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MANIFOLDS CLOSE TO THE ROUND SPHERE

VALERY MARENICH

Abstract. We prove that the manifold Mn of minimal radial curva-

ture Kmin
o ≥ 1 is homeomorphic to the sphere Sn if its radius or volume

is larger than half the radius or volume of the round sphere of constant

curvature 1. These results are optimal and give a complete generaliza-

tion of the corresponding results for manifolds of sectional curvature
bounded from below.

0. Introduction and results

0.1. A standard problem in Riemannian Geometry is to find conditions
which guarantee that a given Riemannian manifold is topologically or metri-
cally close to the round sphere Sn of constant curvature 1 (so-called sphere
recognition theorems; see [GM1, GM2]). Two of the best known results of
this type are contained in the following theorem.

Theorem 1. Let Mn be an n-dimensional compact Riemannian manifold
without boundary of sectional curvature K ≥ 1 and rad(Mn) > π − ε. Then
we have:

(1) (Grove-Shiohama [GS]) Mn is homeomorphic to Sn if rad(Mn) >
π/2.

(2) (Grove-Petersen [GP]) The Gromov-Hausdorff distance between Mn

and Sn satisfies dGH(Mn, Sn) ≤ C(ε) for some function C(ε)→ 0 as
ε→ 0.

We consider the class of manifolds with minimal radial curvature bounded
from below by 1. This class is substantially larger than the class of manifolds
in Theorem 1 with sectional curvature bounded from below by 1. (Recall
that a Riemannian manifold Mn has minimal radial curvature Kmin

o with a
base point o bounded from below by k, Kmin

o ≥ k, if for an arbitrary point p
and every minimal geodesic γ(t), 0 ≤ t ≤ r, connecting o and p the sectional

Received February 15, 2000; received in final form August 22, 2000.

2000 Mathematics Subject Classification. 53C20, 53C21.

Supported by CNPq.

c©2001 University of Illinois

615



616 VALERY MARENICH

curvature of Mn is at least k in all two-dimensional directions which contain
the vector γ̇(r).)1

In a previous paper [MM] we proved the following analog to Theorem 1
above.

Theorem A. Let Mn be an n-dimensional compact Riemannian manifold
without boundary of minimal radial curvature Kmin

o ≥ 1 and rad(Mn) > π−ε.
Then we have:

(1) If ε is sufficiently small, then Mn is homeomorphic to Sn (i.e., Mn

is a twisted sphere).
(2) The Gromov-Hausdorff distance between Mn and Sn satisfies

dGH(Mn, Sn) ≤ C(ε) for some function C(ε)→ 0 as ε→ 0. 2

In contrast to Theorem 1 above, Theorem A has the defect that the con-
stant ε in the bound rad(Mn) > π − ε could be a function of the dimension
n that tends to 0 as n→∞. In this paper we overcome this defect and show
that, as in Theorem 1, one can take ε = π/2, which is best possible.

Theorem A
′
. Let Mn be an n-dimensional compact Riemannian mani-

fold without boundary of minimal radial curvature Kmin
o ≥ 1 and rad(Mn) >

π/2. Then Mn is homeomorphic to Sn.

This provides a complete generalization of Theorem 1 to manifolds of min-
imal radial curvature bounded from below by 1. As in Theorem 1 the projec-
tive space RPn gives an example of a manifold with minimal radial curvature
Kmin
o ≥ 1, rad(Mn) = π/2, which is nonhomeomorphic to Sn, and hence

shows that the bound rad(Mn) > π/2 is best possible.
To prove Theorem A′ we combine the arguments which had lead us earlier

to conjecture Theorem A, namely a combination of the Borsuk-Ulam Theorem
and the comparison angle almost nonincreasing flow introduced in [MM]. As
is often the case, the simpler argument leads to a best possible result, whereas
the more complicated approach of [MM] gives only a weaker result. We remark
that some general problems are naturally suggested by our arguments. For
instance, the following conjecture might be true.

Conjecture. Let (Σ, d) be a space equipped with a metric d (not neces-
sarily the length, i.e., in general, the distance between two points need not be

1As was noted by Machigashira and Shiohama, some well-known results on the geometry

of Riemannian manifolds of nonnegative sectional curvature, such as Toponogov comparison
theorem, estimates on diameter and radius, or the sphere theorem, can be generalized to
manifolds with non-negative minimal radial curvature; see [Mch1], [Mch2] and [MS].

