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ON THE AVERAGE OF THE SCALAR CURVATURE OF
MINIMAL HYPERSURFACES OF SPHERES WITH LOW

STABILITY INDEX

OSCAR PERDOMO

Abstract. In this paper we show that if the stability index of M is
equal to n+2, then the average of the function |A|2 is less than or equal

to n − 1. Moreover, if this average is equal to n − 1, then M must be
isometric to a Clifford minimal hypersurface.

1. Introduction

Let M ⊂ Sn be a non totally geodesic compact minimal hypersurface
embedded in the n-dimensional unit sphere Sn. Notice that for any p ∈ M
the tangent space of M at p, TpM , is an (n − 1)-dimensional subspace of
R
n+1. This implies that, up to a sign, there exists a unique unit vector ν(p)

in the orthogonal complement of TpM , such that 〈ν(p), p〉 = 0. When M is
orientable, we can choose ν(p) so that it defines a smooth map ν : M → Sn.
This map is known as the Gauss map.

It is known that the embeddedness of M implies its orientability [3].
It is not difficult to show that the image of the differential of the Gauss map

at p, dνp : TpM → TpS
n, is contained in TpM . Therefore the map Ap(v) =

−dνp(v) is a linear map from TpM to TpM ; this map is known as the shape
operator of M at p. It can be shown that the shape operator is symmetric.
Therefore there are n−1 real eigenvalues of Ap. These eigenvalues are known
as the principal curvatures of M at p. Let us denote these eigenvalues by
κ1(p), . . . , κn−1(p). The minimality of M is equivalent to the condition κ1(p)+
· · · + κn−1(p) = 0 for all p ∈ M . The function |A|2 : M → R is given
by |A|2(p) = κ2

1(p) + · · · + κ2
n−1(p). As we will see later, the study of this

function is important in order to deduce properties of the hypersurface M .
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Let us denote the space of smooth functions of M by C∞(M) and the
Laplacian on M by ∆ : C∞(M) → C∞(M). The stability operator J :
C∞(M)→ C∞(M) is defined by J(f) = −∆f − |A|2f − (n− 1)f .

The stability index of M , ind(M), is defined as the number of negative
eigenvalues (counted with multiplicity) of the stability operator. The theory
of elliptic operators on compact manifolds guarantees that this index is finite.
Since the spectrum of the Laplacian on Euclidean spheres is known, a direct
verification shows that the stability index of M is 1 when M is a totally
geodesic minimal hypersurface of Sn, i.e., when

M = {x ∈ Rn+1 : |x| = 1 and 〈x,w〉 = 0},

where w is a nonzero fixed vector in Rn+1. In this case the function |A|2 :
M → R vanishes identically. Also, a direct verification shows that the stability
index of M is n + 2 when M is a Clifford minimal hypersurface of Sn, i.e.,
when M is isometrically a set of the form

Mkl =
{

(x, y) ∈ Rk+1 × Rl+1 : |x|2 =
k

n− 1
and |y|2 =

l

n− 1

}
,

where k and l are positive integers such that k + l = n − 1. For minimal
Clifford hypersurfaces the function |A|2 : M → R takes the value n − 1 at
every point in M . It can be shown that the stability index for any other
minimal hypersurface in Sn is greater than or equal to n + 2 (see, e.g., [7]).
A natural conjecture in this direction is:

Conjecture A. The only minimal immersed hypersurfaces M ⊂ Sn with
stability index n+ 2 are the minimal Clifford hypersurfaces.

For surfaces, i.e., when n = 3, this conjecture was proved by F. Urbano
[12]. Urbano’s result will also follow as a corollary of the main result in this
paper.

Regarding the function |A|2 : M → R defined on compact minimal hyper-
surfaces of Sn, it is known that if this function is constant, then this constant
must be greater than or equal to n− 1 (see, e.g., [11]). It is also known that
if this function is constant and the constant is equal to n− 1, the dimension
of M , then M must be a minimal Clifford hypersurface of Sn (see, e.g., [2],
[4]). In [11] we posed the following conjecture which, if true, would give a
far-reaching generalization of the properties of the function |A|2 : M → R

described above.

Conjecture B. Let M be a non totally geodesic compact minimal em-
bedded hypersurface of Sn. If the function |A|2 : M → R denotes the norm
squared of the shape operator, then

∫
M
|A|2 ≥

∫
M

(n − 1). Moreover, if∫
M
|A|2 =

∫
M

(n− 1), then M must be a minimal Clifford hypersurface.
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For surfaces, the first part of Conjecture B follows from the Gauss-Bonnet
theorem, the minimality of M and the fact that if M is a sphere immersed in
S3, then M must be totally geodesic [1]. The second part of this conjecture
for surfaces is equivalent to Lawson’s Conjecture: The only embedded minimal
torus in S3 is the Clifford torus. Another partial solution of Conjecture B
states that if M ⊂ Sn is a minimal immersed hypersurface with two principal
curvatures at every point in M and

∫
M
|A|2 =

∫
M

(n− 1), then M must be a
Clifford hypersurface [9].

