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ELLIPSOIDAL TIGHT FRAMES AND PROJECTION
DECOMPOSITIONS OF OPERATORS

KEN DYKEMA, DAN FREEMAN, KERI KORNELSON, DAVID LARSON, MARC

ORDOWER, AND ERIC WEBER

Abstract. We prove the existence of tight frames whose elements lie
on an arbitrary ellipsoidal surface within a real or complex separable

Hilbert space H , and we analyze the set of attainable frame bounds. In
the case whereH is real and has finite dimension, we give an algorithmic
proof. Our main tool in the infinite dimensional case is a result we
have proven which concerns the decomposition of a positive invertible
operator into a strongly converging sum of (not necessarily mutually
orthogonal) self-adjoint projections. This decomposition result implies
the existence of tight frames in the ellipsoidal surface determined by the
positive operator. In the real or complex finite dimensional case, this
provides an alternate (but not algorithmic) proof that every such surface

contains tight frames with every prescribed length at least as large as
dimH . A corollary in both finite and infinite dimensions is that every
positive invertible operator is the frame operator for a spherical frame.

Introduction

Frames were first introduced by Dufflin and Schaeffer [6] in 1952 as a com-
ponent in the development of non-harmonic Fourier series, and a paper by
Daubechies, Grossmann, and Meyer [5] in 1986 initiated the use of frame the-
ory in signal processing. A frame on a separable Hilbert space H is defined to
be a complete collection of vectors {xi} ⊂ H for which there exist constants
0 < A ≤ B such that for any x ∈ H ,

A‖x‖2 ≤
∑
i

|〈x, xi〉|2 ≤ B‖x‖2
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The constants A and B are known as the frame bounds. The collection is
called a tight frame if A = B, and a Parseval frame if A = B = 1. (In some
of the existing literature, Parseval frames have been called normalized tight
frames; however it should be noted that other authors have used the term
normalized to describe a frame consisting only of unit vectors.) The length of
a frame is the number of vectors it contains, which cannot be less than the
Hilbert space dimension. References in the study of frames include [4], [8],
and [9].

Hilbert space frames are used in a variety of signal processing applications,
often demanding additional structure. Tight frames may be constructed hav-
ing specified length, components having a predetermined sequence of norms,
or with properties making them resilient to erasures. For examples, see [1],
[2], [7], and [10]. One area of rapidly advancing research lies in describing
tight frames in which all the vectors are of equal norm, and thus are elements
of a sphere, [1], [2].

Since frame theory is geometric in nature, it is natural to ask which other
surfaces in a finite or infinite dimensional Hilbert space contain tight frames.
By an ellipsoidal surface we mean the image of the unit sphere S1 = {x :
‖x‖ = 1} under a bounded invertible operator T ∈ B(H ) . Let ET denote the
ellipsoidal surface ET = TS1 . A frame contained in ET is called an ellipsoidal
frame, and if it is tight it is called an ellipsoidal tight frame (ETF) for that
surface. We say that a frame bound K is attainable for ET if there is an ETF
for ET with frame bound K. If an ellipsoid E is a sphere we will call a frame
in E spherical.

Given an ellipsoid E , we can assume E = ET , where T is a positive invertible
operator. Given A an invertible operator, let A∗ = U |A∗| be the polar de-
composition where |A∗| = (AA∗)1/2. Then A = |A∗|U∗. By taking T = |A∗|,
we see that TS1 = AS1 . Moreover it is easily seen that the positive operator
T for which E = ET is unique.

Throughout the paper, H will be a separable real or complex Hilbert space
and for x, y, u ∈ H , we will use the notation x ⊗ y to denote the rank-one
operator u 7→ 〈u, y〉x. Note that ‖x‖ = 1 implies that x ⊗ x is a rank-1
projection.

Special thanks are given to our colleagues Pete Casazza, Vern Paulsen (see
Remark 15), and Nicolaas Spronk for useful conversations concerning the ma-
terial in this paper, and also to undergraduate REU/VIGRE research students
Emily King, Nate Strawn and Justin Turner for taking part in discussions on
ellipsoidal frames. This research project began in an REU/VIGRE seminar
course at Texas A&M University in Summer 2002 in which all the co-authors
were participants.
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1. Theorems

There are three theorems in this paper. The first gives an elementary
construction of ETF’s when H = R

n, and is proved in Section 2.

