{u}\right)^{+}\right]^{-1}(D)=\bigcup_{k=1}^{K} D_{k}
$$

where $K=N_{h}^{u}(x)^{+}$and D_{k} is such that the map $\pi_{u} \circ x_{h}$ defines a diffeomorphism from D_{k} onto D for all $k \in\{1, \ldots, K\}$. As f_{1}, \ldots, f_{L} are limiting normals at ends of the complete minimal hedgehog \mathcal{H}_{h}, there exist small disjoint spherical discs $\triangle_{1}, \ldots, \triangle_{L}$ punctured at f_{1}, \ldots, f_{L} that are disjoint from \mathbb{S}_{u}^{1} and from each $D_{k}(1 \leq k \leq K)$. Now, Stokes's formula gives

$$
\int_{\partial S} \omega=\sum_{k=1}^{K} \int_{\partial S_{k}} \omega+\sum_{l=1}^{L} \int_{\partial \Sigma_{l}} \omega
$$

where $S_{k}\left(\right.$ resp. $\left.\Sigma_{l}\right)$ denotes the surface $x_{h}\left(D_{k}\right)$ (resp. $x_{h}\left(\triangle_{l}\right)$) equipped with its transverse orientation. As \mathcal{H}_{h} is a (possibly branched) minimal surface, the maps $x_{h}: D_{k} \rightarrow S_{k}$ are orientation reversing and thus the orthogonal projections of the oriented curves ∂S_{k} into the (x_{1}, x_{2})-plane have winding number -1 around x. Consequently,

$$
\sum_{k=1}^{K} \int_{\partial S_{k}} \omega=-N_{h}^{u}(x)^{+}
$$

To complete the proof, it suffices to notice that we have also

$$
\sum_{l=1}^{L} \int_{\partial \Sigma_{l}} \omega=\sum_{l=1}^{L} d\left(f_{l}\right)=\sum_{e_{k} \in \mathbb{S}_{u}^{+}} d\left(e_{k}\right)
$$

from the definition of the winding number of an end.
The proof of Theorem 1.9 can be easily adapted to obtain a proof of Theorem 1.11; the details are left to the reader.

Proof of Corollary 1.10. By assumption, there exists a line D that does not intersect \mathcal{H}_{h} and that is such that no limiting normal at an end of \mathcal{H}_{h} belongs to the vector plane that is orthogonal to D. Let $u \in \mathbb{S}^{2}$ be a unit vector parallel to the line D and define x by $\{x\}=D \cap u^{\perp}$. According to Theorem 1.9 we have

$$
i_{h_{u}}(x)=\frac{1}{2}\left(N(h)-N_{h}^{u}(x)\right)=\frac{N(h)}{2}>0 .
$$

Theorem 1.8 now implies $i_{h_{u}}(x)=1$ and thus $N(h)=2$. The proof is completed by showing that \mathcal{H}_{h} must be a catenoid if $N(h)=2$. This was proved by Hoffman and Karcher (see [2, Corollary 3.2]) for a connected complete minimal immersed surface $M \subset \mathbb{R}^{3}$ with finite total curvature and their proof remains valid if we drop the assumption that M has no branch points.

The author wishes to thank Eric Toubiana for helpful comments and conversations during the preparation of the paper.

References

[1] H. Geppert, Über den Brunn-Minkowskischen Satz, Math. Z. 42 (1937), 238-254.
[2] D. Hoffman and H. Karcher, Complete embedded minimal surfaces of finite total curvature, Geometry, V, Encyclopaedia Math. Sci., vol. 90, Springer, Berlin, 1997, 5-93. MR 98m:53012
[3] R. Langevin, G. Levitt, and H. Rosenberg, Hérissons et multihérissons (enveloppes parametrées par leur application de Gauss), Singularities (Warsaw, 1985), Banach Center Publ., vol. 20, PWN, Warsaw, 1988, 245-253. MR 92a:58015
[4] R. Langevin and H. Rosenberg, A maximum principle at infinity for minimal surfaces and applications, Duke Math. J. 57 (1988), 819-828. MR 90c:53025
[5] Y. Martinez-Maure, Hedgehogs and area of order 2, Arch. Math. (Basel) 67 (1996), 156-163. MR 97m:53006
[6] , De nouvelles inégalités géométriques pour les hérissons, Arch. Math. (Basel) 72 (1999), 444-453. MR 2000c:52012
[7] , Indice d'un hérisson: étude et applications, Publ. Mat. 44 (2000), 237-255. MR 2001e:53003
[8] , Voyage dans l'univers des hérissons, Ateliers mathematica, Vuibert, Paris, 2003.
[9] _Contre-exemple à une caractérisation conjecturée de la sphère, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 41-44. MR 2002a:53084
[10] , Hedgehogs and zonoids, Adv. Math. 158 (2001), 1-17. MR 2002a:52003
[11] _, Les multihérissons et le théorème de Sturm-Hurwitz, Arch. Math. (Basel) 80 (2003), 79-86. MR 2004e:52006
[12] , Théorie des hérissons et polytopes, C. R. Math. Acad. Sci. Paris 336 (2003), 241-244. MR 2004c:52003
[13] R. Osserman, A survey of minimal surfaces, Dover Publications Inc., New York, 1986. MR 87j:53012
[14] H. Rosenberg and É. Toubiana, Complete minimal surfaces and minimal herissons, J. Differential Geom. 28 (1988), 115-132. MR 89g:53010
[15] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 94d:52007
[16] R. M. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), 791-809. MR 85f:53011
[17] A. J. Small, Linear structures on the collections of minimal surfaces in \mathbf{R}^{3} and \mathbf{R}^{4}, Ann. Global Anal. Geom. 12 (1994), 97-101. MR 95a:53014
[18] M. Spivak, A comprehensive introduction to differential geometry. Vol. IV, 2nd ed., Publish or Perish Inc., Wilmington, Del., 1979. MR 82g:53003d
Y. Martinez-Maure, 1, rue Auguste Perret, F-92500 Rueil-Malmaison, France E-mail address: martinezmaure@aol.com

[^0]: Received July 10, 2003; received in final form February 18, 2004.
 2000 Mathematics Subject Classification. 53A10, 52A40.

