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SOME PROPERTIES OF GLOBAL SEMIANALYTIC
SUBSETS OF COHERENT SURFACES

C. ANDRADAS AND A. DÍAZ-CANO

Abstract. Let X ⊂ Rn be a coherent analytic surface. We show that
the connected components of global analytic subsets of X are global and

we compute the stability index and Bröcker’s t-invariant of X. We also
state a real Nullstellensatz for normal surfaces.

Introduction

In this paper we study some properties of non-compact singular analytic
surfaces. There are several reasons for considering such surfaces. First, proper
analytic subsets of X are 1-dimensional or discrete sets, which are known to
have good properties. Second, the Artin-Lang property holds for coherent
surfaces.

The paper is organized as follows. In the first section, we recall some defini-
tions and results which will be used later, such as the Hörmander- Lojasiewicz
inequality, cf. [Ac-Br-Sh], the Artin-Lang property, cf. [An-DC-Rz], and some
properties of global analytic sets of dimension 1, cf. [An-Be] and [Ca-An].

Section 2 is devoted to the connected components of a coherent surface,
which are shown to be global semianalytic subsets, a result which was known
for analytic 2-dimensional manifolds, cf. [Ca-An].

In Section 3 we study the stability index and Bröcker’s t-invariant, which
are related with minimal descriptions of global semianalytic subsets. Again,
our results are valid for coherent surfaces generalizing those of [DC-An].

Finally, in Section 4 we obtain a real Nullstellensatz. We use strong proper-
ties of the multiplicities along a divisor, so the singular locus must be a discrete
set. This result can be regarded as a generalization of the real Nullstellensatz
for 2-dimensional analytic manifolds, cf. [Bo-Rs], but we only assume the
surface to be normal.
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1. Preliminaries

Let X be a global analytic set of Rn, that is, X is the zero set of a finite
number of analytic functions on Rn. The ideal of analytic functions vanishing
on X is I(X) := {f ∈ O(Rn) | f = 0 on X} and generates the coherent sheaf
of ideals IX whose stalk at x is IX,x = I(X)O(Rnx). If X is coherent we have
the equality IX,x = I(Xx) := {f ∈ O(Rnx) | f = 0 on Xx}.

The analytic functions on X are the global sections of the coherent sheaf
OX := ORn/IX and they form the ring O(X) = O(Rn)/I(X). We also define
M(X) as the total ring of fractions of O(X).

The global semianalytic subsets of X are those which can be written as
p⋃
i=1

{x ∈ X | fi(x) = 0, gi1(x) > 0, . . . , giji(x) > 0},

where fi, gij ∈ O(X).
In general, this definition is more restrictive than the classical definition

of a semianalytic subset, which is of local nature. Nevertheless, in dimension
one they coincide. More precisely, we have the following result, cf. [Ca-An],
Lemma 3.1 and Corollary 3.3.

Lemma 1.1. Let X ⊂ R
n be a global analytic set and let C ⊂ X be a

1-dimensional analytic subset. Then any semianalytic subset of C is global.
In particular, C is a global analytic set.

Moreover, if S is a global semianalytic subset of dimension 1, then any
semianalytic subset of S is global.

The next lemma allows us to write a meromorphic function f as a fraction
with a denominator whose zero set coincides with the set of points at which
f is not analytic if it is a discrete set.

Lemma 1.2. Let X ⊂ Rn be a global analytic set and let f ∈ M(X) be a
meromorphic function which is analytic up to a discrete set D. Then there is
h ∈ O(X) such that Z(h) = D and fh ∈ O(X).

Proof. We have that f = f1/f2 for some f1, f2 ∈ O(X). The sheaf J :=
(f2 : f1) of denominators of f is a coherent sheaf whose stalk at x is Jx =
{gx ∈ OX,x | gxf1,x ∈ f2,xOX,x}.

In a neighbourhood Up of p ∈ D this sheaf is generated by finitely many
sections g1, . . . , gr, and p is an isolated zero of G :=

∑
g2
i , since for any x close

enough to p, fx ∈ OX,x, so that Jx = (g1, . . . , gr)OX,x = OX,x and gi(x) 6= 0
for some i = 1, . . . , r.

Hence, f1,p/f2,p = g′1,p/g1,p = · · · = g′r,p/gr,p, for some g′1,p, . . . , g
′
r,p ∈ OX,p

and then f1,p/f2,p = (g′1,pg1,p + · · ·+ g′r,pgr,p)/Gp. That is, for any p ∈ D,
fp = gp/Gp, where gp, Gp ∈ OX,p and Gp is an elliptic germ (i.e., {Gp > 0} =
Xp \ {p}).
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Then by [DC-An], Proposition 3.1, we can find a global analytic function
h ∈ O(X) such that Z(h) = D and hpOX,p = GpOX,p, ∀p ∈ D. Thus
fh ∈ O(X) and we are done.

We remark that although Proposition 3.1 of [DC-An] is stated for a coherent
analytic setX ⊂ Rn, the same proof works for any global analytic set equipped
with the coherent sheaf OX,x = ORn,x/I(X)ORn,x. �

Another lemma, which will be used later, is the following. It shows a kind
of stability of open semianalytic set germs under small perturbations of the
functions which define them.

Lemma 1.3. Let Xp ⊂ R
n be an analytic set germ, F ⊂ Xp a closed

semianalytic germ, G =
⋃q
i=1{fi1 > 0, . . . , fisi > 0}, where fi1, . . . , fisi ∈

O(Xp), and suppose that F ⊂ G ∪ {p}.
There is some ν ∈ N such that if f ′ij ∈ O(Xp) and f ′ij ≡ fij mod mν

p,
where mp stands for the maximal ideal of O(Xp), then

F ⊂
q⋃
i=1

{f ′i1 > 0, . . . , f ′isi > 0} ∪ {p}.

Proof. We will first show the result for a principal set G = {f > 0}. In
this case, we have {f = 0} ∩ F ⊂ {p} = {‖ x − p ‖2= 0}. Hence by the
Hörmander- Lojasiewicz inequality, cf. [An-Br-Rz], Proposition II.1.16, there
is an even integer m and a > 0 such that |f | ≥ a ‖ x−p ‖m holds on F . Now,
if f ′ ∈ O(Xp) verifies f ′ − f ∈ mm+2

p , then f ′ and f must have the same sign
on F , since otherwise |f ′ − f | ≥ a ‖ x− p ‖m, which implies f ′ − f /∈ mm+2

p ,
in contradiction to the assumption. Thus we can take ν = m+ 2.

If G is a basic set, G = {f1 > 0, . . . , fv > 0}, then F ⊂ {fi > 0} ∪ {p}
and we can take ν as the maximum of the νi’s obtained for each principal set
{fi > 0}.