Theorem 1. Let n, k ∈ N with n ≤ k, let a1, . . . , an ≥ 0 be such that
r :=

∑n
1 aj > 0 and consider the (possibly degenerate) ellipsoid

E =

{
x = (x1, . . . , xn)t ∈ Rn |

n∑
1

ajx
2
j = 1

}
.

Then there is a tight frame for Rn consisting of k vectors u1, . . . ,uk ∈ E.

This result is valid for degenerate ellipsoids (in which some of the major
axes are infinitely long). Our method of proof provides geometric insight to
the problem, but does not extend to infinite dimensions.

We note that, in the non-degenerate case, the definition of an ellipsoidal
surface E given in Theorem 1 is equivalent to the definition given in the
introduction, specifying that the Hilbert space be Rn . Indeed, if ai > 1
for all i = 1, . . . , n and if D = diag(a1, a2, . . . , an), then

∑n
i=1 aix

2
i = 1 iff

〈Dx, x〉 = 1 iff ‖D1/2x‖ = 1 iff D1/2x ∈ S1 (R n) iff x ∈ D−1/2S1 (Rn ).
So E = ET for T = D−1/2, and thus E has the requisite form. To reverse
this argument for a non-diagonal positive operator T , first diagonalize it by
an orthogonal transformation given by rotations. Reversing the steps will
then show that ET is equivalent to E for some choice of positive constants
{a1, . . . , an}.

The second theorem is used to prove Theorem 3 in the infinite dimensional
case. It has independent interest in operator theory, and to our knowledge is a
new result. The proof, as well as the corresponding result in finite dimensions
(Proposition 6), is contained in Section 3. Some preliminaries are required
before we state Theorem 2.

It is well-known (see [12]) that a separably acting positive operator A de-
composes as the direct sum of a positive operator A1 with nonatomic spectral
measure and a positive operator A2 with purely atomic spectral measure (i.e.,
a diagonalizable operator). For B ∈ B(H ) , the essential norm of B is

‖B‖ess := inf {‖B −K‖ : K is a compact operator in B(H ) } .

In the proof of Proposition 11, we have the special case where A is a diagonal
operator, A = diag(a1, a2, . . .), with respect to some orthonormal basis. In
this case, it is clear that

‖A‖ess = sup {α > 0 : |ai| ≥ α for infinitely many i} .

For a positive operator A with spectrum σ(A), we have ‖A‖ = sup{λ : λ ∈
σ(A)} and if A is invertible, then ‖A−1‖−1 = inf{λ : λ ∈ σ(A)}. Similarly,
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‖A‖ess = sup{λ : λ ∈ σess(A)} and ‖A−1‖−1
ess = inf{λ : λ ∈ σess(A)}. In

particular, ‖A−1‖−1 ≤ ‖A−1‖−1
ess ≤ ‖A‖ess ≤ ‖A‖.

For A a positive operator, we say that A has a projection decomposition if A
can be expressed as the sum of a finite or infinite sequence of (not necessarily
mutually orthogonal) self-adjoint projections, with convergence in the strong
operator topology.

Theorem 2. Let A be a positive operator in B(H ) for H a real or complex
Hilbert space with infinite dimension, and suppose ‖A‖ess > 1. Then A has a
projection decomposition.

Note that in this theorem A need not be invertible. There are theorems
in the literature (e.g., [13]) expressing operators as linear combinations of
projections and as sums of idempotents (non self-adjoint projections). The
decomposition in Theorem 2 is different in that each term is a self-adjoint
projection rather than a scalar multiple of a projection.

The next theorem states that every ellipsoidal surface contains a tight
frame. We also include some detailed information about the nature of the
set of attainable frame bounds.

Theorem 3. Let T be a bounded invertible operator on a real or complex
Hilbert space. Then the ellipsoidal surface ET contains a tight frame. If H is
finite dimensional with n = dimH , then for any integer k ≥ n, ET contains
a tight frame of length k, and every ETF on ET of length k has frame bound
K = k

[
trace(T−2)

]−1. If dimH =∞, then for any constant K > ‖T−2‖−1
ess,

ET contains a tight frame with frame bound K.