2Note that the proof of this second claim given in [MM] is by some direct geometric

arguments, it does not use the result due to Gromov (see [G]) on the relations between
Fillrad(Mn) and Fillvol(Mn) as in [GP].
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the length of the shortest curve between these points), and let Σ be homeomor-
phic to a sphere Sn and satisfy π/2 + ε ≤ rad(Σ, d) ≤ diam(Σ) ≤ π for ε > 0.
Then there exists a continuous map ( )∗ : Σ→ Σ such that d(x, x∗) > d(ε) for
some d(ε) > 0 and d(ε)→ π as ε→ π/2. 3

0.2. According to Theorem A the manifold Mn is topologically and metri-
cally close to the round sphere Sn of constant curvature 1 if its radius is close
to the radius of the sphere. The same is true for the volume.

Theorem 2. Let Mn be an n-dimensional compact Riemannian manifold
without boundary with minimal radial curvature Kmin

o ≥ 1 and vol(Mn) >
vol(Sn)− ε. Then we have:

(1) (Machigashira-Shiohama [MS]) Mn is homeomorphic to Sn if vol(Mn)
> (3/4) vol(Sn).

(2) ([MM]) The Gromov-Hausdorff distance between Mn and Sn satisfies
dGH(Mn, Sn) ≤ C(ε) for some function C(ε)→ 0 as ε→ 0.

Our next result is the following.

Theorem A
′′
. Let Mn be an n-dimensional compact Riemannian mani-

fold without boundary, of minimal radial curvature Kmin
o ≥ 1, and satisfying

vol(Mn) > (1/2) vol(Sn). Then Mn is homeomorphic to Sn.

Again, the example of the projective space RPn shows that this result is
sharp.

In previous papers, we pointed out that there is an interesting analogy
between results for manifolds with minimal radial curvature bounded from
below by 1 and manifolds with Ricci curvature bounded from below by (n−1):
the theorems of [MM] and [M] are analogous to results of [Wl] and [Cl1], [Cl3].
It is natural to conjecture that the assertions of Theorems A′ and A′′ are still
true for manifolds with corresponding bounds on the Ricci curvature. 4

I would like to express my sincere gratitude to Sergio J. X. Mendonça for
calling my attention to the class of manifolds with minimal radial curvature
bounded from below.

1. Some basic facts and notations

Throughout this paper, Mn denotes a complete compact Riemannian man-
ifold without boundary and of minimal radial curvature Kmin

o ≥ 1, and
rinj(Mn) denotes the injectivity radius of Mn.

3Is there any involution ( )∗ that has this property?
4To the author’s knowledge, there are examples due to Anderson and Otsu of closed

manifolds Mn with Ric(Mn) ≥ (n − 1) and diameter arbitrarily close to π, i.e., that of a
round sphere (see [A1]-[A4] and [Ot]), which have rad(Mn) < π/2.
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1.1. Gromov-Hausdorff distance. Recall that the radius rad(X) of a
compact metric space X is the radius of the smallest ball which contains X,
that is

(1.1) rad(X) = min
x∈X

max
y∈X
|xy|,

where |xy| denotes the distance between x and y. Obviously, diam(X)/2 ≤
rad(X) ≤ diam(X), where diam(X) is the diameter of X, and for an arbitrary
point x there exists a (generally nonunique) point x∗ such that dist(x, x∗) ≥
rad(X). We will denote by x∗ the point in X having maximal distance to x,
i.e., dist(x, x∗) = sup{dist(x, y)|y ∈ X}.

A metric space X is called a length space if the distance between any two
points equals the infimum of lengths of continuous curves between them. If
X is complete, connected and locally compact, standard arguments prove
the existence of a minimal geodesic connecting any two given points, i.e., a
continuous curve γxy connecting x and y, whose length equals the distance
|xy|; see [Pl].

Recall that for given compact metric spacesX and Y , the Gromov-Hausdorff
distance dGH(X,Y ) between X and Y is the infimum of values of ε > 0,
such that, for some metric in the disjoint union X d Y , the ε-neighborhood
B(X, ε) of X contains Y (we say in this case that Y is ε-close to X) and
the ε-neighborhood B(Y, ε) of Y contains X, or X and Y are ε-close to each
other. A map f : X → Y is said to be an ε-approximation if the image
f(X) is ε-dense in Y and, for any x, y ∈ X, |dist(f(x), f(y))− dist(x, y)| < ε.
The distance dGH(X,Y ) can be defined in an equivalent way as the infimum
of the values of ε > 0 such that there exist ε-approximations f : X → Y
and g : Y → X. Another equivalent definition is that if there exist ε-dense
nets {pi}i=1,...,N ⊂ X and {qj}j=1,...,N ⊂ Y such that, if for all i, j we have
|dist(pi, pj) − dist(qi, qj)| < ε, then dGH(X,Y ) < 3ε. For details see [GLP];
for a recent exposition see [Pt].