In the general case G = B1∪ · · ·∪Bq, where each Bi = {fi1 > 0, . . . , fisi >
0} is basic, we can decompose F as a union F = F1 ∪ · · · ∪ Fq, where each Fi
is closed and Fi ⊂ Bi ∪ {p}.

For instance, if F ⊂ G ∪ {p}, where G = B1 ∪ B2, then set T1 :=
BdB1 ∩ (B2 ∩ F ) ⊂ B2 ∪ {p} and T2 := BdB2 ∩ (B1 ∩ F ) ⊂ B1 ∪ {p}. Take
neighbourhoods V1 and V2 of T1 \ {p} and T2 \ {p}, respectively, such that
V 1 ⊂ B2 ∪{p}, V 2 ⊂ B1 ∪{p} and V 1 ∩V 2 = {p}. Now, it is straightforward
to check that F1 := F ∩ (B1 \ V1) and F2 := F ∩ (B2 \ V2) verify F = F1 ∪F2,
F1 ⊂ B1 and F2 ⊂ B2. Moreover, this remains true if B1 and B2 are just
open set germs, not necessarily basic.

In general, if F ⊂ G ∪ {p}, where G = B1 ∪ · · · ∪ Bq, then defining B′2 :=
B2∪· · ·∪Bq we can find F1 ⊂ B1∪{p} and F ′2 ⊂ B′2∪{p} such that F = F1∪F ′2
and by the induction hypothesis we can write F ′2 = F2 ∪ · · · ∪ Fq such that
Fi ⊂ Bi ∪ {p} for all i = 2, . . . , q.
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By what has been seen above there are integers ν1, . . . , νq such that if
f ′ij ≡ fij mod mνi

p , then Fi ⊂ B′i ∪ {p}, where B′i := {f ′i1 > 0, . . . , f ′isi > 0}.
Now, it is enough to take ν = max{ν1, . . . , νq}. �

We recall that a basic open set (resp. basic closed set) is a global semi-
analytic subset which can be written as {f1 > 0, . . . , fr > 0} (resp., {f1 ≥
0, . . . , fr ≥ 0}). In the sequel closures, interiors, etc., refer always to the
topology induced by the Euclidean topology in Rn. The notation Y

Z

denotes
the Zariski closure of Y , i.e., the minimal global analytic set containing Y .

A useful tool when dealing with global semianalytic sets is the so-called
Hörmander- Lojasiewicz inequality, cf. [Ac-Br-Sh].

Theorem 1.4 (Hörmander- Lojasiewicz inequality). Let X ⊂ R
n be a

global analytic set and let T ⊂ X be a global closed semianalytic subset. Given
f, g ∈ O(X) there exist p, q ∈ O(X) such that

(a) p > 0, q ≥ 0 on X,
(b) sign(pf + qg) = sign f over T , and
(c) {q = 0} = {f = 0} ∩ T

Z

.

As a consequence of the Hörmander- Lojasiewicz inequality we get the past-
ing lemmas as in [An-Br-Rz], Lemmas V.2.8 and V.2.13.

Lemma 1.5. Let X be a global analytic set, Y ⊂ X a global analytic subset
and B ⊂ X a closed global semianalytic set. Assume that

B \ Y = {a1 ≥ 0, . . . , ak ≥ 0} \ Y and B ∩ Y = {b1 ≥ 0, . . . , bl ≥ 0} ∩ Y
for suitable ai, bi ∈ O(X). Then there exist c1, . . . , cm ∈ O(X), m ≤ k + l,
such that B = {c1 ≥ 0, . . . , cm ≥ 0}.

Lemma 1.6. Let X be a global analytic set and S ⊂ X an open global
semianalytic set. If Y ⊂ X is a global analytic subset and B1, . . . , Bl are
basic open sets such that

S \ Y = (B1 ∪ · · · ∪Bm) \ Y and S ∩ Y = (Bm+1 ∪ · · · ∪Bl) ∩ Y,
then S = B′1 ∪ · · · ∪B′l for some basic open sets B′i ⊂ X.

We also recall that two subsets S1, S2 ⊂ X are called generically equal (and
write S1

g
= S2), if there is a codimension 1 global analytic subset Y ⊂ X such

that S1 \ Y = S2 \ Y . A subset S ⊂ X is called generically basic if it is
generically equal to some basic open (or closed) subset of X.

As we are interested in surfaces, from now on we will suppose that
dimX = 2.

Remark 1.7. In the case of surfaces the first pasting lemma has two
interesting consequences. First, it implies that any global closed semianalytic
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set that is generically basic is a basic closed set since in dimension 1 everything
is basic, cf. [DC-An], Theorem 4.4. In particular, the closure of any basic open
set is basic closed.

Second, as any global semianalytic subset S ⊂ X is a finite union of basic
open sets and a global semianalytic subset of dimension 1, it is immediate
that the closure, S, of such a set is also a global semianalytic subset.

Now, let Y ⊂ X be an irreducible analytic curve not contained in the
singular locus of X and let f ∈ O(X). For any point x ∈ Y \ SingX the ring
of germs OX,x is a unique factorization domain and the ideal IY,x = I(Y )OX,x
is principal, say IY,x = hxOX,x. Then the germ of f at x is fx = uxh

m
x , where

ux ∈ OX,x \ IY,x and m is a non-negative integer. In [An-DC-Rz] it is shown
that the integer mY (f) := m does not depend on the point x and mY (f) is
called the multiplicity of f along Y .

We will use some results about multiplicities. Let Y ⊂ X be an analytic set
of dimension one without isolated points. Then it is a union, possibly infinite,
of irreducible curves, say, Y =

⋃
i∈I Yi. If we fix positive integers mi > 0,

i ∈ I, then it is possible to find a function f ∈ O(X) with these multiplicities,
that is, mYi(f) = mi, ∀i ∈ I, cf. [An-DC-Rz], Proposition 2.3. In general, we
only have Y ⊂ Z(f), but if all the mi’s are even, then we can get the equality
Y = Z(f), cf. [An-DC-Rz], Proposition 2.1.

In [An-DC-Rz] the Artin-Lang property has been proved for coherent an-
alytic surfaces with affine normalization. From this property an ultrafilter
theorem can be derived (as in [Ca-An] for the case of smooth analytic sur-
faces). The real spectrum of a commutative ring A will be denoted by SpecrA.
If A is a field, then SpecrA is a space of orderings. We refer to [An-Br-Rz],
[Be] and [Bo-Co-Ro] for generalities on the real spectrum.

Theorem 1.8 (Ultrafilter theorem). Let X be a coherent analytic surface
with affine normalization. Then there is a one-to-one correspondence between
orderings of M(X) and the ultrafilters of the lattice S of all open global semi-
analytic subsets of X. More precisely, if β ∈ SpecrM(X), its associated
ultrafilter is

Vβ := {S ∈ S | {f1 > 0, . . . , fr > 0} ⊂ S for some f1, . . . , fr ∈ β}.