2. A construction of ETF’s in R n

We begin by showing that every ellipsoid can be scaled to contain an or-
thonormal basis.

Lemma 4. Let n ∈ N, let a1, . . . , an ≥ 0 be such that
∑n

1 aj = n and let

E =

{
x = (x1, . . . , xn)t ∈ Rn |

n∑
1

ajx
2
j = 1

}
.

Then there is an orthonormal basis v1, . . . ,vn for Rn consisting of vectors
vj ∈ E.

Proof. Proceed by induction on n. The case n = 1 is trivial. Assume n ≥ 2
and without loss of generality suppose a1 ≥ 1 and a2 ≤ 1. Let θ be such that
a1(cos θ)2 + a2(sin θ)2 = 1 and let b2 = a1(sin θ)2 + a2(cos θ)2. Consider the
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rotation matrix

R =


cos θ sin θ
− sin θ cos θ

1
. . .

1

 .

Then

R−1E =

{
(y1, . . . , yn)t ∈ Rn |

y2
1 + 2(a1 − a2)y1y2 cos θ sin θ + b2y

2
2 +

n∑
3

ajy
2
j = 1

}
.

We have b2 +
∑n

3 aj = n − 1. Let V be the subspace of Rn consisting of
all vectors of the form (0, x2, . . . , xn)t. By the induction hypothesis, there is
an orthonormal basis u2, . . . ,un for V consisting of vectors uj ∈ R−1E . Let
u1 = (1, 0, . . . , 0)t ∈ Rn, and let vj = Ruj . Then v1, . . . ,vn is an orthonormal
basis for Rn consisting of vectors vj ∈ E . �

In the case of a general ellipsoid, where
∑n
j=1 aj = r > 0, the lemma gives

a constant multiple of an orthonormal basis on the ellipsoid.

Proof of Theorem 1. Consider the isometry W : Rn → R
k and the projec-

tion P = W ∗ : Rk → R
n given by

W (x1, . . . , xn)t = (x1, . . . , xn, 0, . . . , 0)t,

P (x1, . . . , xk)t = (x1, . . . , xn)t.

Let aj = 0 for n+ 1 ≤ j ≤ k and let

E ′ =

{
y = (y1, . . . , yk)t ∈ Rk |

k∑
1

ajy
2
j = 1

}
.

By Lemma 4, there is a multiple of an orthonormal basis v1, . . . ,vk for
R
k consisting of vectors vj ∈ E ′. Let uj = Pvj . Then uj ∈ E . Moreover,

u1, . . . ,uk is a tight frame for Rn, because if x ∈ Rn, then
k∑
j=1

|〈x,uj〉|2 =
k∑
j=1

|〈Wx,vj〉|2 =
k

r
‖Wx‖2 =

k

r
‖x‖2. �

Remark 5. It is an elementary result in matrix theory [11, Thm. 1.3.4]
that for any real n × n matrix B acting on Rn there is an orthonormal ba-
sis {u1, . . . , un} for Rn so that the diagonal elements 〈Bui, ui〉 of B with
respect to {u1, . . . , un} are all equal to (1/n) [trace(B)]. If we let D =
diag(a1, . . . , an), where the numbers ai are as in Lemma 4, then the con-
dition 〈Dv, v〉 = 1 for a vector v is exactly the condition for v to be on the
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ellipsoid E . Thus, letting B = D and vi = ui yields another proof of Lemma
4. The merit of the proof we give is that it is algorithmic and relates well to
the paper. It was obtained by the second author in an undergraduate research
(REU) program in which the other co-authors were mentors.

3. Projection decompositions for positive operators

The arguments in the remainder of this paper hold for H either a real or
complex Hilbert space.

Proposition 6. Let A ∈ B(H ) be a finite rank positive operator with
integer trace k. If k ≥ rank(A), then A is the sum of k projections of rank
one.

Proof. We will construct unit vectors x1, x2, . . . , xk so that A is the sum of
the projections xi⊗xi . The proof uses induction on k. Let n = rank(A) and
write H n = range(A). If k = 1, then A must itself be a rank-1 projection.
Assume k ≥ 2. Select an orthonormal basis {ei}ni=1 for H n such that A can be
written onH n as a diagonal matrix with positive entries a1 ≥ a2 · · · ≥ an > 0.