1.2. Toponogov and Bishop-Gromov comparison theorems for
manifolds with minimal radial curvature bounded from below. For
a triangle 4pqr in Mn let 4p̄q̄r̄ be a triangle in the space form S2 of con-
stant curvature 1 with the same lengths, called the comparison triangle of
4pqr (if such a triangle exists). We denote by ]qpr, or simply ]p, the an-
gle at p of the triangle 4pqr. The corresponding angle in 4p̄q̄r̄ is denoted
by ]̃qpr, or simply ]̃p. We let γpq denote a geodesic in 4pqr joining p and
q. All geodesics are assumed to be parameterized by the arc-length unless
stated otherwise. Machigashira (see [Mch1] and [Mch2]) obtained the follow-
ing two results, which extend the Toponogov Comparison Theorem and the
Toponogov-Alexandrov monotonicity property to the case of manifolds with
minimal radial curvature bounded from below and for triangles which have
the base point o as one of their vertices.
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Proposition 1. Let Mn be a complete manifold with Kmin
o ≥ 1 and let

4opq be a triangle of minimal geodesic segments in Mn. Then there exists a
comparison triangle 4p̄q̄r̄ in a space form S2 of constant curvature 1, and we
have ]o ≥ ]̃o, ]p ≥ ]̃p and ]q ≥ ]̃q.

Proposition 2. Let Mn be a complete manifold with Kmin
o ≥ 1. Consider

points p, q, r, s ∈ Mn such that γop and γoq are minimal geodesics and r and
s belong to γop and γoq, respectively. Then we have ]̃ros ≥ ]̃poq.

In a standard manner, we obtain as simple consequences of Proposition 1
that diam(Mn) ≤ π and dist(o, p) + dist(o, q) + dist(p, q) ≤ 2π for any points
o, p, q of Mn. In [MS] it was shown that if equality holds in any of these
inequalities, then Mn is isometric to Sn.

It is also easy to see that manifolds of minimal radial curvature Kmin
o ≥ 1

satisfy the Bishop-Gromov volume comparison theorem for balls with a center
at the base point o; see [MS].

Proposition 3. Let Mn be a manifold of minimal radial curvature Kmin
o

≥ 1, and let B(o, r) be a metric ball in the manifold Mn with center o and
radius r. Let B(ō, r) be the corresponding r-ball in the sphere Sn of con-
stant curvature 1. Then the function vol(B(o, r))/ vol(B(ō, r)) is monotone
nonincreasing.

We will exploit a “comparison angle almost nonincreasing” flow that was
constructed in our earlier papers [MM] and [M] and which could be regarded
as the parameterized version of Proposition 2; see Proposition 5 below.

1.3. Distance functions and their critical points. We will consider
distance functions to some sets along integral trajectories of some smooth vec-
tors fields. It is known that for every smooth vector field X the distance from
a fixed point q to the trajectory x(s) of X is a function which has one-sided
derivatives at all points s, and for almost all s the left and right derivatives
coincide. The left derivative of dist(o, x(s)) at s = τ is the maximum of the
scalar products between −X(x(τ)) and the directions of minimal geodesics
from x(τ) to q:

dist′−(q, x(s))
∣∣
s=τ

= max{(−X(x(τ)), γ̇(s)) :

γ(s) is a minimal geodesic from x(s) to q}.(1.2)

This fact is well-known, and its proof is left to the reader. It is also easy to
see that, for any set C in Mn, we have

dist′−(C, x(s))
∣∣
s=τ

= min{dist′−(q, x(s))
∣∣
s=τ

:

q ∈ C, dist(q, x(τ)) = dist(C, x(τ))}.(1.3)

In what follows, C is assumed to be compact.
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The important idea to use general nonsmooth distance functions as Morse
functions on Riemannian manifolds is due to Grove and Shiohama; see [GS],
where the authors proved, among other results, the first assertion of Theo-
rem 1.

Definition 1. We say that the point x is the critical point of the distance
function dist( , C) if, for an arbitrary direction v at this point and any curve
x(s) starting at this point in direction v, we have dist′(x(s), C)s=0 ≤ 0.

By (1.3) the point x is a critical point of dist( , C) if, for an arbitrary vector
v at this point, there exists a minimal geodesic γ(s) from x to C having angle
at most π/2 with v. The importance of the notion of critical points is clear
from the following Isotopy Lemma (see Lemma 1.4 in [C]).