Given any semianalytic subset (not necessarily global) S ⊂ X, we define
its “tilde” image in SpecrM(X) as

S̃ = {β ∈ SpecrM(X) |S ⊃ V for some V ∈ Vβ}.

This tilde map has some useful properties, cf. [Ca-An], Proposition 2.4. For
example, two global semianalytic sets that are generically equal have the same
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tilde image. Moreover, if S ⊂ is a global semianalytic subset,

S =
p⋃
i=1

{x ∈ X | fi(x) = 0, gi1(x) > 0, . . . , giji(x) > 0},

then its tilde image is given by the same formula,

S̃ =
p⋃
i=1

{β ∈ SpecrM(X) | fi(β) = 0, gi1(β) > 0, . . . , giji(β) > 0}.

Subsets of SpecrM(X) like this one are called constructible sets and are the
counterpart of the global semianalytic sets. Notice that {0 > 0} defines the
empty set in SpecrM(X).

2. Connected components of global semianalytic sets

In this section we will see that if X is a coherent surface with affine nor-
malization, then the connected components of a global semianalytic subset of
X are global. This is a generalization of an analogous result stated in [Ca-An]
for 2-dimensional analytic manifolds.

The following lemma will be used to separate a semianalytic set from its
complement.

Lemma 2.1. Let X be a normal analytic surface, S ⊂ X an open semian-
alytic subset whose boundary, BdS, is global and T := X \ S. Then for any
β ∈ SpecrM(X) there is a global analytic function g ∈ β such that

S ∩ {g > 0} ∩ T ∩ {g > 0}
is a discrete set.

Proof. As BdS is global, its Zariski closure is also a global analytic set of
dimension less than or equal to 1. Therefore BdS

Z

= (
⋃
Yi) ∪D, where the

Yi’s are irreducible analytic sets of dimension 1 and D is a discrete set.
By [An-DC-Rz], Lemma 2.2, there is g ∈ O(X) with multiplicity one along

each Yi, i.e., mYi(g) = 1. We can suppose g ∈ β since otherwise we can
replace g by −g. In any case, it is straightforward to check that S ∩ {g > 0}∩
T ∩ {g > 0} is a discrete set. �

From now on we will suppose that X is an irreducible coherent ana-
lytic surface with affine normalization. In this case the normalization π :
Xν → X is birational and Xν is a normal analytic surface which can be
embedded in some Rp. The normalization induces an injective homomor-
phism π∗ : O(X) ↪→ O(Xν) which associates to any f ∈ O(X) the function
f∗ := π∗(f) = f ◦ π ∈ O(Xν).

This homomorphism can be extended to an isomorphism between the fields
of fractions of these surfaces, M(X) and M(Xν), and it induces another
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isomorphism between their real spectra. Namely, if β ∈ SpecrM(Xν), then
π(β) is defined as follows: a meromorphic function f ∈ M(X) is positive in
the ordering π(β) if and only if f∗ is positive in β.

It is known that, since the normalization is a proper map, the image of a
semianalytic subset is again semianalytic, cf. [Ga]. Moreover, in dimension
two the map π sends global semianalytic sets of Xν to global semianalytic
sets of X. More precisely, let Sν ⊂ Xν be a global semianalytic set

Sν =
⋃
{x ∈ Xν |hi(x) = 0, gi1(x) > 0, . . . , givi(x) > 0}

with hi, gij ∈ O(Xν) and suppose that π∗(h′i/h
′′
i ) = hi, π∗(g′ij/g

′′
ij) = gij for

some h′i, h
′′
i , g
′
ij , g

′′
ij ∈ O(X).

Defining

T =
⋃
i∈I

{
x ∈ X | g′i1(x)g′′i1(x) > 0, . . . , g′ivi(x)g′′ivi(x) > 0

}
,

where I = {i |hi is a unit in O(X)}, it is clear that

T ⊂ π(Sν) ⊂ T ∪ (∪{h′ih′′i = 0}) ∪ (∪{g′′ij = 0}).

In other words, π(Sν) is the union of a global semianalytic set, T , and a
semianalytic subset of a global analytic set of dimension 1. Therefore by
Lemma 1.1 it is global.

On the other hand, if S ⊂ X is a global semianalytic set, then π−1(S) is a
global semianalytic subset of Xν . In fact, if S =

⋃
{hi = 0, fi1 > 0, . . . , fisi >

0}, where hi, fij ∈ O(X), then it is easy to check that π−1(S) =
⋃
{h∗i =

0, f∗i1 > 0, . . . , f∗isi > 0}.

Proposition 2.2. Let S ⊂ X be a semianalytic set. Then S is global if
and only if BdS is global.

Proof. If S is global, then its boundary is a semianalytic set of dimension
1 contained in the set of zeros of the functions describing S. Then by Lemma
1.1 it is a global semianalytic set.

Suppose that BdS is global. In this case we have that S is global if and
only if S̃ is constructible. This result has been stated in [Ca-An], Proposition
3.5, but the proof is valid for any surface X verifying the Artin-Lang property.
Hence we have to prove that S̃ is constructible.

If X is normal we can follow the proof of [Ca-An], Proposition 3.6, to
conclude that S̃ is constructible and consequently that S is global. We just
remark that we must use Lemmas 1.3 and 2.1 above instead of Lemmas 4.1
and 4.2 of [Ca-An], which are stated and proved only for regular surfaces.

Now, let X be a coherent surface and consider its normalization π : Xν →
X. We define Sν := π−1(S) ⊂ Xν , which is a semianalytic set with global
boundary since BdSν ⊂ π−1(BdS) and π−1(BdS) is a global semianalytic
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set of dimension 1. As BdSν is global, we can apply the result for normal
surfaces to conclude that Sν is global. But then S = π(Sν) is also global. �

Corollary 2.3. Let S ⊂ X be a global semianalytic set. Then its con-
nected components are also global semianalytic subsets of X.

Proof. If T is a connected component of S, then Bd(T ) ⊂ Bd(S). But
Bd(S) is a global semianalytic subset of dimension 1, so Bd(T ) is also global.
By the previous proposition T is a global semianalytic set. �

3. Stability index

Suppose X is a pure dimensional surface. Given a basic open set B, it
is clear that B ⊂ IntB and also that B′ ⊂ IntB for any basic open set B′

generically equal to B since they have the same closure.

Example 3.1. In some cases IntB is not a basic open set. For example, let
X ⊂ R3 be the double cone, with vertex at the origin, defined by y2z2 = x2+y4

(see Figure 1) and B ⊂ X the basic open set B = {y2z2−2xyz+x2−y2z−xy >
0}. Then B contains the lower half part of X, i.e., X ∩ {z < 0}, except the
negative z-axis.