Case 1: k > n. In this case, we have a1 > 1, so we can take xk = e1. The
remainder on H n,

A− (xk ⊗ xk) = diag(a1 − 1, a2, . . . , an),

has positive diagonal entries, still has rank n, and now has trace k − 1 ≥ n.
By the inductive hypothesis, the result holds.

Case 2: k = n. We now have that a1 ≥ 1 and an ≤ 1. Given any finite
rank, self-adjoint R ∈ B(H ) , let µn(R) denote the n-th largest eigenvalue of R
counting multiplicity. Note that µn(A− (e1⊗e1)) ≥ 0, µn(A− (en⊗en)) ≤ 0,
and µn(A− (x⊗ x)) is a continuous function of x ∈ H n. Hence, there exists
y ∈ H n such that µn(A− (y ⊗ y)) = 0. Choose xk = y. Note the remainder
(A− (xk ⊗ xk)) ≥ 0 and

trace(A− (xk ⊗ xk)) = n− 1,

rank(A− (xk ⊗ xk)) = n− 1 = k − 1.

Again, by the inductive hypothesis, the result holds. �

Lemma 7. Let P1, P2, . . . , Pn be mutually orthogonal projections on a
Hilbert space H , all of the same nonzero rank k, where k can be finite or
infinite. Let r1, r2, . . . , rn be nonnegative real numbers, and let r =

∑n
1 ri.

Define the operator

A = r1P1 + r2P2 + · · ·+ rnPn.

If the sum r is an integer and r ≥ n, then there exist rank-k projections
Q1, . . . , Qr such that

A = Q1 +Q2 + · · ·+Qr.
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Proof. If k = 1, then r = trace(A) and we have rank(A) ≤ n ≤ r, so the
result follows from Proposition 6. If k > 1, each projection Pi can be written
as a sum of k mutually orthogonal rank-1 projections:

Pi = Pi1 + Pi2 + · · ·+ Pik.

(Here and elsewhere in this proof, sums with indices running from 1 to k
should be interpreted as infinite sums in the case where k = ∞.) All rank-1
projections Pij are thus mutually orthogonal. Define operators A1, . . . , Ak by

Aj = r1P1j + r2P2j + · · ·+ rnPnj .

Now, A = A1 + · · ·+Ak and each Aj has rank n and trace r. By Proposition
6, each Aj can be written as a sum of r rank-1 projections:

Aj = Tj1 + Tj2 + · · ·+ Tjr.

Note that projections Tjl and Tmp are orthogonal if j 6= m. Define the rank-k
projections Q1, . . . , Qr by

Ql = T1l + T2l + · · ·+ Tkl.

This gives A = Q1 +Q2 + · · ·+Qr. �

Lemma 8. Let A be a positive operator with finite spectrum contained in
the rationals Q, such that all spectral projections are infinite dimensional, and
also such that ‖A‖ > 1. Then A is a finite sum of self-adjoint projections.

Proof. By hypothesis, there are mutually orthogonal infinite-rank projec-
tions P1, . . . , Pn and positive rational numbers r1 ≥ r2 ≥ · · · ≥ rn such
that

A = r1P1 + · · ·+ rnPn.

By hypothesis ‖A‖ > 1, hence r1 > 1.
Write ri = si/ti with si and ti positive integers, and let s =

∑n
i=1 si, t =∑n

i=1 ti. We may assume s ≥ t, for otherwise we can choose m ∈ N such that

ms1 + s2 + · · ·+ sn ≥ mt1 + t2 + · · ·+ tn

and replace s1 with ms1 and t with mt1.
Each Pi can be written as a sum of ti mutually orthogonal infinite rank

projections Pij , j = 1, . . . , ti, which then allows us to write

A =
n∑
i=1

ti∑
j=1

riPij .

The operator is now a linear combination of
∑
ti = t mutually orthogonal

projections of infinite rank, and the sum of the coefficients is now an integer∑
tiri =

∑
si = s. Since s ≥ t, Lemma 7 implies that A can be written as a

sum of s projections. �
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Lemma 9. Let A be a positive operator which has a projection-decompo-
sition. Then either A is a projection or ‖A‖ > 1.