In this paper we will show that if M is an immersed minimal oriented
hypersurface of Sn and the stability index of M is n + 2, then

∫
M
|A|2 ≤∫

M
(n − 1). Moreover, we will show that if the stability index of M is n + 2

and
∫
M
|A|2 =

∫
M

(n − 1), then M must be a minimal Clifford hypersurface.
In particular, Conjecture B implies Conjecture A for embedded hypersurfaces.

Remark. For a minimal hypersurface M on Sn, the scalar curvature
function k : M → R satisfies (n − 1)(n − 2)k(m) = 1 − |A|2(m) for every
m ∈M [11]. Therefore Conjecture B can be rewritten in terms of the average
of the scalar curvature instead of the average

∫
M
|A|2.

2. Preliminaries

Let φ : M −→ Sn be a minimal immersion of a compact oriented (n− 1)-
dimensional manifold into the unit sphere.

We identify M with the set φ(M) ⊂ Rn+1 and the space TmM with the
linear subspace dφm(TmM) of Rn+1.

Let w ∈ Rn+1 be fixed. We define functions lw : M −→ R and fw : M −→
R by

lw(m) = 〈m,w〉, fw(m) = 〈ν(m), w〉 for all m ∈M.

A direct computation using the minimality of M and the Codazzi equations
gives the following result.

Proposition 2.1. The gradient and the Laplacian of the functions lw
and fw are given by

∇lw = wT , ∇fw = −A(wT ),

−∆lw = (n− 1)lw, −∆fw = ‖A‖2fw.

Here wT denotes the tangential component of w on the tangent space TmM .

The following lemma is based on the minimax characterization of eigenval-
ues of elliptic operators.

Lemma 2.1. Let M ⊂ Sn be a non totally geodesic minimal compact
oriented hypersurface of Sn and let ρ denote an eigenfunction of the stability
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operator J associated to the first eigenvalue of J . If ind(M) = n+ 2, then for
every smooth function f : M −→ R with

∫
M
ρf = 0 we have∫

M

|∇f |2 ≥
∫
M

‖A‖2f2,

with equality only if −∆f = ‖A‖2f .

Proof. Notice that Proposition 2.1 implies that the functions fw satisfy
J(fw) = −(n − 1)fw. These functions span an (n + 1)-dimensional space
because M is non totally geodesic [7]. Therefore −(n− 1) is an eigenvalue of
J with multiplicity at least n+ 1. Hence, if ind(M) = n+ 2, then −(n− 1) is
the second eigenvalue of J . Recall that, from the theory of elliptic operators,
the multiplicity of the first eigenvalues must be 1. Since −(n − 1) is the
second eigenvalue of J , the lemma follows using the minimax characterization
of eigenvalues for elliptic operators. �

The proof of the main result is based on a technique that uses the group of
conformal applications from Sn to Sn, which was introduced by Li and Yau
[5].

Let Bn+1 be the open unit ball in Rn+1. For each point g ∈ Bn+1 we
consider the map

Fg(p) =
p+ (µ〈p, g〉+ λ)g
λ(〈p, g〉+ 1)

for all p ∈ Sn, where λ = (1 − |g|2)−1/2 and µ = (λ − 1)|g|−2. A direct
verification (see [6]) shows that Fg is a conformal transformation from Sn to
Sn. Moreover, for every v, w ∈ TpSn, its differential dFg satisfies

〈dFg(v), dFg(w)〉 =
1− |g|2

(〈p, g〉+ 1)2
〈v, w〉.

In [5], Li and Yau proved the following lemma:

Lemma 2.2. If h is a Riemannian metric on M and φ : (M,h) −→ Sn is
a conformal immersion, then there exists g ∈ Bn+1 such that

∫
M

(Fg ◦φ)dv =
(0, . . . , 0). Here the differential of volume dv is taken with respect to the metric
h.

3. Proof of the main result

We start this section with the following lemma, which gives an expression
for the volume of M , |M |, in terms of one of the coordinate functions.

Lemma 3.1. Let Mk be a k-dimensional compact minimal manifold im-
mersed in Sn. If w ∈ Rn+1 is a fixed vector such that the function 1 + lw(m)
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is always positive on M , then

|M | =
∫
M

1 =
∫
M

1− |w|2

(1 + lw)2
+
∫
M

|w|2 − l2w − 2
k |∇lw|

2

(1 + lw)2
.

Proof. Let us define f : Mk −→ R by f = ln(1 + lw). A direct verification
shows that ∇f = ∇lw/(1 + lw) and

∆f = div∇f =
−klw
1 + lw

− |∇lw|2

(1 + lw)2

=− k

2

(
2lw(lw + 1) + 2

k |∇lw|
2

(1 + lw)2

)
=− k

2

(
2lw + l2w + l2w + 1− 1 + 2

k |∇lw|
2

(1 + lw)2

)
=− k

2

(
1 +
−1 + l2w + |w|2 − |w|2 + 2

k |∇lw|
2

(1 + lw)2

)
=− k

2

(
1− 1− |w|2

(1 + lw)2
−
|w|2 − l2w − 2

k |∇lw|
2

(1 + lw)2

)
.

