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A PRIORI ESTIMATES FOR SCHRÖDINGER TYPE
MULTIPLIERS

A. ALEXANDROU HIMONAS AND GERARD MISIO LEK

Abstract. We present an elementary proof of two a priori estimates
for Schrödinger type multipliers on the circle. The first is an L4 − L2

inequality of Bourgain, while the second is a new L6 − L3/2 inequality.
Estimates of this type are useful for the study of the Cauchy problem
for Schrödinger type equations. The proofs are based on a counting
argument and standard real and harmonic analysis techniques.

1. Introduction and results

In the first part of this work we prove the following estimate that arises in
the study of the Cauchy problem for Schrödinger type equations.

Theorem 1.1. Let (x, t) ∈ T × R and let (ξ, τ) ∈ Z × R be the dual
variables. Let ν be a positive even integer. Then there is a constant cν > 0
such that

(1.1) ‖f‖L4(T×R) ≤ cν‖(1 + |τ − ξν |)
ν+1
4ν f̂‖L2(Z×R),

for any test function f on T× R.

We immediately have the following dual estimate.

Corollary 1.2. For any test function f we have

(1.2) ‖(1 + |τ − ξν |)−
ν+1
4ν f̂‖L2(Z×R) ≤ cν‖f‖L4/3(T×R).

The quadratic case (ν = 2) was proved by Bourgain in [B1]. The general
case is stated without proof in [B3]. Our proof is motivated by the work of
Fang and Grillakis [FG] and Zygmund [Z], and we believe that it is more
transparent.
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In the second part of this work, using similar ideas, we prove the following
new result:

Theorem 1.3. Let (x, t) ∈ T×R and (ξ, τ) ∈ Z×R be the dual variables.
Let ν be a positive even integer. Then there is a constant cν > 0 such that

(1.3) ‖f‖L6(T×R) ≤ cν‖(1 + |τ − ξν |)
ν+1
6ν f̂‖L3/2(Z×R),

for any test function f on T× R.

Similarly, dualizing (1.3) gives

Corollary 1.4. For any test function f we have

(1.4) ‖(1 + |τ − ξν |)−
ν+1
6ν f̂‖L3(Z×R) ≤ cν‖f‖L6/5(T×R).

It is possible to compute explicitly the constants in Theorems 1.1 and 1.3.
For example, in Theorem 1.1 one obtains

cν ≈ 3
1
4ν

(
1− 2

1−ν
4ν

)−1/2

.

A natural question is to find the best constants for the above inequalities and
to investigate their geometric significance. This question seems particularly
interesting in higher dimensions.

Interpolating between (1.1) and (1.3) it is possible to obtain some inter-
mediate Lp − Lq estimates. One may ask what is the largest value of p for
which an Lp−L2 estimate holds for the above multipliers. The counterexam-
ple of Bourgain (see [B1]) shows that one cannot have an L6 − L2 estimate
in the quadratic case ν = 2. However, Bourgain conjectures that L6−ε − L2

estimates should hold for small ε > 0. Similarly, based on Theorem 1.3, one
may conjecture that the corresponding L6−L2−ε estimates hold for any small
ε > 0.

Inequalities of the type (1.1) – (1.4) are closely related to the periodic ana-
logues of Strichartz inequalities. For a detailed discussion of these inequalities
in the periodic case see Lecture 2 in [B3]. For nonperiodic Strichartz type in-
equalities and their applications to the wellposedness of the Cauchy problem
for nonlinear pde’s see Ginibre [G], Ginibre and Velo [GV], [HM], Kenig,
Ponce and Vega [KPV1], [KPV2], [KPV3], Ponce [P], Sogge [So], Strichartz
[Str], Stein [St], Vega [V], and the references in these works.

In the proof of the theorems, we follow the approach of Fang and Grillakis
developed for the Boussinessq equation (see [FG]). In the next section we
prove Theorem 1.1. Using a dyadic decomposition we reduce its proof to
bilinear estimates (see Lemma 2.2). The main ingredient in the proof of these
estimates is a counting argument (see Lemma 2.3) together with standard
techniques involving the inverse Fourier transform, Plancherel’s equality and
Jensen’s inequality. The proof of Theorem 1.3 is analogous, and is based on
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the same counting lemma. The main difference is the use of the Hausdorff-
Young inequality which leads to the L3/2 norm on the right hand side of
(1.3).

2. Proof of Theorem 1.1

We may assume that

supp f̂ ⊆ {(ξ, τ) : τ − ξν ≥ 0}.

Otherwise we decompose f̂ into a sum of two functions one supported in the
above set and the other in the set {(ξ, τ) : τ−ξν ≤ 0}. In both cases the proof
is similar.