Proposition 4. Denote by C(r) = {x| dist(x,C) < r} the r-sublevel
set of the distance function. If the set Ar,R = C̄(R)\C(r) contains no criti-
cal points of the function dist( , C), then there exists a continuous family of
retractions Φs : C(R)→ C(s), r ≤ s ≤ R.

The retractions can be constructed as follows:
Given a point z from Ar,R choose a vector X(z) that has angle strictly less

than π/2 with every minimal geodesic γzz′ from z to some z′ ∈ C such that
γzz′ realizes the distance to C, i.e., dist(z, z′) = dist(z, C). Since Ar,R does
not contain critical points, such a vector exists, by our definition.

Next, for any λ < rinj(Mn) define a vector field Xz,λ on a λ-neighborhood
B(z, λ) of the point z as follows: for x ∈ B(z, λ) the vector Xz,λ(x) at
the point x is the parallel transport of X(z) along the unique minimal ge-
odesic from z to x. Here the parameter λ may depend on z. Because Ar,R
is compact, the covering Ar,R ⊂ ∪B(z, λ(z)) contains a finite subcovering
Ar,R ⊂ ∪B(zi, λ(zi)), and choosing a partition of unity fi : B(zi, λ) → R,
fi > 0,

∑
fi(x) ≡ 1, associated with this subcovering, we define the smooth

vector field X(x, λ) =
∑
fi(x)Xzi,λ(zi), where λ = max{λ(zi)}. Since Ar,R

does not contain critical points, for sufficiently small λ the vector field X(λ)
is nowhere zero.

Note also that because of the compactness of Ar,R there exists α > 0 such
that for all z of Ar,R we have

(1.4) ](γzz′ , Xλ(z)) < π/2− α.
By (1.3) and standard arguments there exists λ0 > 0 depending on Ar,R such
that, if 0 < λ < λ0, then

(1.5) ‖X(x, λ)‖ ≥ sin(α/2) and dist′(x(s), C)) ≤ −α/2,
where x(s) denotes the integral trajectory of the smooth vector field X(λ).
Now, our retraction is a shift along these trajectories, and it provides an h-
cobordism between two components ∂C(R) and ∂C(r) of the boundary of



MANIFOLDS CLOSE TO THE ROUND SPHERE 621

Ar,R. Obviously, the same method can be applied to any set without critical
points. The following is an example of such an application to a manifold Mn

with minimal radial curvature Kmin
o ≥ 1 and rad(Mn) > π/2 (see [MS]).

Consider the distance to the base point o. Denote by o∗ a point of Mn hav-
ing maximal distance to o. Since dist(o, o∗) ≥ rad(Mn), we have dist(o, o∗) >
π/2. Take an arbitrary point x and consider a triangle4oo∗x. Since dist(o, o∗)
> π/2 and dist(o, x) ≤ dist(o, o∗), we see that in the comparison triangle
4ōō∗x̄ in the round sphere S2 of constant curvature 1 the angle ](ōx̄ō∗) is
always strictly larger than π/2, provided only that dist(o∗, x) ≤ dist(o, o∗)
and dist(o, o∗) > π/2. Hence, by Proposition 1 the angle between any mini-
mal geodesic γxo between x and o and any minimal geodesic γxo∗ connecting
x with o∗ is strictly larger than π/2. Thus, x is not critical. Because o∗ is
critical (since dist(o, ) attains its maximum at o∗), for any minimal geodesic
γo∗x connecting o∗ with x there exists a minimal geodesic γo∗o between o∗

and o whose angle with γo∗x at o∗ is at most π/2. In particular, this implies
that the point o∗ of maximal distance to the base point o is unique (since,
by Proposition 1, any other point o∗1 with dist(o, o∗1) = dist(o, o∗) > π/2
would satisfy ](oo∗o∗1) > π/2 because dist(o, o∗) > π/2). Thus, we see that if
R∗ = dist(o, o∗), then the closed metric ball B∗ = B(o∗, R∗) does not contain
critical points of the distance function dist(o, ). Applying the Isotopy Lemma
we then arrive at the following result.

Lemma 1. Let R∗ = dist(o, o∗), where o∗ is the point of Mn having max-
imal distance to o. If π/2 < R∗, then for any R ≤ R∗ the closed metric
ball B(o∗, R) does not contain critical points of the distance function dist(o, )
and is diffeomorphic to the closed Euclidean ball Bn. The boundary Σ∗(R) of
B(o∗, R) is diffeomorphic to the Euclidean sphere Sn−1.