In the upper half (z > 0) it contains two of the four sheets converging
to the positive z-axis. Hence IntB contains the negative z-axis, but not the
positive z-axis, which belongs to its Zariski boundary. Therefore IntB cannot
be a basic open set, cf. [An-Br-Rz], I.3.3.

To see where the subset B comes from, consider the normalization of X (see
Figure 2), which is the coneXν : z′2 = x′

2+y′2, where x = x′y′, y = y′, z = z′.
The preimage of the singular locus of X, which is the z-axis, is the pair of lines
{x′+z′ = 0} and {x′−z′ = 0}. The basic set Bν := {(z′−x′)2−(x′+z′) > 0}
contains the lower half-line {x′ − z′ = 0} ∩ {z′ < 0} (γ′2 in Figure 2) and the
line (except the origin) {x′ + z′ = 0} (γ1 and γ′1 in Figure 2).

6

�
���
XXXz

x

y

z
X

γ1

γ′1

γ2

γ′2

π←−

6

�
���
XXXz

x′
y′

z′ Xν

Figure 1 Figure 2
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We have

(z′ − x′)2 − (x′ + z′) = π∗
(
y2z2 − 2xyz + x2 − y2z − xy

y2

)
.

Hence π(Bν) and B are generically equal.
Note that the function f := y2z2−2xyz+x2−y2z−xy changes sign on the

upper z-axis, which is not a global analytic set. We remark that in the case of
a normal surface the set of points at which an analytic function changes sign
is a global analytic set, as can be deduced from [An-DC-Rz], Proposition 3.1.

We will see that by removing the Zariski boundary of IntB we get a basic
open set with some remarkable properties.

Proposition 3.2. Let X ⊂ Rn be a pure dimensional analytic surface,
B = {f1 > 0, . . . , fm > 0} ⊂ X a basic open set and SB := IntB\Bd(IntB)

Z

.
(a) If B′ is a basic open set generically equal to B, then B′ ⊂ SB.
(b) SB is a basic open set and can be described by m inequalities, that is,

SB = {g1 > 0, . . . , gm > 0} for some g1, . . . , gm ∈ O(X).
(c) If B′ is a basic open set generically equal to B, then B′ can be de-

scribed by m inequalities.

Proof. (a) It is clear that B′ ⊂ IntB and that B′
g
= IntB. Moreover,

we have BdB′ ⊃ Bd(IntB). Indeed, if x ∈ Bd(IntB), then for any open
neighbourhood U of x the sets U ∩ IntB and U ∩ (X \B) are non-empty open
sets. Hence x ∈ BdB′, since otherwise B′ and IntB would not be generically
equal.

Therefore BdB′
Z ⊃ Bd(IntB)

Z

and B′ \ BdB′
Z ⊂ IntB \ Bd(IntB)

Z

=
SB . But B′ \ BdB′

Z

= B′ since B′ is basic open, cf. [An-Br-Rz], I.3.3.

(b) We have B ⊂ IntB and IntB \ B is a global semianalytic set of di-

mension 1. Therefore A := IntB \B
Z

is an analytic set of dimension 1. We
decompose A into irreducible components

A =
(⋃

Yi

)
∪
(⋃

Y ′j

)
∪D,

where Y = ∪Yi collects the 1-dimensional components of A which are not
components of Bd(IntB)

Z

, Y ′ = ∪Y ′i is the collection of components of A ∩
Bd(IntB)

Z

of dimension 1 and D is some discrete set.
We can suppose that the discrete set D is empty. Indeed, if this is not

the case, then for any i = 1, . . . ,m the germ of fi at each point p ∈ D is
elliptic, that is, there is a neighbourhood Up of p such that fi|Up ≥ 0 and
{fi = 0} ∩ Up = {p}. Then we can find non-negative analytic functions hi
such that Z(hi) = D and at each p ∈ D the germs of fi and hi are equal up
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to a unit of OX,p, cf. [DC-An], Proposition 3.1. Finally, we can replace every
fi by fi/hi.

We set Y1 := Y ∩ IntB and Y2 := Y ∩ (X \ IntB). Then Y = Y1 ∪ Y2 and
SB = IntB \ Y ′ = B ∪ (Y1 \ Y ′).

Now, take h ∈ O(X) separating IntB and Y2, cf. [Br-Pi], Proposition 2.7,
so that h > 0 on IntB and h < 0 on Y2 \ B. We note that since Y and

Bd(IntB)
Z

do not share any component, Y2 \B is a discrete set.
Next, we apply the Hörmander- Lojasiewicz inequality to T := (X \IntB)∪

Y ′, fi, h to find gi = pifi + qih (pi > 0, qi ≥ 0) such that sign gi = sign fi on
T and {qi = 0} = {fi = 0} ∩ T

Z

.
We will see that SB = {g1 > 0, . . . , gm > 0}. As sign gi = sign fi on

T = X \SB , it follows that {g1 > 0, . . . , gm > 0}∩T = B ∩T = ∅ (recall that
B ⊂ SB) and therefore {g1 > 0, . . . , gm > 0} ⊂ SB .

For the other inclusion, take x ∈ SB . Since h > 0 on IntB and SB ⊂ IntB
we have that h(x) > 0. If fi(x) > 0, ∀i, then clearly gi(x) > 0, ∀i. On the
other hand, if fi(x) = 0 for some i, then qi(x) > 0, since {fi = 0} ∩ T

Z

∩
IntB ⊂ Y ′ and SB ∩ Y ′ = ∅, so that gi(x) > 0. Thus, in any case, x ∈ {g1 >
0, . . . , gm > 0}.

(c) We have B′ ⊂ SB . Let r ∈ O(X) be a non-negative function such that
{r = 0} = SB \B′

Z

. Using that SB \B′
Z

⊂ BdB′
Z

and B′ ∩ BdB′
Z

= ∅,
cf. [An-Br-Rz], I.3.3, it is easy to check that B′ = {g1r > 0, g2 > 0, . . . , gm >
0}. �

Remark 3.3. (a) The relation “generically equal” decomposes the family
of basic open subsets of X into equivalence classes. In each class there is a
maximal element with respect to the inclusion relation, namely SB , where B
is any member of the class. Moreover, all the basic open sets in the same class
can be described by the same number of inequalities.

(b) If X is not of pure dimension, then we can get a similar result, but
we have to add the part of dimension 1. More precisely, if B is a basic open
subset of X, then we set B1 := B ∪ (X \X∗), where X∗ denotes the part of

maximal dimension of X. Finally, we put SB := IntB1 \ Bd(IntB1)
Z

.

