Illinois Journal of Mathematics Volume 48, Number 2, Summer 2004, Pages 589–607 S 0019-2082

A BRUNN-MINKOWSKI THEORY FOR MINIMAL SURFACES

YVES MARTINEZ-MAURE

ABSTRACT. The aim of this paper is to motivate the development of a Brunn-Minkowski theory for minimal surfaces. In 1988, H. Rosenberg and E. Toubiana studied a sum operation for finite total curvature complete minimal surfaces in \mathbb{R}^3 and noticed that minimal hedgehogs of \mathbb{R}^3 constitute a real vector space [14]. In 1996, the author noticed that the square root of the area of minimal hedgehogs of \mathbb{R}^3 that are modelled on the closure of a connected open subset of \mathbb{S}^2 is a convex function of the support function [5]. In this paper, the author (i) gives new geometric inequalities for minimal surfaces of \mathbb{R}^3 ; (ii) studies the relation between support functions and Enneper-Weierstrass representations; (iii) introduces and studies a new type of addition for minimal surfaces; (iv) extends notions and techniques from the classical Brunn-Minkowski theory to minimal surfaces. Two characterizations of the catenoid among minimal hedgehogs are given.

1. Introduction and statement of results

The set \mathcal{K}^{n+1} of convex bodies of the (n+1)-Euclidean vector space \mathbb{R}^{n+1} is usually equipped with Minkowski addition and multiplication by nonnegative real numbers. The theory of hedgehogs consists of considering \mathcal{K}^{n+1} as a convex cone of the vector space $(\mathcal{H}^{n+1}, +, \cdot)$ of formal differences of convex bodies of \mathbb{R}^{n+1} . More precisely, it consists of:

- 1. considering each formal difference of convex bodies of \mathbb{R}^{n+1} as a hypersurface of \mathbb{R}^{n+1} (possibly with singularities and self-intersections), called a 'hedgehog';
- 2. extending the mixed volume $V : (\mathcal{K}^{n+1})^{n+1} \to \mathbb{R}$ to a symmetric (n+1)-linear form on \mathcal{H}^{n+1} ;
- 3. considering the Brunn-Minkowski theory in \mathcal{H}^{n+1} .

The relevance of this theory can be illustrated by the following two principles:

©2004 University of Illinois

Received July 10, 2003; received in final form February 18, 2004. 2000 Mathematics Subject Classification. 53A10, 52A40.

YVES MARTINEZ-MAURE

- to study convex bodies by splitting them into a sum of hedgehogs to reveal their structure;
- 2. to convert analytical problems into geometrical ones by considering certain real functions on the unit sphere \mathbb{S}^n of \mathbb{R}^{n+1} as support functions of a hedgehog (or of a 'multi-hedgehog', see below).

The first principle permitted the author to disprove an old conjectured characterization of the 2-sphere [9] and the second one to give a geometrical proof of the Sturm-Hurwitz theorem [11]. The reader will find a short introduction of the theory in [12]. For an elementary survey of hedgehogs with a smooth support function, see [8].

The idea of defining geometrical differences of convex bodies goes back to H. Geppert who gave a first study of hedgehogs in \mathbb{R}^2 and \mathbb{R}^3 (under the German names 'stützbare Bereiche' and 'stützbare Flächen') [1]. The name 'hedgehog' came from a paper by R. Langevin, G. Levitt and H. Rosenberg [3] who implicitly considered differences of convex bodies of class C_+^2 (i.e., of convex bodies whose boundary is a C^2 -hypersurface with positive Gauss curvature) as envelopes parametrized by their Gauss map. Let us recall the main points of their approach.

The boundary of a convex body $K \subset \mathbb{R}^{n+1}$ of class C^2_+ is determined by its support function $h : \mathbb{S}^n \to \mathbb{R}$, $u \mapsto \sup \{ \langle x, u \rangle \mid x \in K \}$ (which must be of class C^2) as the envelope \mathcal{H}_h of the family of hyperplanes given by

$$\langle x, u \rangle = h(u)$$

Now, this envelope \mathcal{H}_h is well defined for any $h \in C^2(\mathbb{S}^n; \mathbb{R})$ (which is not necessarily the support function of a convex hypersurface). Its natural parametrization $x_h : \mathbb{S}^n \to \mathcal{H}_h, u \mapsto h(u)u + (\nabla h)(u)$, can be interpreted as the inverse of its Gauss map in the sense that, at each regular point $x_h(u)$ of \mathcal{H}_h, u is a normal vector to \mathcal{H}_h . This envelope \mathcal{H}_h is called the *hedgehog* with support function h.

The notion of hedgehog of \mathbb{R}^3 can be extended by considering hedgehogs whose support function is only defined (and C^2) on some spherical domain $\Omega \subset \mathbb{S}^2$. Among hedgehogs defined on the unit sphere \mathbb{S}^2 punctured at a finite number of points, we can consider those that are minimal, that is, those whose mean curvature H is zero at all the smooth points. The condition that a hedgehog $\mathcal{H}_h \subset \mathbb{R}^2$ is minimal means simply that its support function hsatisfies the equation

$$\triangle_S h + 2h = 0,$$

where Δ_S is the spherical Laplace operator on \mathbb{S}^2 (see [4]). In other words, a minimal hedgehog \mathcal{H}_h (modelled on \mathbb{S}^2 punctured at a finite number of points) is a trivial hedgehog (i.e., a point) or a (possibly branched) minimal surface with total curvature -4π that is parametrized by the inverse of its Gauss map.

A study of minimal hedgehogs has been given by H. Rosenberg and E. Toubiana [14]. Concerning linear structures on the collections of minimal surfaces in \mathbb{R}^3 and \mathbb{R}^4 , the reader is also referred to the paper by A. Small [17].

Geometric inequalities for minimal hedgehogs (resp. *N*-hedgehogs) in \mathbb{R}^3 . In this paper, we are interested in the extension to minimal surfaces of notions and techniques from the Brunn-Minkowski theory. The idea of developing a Brunn-Minkowski theory for minimal surfaces of \mathbb{R}^3 arises naturally from the fact that a (reversed) Brunn-Minkowski type inequality holds for minimal hedgehogs.

Let K be the closure of a (nonempty) connected open subset of \mathbb{S}^2 and let \mathcal{H}_k be a minimal hedgehog modelled on K. Then the area of $x_k(K)$ is finite and given by

Area
$$[x_k(K)] = -\int_K R_k \, d\sigma,$$

where σ is the spherical Lebesgue measure on \mathbb{S}^2 and R_k the 'curvature function' of \mathcal{H}_k , that is, $1/K_k$, where K_k is the Gauss curvature of \mathcal{H}_k (regarded as a function of the normal). Now, if \mathcal{H}_l is another minimal hedgehog modelled on K, then

(1.1)
$$\sqrt{A(k+l)} \le \sqrt{A(k)} + \sqrt{A(l)},$$

where $A(h) = \text{Area}[x_h(K)]$. In fact, we can regard the set of hedgehogs modelled (up to a translation) on K as a real vector space endowed with a prehilbertian structure for which the norm is given by the square root of the area. Consider the set of support functions (of a minimal hedgehog) modelled on K and identify two such functions k and l when $x_k(K)$ and $x_l(K)$ are translates of each other. Then the quotient set $\mathcal{H}(K)$ inherits a real vector space structure and we have the following result.