Consider again the comparison triangle 4ōō∗x̄, where x ∈ Σ∗(R∗). In this
sphere triangle the angles ō and x̄ are equal, since dist(o∗, x) = dist(o∗, o).
Since these distances are equal to R∗, which is larger than π/2, these angles
are strictly larger than π/2. A computation shows that

](ōx̄ō∗) = ](x̄ōō∗) > π/2 + c(R∗),

where c(R∗) > 0 is a function of R∗ such that c(R∗) → 0 as R∗ → π/2. If
we fix R∗ > π/2 and consider a sphere triangle 4ōȳō∗ such that dist(ȳō∗) =
R < R∗ and R is close to R∗, then the angles of this triangle are close to the
angles of 4ōō∗x̄. There exists R′ such that for all R′ < R < R∗ we have

](ȳōō∗) > ](x̄ōō∗)− c(R∗)/2,

and, since dist(y, o∗) < dist(x, o∗), we have

](ōȳō∗) > ](x̄ōō∗).
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Let c = c(R∗)/2 and fix R such that R′ < R < R∗. By Lemma 1 the set
Σ∗(R) is diffeomorphic to the sphere Sn−1. Applying Proposition 1, in view
of our choice of R, we obtain the following result.

Lemma 2. Let π/2 < R < R∗ be as above and let x be a point of Σ∗(R),
i.e., dist(o∗, x) = R < dist(o∗, o) = R∗. Then, for any minimal geodesics γox
and γoo∗ connecting o with x and o with o∗,

(1.6) ](γox, γoo∗) ≥ ]̃(γox, γoo∗) > π/2 + c,

and
](γxo, γxo∗) ≥ ]̃(γxo, γxo∗) > π/2 + c,

for some c > 0.

2. Proof of Theorem A′

Let ToMn be a tangent space to Mn at the point o and Sn−1 a sphere of
unit vectors in ToMn. We first note that, using the same arguments as in the
proof of the Isotopy Lemma, we have the following result (see [MM]).

Lemma 3. There exist continuous maps V : Σ∗(R)→ Sn−1 such that

](V (x), γoo∗) ≥ π/2 + c/2

for arbitrary x ∈ Σ∗(R) and arbitrary minimal geodesics γoo∗ connecting o
and o∗.

Proof. Indeed, given a point x ∈ Σ∗(R), choose a minimal geodesic γox
and denote by V (x) its direction at the base point o. Since dist(x, o∗) = R <
R∗ = dist(o, o∗), the base point o does not belong to Σ∗(R), i.e., x 6= o. Hence
V (x) is well defined and nonzero. Given λ > 0, define vectors Vx,λ(y) = V (x)
for any point y in a λ-neighborhood B(x, λ,Σ∗(R)) of x in Σ∗(R). As λ→ 0,
the points y from B(x, λ,Σ∗(R)) tend to the point x, and minimal geodesics
connecting the base point o with points y tend to a minimal geodesics from
o to x. Therefore, for any x there exists λ(x) > 0 such that for any point y
in B(x, λ(x),Σ∗(R)) and any minimal geodesic γoy there exists a geodesic γox
having an angle less than 1/k with γoy at o for all 0 < λ < λ(x). Take any
such minimal geodesic γoo∗ . Then, by (1.6), we have

(2.1) ](Vx,λ(y),Γ) ≥ π/2 + c− 1/k,

where Γ denotes the direction of γoo∗ at the base point o. Since Σ∗(R) is
compact, the covering Σ∗(R) ⊂ ∪B(x, λ(x),Σ∗(R)) contains a finite sub-
covering Σ∗(R) ⊂ ∪B(xi, λ(xi),Σ∗(R)), and choosing a partition of unity
fi : B(xi, λ(xi), Σ∗(R)) → R, fi > 0,

∑
fi(x) ≡ 1, associated with this sub-

covering, we define a smooth map sending the point x ∈ Σ∗(R) to the vector
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Vk(x) =
∑
fi(x)Vxi,λ(xi)(x). From the definition of this map and (2.1) we see

that

(2.2) ](Vk(x),Γ) ≥ π/2 + c− 1/k,

where x is any point from Σ∗(R), γoo∗ any minimal geodesic connecting o and
o∗, and Γ the direction of this geodesic at o. Choosing k large enough so that
1/k < c/2, we conclude from the last inequality that V (x) = Vk(x) is nonzero.
Therefore, we can divide the vector V (x) by its length and then obtain a map
from Σ∗(R) into the unit sphere Sn−1, which we will denote in the same way
by V : Σ∗(R)→ Sn−1. This completes the proof of Lemma 3. �

Next, we show that, for all x ∈ Σ∗(R), the vector W (x) = −V (x) satisfies
the condition necessary to guarantee the existence of the integral trajectory
of the field X(λ) starting from the base point o in direction W (x). Indeed, let
z(x, ε) = exp(ε(W (x))) for some ε < rinj(Mn). Then, for ε sufficiently small,
the comparison angle ψ̃(x, ε) = ]̃(zoo∗) will be close to the actual angle
ψ(x) = ](zoo∗) in the triangle 4zoo∗ since Mn is a differentiable manifold
and, by the first variation formula, ψ̃(x, ε) tends to ψ(x) as ε → 0. In fact,
we can find ε0 > 0 such that for all x ∈ Σ∗(R) and all 0 < ε < ε0 we have
ψ(x)− c/4 ≤ ψ̃(x, ε) ≤ ψ(x). By (2.2), for any minimal geodesic γoo∗ from o
to o∗ the angle between W (x) and the direction Γ of γoo∗ is at most π/2−c/2.
Therefore, we have the following result.

Lemma 4. There exists ε0 > 0 such that, given x ∈ Σ∗(R) and 0 < ε < ε0,
there exists a minimal geodesic γoo∗ from o to o∗, such that for the point
z = z(x, ε) = exp(εW (x)), the comparison angle ]̃(zoo∗) in the triangle 4zoo∗
is at most π/2− c/4.

Let inj = min(ε0, rinjM
n). According to [MM] the vector field X(λ) can

be defined in the same way as above inside the set CA(φ, d), which we define
as follows.

Definition 2. We say that a point z belongs to CA(φ, d) if inj < dist(o, z)
≤ d, φ < π/2, and for some point p having distance d to o and a minimal
geodesic γop the angle ]̃o of the comparison triangle 4ōp̄z̄ for the triangle
4opz is at most φ.

Hence, by Lemma 4, all points z(x, inj) belong to CA(inj, π/2 − c/4, R∗)
with p = o∗. As we proved in [MM], for an arbitrary point z in this set there
exists an integral trajectory z(s) of the vector field −X(λ) starting at this
point and satisfying the following “comparison angle almost nonincreasing”
property. 5

5Note that we change the direction of our trajectories: instead of X(λ) we consider the
trajectories of −X(λ) so that the parameter s increases as z(s) approaches o∗; see (2.3).
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Proposition 5 (Lemma 7 in [MM]). Given arbitrarily small ω, φ0 > 0,
and 0 < φ0 < φ1 < π/2, there exists λ > 0 such that for any trajectory z(s) of
the vector field X(x, λ) defined above the left derivative of the comparison angle
φ(s) = ]̃(o∗oz(s)) of the triangle 4oo∗z(s) exists and is almost nonpositive,
i.e.,

φ′−(τ)
def
= lim

s↗τ

φ(τ)− φ(s)
τ − s

< ω,

if only φ0 ≤ φ(τ) ≤ φ1 and inj ≤ dist(o, z(τ)) ≤ R∗.

We denote by z(x, s) the trajectory starting at z(x, inj) at the moment
s = inj. By Lemma 6 of [MM] the parameter s on the trajectory z(s) is a
monotone function of the distance to o∗ such that

(2.3) 0 < C−1(φ(s)) ≤ dist′s(z(s), o
∗) ≤ C(φ(s))

for some C(φ) of order sin−1(φ). (This also follows easily from (1.6) and (1.2)–
(1.3), or from the similar estimates (1.4)–(1.5).) Hence we have the following
result.

Lemma 5. For every x ∈ Σ∗(R) there exists s(x) > inj which depends
continuously on x, such that the point z(x, s(x)) belongs to Σ∗(R).

Since the function s(x) is continuous, it is uniformly bounded by some
constant s∗ on Σ∗(R). By our definition of inj, for all z(x, inj) the comparison
angle ]̃(z(x, inj)oo∗) is at most π/2 − c/4 (see Lemma 4). By Proposition
5 above with ω = c/8s∗, the comparison angles ]̃(z(x, s)oo∗) are almost
nonincreasing functions along trajectories z(x, s), inj < s ≤ s(x), with left
derivatives at most ω. By our choice of ω this implies

(2.4) ]̃(z(x, s(x))oo∗) ≤ π/2− c/8.
Let Z : Σ∗(R)→ Σ∗(R) be the map sending the point x to z(x, s(x)). Com-
paring the last inequality (2.4) with (1.6), we see that z(x, s(x)) 6= x for all
x; i.e., Z has no fixed points. If we identify Σ∗(R) with a sphere Sn−1 (via
Lemma 1), we see that Z is homotopic to the antipodal map, has nonzero
degree and therefore is “on”. Hence we have:

Lemma 6. The map Z : Σ∗(R)→ Σ∗(R) sending the point x to z(x, s(x))
is “on”.