It will be convenient to introduce a dyadic decomposition of the frequency
(ξ, τ)-space. For this we need the following lemma.

Lemma 2.1. There is a function ϕ ∈ C∞(R) supported in the interval
[1/2, 2] such that

ϕ(x) + ϕ(2x) = 1 for all 1/2 ≤ x ≤ 1,

and therefore
∞∑

j=−∞
ϕ

(
x

2j

)
= 1 for all x > 0.

Proof. Observe that the function ϕ0 defined by

ϕo(x) = ee−
1
x

(
1− e−

1
1−x

)
, 0 ≤ x ≤ 1,

is in C∞[0, 1], vanishes to infinite order at x = 0, and that ϕo − 1 vanishes to
infinite order at x = 1. Define

ϕ(x) =

 ϕo(2x− 1), 1
2 ≤ x ≤ 1,

1− ϕo(x− 1), 1 ≤ x ≤ 2,
0, elsewhere.

One readily checks that ϕ has the desired properties. �

Remark. In the region {(ξ, τ) : τ − ξν ≤ 0} the appropriate cut-off
function is similar to the one given above, but now supported in [−2,−1/2].

Let

ϕj(x) = ϕ
( x

2j
)

and ϕ0(x) = 1−
∞∑
j=1

ϕj(x),

and define
f̂j(ξ, τ) .= ϕj(τ − ξν)f̂(ξ, τ).
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Then

f =
∞∑
j=0

fj , suppf̂o ⊆ {(ξ, τ) : 0 ≤ τ − ξν ≤ 2} ,

and

(2.1) suppf̂j ⊆
{

(ξ, τ) : 2j−1 ≤ τ − ξν ≤ 2j+1
}
, j = 1, 2, · · ·

We have

‖f‖2L4 = ‖f · f‖L2 = ‖
∞∑

j,k=0

fjfk‖L2 ≤
∞∑

j,k=0

‖fjfk‖L2 ,

where the last step is a consequence of Minkowski’s inequality and Fatou’s
lemma. It therefore suffices to show:

Lemma 2.2. There is a positive constant c such that

‖fjfk‖L2(T×R) ≤
c

2
ν−1
4ν |j−k|

‖(1 + |τ − ξν |)
ν+1
4ν f̂j‖L2(Z×R)

· ‖(1 + |τ − ξν |)
ν+1
4ν f̂k‖L2(Z×R).

Next, assuming this lemma we proceed to prove Theorem 1.1. We have

‖f‖2L4 ≤
∞∑

j,k=0

c

2
ν−1
4ν |j−k|

‖(1 + |τ − ξν |)
ν+1
4ν f̂j‖L2‖(1 + |τ − ξν |)

ν+1
4ν f̂k‖L2

≤ c
( ∞∑
j,k=0

1

2
ν−1
4ν |j−k|

‖(1 + |τ − ξν |)
ν+1
4ν f̂j‖2L2

)1/2

·
( ∞∑
j,k=0

1

2
ν−1
4ν |j−k|

‖(1 + |τ − ξν |)
ν+1
4ν f̂k‖2L2

)1/2

Since
∞∑
k=0

2−
ν−1
4ν |j−k| ≤ 2

∞∑
m=0

(
2−

ν−1
4ν

)m
≤ 2

1− 2
1−ν
4ν

we obtain

‖f‖2L4 ≤ c
∞∑
j=0

‖(1 + |τ − ξν |)
ν+1
4ν f̂j‖2L2

= c
∞∑
j=0

∑
ξ∈Z

∫
R

(
1 + |τ − ξν |

) ν+1
2ν
(
φj(τ − ξν)

)2

|f̂(τ, ξ)|2 dτ

≤ c
∑
ξ∈Z

∫
R

(
1 + |τ − ξν |

) ν+1
2ν
( ∞∑
j=0

φj(τ − ξν)
)2

|f̂(τ, ξ)|2 dτ

≤ c‖(1 + |τ − ξν |)
ν+1
4ν f̂‖2L2 ,
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which completes the proof of Theorem 1.1.

Proof of Lemma 2.2. By symmetry we may assume that k ≤ j. Using the
inverse Fourier transform we write

fjfk(x, t) =
∫
R2

∑
ξ1,ξ2∈Z

ei[t(τ1+τ2)+x(ξ1+ξ2)]f̂j(ξ1, τ1)f̂k(ξ2, τ2) dτ1dτ2.

Introducing the change of variables

τ = τ1 + τ2, q = τ2 − ξν2 ,

and letting ξ = ξ1 + ξ2, we write fjfk in the form

fjfk(x, t) =
∫
R

∑
ξ∈Z

ei(tτ+xξ)Ĝjk(ξ, τ) dτ,

where

Ĝjk(ξ, τ) =
∫
R

∑
ξ2∈Z

f̂j(ξ − ξ2, τ − q − ξν2 )f̂k(ξ2, q + ξν2 ) dq.