The stability index (resp. the closed stability index) of X is the smallest
integer s(X) (resp. s(X)) such that every basic open (resp. closed) set can
be described by s(X) (resp. s(X)) inequalities.

By the finiteness theorem, cf. [Ac-Br-Sh], any open (resp. closed) global
semianalytic set can be written as a union of basic open (resp. closed) sets.
The invariant t(X) (resp. t(X)) is defined as the smallest integer such that
every open (resp. closed) global semianalytic subset can be written as a union
of t(X) (resp. t(X)) basic open (resp. closed) sets.
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There are similar definitions for the constructible sets of SpecrM(X), al-
though in this case there is no difference between open and closed sets. These
“generic” invariants will be denoted by s(M(X)) and t(M(X)).

We will follow the pattern of [DC-An], where this problem has been solved
for analytic manifolds of dimension two. Given an ordering β ∈ SpecrM(X)
we define the ring Wβ as the convex hull of R in M(X) with respect to β,
i.e.,

Wβ := {f ∈M(X)|f2 <β r
2, for some r ∈ R}.

Its maximal ideal is nβ = {f ∈ M(X)|f2 <β r
2,∀r ∈ R}. We denote by Uβ

the set of units of Wβ ; Γβ and wβ stand, respectively, for the value group
and the associated valuation of Wβ . The ring of bounded analytic functions
Ob(X) is contained in Wβ and mβ := nβ∩Ob(X) is a maximal ideal of Ob(X).

We denote by C the lattice of closed global semianalytic subsets of X. The
family

Uβ := {Y ∈ C |Y ∩ f−1[−1, 1] 6= ∅, ∀f ∈ mβ}
is an ultrafilter of C, cf. [Ca] and [Jw].

To compute the stability index ofM(X) we will use the Stability Formula,
due to L. Bröcker (we refer to [An-Br-Rz] for the concept of fan)

s(M(X)) = sup{s ∈ Z | there is a fan F ⊂ SpecrM(X) with #F = 2s}.

A remarkable property of fans, which will be used later, is the following, cf.
[An-Br-Rz], Proposition III.3.8: If F is a finite fan with 2n elements, then
#({f > 0} ∩ F ) = 0, 2n−1 or 2n, for any f ∈ O(X). As {f > 0} ∩ F is also a
fan, the possibilities for the number of elements of {f > 0, g > 0} ∩ F are 0,
2n−2, 2n−1 or 2n.

It is known that the orderings of SpecrM(X) with the same valuation ring
W form the fan

FW := {α ∈ SpecrM(X)|Wα = W}.

Moreover, the number of elements of these fans is given by the formula #FW =
#(ΓW /2ΓW ) and every fan in SpecrM(X) is contained in the union of two
fans of this type, cf. [Ma]. The key result is the following proposition, which
bounds the number of elements of these fans.

Proposition 3.4. Let X be a normal analytic surface and let β ∈
SpecrM(X). Then #FWβ

≤ 4.

Proof. We distinguish three cases according to the dimension of Uβ , which
is defined as the minimum of the dimensions of the sets in Uβ .

(a) If dimUβ = 2, then #FWβ
= 1. Let f ∈ Ob(X), f 6= 0. Since

dimUβ = 2 we must have Z(f) /∈ Uβ , so f = ug2 for some u ∈ Uβ , cf.
[DC-An], Remark 1.2. This implies that w(f) = 2w(g) ∈ 2Γβ . As any
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f ∈ M(X) can be written as a quotient of bounded analytic functions, we
have w(f) ∈ 2Γβ , ∀f ∈M(X), that is, Γβ = 2Γβ and #Fβ = #(Γβ/2Γβ) = 1.

(b) If dimUβ = 1, then #FWβ
≤ 2. Let f ∈ O(X) and denote by Z(f)c

the set of points at which f changes sign. Suppose that Z(f)c /∈ Uβ . By
Proposition 3.1 of [An-DC-Rz] there are h0, . . . , hr, f̃ ∈ O(X) such that h2

0f =
(Σr1h

2
i )f̃ and Z(f̃) = Z(f)c. Thus Z(f̃) /∈ Uβ and, by [DC-An], Remark 1.2,

we have f̃ = uh2, for some u ∈ Uβ . As h2
0f = (Σr1h

2
i )uh

2, we have w(f) ∈ 2Γβ .
Take now f, g ∈ O(X) such that f, g /∈ 2Γβ . As seen above, this implies

Z(f)c,Z(g)c ∈ Uβ , so Y := Z(f)c ∩ Z(g)c ∈ Uβ . As X is a normal surface,
the multiplicity of the product fg is well defined on Y \D for some discrete
set D and then the multiplicity is even, so fg does not change sign on Y \D.
But dimUβ = 1, so Y \ D ∈ Uβ . It follows that Z(fg)c /∈ Uβ and then as
above that w(fg) ∈ 2Γβ . That is, w(fg) = w(f) + w(g) ∈ 2Γβ whenever
f, g /∈ 2Γβ . This shows that Γβ/2Γβ is a subgroup of Z/2Z.

(c) If dimUβ = 0, then #FWβ
≤ 4. We will see that there are no 8-element

subfans of FWβ
containing β.

Suppose that F := {β = β1, β2, . . . , β8} is an 8-element fan and F ⊂ FWβ
,

that is, Wβi = Wβ , for all i = 1, . . . , 8. Let νβ1 , . . . , νβ8 be the maximal filters
of S corresponding to these orderings, cf. Theorem 1.8. Since βi 6= βj , for
i 6= j, there are basic open sets Bi ∈ νβi such that Bi ∩Bj = ∅, for i 6= j.

We can reduce to a multilocal problem by choosing a discrete set D ∈ Uβ
and for each p ∈ D taking a neighbourhood U(p, εp) of p of radius εp small
enough. There is hε ∈ O(X) (which can be found by approximating a suitable
C∞(X) function) such that⋃

p∈D
U(p, εp/2) ⊂ {hε > 0} and X \

⋃
p∈D

U(p, εp) ⊂ {hε < 0}.

The function hε is positive at all points of D ∈ Uβ , so hε ∈ β, cf. [DC-An],
Lemma 1.1. But then, as Uβ = Uβi , we also have hε ∈ βi, for all i. Hence,
B′i := {hε > 0} ∩Bi ∈ νβi , for any i and any ε. Thus, replacing Bi by B′i, we
may consider the Bi’s in an arbitrarily small ball of the discrete set D.