THEOREM 1.1 ([5]). The map $\sqrt{A} : \mathcal{H}(K) \to \mathbb{R}_+, h \longmapsto \sqrt{\operatorname{Area}[x_h(K)]},$ is a norm associated with a scalar product $A : \mathcal{H}(K)^2 \to \mathbb{R},$ which may be interpreted as an algebraic mixed area:

$$\forall (k,l) \in \mathcal{H}(K)^2$$
, (Mixed Area) $[x_k(K), x_l(K)] := A(k,l)$.

By the Cauchy-Schwarz inequality we have

(1.2)
$$A(k,l)^2 \le A(k) \cdot A(l).$$

COROLLARY 1.2. As a consequence, the area $A : \mathcal{H}(K) \to \mathbb{R}_+, h \mapsto$ Area $[x_h(K)]$, is a strictly convex map, and thus, for any nonempty convex subset \mathcal{K} of $\mathcal{H}(K)$, the problem of minimizing A over \mathcal{K} has at most one optimal solution.

REMARK 1.1. Inequality (1.1) (resp. (1.2)) has to be compared with the following Brunn-Minkowski inequality (resp. Minkowski inequality). For any pair (K, L) of convex bodies of \mathbb{R}^3 , we have (see, for instance, [15])

$$\sqrt{A\left(K+L\right)} \geq \sqrt{A\left(K\right)} + \sqrt{A\left(L\right)}$$

and

$$A(K,L)^{2} \ge A(K) \cdot A(L),$$

where A(H) (resp. A(K,L)) is the surface area (resp. the mixed surface area) of the convex body $H \subset \mathbb{R}^3$ (resp. of the pair (K, L)).

The author has obtained similar inequalities for various classes of hedgehogs as a consequence of an extension of the Alexandrov-Fenchel inequality [6].

REMARK 1.2. Let $\mathcal{H}(\mathbb{S}^2)$ be the real vector space of support functions of minimal hedgehogs defined (up to a translation) on the unit sphere punctured at a finite number of points. To each $h \in \mathcal{H}(\mathbb{S}^2)$ let us assign the positive Borel measure μ_h defined on \mathbb{S}^2 by

$$\forall \Omega \in \mathcal{B}\left(\mathbb{S}^{2}\right), \mu_{h}\left(\Omega\right) = -\int_{\Omega} R_{h} \, d\sigma,$$

where $\mathcal{B}(\mathbb{S}^2)$ denotes the σ -algebra of Borel subsets of \mathbb{S}^2 . Then we notice that the map

 $m: \mathcal{H}(\mathbb{S}^2) \to \{\sqrt{\mu} \mid \mu \text{ is a positive Borel measure on } \mathbb{S}^2\}, h \longmapsto \sqrt{\mu_h},$ satisfies the following properties:

- (i) $\forall h \in \mathcal{H}(\mathbb{S}^2), m(h) = 0 \iff h = 0_{\mathcal{H}(\mathbb{S}^2)};$ (ii) $\forall \lambda \in \mathbb{R}, \forall h \in \mathcal{H}(\mathbb{S}^2), m(\lambda h) = |\lambda| m(h);$ (iii) $\forall (k,l) \in \mathcal{H}(\mathbb{S}^2)^2, m(k+l) \le m(k) + m(l).$

REMARK 1.3. Let \mathcal{H}_k and \mathcal{H}_l be two hedgehogs whose support function is defined (and C^2) on some spherical domain $\Omega \subset \mathbb{S}^2$. On this domain, we can define their mixed curvature function by

$$R_{(k,l)} := \frac{1}{2} \left(R_{k+l} - R_k - R_l \right).$$

The symmetric map $(\alpha, \beta) \mapsto R_{(\alpha, \beta)}$ is bilinear on the vector space of hedgehogs modelled on Ω [10]. Given any $u \in \Omega$, the polynomial function $P_u(t) =$ $R_{k+tl}(u)$ thus satisfies $P_u(t) = R_k(u) + 2tR_{(k,l)}(u) + t^2R_l(u)$ for all $t \in \mathbb{R}$.

When k and l are the support functions of two convex bodies of class C_{+}^{2} , $P_{u}(t)$ must have a zero, so that

$$R_{(k,l)}(u)^{2} \ge R_{k}(u) \cdot R_{l}(u)$$

and hence

$$\sqrt{R_{k+l}\left(u\right)} \ge \sqrt{R_{k}\left(u\right)} + \sqrt{R_{l}\left(u\right)}$$

by noticing that $R_{(k,l)} > 0$.

When \mathcal{H}_{k} and \mathcal{H}_{l} are minimal hedgehogs, $P_{u}(t)$ is nonpositive on \mathbb{R} , so that

$$R_{(k,l)}(u)^{2} \leq R_{k}(u) \cdot R_{l}(u)$$

and hence

$$\sqrt{-R_{k+l}\left(u\right)} \leq \sqrt{-R_{k}\left(u\right)} + \sqrt{-R_{l}\left(u\right)}.$$

Note that $A(k,l) = \int_{K} R_{(k,l)} d\sigma$ for all $(k,l) \in \mathcal{H}(K)^{2}$ and that inequality (1.2) can be deduced from the inequality $R_{(k,l)}^{2} \leq R_{k} \cdot R_{l}$.

Inequality (1.1) can be extended to some asymptotic areas of embedded ends in \mathbb{R}^3 . The (possibly branched) complete minimal surfaces of finite nonzero total curvature in \mathbb{R}^3 can be regarded as 'multi-hedgehogs' provided they have only a finite number of branch points [14]: the (possibly singular) envelope of a family of cooriented planes of \mathbb{R}^3 is called an *N*-hedgehog if, for an open dense set of $u \in \mathbb{S}^2$, it has exactly *N* cooriented support planes with normal vector *u*. Hedgehogs with a C^2 support function are merely 1-hedgehogs.

We know that embedded ends of a minimal surface of \mathbb{R}^3 are flat or of catenoid type (i.e., asymptotic to a planar or catenoid end). More precisely (see [16]), each embedded end is the graph (over the exterior of a bounded region in an (x_1, x_2) -plane orthogonal to the limiting normal at the end) of a function of the form

$$u(x_1, x_2) = a \ln(r) + b + \frac{cx_1 + dx_2}{r^2} + O\left(\frac{1}{r^2}\right), r = \sqrt{x_1^2 + x_2^2},$$

with a = 0 when the end is flat.

Let E be an embedded flat end of a minimal surface of \mathbb{R}^3 and let P be its asymptotic plane. Define the asymptotic area of E by

$$A_{s}[E] = \iint_{\Delta} \left(\sqrt{1 + u_{x_{1}}(x_{1}, x_{2})^{2} + u_{x_{2}}(x_{1}, x_{2})^{2}} - 1 \right) dx_{1} dx_{2} \in [0, +\infty],$$

where $u : \Delta \to \mathbb{R}, (x_1, x_2) \mapsto u(x_1, x_2)$ is the function whose graph is equal to E. Given any increasing sequence (K_n) of compact subsets of P such that $K_n \to \Delta, A_s[E]$ may be interpreted as the limit of

Area
$$\left[\pi^{-1}(K_n) \cap E\right]$$
 – Area $\left[K_n\right]$,

where π denotes the orthogonal projection onto the asymptotic plane.