As in [MM], this implies:

Lemma 7. The function dist(o, ) has only two critical points, o and o∗.

Proof. Choose any point y 6= o outside B(o∗, R∗) and consider the trajec-
tory z(x, s) starting in direction W (x), the direction of a minimal geodesic
γoy connecting o and y. The point y can only be critical if dist(o, y) ≤ π/2.
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Since, by Proposition 5, z(x, s) is defined for all s such that dist(o, z(x, s)) ≤
dist(o, o∗) = R∗ > π/2, there exists z = z(x, s′) such that dist(o, y) =
dist(o, z). Since the comparison angle ]̃(yoz(x, s)) is an almost nonincreas-
ing function on s, we see as above that ]̃(yoz)) ≤ s′ω, which tends to zero
as λ → 0 in the definition of the vector field X(λ). Choose λ such that
s′ω < c/16. In the proof of Lemma 6 we have already seen that for an arbi-
trary trajectory z(x, s) there exists a minimal geodesic γoo∗ with direction Γ
at the base point o and an angle less than π/2− c/8. Hence, we deduce

(2.5) ]̃(γoy, γoo∗) < π/2− c/16.

Now, comparing the sphere triangle4ōȳō∗ with the triangle4oyo∗ , the last in-
equality together with the inequalities dist(o, y) ≤ dist(o, o∗) and dist(o, o∗) >
π/2 imply that the angle ȳ in the sphere comparison triangle is larger than
π/2, or, by Proposition 1,

(2.6) ]̃(γyo, γyo∗) > π/2,

for any minimal geodesic γoy. This shows that y cannot be a critical point of
the function dist(o, ), since there are no minimal geodesics between y and o
forming an angle at most π/2 with the direction of γyo∗ . This completes the
proof of Lemma 7. �

By Lemma 7 the distance function dist(o, ) has only two critical points on
Mn. Theorem A′ now follows from the Isotopy Lemma in a standard way:
both metric balls B(o,R∗) and B(o∗, R∗) are diffeomorphic to a Euclidean
ball Bn, and since Mn is a union of these balls, it is homeomorphic to Sn.
This completes the proof of Theorem A′.

3. Proof of Theorem A′′

As above, the assertion of Theorem A′′ follows from the fact that Mn can
be represented as a union of two domains B = B(o, π/2) and B∗ = B(o∗, R∗)
that are diffeomorphic to the Euclidean ball Bn. To prove this, we proceed
as before, i.e., we verify that both B and B∗ do not contain critical points of
the distance function d(o, ).

Lemma 8. If vol(Mn) > vol(Sn)/2 then for the base point o there ex-
ists a unique point o∗ where the function dist(o, ) attains its maximum, and
dist(o, o∗) > π/2.

Proof. Indeed, if for all x ∈ Mn we have dist(o, x) ≤ π/2, then Mn ⊂
B(o, π/2). Since, by Proposition 3, vol(B(o, π/2)) ≤ vol(B̄(ō, π/2)) =
vol(Sn)/2, this would imply vol(Mn) ≤ vol(Sn)/2, contradicting the assump-
tion of the lemma. Hence, for some x, we have dist(o, x) > π/2. Take a
point o∗ at which dist(o, ) attains its maximum. Then dist(o, o∗) > π/2, and
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using Lemma 1 and Proposition 1 we easily conclude that o∗ is unique. This
completes the proof of Lemma 8. �

Lemma 9. We have Mn\B∗ ⊂ B, where B = B(o, π/2) and B∗ =
B(o∗, R∗) with R∗ = dist(o, o∗).

Proof. If the assertion of the lemma is not true, then there exists a point
x such that dist(o, x) > π/2 and dist(o∗, x) > R∗. Since o∗ is a critical point
for the distance function to o, for any minimal geodesic γo∗x there exists a
minimal geodesic γo∗o from o∗ to o having angle at most π/2 with γo∗x. As
in the proof of Lemma 1, applying Proposition 1 to the triangle 4oxo∗ , we
deduce from dist(o, o∗) > π/2 that dist(o, x) ≤ π/2, which is a contradiction,
proving the lemma. �

By Lemma 1, B∗ is diffeomorphic to the Euclidean ball Bn. We now show
that B is also diffeomorphic to the Euclidean ball Bn.