Proof. Suppose, to obtain a contradiction, that ‖A‖ ≤ 1 and that A is not
a projection. By assumption, A =

∑
Pi with the series converging strongly.

Thus A− Pi ≥ 0 for all i. Then Pi(A− Pi)Pi ≥ 0, so PiAPi ≥ Pi.
Let Ki = PiH and B = PiA|Ki . Then Bi is positive and Bi ≥ IKi (the

identity operator on Ki). Since ‖Bi‖ ≤ 1, this implies Bi = IKi , and thus
PiAPi = Pi.

Now, Pi = Pi(
∑
j Pj)Pi = Pi +

∑
j 6=i PiPjPi, so

∑
j 6=i PiPjPi = 0. Since

each PiPjPi ≥ 0, this implies PiPjPi = 0. Thus, (PjPi)∗(PjPi) = 0, so
PjPi = 0. Since this is true for arbitrary i, j with i 6= j, this shows that A is
the sum of mutually orthogonal projections, and hence is itself a projection.
The contradiction proves the result. �

Proposition 10. Let A be a positive operator in B(H ) with the property
that all nonzero spectral projections for A are of infinite rank. If ‖A‖ > 1,
then A admits a projection decomposition as a sum of infinite rank projections.

Proof. We will show that A can be written as a sum A =
∑∞
i=1Ai of

positive operators, each satisfying the hypotheses of Lemma 8, where the sum
converges in the strong operator topology. We can then decompose each of
the operators Ai as a finite sum of projections Aij and then re-enumerate
with a single index to obtain a sequence Qi of projections which sum to A
in SOT. Indeed, the partial sums of

∑
Qi are dominated by A, hence

∑
Qi

converges strongly to some operator C, and since the partial sums of
∑
Ai

are also partial sums of
∑
Qi, the sequence of partial sums of

∑
Qi has a

subsequence which converges to A, and hence C = A.
By hypothesis, we have ‖A‖ > 1. We may choose a positive rational

number α > 1 and a nonzero spectral projection G for A such that A ≥ αG.
Let B = A − αG, so that B ≥ 0. Using a standard argument, we can write
B =

∑∞
i=1Bi, where each Bi is a positive rational multiple of a spectral

projection for A, with convergence in the SOT.
We can write G =

∑
Gi as an infinite direct sum of nonzero infinite rank

projections, with the requirement that Gi be a subprojection of G which
commutes with all the spectral projections for A. (This can clearly be done
when the spectral projections for A are all of infinite rank.) Now, let Ai =
αGi +Bi. We have ‖Ai‖ ≥ α > 1.

By Lemma 8, it follows that Ai is a finite sum of projections. By the
construction, we have the requisite form A =

∑
Ai. �

Proposition 11. Let A be a positive operator in B(H ) which is diagonal
with respect to some orthonormal basis {ei} for the Hilbert space H . Suppose
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‖A‖ess > 1. Then there is a sequence of rank-1 projections {Pi}∞i=1 such that
A =

∑
Pi, where the sum converges in the strong operator topology.

Proof. Write A as diag(a0, a1, . . .) and let En = en⊗ en. Since ‖A‖ess > 1,
there is a constant α > 1 such that ai ≥ α for infinitely many i. Let k ≥ 2
be an integer such that 1 + 2/(k − 1) ≤ α. Permuting if necessary, we can
without loss of generality assume that the indices n for which an < α are all
multiples of k.

Let B0 = a0E0 + · · ·+ ak−1Ek−1. Therefore, we have rank(B0) ≤ k and

trace(B0) =
k−1∑

0

ai

≥ a0 + (k − 1)α

≥ a0 + (k − 1)
(

1 +
2

k − 1

)
= a0 + k + 1.

Let L0 be the greatest integer less than trace (B0). Then L0 ≥ k + 1. Define
a′k−1 to be the real number 0 ≤ a′k−1 ≤ ak−1 such that if

B′0 = a0E0 + · · ·+ ak−2Ek−2 + a′k−1Ek−1,

then
trace(B′0) = L0 ≥ k + 1 > rank(B′0).