THEOREM 1.3 ([5]). The asymptotic area of every embedded flat end of a minimal surface $S \subset \mathbb{R}^3$ is finite.

Note that hedgehogs never have flat ends: if an end is flat, then the limiting normal at the end is a branch point of the Gauss map so that the surface cannot be a hedgehog (see, for instance, [4]). Let E be an embedded flat end

of a minimal N-hedgehog, where $N \ge 2$. After a rotation, we may assume the limiting normal at the end is n = (0, 0, -1). Then E admits a Weierstrass representation (g(z), f(z)dz) of the form

$$g(z) = z^N$$
 and $f(z) = \frac{\alpha}{z^2} + \sum_{k=0}^{+\infty} c_k z^k$,

where α is nonzero [4]. (In the next subsection, the reader will find an introduction and some remarks on the Weierstrass representation of minimal surfaces in \mathbb{R}^3 .) Given $r \in [0, 1[$, the pieces of minimal *N*-hedgehogs defined (up to a translation) by a parametrization of the form

$$X_f : D = \{z \in \mathbb{C} \mid 0 < |z| \le r\} \to \mathbb{R}^3,$$
$$z = x + iy \mapsto \operatorname{Re}\left(\int \frac{1}{2} f(z) \left(1 - z^{2N}\right) dz, \int \frac{i}{2} f(z) \left(1 + z^{2N}\right) dz, \int f(z) z^N dz\right)$$

where $f(z) = (\alpha/z^2) + \sum_{k=0}^{+\infty} c_k z^k$ (α may be 0), constitute a real vector space $(E_N, +, \cdot)$, where addition is defined by $X_{f_1} + X_{f_2} = X_{f_1+f_2}$ and scalar multiplication by $\lambda \cdot X_f = X_{\lambda f}$. Let us denote by S_f the surface parametrized by $X_f : D \to \mathbb{R}^3$.

THEOREM 1.4. For every $S_f \in E_N$, define $A_s(f)$ by

$$A_s(f) := \iint_D \left(1 - \langle N(z), n \rangle\right) \left\| \left(\frac{\partial X_f}{\partial x} \times \frac{\partial X_f}{\partial y}\right)(z) \right\| dx dy,$$

where

$$N(z) = \frac{2}{|z|^{2N} + 1} \left(\operatorname{Re}(z^{N}), \operatorname{Im}(z^{N}), \frac{|z|^{2N} - 1}{2} \right)$$

is the unit normal at $X_f(z)$ if $\left(\frac{\partial X_f}{\partial x} \times \frac{\partial X_f}{\partial y}\right)(z) \neq 0$ and where D is identified with

$$\left\{ (x,y) \in \mathbb{R}^2 \left| 0 < \sqrt{x^2 + y^2} \le r \right. \right\}$$

- (i) If S_f is an embedded flat end, then $A_s(f)$ is its asymptotic area $A_s[S_f]$.
- (ii) The map $\sqrt{A_s} : E_N \to \mathbb{R}_+, S_f \longmapsto \sqrt{A_s(f)}$, is a norm associated with a scalar product (which may be interpreted as a mixed algebraic asymptotic area).

Addition of minimal surfaces and Enneper-Weierstrass representation. It is well known that any minimal surface $S \subset \mathbb{R}^3$ (possibly with isolated branch points) can be locally represented in the form

(1.3)
$$\begin{cases} X_1(x,y) = \frac{1}{2} \operatorname{Re} \left[\int_{z_0}^z \left(1 - g(\zeta)^2 \right) f(\zeta) \, d\zeta \right] + c_1, \\ X_2(x,y) = \frac{1}{2} \operatorname{Re} \left[\int_{z_0}^z i \left(1 + g(\zeta)^2 \right) f(\zeta) \, d\zeta \right] + c_2, \\ X_3(x,y) = \operatorname{Re} \left[\int_{z_0}^z g(\zeta) f(\zeta) \, d\zeta \right] + c_3, \end{cases}$$

where f(z) is an arbitrary holomorphic function on an open simply connected neighbourhood \mathcal{U} of $z_0 \in \mathbb{C}$ and g(z) an arbitrary meromorphic function on \mathcal{U} such that, at each pole of order n of g(z), f(z) has a zero of order at least 2n, the integral being taken along any path connecting z_0 to $z = x + iy \in \mathbb{C}$ in \mathcal{U} , and naturally, c_1, c_2 and c_3 denote real constants. Recall that (see, e.g., [13])

$$\begin{split} N\left(z\right) &:= \frac{\left(\frac{\partial X}{\partial x} \times \frac{\partial X}{\partial y}\right)\left(x, y\right)}{\left\| \left(\frac{\partial X}{\partial x} \times \frac{\partial X}{\partial y}\right)\left(x, y\right) \right\|} \\ &= \frac{2}{\left|g\left(z\right)\right|^{2} + 1} \left(\operatorname{Re}\left[g\left(z\right)\right], \operatorname{Im}\left[g\left(z\right)\right], \frac{\left|g\left(z\right)\right|^{2} - 1}{2} \right), \end{split}$$

is the (unit) normal to the surface at $X(x,y) = (X_1(x,y), X_2(x,y), X_3(x,y))$ and g(z) its image under the stereographic projection $\sigma : \mathbb{S}^2 - \{(0,0,1)\} \to \mathbb{C}, (x,y,t) \mapsto \frac{x+iy}{1-t}$. Thus, $X : \mathcal{U} \to \mathbb{R}^3, z = x+iy \mapsto (X_1(x,y), X_2(x,y), X_3(x,y))$, is a hedgehog (that is, X can be interpreted as the inverse of the stereographic projection of its Gauss map) if and only if g(z) = z. The simplest choice of 'Weierstrass data' (g(z), f(z)dz) = (z, dz) gives Enneper's surface. Recall that this surface and the catenoid, which is given by $(g(z), f(z)dz) = (z, dz/z^2)$, are the only two complete regular minimal surfaces that are hedgehogs (see, e.g., [13]).

Representation (1.3) can be generalized to generate all minimal surfaces of \mathbb{R}^3 : if $S \subset \mathbb{R}^3$ is a minimal surface (possibly with isolated branch points), M its Riemann surface and $g = \sigma \circ N : M \to \mathbb{C} \cup \{\infty\}$ the stereographic projection (from the north pole) of its Gauss map, then S can be represented in the form (1.3) for some holomorphic function f on M and some fixed $z_0 \in M$.