As Bi ∩D ∈ Uβ , replacing D by D′ := (
⋂8
i=1Bi)∩D we can suppose that

Bi ∩D = D, for all i.
Now, for any disjoint sets B1 ∈ νβ1 and Bi ∈ νβi , dim(B1 ∩Bi)p = 0 or 1

for each p ∈ D. Thus, D = {p ∈ D|dim(B1 ∩ Bi)p = 0} ∪ {p ∈ D|dim(B1 ∩
Bi)p = 1} ∈ Uβ . As Uβ is an ultrafilter, only one of these two sets is in Uβ .
Hence we have two cases:

Case 1. For any i = 2, . . . , 8, there exist pairwise disjoint basic open sets
Bi ∈ νβi such that the discrete set D′i := {p ∈ D|dim(B1 ∩ Bi)p = 0} is in
Uβ . In this case we replace D by

⋂8
2D
′
i ∈ Uβ .
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Let p ∈ D and let B1,p, . . . , B8,p be the basic open semianalytic set germs
of B1, . . . , B8 at p. Since t(Xp) = 2, cf. [DC], we can write B2,p ∪ · · · ∪B8,p =
C1,p∪C2,p, for some basic open set germs C1,p and C2,p. Now, by Theorem 1.5
of [An-DC] (see also Proposition 8.9 of [Br] for the semialgebraic analogue), we
can take hi,p ∈ O(Xp) separating B1,p and Ci,p, i.e., B1,p ⊂ {hi,p > 0} ∪ {p}
and Ci,p ⊂ {hi,p < 0} ∪ {p}.

Hence we have B1,p ⊂ {h1,p > 0, h2,p > 0} ∪ {p} and B2,p ∪ · · · ∪ B8,p =
C1,p ∪C2,p ⊂ {h1,p < 0}∪ {h2,p < 0}∪ {p}. Now, by Lemma 1.3, there exists
lp ∈ N such that if h′i,p = hi,p mod m

lp
p , then B1,p ⊂ {h′1,p > 0, h′2,p > 0}∪{p}

and B2,p ∪ · · · ∪B8,p ⊂ {h′1,p < 0} ∪ {h′2,p < 0} ∪ {p}.
By Cartan’s Theorem B there are H1,H2 ∈ O(X) whose germs at each p ∈

D coincide with h1,p and h2,p, respectively, till order lp. Hence it follows that
H1 and H2 separate locally B1,p from B2,p, . . . , B8,p at each p ∈ D. Replacing,
if necessary, each Bi by U ∩Bi for some small enough open neighbourhood U
of D, we can conclude that H1 and H2 separate globally B1 from B2, . . . , B8

and, therefore, β1 from {β2, . . . , β8}. This shows that the subset {β1, . . . , β8}
is not a fan, cf. [An-Br-Rz], Proposition III.3.8.

Case 2. For some i ∈ {2, . . . , 8} is not possible to find disjoint sets B1 ∈ νβ1

and Bi ∈ νβi such that {p ∈ D|dim(B1 ∩ Bi)p = 0} is in Uβ . We suppose
i = 2 and replace D by D′ := {p ∈ D|dim(B1 ∩B2)p = 1}.

If U is an open global semianalytic neighbourhood of (B1 ∩B2) \D, then
U ∈ νβ1 . For otherwise U ′ := Int(X \U) ∈ νβ1 , since νβ1 is an ultrafilter, and
defining B′1 := B1 ∩ U ′ ∈ νβ1 we will have dimB′1 ∩ B2 = 0, contradicting
the hypothesis. Analogously, U ∈ νβ2 .

Let us denote by γ1
p , . . . , γ

rp
p the half-branches of (B1 ∩ B2)p. Clearly

(γ1
p ∪ · · · ∪ γ

rp
p ) ∩ (B3 ∪ · · · ∪ B8)p = {p}, so using again Cartan’s Theorem

B we can find a global analytic function f whose germ at each p ∈ D is
positive on (γ1

p ∪ · · · ∪ γ
rp
p ) and negative on (B3,p ∪ · · · ∪ B8,p) \ {p}. Then

{f > 0} ∈ νβ1 ∩ νβ2 , but {f < 0} ∈ νβ3 ∩ · · · ∩ νβ8 , which is impossible for
8-element fans, cf. [An-Br-Rz], Proposition III.3.8. �

Theorem 3.5. Let X be a coherent analytic surface with affine normal-
ization. Then s(M(X)) = 2 and t(M(X)) = 2.

Proof. Suppose first that X is a normal surface. By the stability formula
we have to show that #F ≤ 4 for any fan F ⊂ SpecrM(X). Since F ⊂
FWβ

∪FWβ′ for some β, β′ ∈ F , we have to show that if #FWβ
= #FWβ′ = 4,

then FWβ
∪ FWβ′ is not a fan (unless FWβ

= FWβ′ ).
We can suppose that dimUβ = dimUβ′ = 0. If the ultrafilters Uβ and Uβ′

coincide, then by the proof of the previous proposition FWβ
∪ FWβ′ is not a

fan. If, on the other hand, Uβ 6= Uβ′ , then there are discrete disjoint sets
D ⊂ Uβ and D′ ⊂ Uβ′ . Now, let FWβ

= {β = β1, . . . , β4} and denote by νβi
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the corresponding ultrafilters of S. Then, as in the previous proposition, there
exist basic open sets Bi ∈ νβi and function germs fp such that (possibly after
taking a smaller D ∈ Uβ and renumbering the elements of FWβ

) any function
germ gp equal to fp up to a sufficiently high order separates B1,p ∪B2,p from
B3,p∪B4,p, ∀p ∈ D. Defining fp = −1 for p ∈ D′ and using Cartan’s Theorem
B we find a global analytic function which separates two orderings from the
other six, showing that FWβ

∪ FWβ′ is not a fan, cf. [An-Br-Rz], Proposition
III.3.8.

If X is a coherent surface, the result follows from the birationality of the
normalization.

The result for t follows immediately from [An-Br-Rz], Corollary IV.7.9.a),
because SpecrM(X) is a space of orderings. �

After computing the generic invariants we can apply Proposition 3.2 and
the pasting lemmas to compute the invariants s(X), s(X), t(X) and t(X).

Theorem 3.6. Let X be a coherent analytic surface with affine normal-
ization. Then s(X) = 2, that is, every basic open subset of X can be written
with only two inequalities.

Proof. Let B = {f1 > 0, . . . , fr > 0} be any basic open set and consider
the constructible set B̃ = {α ∈ SpecrM(X) | f1 >α 0, . . . , fr >α 0}. As
s(M(X)) = 2, we have that B̃ = {α ∈ SpecrM(X) | f >α 0, g >α 0} for
some f , g ∈ O(X). Then B′ := {x ∈ X | f(x) > 0, g(x) > 0} is a basic open
set that is generically equal to B. Hence, by Proposition 3.2, B can be written
with two inequalities. �

Proposition 3.7. Let X ⊂ Rn be a coherent analytic surface with affine
normalization. Then:

(a) s(X) = 3.
(b) t(X) = 2.
(c) t(X) = 3.