By Proposition 6, B′0 can be written as a sum of L0 rank-1 projections.
In the next step, let a′′k−1 = ak−1 − a′k−1 and let

B1 = a′′k−1Ek−1 + akEk + ak+1Ek+1 + · · ·+ a2k−1E2k−1.

Thus rank (B1) ≤ k + 1 and

trace(B1) = a′′k−1 + ak + (ak+1 + · · ·+ a2k−1)

≥ a′′k−1 + ak + (k − 1)α

≥ a′′k−1 + ak + (k − 1)
(

1 +
2

k − 1

)
= a′′k−1 + ak + k + 1

≥ rank(B1).

Construct B′1 in a similar manner, so that its trace is an integer greater than
or equal to its rank. Then B′1 can be written as a sum of rank-1 projections
using Proposition 6.

Proceeding recursively in a like manner, we may write A =
∑∞
j=1B

′
j con-

verging in SOT, where each B′j is a positive operator supported in Ejk−1 +
· · ·+E(j+1)k−1 and with trace(B′j) an integer that is greater than or equal to
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rank(B′j). Invoking Proposition 6 again to write each B′j as a sum of rank-1
projections, the proposition is proved. �

Proof of Theorem 2. Write A = A1 + A2, where A1 and A2 respectively
denote the nonatomic and purely atomic parts of A. Then ‖A1‖ess = ‖A1‖,
and ‖A‖ess = max{‖A1‖, ‖A2‖ess}. So ‖A‖ess > 1 implies ‖A1‖ > 1 or
‖A2‖ess > 1. Suppose first that ‖A1‖ > 1. Then there is a nonzero spec-
tral projection P for A1 and a constant α > 1 such that A1P ≥ αP . Let Q
be a nonzero spectral projection for A1 dominated by P such that P −Q 6= 0.
Then A1 − αQ satisfies the hypotheses of Proposition 10, so is projection de-
composable. Also, QA2 = A2Q = 0, so A2 + αQ is a diagonal operator with
essential norm greater than or equal to α, and so it is projection decomposable
by Proposition 11. The result follows by decomposing A1 −αQ and A2 +αQ
as sums of projections and combining the series.

For the case ‖A1‖ ≤ 1 and ‖A2‖ess > 1, we use a similar argument. There
is a constant α > 1 and an infinite rank spectral projection P for A2 such that
A2−αP ≥ 0. Then P dominates a projection Q that commutes with A2 such
that both Q and P−Q are of infinite rank. Then A2−αQ satisfies Proposition
11 and hence has a projection decomposition. The operator A1+αQ has norm
greater than or equal to α and all of its nonzero spectral projections have
infinite rank, so it satisfies the hypotheses of Proposition 10. Thus, A1 + αQ
has a projection decomposition, and we combine this decomposition with the
decomposition of A2 − αQ to get a projection decomposition for A. �

4. Ellipsoidal tight frames

Let H be a finite or countably infinite dimensional Hilbert space. Let
{xj}j∈J be a frame for H , where J is some index set. Consider the standard
frame operator defined by

Sw =
∑
j∈J

〈w, xj〉xj =
∑
j∈J

(xj ⊗ xj)w.

Thus, S =
∑
J
xj⊗xj , where this series of positive rank-1 operators converges

in the strong operator topology (i.e., the topology of pointwise convergence).
In the special case where each ‖xj‖ = 1, S is the sum of the rank-1 projections
Pj = xj ⊗ xj . If we let yj = S−1/2xj , then it is well-known that {yj}j∈J is a
Parseval frame (i.e., tight with frame bound 1). If each ‖xj‖ = 1, then {yj}j∈J
is an ellipsoidal tight frame for the ellipsoidal surface ES−1/2 = S−1/2S1 .
Moreover, it is well-known (see [8]) that a sequence {xj}j∈J ⊆ H is a tight
frame for H if and only if the frame operator S is a positive scalar multiple
of the identity, i.e., S = KI, and in this case K is the frame bound.

Remark 12. From the above paragraph, it is clear that a positive invert-
ible operator is the frame operator for a frame of unit vectors if and only if it
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admits a projection decomposition. (Each projection can be further decom-
posed into rank-1 projections, as needed.)