Given any two (possibly branched) minimal surfaces S_1 and S_2 modelled (up to a translation) by Weierstrass data $(g(z), f_1(z) dz)$ and $(g(z), f_2(z) dz)$ on a Riemann surface M (and thus sharing the same 'Gauss map' g(z)), we can define their sum $S_1 + S_2$ as the (possibly branched) minimal surface given (up to a translation) by $(g(z), (f_1(z) + f_2(z)) dz)$. For any minimal surface S modelled (up to a translation) by Weierstrass data (g(z), f(z) dz) on Mand for any complex number λ , we can define the minimal surface λS as the minimal surface given (up to a translation) by $(g(z), \lambda f(z) dz)$. Of course, in order for $z \mapsto \operatorname{Re} \left[\int \phi_{\lambda}(z) dz\right]$ to be well-defined on M, where

$$\phi_{\lambda}(z) := \lambda f(z) \left(\frac{1}{2} \left(1 - g(z)^2 \right), \frac{i}{2} \left(1 + g(z)^2 \right), g(z) \right),$$

we need that no component of ϕ_{λ} has a real period on M, that is,

$$\operatorname{Period}_{\gamma}[\phi_{\lambda}] := \operatorname{Re} \oint_{\gamma} \phi_{\lambda}(z) dz = 0_{\mathbb{R}^3},$$

for all closed curves γ on M, but in the case when this period condition is not satisfied, we may consider the minimal surface λS modelled on the universal covering space of M (i.e., \mathbb{C} or the open unit disc). By hypothesis, ϕ_1 has no real period on M since S is modelled on M. It follows that for any $\lambda \in \mathbb{R}$ the surface λS is also modelled on M (since ϕ_{λ} clearly has no real period on M if $\lambda \in \mathbb{R}$). Thus, minimal surfaces modelled (up to a translation) by Weierstrass data (g(z), f(z) dz) on a common Riemann surface M and sharing the same 'Gauss map' g(z) constitute a real vector space E_M (which can be identified with the space of all holomorphic functions f(z) having a zero of order at least 2n at each pole of order n of g(z) and satisfying

Period_{$$\gamma$$} $\left[f\left(\frac{1}{2}\left(1-g^2\right), \frac{i}{2}\left(1+g^2\right), g\right) \right] = 0_{\mathbb{R}^3}$

for all closed curves γ on M).

Recall that (i) the associate surfaces to a minimal surface S modelled (up to a translation) by Weierstrass data (g(z), f(z) dz) on a Riemann surface M are the surfaces $S_{\theta} = e^{i\theta}S$ given (up to a translation) by $(g(z), e^{i\theta}f(z) dz)$, where $\theta \in [0, \frac{\pi}{2}]$; and (ii) the conjugate surface S^* to S is the associated surface $S_{\pi/2}$. S^* Clearly, S_{θ} are (locally) and parametrized by $X^*(z) = -\operatorname{Im}\left[\int \phi(z) dz\right]$ and $X_{\theta} = (\cos \theta) X^* - (\sin \theta) X^*$, where $\phi :=$ $f\left(\frac{1}{2}\left(1-g^2\right),\frac{i}{2}\left(1+g^2\right),g\right)$ and $X(z) := \operatorname{Re}\left[\int \phi(z) dz\right]$. In other words, we have $S_{\theta} = (\cos \theta) S - (\sin \theta) S^*$, where the surfaces are modelled on the universal covering space of M in the case when ϕ has a real period on M.

REMARK 1.4. Every hedgehog $\mathcal{H}_h \subset \mathbb{R}^{n+1}$ has a unique representation in the form

(1.4)
$$\mathcal{H}_h = \mathcal{H}_c + \mathcal{H}_p,$$

where \mathcal{H}_c is centred (i.e., centrally symmetric with centre at the origin) and \mathcal{H}_p projective (i.e., modelled on $\mathbb{P}^n(\mathbb{R}) = \mathbb{S}^n/(\text{antipodal relation}))$. This representation is given by

h = c + p,

where

$$c(u) = \frac{1}{2}(h(u) + h(-u))$$
 and $p(u) = \frac{1}{2}(h(u) - h(-u))$

In the same way, every minimal hedgehog $\mathcal{H}_h \subset \mathbb{R}^3$ has a unique representation in the form (1.4). If \mathcal{H}_h is given by Weierstrass data (z, f(z) dz), then \mathcal{H}_c and \mathcal{H}_p are given (up to a translation) by the following decomposition of f(z):

$$f(z) = f_c(z) + f_p(z),$$

where

$$f_c(z) = \frac{1}{2} \left(f(z) + \frac{1}{z^4} \overline{f(\frac{-1}{\overline{z}})} \right),$$
$$f_p(z) = \frac{1}{2} \left(f(z) - \frac{1}{z^4} \overline{f(\frac{-1}{\overline{z}})} \right)$$

(see [18] for the determination of $f_p(z)$). Let us consider the case of Enneper's surface, whose support function is given by

$$h(u) = \frac{(x^2 - y^2)(2r - t)}{2(r - t)^2},$$

where $r = \sqrt{x^2 + y^2 + t^2}$ and $u = (x, y, t) \in \mathbb{S}^2 \subset \mathbb{R}^3$. In this case, we get

$$c(u) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$$
 and $p(u) = \frac{t(x^2 - y^2)(2r^2 + x^2 + y^2)}{2(x^2 + y^2)^2}$

(resp. $f_c(z) = \frac{1}{2}(1 + 1/z^4)$ and $f_p(z) = \frac{1}{2}(1 - 1/z^4)$) and we notice that (i) \mathcal{H}_c has 5 planes of symmetry (with equations x = 0, y = 0, z = 0, x + y = 0 and x - y = 0), 4 curves of double points lying on the plane z = 0, and 4 branch points (namely $(1/\sqrt{2}, 1/\sqrt{2}, 0)$ and the points deduced from it by symmetry); (ii) \mathcal{H}_p is Henneberg's surface (which is thus the 'projective part' of Enneper's surface). Figure 1 below shows the central symmetrization of Enneper's surface.

Figure 1

Relation between Enneper-Weierstrass representation and support function. We have the following result.

THEOREM 1.5. Let
$$X : \mathcal{U} \ni z_0 \to \mathbb{R}^3, z \mapsto \operatorname{Re}\left[\int_{z_0}^z \phi\left(\zeta\right) d\zeta\right]$$
, where
 $\phi\left(z\right) := f\left(z\right) \left(\frac{1}{2}\left(1 - g\left(z\right)^2\right), \frac{i}{2}\left(1 + g\left(z\right)^2\right), g\left(z\right)\right)$,

be the Weierstrass representation of a piece of a minimal surface (possibly with isolated branch points) such that

$$N: \mathcal{U} \to N(\mathcal{U}) \subset \mathbb{S}^{2},$$
$$z \mapsto N(z) = \frac{2}{|g(z)|^{2} + 1} \left(\operatorname{Re}\left[g(z)\right], \operatorname{Im}\left[g(z)\right], \frac{|g(z)|^{2} - 1}{2} \right)$$

is a diffeomorphism of \mathcal{U} onto $N(\mathcal{U})$. Then $X(\mathcal{U})$ can be regarded as a hedgehog \mathcal{H}_h whose parametrization $x_h : N(\mathcal{U}) \to \mathcal{H}_h \subset \mathbb{R}^3$ is given by $x_h = \nabla \varphi$, where $\varphi : v \mapsto \|v\| h(v/\|v\|)$ is the positively 1-homogeneous extension of h to $\{tu | u \in N(\mathcal{U}) \text{ and } t \in \mathbb{R}^*_+\}$ [8]. Given g(z), the support function h and the holomorphic function f are related by

(1.5)
$$\phi(z) = \frac{2g'(z)}{1 + |g(z)|^2} (L_{\varphi})_{N(z)} \left(\overline{v_g(z)}\right),$$

where $(L_{\varphi})_{N(z)}$ is the endomorphism of \mathbb{C}^3 that is represented in the standard basis by the Hessian matrix $(\text{Hess }\varphi)_{N(z)}$ of φ at N(z) and $v_g(z) = (1, i, g(z))$, so that

$$f(z) = \frac{2g'(z)}{\left(1 + |g(z)|^2\right)^2} \left[{}^t \overline{V_g(z)} \cdot (\operatorname{Hess} \varphi)_{N(z)} \cdot \overline{V_g(z)}\right],$$

where $V_{g}(z)$ is the column matrix ${}^{t}v_{g}(z)$.