Let U ⊂ ToM
n be a star-shaped open disk domain whose boundary is

the tangential cut locus to o. Setting Ũ = expo(U), we see that Mn\Ũ =
cutlocus(o) has no interior points and

(3.1) vol(Ũ) = vol(Mn).

Define a map W : Sn\{ō} → Mn by W (x̄) = expo ◦I ◦ exp−1
ō (x̄), where

I : TōSn → ToM
n is an isometry. Setting Ū = expō ◦I−1(U), we see that

W is a diffeomorphism between Ū and Ũ . It is easy to see that Proposi-
tion 1 is equivalent to the assertion that W does not increase distances on Ū .
Therefore,

(3.2) vol(Ũ) = vol(W (Ū)) ≤ vol(Ū).

Given an arbitrary point x̄ of Sn such that dist(ō, x̄) ≤ π/2, let B(x̄) be the
closed π/2-ball B̄(x̂, π/2) with center x̂, such that dist(x̄, x̂) = π/2 and ō
belongs to the minimal geodesic γx̄x̂. Another definition for B(x̄) is

B(x̄) = {ȳ ∈ Sn | ](ōx̄ȳ) ≤ π/2}.
Given a point x ∈ B, let Γ(x) be the set of unit directions of all minimal
geodesics from o to x. If x is a critical point of the distance function dist(o, )
then x ∈ cutlocus(o), Γ(x) consists of more than one vector, and the set Λ(x)
of unit vectors of Γ(x) multiplied by dist(o, x) belongs to the boundary of U .
Let Λ̄(x) be the image of Λ(x) under the map expō ◦I.

Lemma 10. If x ∈ B is a critical point of the distance function dist(o, )
different from o, then U ⊂W (∩x̄∈Λ̄(x)B(x̄)).

Proof. For any point y ∈ Ũ the minimal geodesic γoy is unique. Take a
minimal geodesic γox between o and x and let v be its direction at o. Let x̄
and ȳ denote expō ◦I(dist(o, x)v) and expō ◦I(dist(o, y)w), respectively, where
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w is the direction of γoy at o. It is easy to see that the assertion of the lemma
is equivalent to the statement that, for all possible choices of the minimal
geodesic γox and all corresponding v, we have ȳ ∈ B(x̄).

Take an arbitrary γox (and v) and consider in Sn a two-dimensional totally
geodesic (big) sphere S2 containing points x̄, x̂ and ȳ. The point ō belonging to
a minimal geodesic between x̄ and x̂ also belongs to S2 as well as a minimal
geodesics γōȳ. Find in S2 a point ŷ such that dist(ō, ŷ) = dist(ō, ȳ) and
dist(x̄, ŷ) = dist(x, y). Then the triangle 4ōx̄ŷ is a comparison triangle for
the triangle 4oxy. Since, for any triangle 4oxy its comparison triangle in S2

is defined by distances between vertices of 4oxy, the comparison triangle is
independent of the choice of γox. Since x is a critical point for every γxy, there
exists a minimal geodesic γox between o and x having angle at most π/2 with
γxy. By Proposition 1 we conclude

(3.3) ](ōx̄ŷ) ≤ π/2,
i.e., the point ŷ belongs to B(x̄). Since, by definition, ](xoy) = ](x̄ōȳ),
another application of Proposition 1 shows that

](ōx̄ŷ) ≤ ](ōx̄ȳ),

or

(3.4) ](x̂ōȳ) ≤ ](x̂ōŷ)

as ō belongs to γx̄x̂. Since dist(ō, ȳ) = dist(ō, ŷ)(= dist(o, y)) by the last
inequality, an easy argument in sphere trigonometry shows that dist(x̂, ȳ) ≤
dist(x̂, ŷ), and hence that ȳ (like ŷ) belongs to B(x̄). Since the choice of γox
was arbitrary, it follows that ȳ belongs to B(x̄) for all possible choices, and
we obtain the assertion of the lemma. �

Finally, the volume of an arbitrary ball B(x̄) equals vol(Sn)/2. Since the
map W does not increase distances, we see that an arbitrary set

W (∩x̄∈Λ̄(x)B(x̄))

has volume no larger than vol(Sn)/2. If we assume the existence of a critical
point x ∈ B, then by Lemma 10 and (3.2) we would have vol(Ũ) ≤ vol(Sn)/2,
which, by (3.1), contradicts the condition vol(Mn) > vol(Sn)/2 of Theo-
rem A′′. This proves that the distance function dist(o, ) has only two critical
points, o and o∗, that both B and B∗ are diffeomorphic to the Euclidean ball
Bn, and that Mn is homeomorphic to the sphere Sn. The proof of Theo-
rem A′′ is therefore complete.
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