The link between Theorem 2 and Theorem 3 is the following:

Proposition 13. Let T be a positive invertible operator in B(H ) , and
let K > 0 be a positive constant. The ellipsoidal surface ET = TS1 contains
a tight frame {yj} with frame bound K if and only if the operator R = KT−2

admits a projection decomposition. In this case, R is the frame operator for
the spherical frame {T−1yj}.

Proof. We present the proof in the infinite dimensional setting, and note
that the calculations in the finite dimensional case are identical but do not
require discussion of convergence. Let J be a finite or infinite index set.
Assume ET contains a tight frame {yj}j∈J with frame bound K. Then∑
j∈J yj⊗yj = KI, with the series converging in the strong operator topology.

Let xj := T−1yj ∈ S1 , so xj ⊗ xj are projections. We can then compute:

R = KT−2 = T−1

∑
j∈J

yj ⊗ yj

T−1

=
∑
j∈J

T−1yj ⊗ T−1yj =
∑
j∈J

xj ⊗ xj .

This shows that R can be decomposed as required. Conversely, suppose R
admits a projection decomposition R =

∑
Pj , where {Pj} are self-adjoint

projections and convergence is in the strong operator topology. We can assume
that the Pj have rank-1, for otherwise we can decompose each Pj as a strongly
convergent sum of rank-1 projections, and re-enumerate appropriately. Since
Pj ≥ 0, the convergence is independent of the enumeration used. Write
Pj = xj ⊗ xj for some unit vector xj . Letting yj = Txj , we have yj ∈ ET ,
and we also have

KI = TRT = T

∑
j∈J

xj ⊗ xj

T

=
∑
j∈J

Txj ⊗ Txj =
∑
j∈J

yj ⊗ yj .

This shows that
∑
yj ⊗ yj converges in the strong operator topology to KI.

Thus, {yj}j∈J is a tight frame on ET , as required. �

Proof of Theorem 3. Let E be an ellipsoid. Then E = ET = TS1 for some
positive invertible T ∈ B(H ) . Let K be a positive constant, and let R =
KT−2.
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The condition K > ‖T−2‖−1
ess implies ‖R‖ess > 1. So, by Theorem 2, R

admits a projection decomposition, and thus Proposition 13 implies that E
contains a tight frame with frame bound K.

In the finite dimensional case, let n = dimH . Proposition 13 states that
E will contain a tight frame with frame bound D if and only if KT−2 admits
a projection decomposition, and by Proposition 6 this happens if and only
if trace(KT−2) is an integer k ≥ n, and in this case k is the length of the
frame. Thus, we have K = k[trace(T−2)]−1. Therefore, every ellipsoid E = ET
contains a tight frame of every length k ≥ n, and every such tight frame has
frame bound k[trace(T−2)]−1. �

Corollary 14. Every positive invertible operator S on a separable Hilbert
space H is the frame operator for a spherical frame. If H has finite dimension
n, then for every integer k ≥ n, S is the frame operator for a spherical frame
of length k, and the radius of the sphere is

√
trace(S)/k. If H is infinite

dimensional, the radius of the sphere can be taken to be any positive number
r < ‖S‖1/2ess .

Proof. In the finite dimensional case, let c = k/ trace(S) and A = cS, so
that trace(A) = k. Then, by Proposition 6, A has a projection decomposition
into k rank-1 projections, making A the frame operator for the frame of unit
vectors {xi}ki=1. Thus, S is the frame operator for {xi/

√
c}ki=1.

When H has infinite dimension, let c be any constant greater than ‖S‖−1
ess ,

and let A = cS. The hypotheses of Theorem 2 are satisfied, so A admits a
projection decomposition. Then A is the frame operator for a frame {xi} of
unit vectors, so S is the frame operator for the spherical frame {xi/

√
c}. �

Remark 15. We know of at least two groups who have independently and
simultaneously proved our finite dimensional ellipsoidal tight frame results.
Holmes and Paulsen [10] have a proof similar to the discussion in Remark 5.
Casazza and Leon [3] have shown the existence of “spherical frames for Rn

with a given frame operator”, which is an equivalent problem.
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