Let $\mathcal{H}_h \subset \mathbb{R}^3$ be a minimal hedgehog defined by Weierstrass data (z, f(z) dz)on the sphere \mathbb{S}^2 punctured at a finite number of points. From (1.5) it follows that

$$f(z) = \frac{2}{z\left(1+\left|z\right|^{2}\right)} \left[\left(\nabla\varphi_{t}\right) \left(N\left(z\right)\right) . \overline{V_{g}\left(z\right)} \right],$$

where φ_t is the partial derivative of φ with respect to the third coordinate in the standard basis of \mathbb{R}^3 and $\nabla \varphi_t = (\varphi_{xt}, \varphi_{yt}, \varphi_{t^2})$ is its gradient. Changing the orientation of the normal, this gives

$$\widetilde{f}(z) = \frac{2}{z\left(1+\left|z\right|^{2}\right)} \left[\left(\nabla \widetilde{\varphi}_{t}\right) \left(N\left(z\right)\right) . \overline{V_{g}\left(z\right)} \right],$$

where $\tilde{f}(z) = -(1/z^4)\overline{f(-1/\overline{z})}$ and $\tilde{\varphi}(u) = -\varphi(-u)$. Noting that $N(-1/\overline{z}) = -N(z)$ and comparing $f(-1/\overline{z})$ with $\tilde{f}(z)$, we get easily

$$\varphi_{t^2}(N(z)) = \operatorname{Re}\left[z^2 f(z)\right].$$

Now, inflection points of level curves of a hedgehog $\mathcal{H}_h \subset \mathbb{R}^3$ (with a support function of class C^{∞}) are given by

$$\varphi_{t^2}(u) = 0, \, \nabla \varphi_t(u) \neq 0 \text{ and } R_h(u) \neq 0,$$

where $\varphi(u) = ||u|| h(u/||u||)$. (By 'inflection point' of a level curve $\mathcal{C} \subset \mathcal{H}_h$ we mean a point where \mathcal{C} has a contact of order ≥ 2 with its tangent line.) Therefore we have:

COROLLARY 1.6. Let $\mathcal{H}_h \subset \mathbb{R}^3$ be a nontrivial minimal hedgehog defined by Weierstrass data (z, f(z) dz) on the unit sphere \mathbb{S}^2 punctured at a finite number of points. The inflection points of level curves of \mathcal{H}_h are given by

$$\operatorname{Re}\left[z^{2}f\left(z\right)\right]=0,\,z\neq0\,\,and\,f\left(z\right)\neq0.$$

It follows easily that the hedgehog \mathcal{H}_h is necessarily a catenoid if it is complete and if no level curve of \mathcal{H}_h has an inflection point.

YVES MARTINEZ-MAURE

Orthogonal-projection techniques. Let $\mathcal{H}_h \subset \mathbb{R}^3$ be a hedgehog with support function $h \in C^2(\mathbb{S}^2; \mathbb{R})$. We can get information on \mathcal{H}_h by considering its images under orthogonal projections onto planes. We proceed as follows. For any $u \in \mathbb{S}^2$ we consider the restriction h_u of h to the great circle $\mathbb{S}_u^1 = \mathbb{S}^2 \cap u^{\perp}$, where u^{\perp} is the linear subspace orthogonal to u. This restriction is the support function of a plane hedgehog $\mathcal{H}_{h_u} \subset u^{\perp}$, which is merely the image of $x_h(\mathbb{S}_u^1)$ under the orthogonal projection onto u^{\perp} :

$$\mathcal{H}_{h_u} = \pi_u \left[x_h \left(\mathbb{S}^1_u \right) \right],$$

where π_u is the orthogonal projection onto the plane u^{\perp} . The index of a point $x \in u^{\perp} - \mathcal{H}_{h_u}$ with respect to \mathcal{H}_{h_u} (i.e., the winding number of \mathcal{H}_{h_u} around x) gives us information on the curvature of \mathcal{H}_h on the line $\{x\} + \mathbb{R}u$:

THEOREM 1.7 ([7]). Let x be a regular value of the map $x_h^u = \pi_u \circ x_h$: $\mathbb{S}^2 \to u^{\perp}$. The index of $x \in u^{\perp} - \mathcal{H}_{h_u}$ with respect to \mathcal{H}_{h_u} is given by

$$i_{h_u}(x) = \frac{1}{2} \left(\nu_h(x)^+ - \nu_h(x)^- \right),$$

where $\nu_h(x)^+$ (resp. $\nu_h(x)^-$) is the number of $v \in \mathbb{S}^2$ such that $x_h(v)$ is an elliptic (resp. a hyperbolic) point of \mathcal{H}_h lying on the line $\{x\} + \mathbb{R}u$.

Recall that the index $i_h(x)$ of a point x with respect to a plane hedgehog \mathcal{H}_h can be related to the number of cooriented support lines of \mathcal{H}_h passing through x:

THEOREM 1.8 ([7]). For any hedgehog $\mathcal{H}_h \subset \mathbb{R}^2$ we have

$$\forall x \in \mathbb{R}^2 - \mathcal{H}_h, i_h(x) = 1 - \frac{1}{2}n_h(x),$$

where $n_h(x)$ is the number of cooriented support lines of \mathcal{H}_h passing through x, i.e., the number of zeros of the map $h_x : \mathbb{S}^1 \to \mathbb{R}, u \longmapsto h(u) - \langle x, u \rangle$.