Since
∫
M

∆f = 0, the lemma follows. �

Lemma 3.2. Let φ : M −→ Sn be a smooth map, g ∈ Bn+1 and {ei}n+1
i=1

be an orthonormal basis of Rn+1. If we define hi : M −→ R by hi(m) =
〈Fg(φ(m)), ei〉 and si : M −→ R by si(m) = 〈φ(m), ei〉, then

n+1∑
i=1

|∇hi|2(m) =
1− |g|2

(1 + 〈φ(m), g〉)2

n+1∑
i=1

|∇si|2(m).

Proof. Let {vi}n−1
i=1 be an orthonormal basis of TmM . We have

|∇hi|2(m) =
n−1∑
j=1

(
vj(hi)

)2
=
n−1∑
j=1

(
〈(dFg)φ(m)(dφ(vj)), ei〉

)2
.

Therefore,
n+1∑
i=1

|∇hi|2(m) =
n+1∑
i=1

n−1∑
j=1

(
〈(dFg)φ(m)(dφ(vj)), ei〉

)2
=
n−1∑
j=1

‖(dFg)φ(m)(dφ(vj))‖2
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=
n−1∑
j=1

1− |g|2

(1 + 〈φ(m), g〉)2
‖dφ(vj)‖2

=
n−1∑
j=1

1− |g|2

(1 + 〈φ(m), g〉)2

n+1∑
i=1

(
vj(si)

)2
=

1− |g|2

(1 + 〈φ(m), g〉)2

n+1∑
i=1

|∇si|2(m). �

Theorem 3.1. Let M be a compact oriented (n−1)-dimensional manifold
and let φ : M → Sn be a minimal immersion of M in Sn. If the stability index
of M is n+2, then

∫
M
‖A‖2 ≤

∫
M

(n−1). Moreover, if
∫
M
‖A‖2 =

∫
M

(n−1),
then M must be isometric to a minimal Clifford hypersurface.

Proof. Let ρ be a first eigenfunction of the stability operator J . We can
assume ρ is always positive. Let us consider the Riemannian manifold (M,h),
where h is the metric ρ2/(n−1) times the metric induced by φ. Since φ(M,h)→
Sn is a conformal map, by Lemma 2.2 we can find g ∈ Bn+1 such that∫

(M,h)

Fg ◦ φ =
∫
M

ρFg ◦ φ = (0, . . . , 0).

The above equality implies that the functions hi = 〈Fg(φ(m)), ei〉 with e1 =
(1, 0, . . . , 0), . . . , en+1 = (0, . . . , 0, 1), are perpendicular to the function ρ, i.e.,∫
M
ρhi = 0. By Lemma 2.1 we have

n+1∑
i=1

∫
M

|∇hi|2 ≥
n+1∑
i=1

∫
M

‖A‖2h2
i =

∫
M

‖A‖2,(1)

with equality only if −∆hi = ‖A‖2hi. On the other hand, by Lemma 3.2 we
have

n+1∑
i=1

|∇hi|2 =
1− |g|2

(1 + 〈φ(m), g〉)2

n+1∑
i=1

|∇lei |2 = (n− 1)
1− |g|2

(1 + 〈φ(m), g〉)2
.(2)

Therefore, integrating the equations (1) and (2) and using Lemma 3.1, we get∫
M

‖A‖2 ≤ (n− 1)
∫
M

1− |g|2

(1 + 〈φ(m), g〉)2

= (n− 1)|M | − (n− 1)
∫
M

|g|2 − l2g − 2
n−1 |∇lg|

2

(1 + lg)2
,

with equality only if −∆hi = ‖A‖2hi. Since the expression∫
M

|g|2 − l2g − 2
n−1 |∇lg|

2

(1 + lg)2
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is positive unless g = 0, we have
∫
M
‖A‖2 ≤ (n − 1)|M |. Moreover, if∫

M
‖A‖2 = (n − 1)|M |, then g = 0. Therefore, for i = 1, . . . , n + 1 we

have hi = lei and

‖A‖2hi = ‖A‖2lei = −∆hi = −∆lei = (n− 1)lei .

The above equality implies that ‖A‖2 ≡ n− 1, and hence that M is isometric
to a Clifford hypersurface [2]. �

Corollary 3.1. If M ⊂ S3 is a minimal surface with index 5, then M
is a Clifford torus.

Proof. Since the index of M is 5, M is not totally geodesic and therefore
is not topologically a sphere [1]. Hence, by the Gauss-Bonnet theorem and
the minimality of M , we have

∫
M
‖A‖ ≥ 2|M | (see, e.g., [8]). On the other

hand, Theorem 3.1 implies that
∫
M
‖A‖2 ≤ 2|M |. Therefore

∫
M
‖A‖2 = 2|M |.

Applying again Theorem 3.1, we obtain that M is isometric to the Clifford
torus. �
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