Proof. (a) Let B ⊂ X be a basic closed set, say B = {f1 ≥ 0, . . . , fr ≥ 0},
and define B′ := {f1 > 0, . . . , fr > 0}. By Theorem 3.6 there are functions
g1, g2 ∈ O(X) such that B′ = {g1 > 0, g2 > 0}. Hence B and B′′ :=
{g1 ≥ 0, g2 ≥ 0} are generically equal, that is, there exists a one dimensional
analytic subset Y ⊂ X such that B\Y = B′′\Y . Now, B∩Y is a global closed
semianalytic subset of Y , so there is h ∈ O(X) such that B∩Y = {h ≥ 0}∩Y ,
cf. [DC-An], Theorem 4.4. Thus we can conclude that B = {c1 ≥ 0, c2 ≥
0, c3 ≥ 0}, for suitable c1, c2, c3 ∈ O(X), cf. Lemma 1.5. This shows that
s(X) ≤ 3.

To check the opposite inequality we just point out that the argument of
[An-Br-Rz], Example VI.7.2.b), and [Br], Theorem 7.6, shows that the basic
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closed set B := {y ≥ 0, y2(x − 1) ≥ 0, x ≥ 0} (see Figure 3), where x and
y are global analytic functions which are local coordinates at some regular
point of X, cannot be written with only two inequalities.

p

Figure 3 Figure 4

(b) Let S ⊂ X be a closed semianalytic set. By Theorem 3.5 there exist
basic closed sets B1, B2 and an analytic set of dimension 1, Y , such that
S \Y = (B1∪B2)\Y . Defining B′i := (Bi∪Y )∩S, we have that S = B′1∪B′2.
Now, B′i is closed and generically basic, so from Lemma 1.5 it follows that B′i
is basic closed.

(c) Let C ⊂ X be an open semianalytic set. By Theorem 3.5 it is generically
equal to B1 ∪ B2 for suitable basic open sets B1 and B2, that is, there is an
analytic subset Y ⊂ X of dimension 1 such that C \ Y = (B1 ∪B2) \ Y . Also
C ∩ Y = B3 ∩ Y with B3 basic open, since t(Y ) = 1. Finally, by Lemma 1.6
we get C = B′1 ∪ B′2 ∪ B′3, for some basic open sets B′1, B′2 and B′3, which
shows t(X) ≤ 3.

Next, as in [An-Br-Rz], Example VI.7.2.e), and [Br], Proposition 9.6, it can
be shown that the open semianalytic set C := {y < 0} ∪ {x < −1} ∪ {x >
1, y > 0} (see Figure 4), where x and y are global analytic functions which
are local coordinates at some regular point of X, cannot be written as a union
of two basic open sets. This shows that t(X) ≥ 3, so the proof is complete.

�

4. Real Nullstellensatz

In this section we will suppose that X is a normal surface in order to ensure
that the multiplicity along any irreducible curve Y is defined.

Lemma 4.1. Let X ⊂ Rn be an irreducible normal analytic surface and
let p ⊂ O(X) be a non-trivial real prime ideal such that Z(p) 6= ∅. Then Z(p)
is either a point or an irreducible analytic curve.

Proof. First of all, Z(p) is a global analytic set of X, cf. [Br-Wh], and
dimZ(p) ≤ 1.
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Case 1: dimZ(p) = 0. In this case Z(p) is a non-empty discrete set D. We
pick one point p ∈ D. Then there is some f ∈ p such that the germ of Z(f)
at p is {p} since otherwise dimpZ(f) = 1 for all f ∈ p and dimZ(p) = 1.
Thus the germ of f2 at p is elliptic, i.e., there is a neighbourhood U of p such
that f2 > 0 on U \ {p}.

By [DC-An], Proposition 3.1, there is h ∈ O(X) such that hp = f2
pup for

some unit up ∈ OX,p and Z(h) = {p}. Then we can factor f2 as f2 = hg for
some g ∈ O(X) with g(p) 6= 0, which implies g /∈ p. As f2 = hg ∈ p, we must
have h ∈ p and therefore Z(p) = {p}.

Case 2: dimZ(p) = 1. In this case Z(p) = (
⋃
Yj) ∪D, where the Yj ’s are

irreducible curves and D is a discrete set.
Take Y1 ∈ Z(p), f ∈ p and g ∈ O(X) such that mY1(g) = 2mY1(f)

and Z(g) = Y1, cf. [An-DC-Rz], Proposition 2.1. Then f2/g is an analytic
function up to a discrete set D′, so by Lemma 1.2 there is some h ∈ O(X)
such that G := h(f2/g) ∈ O(X). By construction mY1(G) = 0, so Y1 6⊂ Z(G)
and G /∈ p. As Gg = f2h ∈ p and p is prime, we have g ∈ p, so Z(p) = Z(g) =
Y1. �

Lemma 4.2. Let X ⊂ Rn be a global irreducible analytic set and let p ⊂
O(X) be such that there is g ∈ p with compact zero set. Suppose f1, . . . , fm ∈
O(X) are such that their classes modulo p are positive in some total ordering
of O(X)/p. Then

{f1 > 0, . . . , fm > 0} ∩ Z(p) 6= ∅.

Proof. This was obtained by J. Ruiz, cf. [Rz], Corollary 2.4, in the case of
a real analytic manifold X and the same proof works for any global analytic
set X. �

Theorem 4.3 (Nullstellensatz for prime ideals). Let X ⊂ Rn be an irre-
ducible normal analytic surface and let p ⊂ O(X) be a non-trivial real prime
ideal such that Z(p) 6= ∅. Then IZ(p) = p.

Proof. According to Lemma 4.1 we distinguish two cases.

Case 1: Z(p) is a point p. As in the proof of Lemma 4.1 (Case 1) we
can take f2 ∈ p with elliptic germ at p and factor f2 as f2 = hg such that
Z(h) = {p} and g(p) 6= 0, so that h ∈ p. Hence Lemma 4.2 can be applied in
this case.

Suppose now that f ∈ IZ(p) \ p. As f /∈ p, there is some total ordering α
of O(X)/p such that f

2
is strictly positive in α and, by Lemma 4.2, f(p) 6= 0,

that is, f /∈ IZ(p), a contradiction. Hence IZ(p) ⊂ p. On the other hand, it
is trivial that p ⊂ IZ(p).