Theorem 1.7 admits an analogue for minimal hedgehogs:

THEOREM 1.9. Let $\mathcal{H}_h \subset \mathbb{R}^3$ be a complete minimal hedgehog modelled on \mathbb{S}^2 punctured at a finite number of points e_1, \ldots, e_n (corresponding to its ends) and let $u \in \mathbb{S}^2$ be such that $\mathbb{S}_u^1 \subset \mathbb{S}^2 - \{e_1, \ldots, e_n\}$. Then, for any regular value $x \in u^{\perp} - \mathcal{H}_{h_u}$ of the map $x_h^u = \pi_u \circ x_h : \mathbb{S}^2 - \{e_1, \ldots, e_n\} \to u^{\perp}$, we have

$$i_{h_{u}}(x) + N_{h}^{u}(x)^{+} = \sum_{e_{k} \in \mathbb{S}_{u}^{+}} d(e_{k}),$$

where $\mathbb{S}_{u}^{+} \subset \mathbb{S}^{2}$ is the halfsphere defined by $\langle u, v \rangle > 0$, $N_{h}^{u}(x)^{+}$ the number of $v \in \mathbb{S}_{u}^{+} - \{e_{j} | \langle e_{j}, u \rangle > 0\}$ such that $x_{h}(v) \in \{x\} + \mathbb{R}u$ and $d(e_{k})$ the winding

number of the end with limiting normal e_k . Replacing u by -u, it follows that

$$i_{h_{u}}\left(x\right)+N_{h}^{u}\left(x\right)^{-}=\sum_{e_{k}\in\mathbb{S}_{u}^{-}}d\left(e_{k}\right),$$

where $\mathbb{S}_u^- \subset \mathbb{S}^2$ is the halfsphere defined by $\langle u, v \rangle < 0$ and $N_h^u(x)^-$ the number of $v \in \mathbb{S}_u^- - \{e_j \mid \langle e_j, u \rangle < 0\}$ such that $x_h(v) \in \{x\} + \mathbb{R}u$. Consequently,

$$i_{h_{u}}(x) = \frac{1}{2} \left(N(h) - N_{h}^{u}(x) \right),$$

where $N_h^u(x) = N_h^u(x)^- + N_h^u(x)^+$ is the number of $v \in \mathbb{S}^2 - \{e_1, \ldots, e_n\}$ such that $x_h(v) \in \{x\} + \mathbb{R}u$ and N(h) the total spinning of \mathcal{H}_h , that is, $N(h) = \sum_{k=1}^n d(e_k).$

COROLLARY 1.10. Let $\mathcal{H}_h \subset \mathbb{R}^3$ be a complete nontrivial minimal hedgehog. If \mathcal{H}_h does not intersect a pencil of lines that fill up a right circular cone, then \mathcal{H}_h is a catenoid.

Theorem 1.9 can be generalized as follows. Consider a minimal multihedgehog $\mathcal{H}_h \subset \mathbb{R}^3$ given by a Weierstrass representation $X: \mathcal{U} \to \mathbb{R}^3$ and let $N: \Omega \to \mathbb{S}^2$ be its Gauss map (regarded as a map defined on the set Ω of regular points of X). The support function h can be regarded as a function of $z \in \Omega$ and defined by: $\forall z \in \Omega, h(z) = \langle X(z), N(z) \rangle$. For any $u \in \mathbb{S}^2$ such that \mathbb{S}^1_u contains no limiting normal at an end of \mathcal{H}_h let h_u be the restriction of h to $N^{-1}(\mathbb{S}^1_u)$. If $X\left[N^{-1}(\mathbb{S}^1_u)\right]$ contains no parabolic point of \mathcal{H}_h , then h_u can be interpreted as the support function of the family of plane multihedgehogs, say \mathcal{H}_{h_u} , that constitute the image of $X\left[N^{-1}(\mathbb{S}^1_u)\right]$ under the orthogonal projection onto the plane u^{\perp} . The index of a point $x \in u^{\perp} - \mathcal{H}_{h_u}$ with respect to the family of multihedgehogs \mathcal{H}_{h_u} can be defined as the algebraic intersection number of almost every oriented half-line of u^{\perp} with origin x with the family of multihedgehogs equipped with their transverse orientation.

THEOREM 1.11. Let $\mathcal{H}_h \subset \mathbb{R}^3$ be a complete minimal multihedgehog having n ends with limiting normals e_1, \ldots, e_n . Let $X : \mathcal{U} \to \mathbb{R}^3$ be a Weierstrass representation of \mathcal{H}_h and let $N : \Omega \to \mathbb{S}^2$ be its Gauss map (regarded as a map defined on the set Ω of regular points of X). Let $u \in \mathbb{S}^2$ be such that $\mathbb{S}_u^1 \subset \mathbb{S}^2 - \{e_1, \ldots, e_n\}$ and such that $X [N^{-1}(\mathbb{S}_u^1)]$ contains no parabolic point of \mathcal{H}_h . Then, for any $x \in u^\perp - \mathcal{H}_{h_u}$ such that the line $\{x\} + \mathbb{R}u$ contains no branch point of \mathcal{H}_h , we have

$$i_{h_{u}}(x) + N_{h}^{u}(x)^{+} = \sum_{\{k \mid \langle e_{k}, u \rangle > 0\}} d_{k},$$

where $N_h^u(x)^+$ is the number of $z \in N^{-1}(\mathbb{S}_u^+)$ such that $X(z) \in \{x\} + \mathbb{R}u$ and d_k the winding number of the kth end. Replacing u by -u, it follows that

$$i_{h_{u}}(x) + N_{h}^{u}(x)^{-} = \sum_{\{k | \langle e_{k}, u \rangle < 0\}} d_{k},$$

where $N_h^u(x)^-$ is the number of $z \in N^{-1}(\mathbb{S}_u^-)$ such that $X(z) \in \{x\} + \mathbb{R}u$. Consequently,

$$i_{h_{u}}(x) = \frac{1}{2} \left(N(h) - N_{h}^{u}(x) \right),$$

where $N_h^u(x) = N_h^u(x)^- + N_h^u(x)^+$ is the number of $z \in \mathcal{U}$ such that $X(z) \in \{x\} + \mathbb{R}u$ and N(h) the total spinning of \mathcal{H}_h , that is, $N(h) = \sum_{k=1}^n d_k$. In particular, the total spinning of \mathcal{H}_h has the same parity as $N_h^u(x)$.

2. Further remarks and proof of results

Proof of Theorem 1.4. (i) If S_f is an embedded flat end, then $A_s(f)$ is its asymptotic area $A_s[S_f]$ for $\langle N(z), n \rangle \left\| \left(\frac{\partial X_f}{\partial x} \times \frac{\partial X_f}{\partial y} \right)(z) \right\| dxdy$ is the area of the orthogonal projection, onto the asymptotic plane, of the element of area $\left\| \left(\frac{\partial X_f}{\partial x} \times \frac{\partial X_f}{\partial y} \right)(z) \right\| dxdy$ on the end.