Observe that the restriction on the support of f̂l in (2.1) implies that q and
ξ2 must satisfy the relations

q ∈ ∆k = [2k−1, 2k+1] and ξ2 ∈ Λj(τ, ξ, q),

where

Λj(τ, ξ, q) =
{
ξ2 ∈ Z : τ − q− 2j+1 ≤ ξν1 + ξν2 ≤ τ − q− 2j−1, ξ1 + ξ2 = ξ

}
.

The following estimate is crucial in what follows.

Lemma 2.3. There exists a constant c independent of j such that

sup
τ,ξ,q

card
(

Λj(τ, ξ, q)
)
≤ c 2

j
ν .

The proof of Lemma 2.3 is given at the end of this section. Assuming the
result for the moment and using Plancherel’s equality and Jensen’s inequality,
we get

‖fjfk‖2L2 = ‖Ĝjk‖2L2 ≤
∫
R

∑
ξ∈Z

(∫
∆k

∑
ξ2∈Λj

|f̂j f̂k| dq
)2

dτ

≤
∫
R

∑
ξ∈Z

meas(∆k)
∫

∆k

( ∑
ξ2∈Λj

|f̂j f̂k|
)2

dq dτ

≤ c
∫
R

∑
ξ∈Z

2k 2
j
ν

∫
∆k

∑
ξ2∈Λj

|f̂j f̂k|2 dq dτ
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≤ c 2k 2
j
ν

∫
R

∑
ξ∈Z

∫
R

∑
ξ2∈Z

|f̂j(ξ − ξ2, τ − q − ξν2 )|2|f̂k(ξ2, q + ξν2 )|2 dq dτ

= c 2k 2
j
ν

∑
ξ∈Z

∑
ξ2∈Z

∫
R

|f̂j(ξ − ξ2, η1)|2 dη1 ·
∫
R

|f̂k(ξ2, η2)|2 dη2

= c 2k 2
j
ν ‖f̂j‖2L2‖f̂k‖2L2 .

Therefore, since τ − ξν ' 2j , we get

‖fjfk‖L2 ≤ c

2
ν−1
4ν (j−k)

2
ν+1
4ν j 2

ν+1
4ν k ‖f̂j‖L2‖f̂k‖L2

' c

2
ν−1
4ν (j−k)

‖(1 + |τ − ξν |)
ν+1
4ν f̂j‖L2‖(1 + |τ − ξν |)

ν+1
4ν f̂k‖L2 ,

and Lemma 2.2 follows. �

Proof of Lemma 2.3. Let a = τ − q − 2j+1 and consider the set

(2.2) Λj(a, ξ) =
{
ξ2 ∈ Z : a ≤ ξν1 + ξν2 ≤ a+

3
2

2j , ξ1 + ξ2 = ξ

}
.

To prove the lemma it suffices to estimate the length of the largest straight
line segment of slope −1 intersecting the region between the two level curves

ξν1 + ξν2 = a and ξν1 + ξν2 = a+
3
2

2j .

By symmetry it suffices to consider the region between the diagonal ξ1 = ξ2
and the ξ2–axis. Observe that the diagonal intersects the level curve ξν1 +ξν2 =
a at the point ((a/2)1/ν , (a/2)1/ν).

ξ1

ξ2

A

B
C

ξ1=ξ2

Let s be any number in the interval [0, (a/2)1/ν ]. Clearly the point A =
(s, (a−sν)1/ν) lies on the level curve ξν1 + ξν2 = a, and the equation of the line
through A with slope −1 is

ξ2 = −ξ1 + s+ (a− sν)1/ν .
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Consider the function

h(ξ1) = ξν1 +
[
− ξ1 + s+ (a− sν)1/ν

]ν
− a− 3

2
2j .

Observe that we have h(ξ1) = 0 if and only if the point B = (ξ1,−ξ1 + s +
(a − sν)1/ν) lies on the outer level curve ξν1 + ξν2 = a + 3

2 2j . Furthermore,
observe that

(2.3) h(s) = −3
2

2j .

On the other hand we have

(2.4) h

(
s−

(
3
2

2j
)1/ν )

≥ 3
2

2j .

In fact,

h

(
s−

(
3
2

2j
)1/ν )

=
(
s−

(
3
2

2j
)1/ν )ν

+
(
− s+

(
3
2

2j
)1/ν

+ s+ (a− sν)1/ν

)ν
− a− 3

2
2j .