Case 2: Z(p) is an irreducible curve Y . Let f ∈ IZ(p), so that mY (f) > 0,
and take g ∈ p. Then for some positive integers n,m we will have mY (f2n) =
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mY (g2m). Now, we take f1 such that Z(f1) =
⋃
Yj and mYj (f1) = mYj (f

2n)
(we suppose that Z(f) = Y ∪(

⋃
Yj)∪D). Then f2n/f1 is an analytic function

up to a discrete set, so there is h1 such that Z(h1) is a discrete set and
f2nh1/f1 is an analytic function, cf. Lemma 1.2. As mYj (f

2nh1/f1) = 0, we
have Z(f2nh1/f1) = Y ∪D1, for some discrete set D1.

In the same way, there are functions g1, h
′
1 ∈ O(X) such that g2mh′1/g1 is an

analytic function with zero set Y ∪D′1 and mY (f2nh1/f1) = mY (g2mh′1/g1).
Then f2nh1g1/g

2mh′1f1 is analytic up to a discrete set, so for some h ∈ O(X)
with discrete zero set, the function hf2nh1g1/g

2mh′1f1 is analytic; denote this
function by H. Then f2nh1g1h = Hg2mh′1f1 ∈ p. Since h1g1h /∈ p, we have
f2n ∈ p and since p is real, f ∈ p. This means that IZ(p) ⊂ p and we are
done. �

Theorem 4.4. Let X ⊂ Rn be an irreducible normal analytic surface and
let I ⊂ O(X) be a non-trivial real ideal. Suppose also that I =

⋂
p, where

the intersection is taken over all the real primes ideals p such that p ⊃ I and
Z(p) 6= ∅. Then IZ(I) = I, that is, the real Nullstellensatz holds.

Proof. Let Z(I) =
⋃
Ci be the decomposition of Z(I) into irreducible

components and let pi denote the real prime ideals I(Ci). It is clear that
Z(I) = Z(

⋂
pi).

Let us take p ⊃ I such that Z(p) 6= ∅. By Theorem 4.3, p = IZ(p). Also,
we have that Z(p) ⊂ Z(I) =

⋃
Ci =

⋃
Z(pi), so p = IZ(p) ⊃ I(

⋃
Z(pi)) =⋂

IZ(pi) =
⋂

pi. Therefore

I =
⋂

p⊃I,Z(p) 6=∅

p ⊃
⋂

pi =
⋂
IZ(pi) = IZ(

⋂
pi) = IZ(I).

The other inclusion, I ⊂ IZ(I), is trivial. �

From this theorem we can obtain a real Nullstellensatz for finitely generated
real ideals.

Corollary 4.5. Let X ⊂ Rn be an irreducible normal analytic surface
and let I ⊂ O(X) be a non-trivial finitely generated real ideal. Then IZ(I) =
I.

Proof. As I is real, we have that I = r
√
I =

⋂
p⊃I p, where the p’s are real

prime ideals, cf. [La], Theorem 6.5.
We define

A :=
⋂

p⊃I,Z(p) 6=∅

p and B :=
⋂

p⊃I,Z(p)=∅

p,

so that I = A∩B. We also define two sheafs of ideals, I and A, whose stalks
are Ix = IOX,x and Ax = AOX,x, respectively.
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We will show that Ix = Ax. Obviously, we have Ix ⊂ Ax. For the other
inclusion, suppose f ∈ Ax. Then f =

∑
figi, where fi ∈ A and gi ∈ OX,x.

Now, take any h ∈ B such that h(x) 6= 0 and write f =
∑

(fih)(gi/h). As
fih ∈ A and gi/h ∈ OX,x, we conclude that f ∈ Ix.

As Ax ⊂ Ix for all x ∈ X (in fact, we have equality here) and I is finitely
generated, using Cartan’s Theorem B we can conclude that A ⊂ I. Hence we
have A = I and we finish by applying the previous theorem. �

Remarks and Examples 4.6. (a) If X is non-compact, then there are
real primes ideals p such that Z(p) = ∅. For example, take an infinite discrete
set D =

⋃
i∈N xi and let Nα be any free ultrafilter of N, that is,

⋂
J∈Nα J = ∅.

If we set Nf := {i ∈ N |xi ∈ Z(f)}, then p := {f ∈ O(X) |Nf ∈ Nα} is a real
prime ideal and Z(p) = ∅.

(b) Suppose that the regular locus of X is not compact and let Y =
⋃
i∈N Yi

be a global analytic subset, where the Yi are irreducible curves. Let Nα be
any free ultrafilter of N and define Na,b(f) := {i ∈ N |mYi(f) ≥ ai+ b}. Then
the ideal

I := {f ∈ O(X) |Y ⊂ Z(f) and ∀a, b ∈ R, Na,b(f) ∈ Nα}

is real, Z(I) = Y and I 6= IZ(I). (For example, if f ∈ O(X) is such that
mYi(f) = 1 for all i, then f ∈ IZ(I), but clearly f /∈ I.)

(c) It is known that if I is a finitely generated ideal and Z(I) is compact,
then r

√
I = IZ(I), cf. [An-Br-Rz], Theorem VIII.5.7. The next example

shows that the assumption of compactness cannot be dropped, even for finitely
generated ideals.

Let us take Y =
⋃∞

1 Yi and let f ∈ O(X) be such that mYi(f) = 2i, for
all i, and Z(f) = Y . The ideal I = (f) is finitely generated, Z(I) = Y is not
compact and r

√
I 6= IZ(I). Take g ∈ O(X) such that mYi(g) = 1 for all i, so

that g ∈ IZ(I). If g ∈ r
√
I, then h := g2k +

∑
a2
i ∈ I for some k ∈ N and

some ai ∈ O(X). But then mYj (h) ≤ 2k, ∀j, that is, h cannot be a multiple
of f and so h /∈ I.

(d) The above results (Theorem 4.5 and Corollary 4.5) remain true for any
irreducible analytic surface X if Z(I) ∩ SingX is a discrete set. In fact, we
only need that for any irreducible component Y of Z(I) the multiplicity along
Y can be defined.
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analytiques-réels, Comment. Math. Helv. 33 (1959), 132–160. MR 21 #889

[Ca] A. Castilla, Artin-Lang property for analytic manifolds of dimension two,

Math. Z. 217 (1994), 5–14. MR 95g:32011
[Ca-An] A. Castilla and C. Andradas, Connected components of global semianalytic

subsets of 2-dimensional analytic manifolds, J. Reine Angew. Math. 475
(1996), 137–148. MR 97h:32006

[DC] A. Dı́az-Cano, The t-invariant of analytic set germs of dimension 2, J. Pure

Appl. Algebra 160 (2001), 157–168. MR 2002c:32010
[DC-An] A. Dı́az-Cano and C. Andradas, Complexity of global semianalytic sets in a

real analytic manifold of dimension 2, J. Reine Angew. Math. 534 (2001),
195–208. MR 2002b:32015

[Ga] M. Galbiati, Sur l’image d’un morphisme analytique réel propre, Ann. Scuola
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