(ii) We know that (see, e.g., [13])

$$\forall z = x + iy \in D, \left\| \left(\frac{\partial X_f}{\partial x} \times \frac{\partial X_f}{\partial y} \right)(z) \right\| = \left(|f(z)| \frac{\left(1 + |z|^{2N}\right)}{2} \right)^2,$$

2

so that

$$A_{s}(f) = \iint_{D} \left(1 - \langle N(z), n \rangle\right) \left\| \left(\frac{\partial X_{f}}{\partial x} \times \frac{\partial X_{f}}{\partial y}\right)(z) \right\| dxdy$$
$$= \iint_{D} \left|f(z)\right|^{2} \left|z\right|^{2N} \frac{1 + \left|z\right|^{2N}}{2} dxdy.$$

Consequently, $\sqrt{A_s}: E_N \to \mathbb{R}_+$ is a norm associated with the scalar product given by

$$A_{s}(f_{1}, f_{2}) = \iint_{D} \operatorname{Re}\left[f_{1}(z) \overline{f_{2}(z)}\right] |z|^{2N} \frac{1 + |z|^{2N}}{2} \, dx \, dy. \qquad \Box$$

REMARK 2.1. Recall that the Gauss curvature of a minimal surface S modelled (up to a translation) by Weierstrass data (g(z), f(z) dz) on a Riemann surface M is given by (see, e.g., [13])

$$K_S = -\left[\frac{4|g'|}{|f|(1+|g|^2)^2}\right]^2$$

If the surface S is different from a plane, we define its curvature function by $R_S := 1/K_S$ outside the isolated zeros of K_S . Consequently, it is natural to define the mixed curvature function of two (possibly branched) minimal surfaces S_1 and S_2 modelled (up to a translation) by Weierstrass data $(g(z), f_1(z) dz)$ and $(g(z), f_2(z) dz)$ on M (and thus sharing the same 'Gauss map' g(z)) by

$$R_{(S_1,S_2)}(z) = -\operatorname{Re}\left[f_1(z)\,\overline{f_2(z)}\right] \left[\frac{\left(1+|g(z)|^2\right)^2}{4\,|g'(z)|}\right]^2$$

Note that $R_{(S_1,S_2)} = 0$ if and only if the surface S_2 is homothetic to the conjugate surface S_1^* to S_1 . We have obviously the inequalities $R_{(S_1,S_2)}^2 \leq R_{S_1} \cdot R_{S_2}$ and $\sqrt{-R_{S+S_2}} \leq \sqrt{-R_{S_1}} + \sqrt{-R_{S_2}}$, which generalize those of Remark 1.3.

REMARK 2.2. For any $h \in \mathcal{H}(\mathbb{S}^2)$, denote by $r_h(u)$ the common absolute value of the principal radii of curvature of \mathcal{H}_h at $x_h(u)$. In other words, define r_h by $r_h = \sqrt{-R_h}$, where R_h is the curvature function of \mathcal{H}_h .

Let K be the closure of a (nonempty) connected open subset of \mathbb{S}^2 and let $\mathcal{H}_h \subset \mathbb{R}^3$ be a hedgehog modelled on K. The Cauchy-Schwarz inequality gives

Area
$$[x_h(K)] \ge \frac{M_K(h)^2}{\operatorname{Area}[K]}$$

where $M_K(h) = \int_K r_h d\sigma$. This inequality has to be compared with the Minkowski inequality

$$S \le \frac{M^2}{4\pi} \,,$$

where S is the surface area and M the integral of mean curvature of a convex body $K \subset \mathbb{R}^3$ (see [15]). Recall that if K is a convex body of class C^2_+ , then M is simply given by

$$M = \frac{1}{2} \int_{\mathbb{S}^2} \left(R_1 + R_2 \right) d\sigma,$$

where R_1 and R_2 are the principal radii of curvature of K. The above Minkowski inequality was extended in [6] to any hedgehog whose support function is of class C^2 on \mathbb{S}^2 .

Proof of Theorem 1.5. For all $z = x + iy \in \mathcal{U}$ we have

$$X(z) = x_h [N(z)] = (\nabla \varphi) [N(z)],$$

and thus

$$X_{\xi}(z) = (L_{\varphi})_{N(z)} \left(N_{\xi}(z) \right),$$

where $N_{\xi}(z) = \frac{\partial}{\partial \xi} [N(x+iy)]$, $X_{\xi}(z) = \frac{\partial}{\partial \xi} [X(x+iy)]$ and $\xi = x$ or y. Note that

$$N_{\xi}(z) = \frac{2}{1 + |g(z)|^{2}} \left[(P_{\xi}, Q_{\xi}, PP_{\xi} + QQ_{\xi})(z) - (PP_{\xi} + QQ_{\xi})(z) N(z) \right],$$

where g(z) = P(x, y) + iQ(x, y), $P_{\xi} = \frac{\partial P}{\partial \xi}$ and $Q_{\xi} = \frac{\partial Q}{\partial \xi}$. As φ is positively 1-homogeneous, we have

$$\left(L_{\varphi}\right)_{N(z)}\left(N\left(z\right)\right) = 0,$$

and we thus get

$$X_{\xi}(z) = \frac{2}{1 + |g(z)|^{2}} (L_{\varphi})_{N(z)} [(P_{\xi}, Q_{\xi}, PP_{\xi} + QQ_{\xi})(z)],$$

Now, direct calculation gives

$$\operatorname{Re}\left[\frac{2g'(z)}{1+|g(z)|^{2}}(L_{\varphi})_{N(z)}\left(\overline{v_{g}(z)}\right)\right] = \frac{2}{1+|g(z)|^{2}}(L_{\varphi})_{N(z)}\left[(P_{x},Q_{x},PP_{x}+QQ_{x})(z)\right],$$
$$\operatorname{Im}\left[\frac{2g'(z)}{1+|g(z)|^{2}}(L_{\varphi})_{N(z)}\left(\overline{v_{g}(z)}\right)\right] = -\frac{2}{1+|g(z)|^{2}}(L_{\varphi})_{N(z)}\left[(P_{y},Q_{y},PP_{y}+QQ_{y})(z)\right],$$

so that

$$\phi(z) = X_x(z) - iX_y(z) = \frac{2g'(z)}{1 + |g(z)|^2} (L_{\varphi})_{N(z)} \left(\overline{v_g(z)}\right).$$

Proof of Theorem 1.9. It suffices to prove the relation

$$i_{h_{u}}\left(x\right)+N_{h}^{u}\left(x\right)^{+}=\sum_{e_{k}\in\mathbb{S}_{u}^{+}}d\left(e_{k}\right),$$

for any regular value $x \in u^{\perp} - \mathcal{H}_{h_u}$ of $x_h^u = \pi_u \circ x_h : \mathbb{S}^2 - \{e_1, \ldots, e_n\} \to u^{\perp}$. Let (x_1, x_2, x_3) be the standard coordinates in \mathbb{R}^3 . Without loss of gener-

Let (x_1, x_2, x_3) be the standard coordinates in \mathbb{R}^3 . Without loss of generality, we can identify u^{\perp} with the plane given by the equation $x_3 = 0$ (and thus with the Euclidean vector plane \mathbb{R}^2) and assume that x is its origin $0_{\mathbb{R}^2}$. The index $i_{h_u}(x)$ is the winding number of \mathcal{H}_{h_u} around $x \in u^{\perp} - \mathcal{H}_{h_u}$. It is given by

$$i_{h_u}(x) = \frac{1}{2\pi} \int_{\mathcal{H}_{h_u}} \omega,$$

where ω is the closed 1-form defined by

$$\omega_{(x_1,x_2)} = \frac{x_1 dx_2 - x_2 dx_1}{x_1^2 + x_2^2}$$

on $\mathbb{R}^2 - \{0_{\mathbb{R}^2}\}$. This index $i_{h_u}(x)$ can also be regarded as the winding number of $x_h(\mathbb{S}^1_u)$ around the oriented line, say $D_x(u)$, passing through x and directed by u. In other words, $i_{h_u}(x)$ is given by