Since (a− sν)1/ν ≥ s, using the binomial formula and the fact that ν is even,
we obtain

h

(
s−

(
3
2

2j
)1/ν )

≥ sν +
3
2

2j + (a− sν) +
3
2

2j − a− 3
2

2j =
3
2

2j ,

which gives (2.4).
From (2.3) and (2.4) we conclude that the distance between the points A

and B is smaller than the distance between A and the point

C =

(
s−

(
3
2

2j
)1/ν

, (a− sν)1/ν +
(

3
2

2j
)1/ν

)
.

Therefore

d(A,B) ≤ d(A,C) =
√

2
(

3
2

2j
)1/ν

,

which proves Lemma 2.3. �

3. Proof of Theorem 1.3

The proof will be structured in a way similar to that of Theorem 1.1.
Writing f =

∑∞
j=0 fj as in the proof of Theorem 1.1, we have

‖f‖2L6 = ‖f · f‖L3 ≤
∞∑

j,k=0

‖fjfk‖L3 .

It therefore suffices to show:
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Lemma 3.1. There is a positive constant c such that

‖fjfk‖L3(T×R) ≤
c

2
ν−1
6ν |j−k|

‖(1 + |τ − ξν |)
ν+1
6ν f̂j‖L3/2

· ‖(1 + |τ − ξν |)
ν+1
6ν f̂k‖L3/2 .

Next, assuming this lemma, we proceed to prove Theorem 1.3. Using
Cauchy-Schwarz, we have

‖f‖2L6 ≤ c
( ∞∑
j,k=0

1

2
ν−1
6ν |j−k|

‖(1 + |τ − ξν |)
ν+1
6ν f̂j‖2L3/2

)1/2

·
( ∞∑
j,k=0

1

2
ν−1
6ν |j−k|

‖(1 + |τ − ξν |)
ν+1
6ν f̂k‖2L3/2

)1/2

.

Since
∞∑
k=0

2−
ν−1
6ν |j−k| ≤ 2

∞∑
m=0

(
2−

ν−1
6ν

)m
≤ 2

1− 2
1−ν
6ν

,

we obtain

‖f‖2L6 ≤ c
∞∑
j=0

‖(1 + |τ − ξν |)
ν+1
6ν f̂j‖2L3/2

= c
∞∑
j=0

(∑
ξ∈Z

∫
R

(
1 + |τ − ξν |

) ν+1
6ν ·

3
2
(
φj(τ − ξν)

)3/2

|f̂(τ, ξ)|3/2 dτ

)4/3

≤ c

(∑
ξ∈Z

∫
R

(
1 + |τ − ξν |

) ν+1
4ν
( ∞∑
j=0

φj(τ − ξν)
)3/2

|f̂(τ, ξ)|3/2 dτ

)4/3

≤ c‖(1 + |τ − ξν |)
ν+1
6ν f̂‖2L3/2 ,

where the second last step follows from the inequality
∑∞
j=0 a

p
j ≤

(∑∞
j=0 aj

)p
,

which is valid for any p ≥ 1 and any sequence of nonnegative numbers aj . This
completes the proof of Theorem 1.3.

Proof of Lemma 3.1. Proceeding as in the proof of the corresponding Lem-
ma 2.2, we write fjfk using the inverse Fourier transform. Then applying the
counting Lemma 2.3, the Hausdorff-Young inequality and Jensen’s inequality
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gives

‖fjfk‖3/2L3 ≤ ‖Ĝjk‖3/2L3/2 ≤
∫
R

∑
ξ∈Z

(∫
∆k

∑
ξ2∈Λj

|f̂j f̂k| dq
)3/2

dτ

≤
∫
R

∑
ξ∈Z

meas(∆k)1/2

∫
∆k

( ∑
ξ2∈Λj

|f̂j f̂k|
)3/2

dq dτ

≤ c
∫
R

∑
ξ∈Z

2
k
2 2

j
2ν

∫
∆k

∑
ξ2∈Λj

|f̂j f̂k|3/2 dq dτ

≤ c 2
k
2 2

j
2ν

∫
R2

∑
ξ,ξ2∈Z

|f̂j(ξ − ξ2, τ − q − ξν2 )|3/2|f̂k(ξ2, q + ξν2 )|3/2 dq dτ

= c 2
k
2 2

j
2ν ‖f̂j‖3/2L3/2‖f̂k‖

3/2

L3/2 .

Therefore, since τ − ξν ' 2j , we get

‖fjfk‖L3 ≤ c

2
ν−1
6ν (j−k)

2
ν+1
6ν j 2

ν+1
6ν k ‖f̂j‖L3/2‖f̂k‖L3/2

' c

2
ν−1
6ν (j−k)

‖(1 + |τ − ξν |)
ν+1
6ν f̂j‖L3/2‖(1 + |τ − ξν |)

ν+1
6ν f̂k‖L3/2

and Lemma 3.1 follows. �
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