$$i_{h_u}\left(x\right) = \frac{1}{2\pi} \int_{x_h\left(\mathbb{S}^1_u\right)} \omega,$$

which can be checked by an easy calculation. Writing $\Sigma_u^+ = \mathbb{S}_u^+ - \{e_j | e_j \in \mathbb{S}_u^+\},\$ we thus have

$$i_{h_u}\left(x\right) = \frac{1}{2\pi} \int_{\partial S} \omega,$$

where S denotes the surface $x_h [\Sigma_u^+]$ equipped with its transverse orientation. Let $\{f_1, \ldots, f_L\}$ be the set consisting of all e_j such that $\langle e_j, u \rangle > 0$, i.e., $e_j \in \mathbb{S}_u^+$. Since x is a regular value of the map $x_h^u = \pi_u \circ x_h : \mathbb{S}^2 - \{e_1, \ldots, e_n\} \to u^{\perp}$, there exists a small closed disc, say D, centred at x whose inverse image under $(x_h^u)^+ : \mathbb{S}_u^+ - \{f_1, \ldots, f_L\} \to u^{\perp}, v \mapsto x_h^u(v)$, is empty or admits a partition of the form

$$[(x_h^u)^+]^{-1}(D) = \bigcup_{k=1}^K D_k,$$

where $K = N_h^u(x)^+$ and D_k is such that the map $\pi_u \circ x_h$ defines a diffeomorphism from D_k onto D for all $k \in \{1, \ldots, K\}$. As f_1, \ldots, f_L are limiting normals at ends of the complete minimal hedgehog \mathcal{H}_h , there exist small disjoint spherical discs $\Delta_1, \ldots, \Delta_L$ punctured at f_1, \ldots, f_L that are disjoint from \mathbb{S}_u^1 and from each D_k $(1 \le k \le K)$. Now, Stokes's formula gives

$$\int_{\partial S} \omega = \sum_{k=1}^{K} \int_{\partial S_k} \omega + \sum_{l=1}^{L} \int_{\partial \Sigma_l} \omega,$$

where S_k (resp. Σ_l) denotes the surface $x_h(D_k)$ (resp. $x_h(\Delta_l)$) equipped with its transverse orientation. As \mathcal{H}_h is a (possibly branched) minimal surface, the maps $x_h : D_k \to S_k$ are orientation reversing and thus the orthogonal projections of the oriented curves ∂S_k into the (x_1, x_2) -plane have winding number -1 around x. Consequently,

$$\sum_{k=1}^{K} \int_{\partial S_k} \omega = -N_h^u(x)^+ \,.$$

To complete the proof, it suffices to notice that we have also

$$\sum_{l=1}^{L} \int_{\partial \Sigma_{l}} \omega = \sum_{l=1}^{L} d\left(f_{l}\right) = \sum_{e_{k} \in \mathbb{S}_{u}^{+}} d\left(e_{k}\right),$$

from the definition of the winding number of an end.

The proof of Theorem 1.9 can be easily adapted to obtain a proof of Theorem 1.11; the details are left to the reader.

YVES MARTINEZ-MAURE

Proof of Corollary 1.10. By assumption, there exists a line D that does not intersect \mathcal{H}_h and that is such that no limiting normal at an end of \mathcal{H}_h belongs to the vector plane that is orthogonal to D. Let $u \in \mathbb{S}^2$ be a unit vector parallel to the line D and define x by $\{x\} = D \cap u^{\perp}$. According to Theorem 1.9 we have

$$i_{h_u}(x) = \frac{1}{2} \left(N(h) - N_h^u(x) \right) = \frac{N(h)}{2} > 0.$$

Theorem 1.8 now implies $i_{h_u}(x) = 1$ and thus N(h) = 2. The proof is completed by showing that \mathcal{H}_h must be a catenoid if N(h) = 2. This was proved by Hoffman and Karcher (see [2, Corollary 3.2]) for a connected complete minimal immersed surface $M \subset \mathbb{R}^3$ with finite total curvature and their proof remains valid if we drop the assumption that M has no branch points. \Box

The author wishes to thank Eric Toubiana for helpful comments and conversations during the preparation of the paper.

References

- [1] H. Geppert, Über den Brunn-Minkowskischen Satz, Math. Z. 42 (1937), 238–254.
- D. Hoffman and H. Karcher, Complete embedded minimal surfaces of finite total curvature, Geometry, V, Encyclopaedia Math. Sci., vol. 90, Springer, Berlin, 1997, 5–93. MR 98m:53012
- [3] R. Langevin, G. Levitt, and H. Rosenberg, Hérissons et multihérissons (enveloppes parametrées par leur application de Gauss), Singularities (Warsaw, 1985), Banach Center Publ., vol. 20, PWN, Warsaw, 1988, 245–253. MR 92a:58015
- [4] R. Langevin and H. Rosenberg, A maximum principle at infinity for minimal surfaces and applications, Duke Math. J. 57 (1988), 819–828. MR 90c:53025
- [5] Y. Martinez-Maure, *Hedgehogs and area of order* 2, Arch. Math. (Basel) 67 (1996), 156–163. MR 97m:53006
- [6] _____, De nouvelles inégalités géométriques pour les hérissons, Arch. Math. (Basel)
 72 (1999), 444–453. MR 2000c:52012
- [7] _____, Indice d'un hérisson: étude et applications, Publ. Mat. 44 (2000), 237–255.
 MR 2001e:53003
- [8] _____, Voyage dans l'univers des hérissons, Ateliers mathematica, Vuibert, Paris, 2003.
- [9] _____, Contre-exemple à une caractérisation conjecturée de la sphère, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 41–44. MR 2002a:53084
- [10] _____, Hedgehogs and zonoids, Adv. Math. 158 (2001), 1-17. MR 2002a:52003
- [11] _____, Les multihérissons et le théorème de Sturm-Hurwitz, Arch. Math. (Basel) 80 (2003), 79–86. MR 2004e:52006
- [12] _____, Théorie des hérissons et polytopes, C. R. Math. Acad. Sci. Paris 336 (2003), 241–244. MR 2004c:52003
- [13] R. Osserman, A survey of minimal surfaces, Dover Publications Inc., New York, 1986. MR 87j:53012
- H. Rosenberg and É. Toubiana, Complete minimal surfaces and minimal herissons, J. Differential Geom. 28 (1988), 115–132. MR 89g:53010
- [15] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 94d:52007

- [16] R. M. Schoen, Uniqueness, symmetry, and embeddedness of minimal surfaces, J. Differential Geom. 18 (1983), 791–809. MR 85f:53011
- [17] A. J. Small, Linear structures on the collections of minimal surfaces in R³ and R⁴, Ann. Global Anal. Geom. 12 (1994), 97–101. MR 95a:53014
- [18] M. Spivak, A comprehensive introduction to differential geometry. Vol. IV, 2nd ed., Publish or Perish Inc., Wilmington, Del., 1979. MR 82g:53003d

Y. MARTINEZ-MAURE, 1, RUE AUGUSTE PERRET, F-92500 RUEIL-MALMAISON, FRANCE *E-mail address*: martinezmaure@aol.com