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SYMMETRY OF A BOUNDARY INTEGRAL OPERATOR
AND A CHARACTERIZATION OF A BALL

MIKYOUNG LIM

Abstract. If Ω is a ball in Rn (n ≥ 2), then the boundary integral
operator of the double layer potential for the Laplacian is self-adjoint

on L2(∂Ω). In this paper we prove that the ball is the only bounded
Lipschitz domain on which the integral operator is self-adjoint.

1. Introduction

Let Ω be a bounded Lipschitz domain in Rn (n ≥ 2). The double layer
potential of f ∈ L2(∂Ω) is defined by

DΩf(x) =
1
wn

∫
∂Ω

〈y − x, ν(y)〉
|y − x|n

f(y)dσ(y), x ∈ Rn \ ∂Ω,

where dσ is the (n−1)-dimensional Hausdorff measure in Rn, wn is the surface
measure of the unit sphere in Rn and ν(y) is the outward unit normal to ∂Ω
at y ∈ ∂Ω.

The double layer potential attracted much attention lately in connection
with the Dirichlet problem for the Laplacian on Lipschitz domains; see, for
example, [3] and [8]. In [8] it was shown that for every f ∈ L2(∂Ω), DΩf has
a nontangential limit at almost all points on ∂Ω and

lim
t→0−

DΩf(x+ tν(x)) =
1
2
f(x) +KΩf(x) a.e. x ∈ ∂Ω,

where

KΩf(x) =
1
wn

p.v.

∫
∂Ω

〈y − x, ν(y)〉
|y − x|n

f(y)dσ(y), x ∈ ∂Ω.

It has also been shown [2] that the operator KΩ is a singular integral operator
and bounded on L2(∂Ω). It is this operator KΩ that we are considering in
this paper.
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If Ω is a ball in Rn, then one can easily see that

(1.1) 〈x− y, ν(x)〉 = 〈y − x, ν(y)〉
for all x, y ∈ ∂Ω; hence KΩ is self adjoint, i.e.,

KΩ = K∗Ω.
The question we consider in this paper is whether there is any other (sym-
metric) domain Ω on which KΩ is self-adjoint. We will prove the following
result.

Theorem 1.1. Let Ω be a bounded Lipschitz simply connected domain in
R
n (n ≥ 2). If KΩ is self-adjoint on L2(∂Ω), then Ω is a ball.

If KΩ is self-adjoint, then one can easily see that (1.1) holds for almost all
x, y ∈ ∂Ω. Hence Theorem 1.1 is a corollary of the following proposition.

Proposition 1.2. Let Ω be a bounded Lipschitz domain. If (1.1) holds
for almost all x, y ∈ ∂Ω, then Ω is a ball.

In the case when Ω is C1, Boas [1] showed that (1.1) implies that Ω is
a ball. He studied this problem in connection with the Bochner-Martinelli
kernel. His proof uses the fact that at any point b on the boundary that
has maximal distance from a subdimensional hyperplane the normal vector
is necessarily orthogonal to this hyperplane. Since on a Lipschitz domain the
normal vector at b may not exist, a different argument is needed to deal with
the Lipschitz case.

When n = 2, one can say more about the operator KΩ. If Ω is Br(a), the
disk of radius r with the center a, then for x, y ∈ ∂Ω,

〈y − x, ν(y)〉
|y − x|2

=
1
2r
.

Hence, for all f ∈ L2
0(∂Ω) := {f ∈ L2(∂Ω) |

∫
∂Ω
fdσ = 0},

KΩf(x) = 0, x ∈ ∂Ω.

This fact was used in [4] to derive a uniqueness theorem for the inverse con-
ductivity problem. We will show:

Theorem 1.3. Let Ω ⊂ Rn be a bounded Lipschitz domain. If KΩf = 0
for all f ∈ L2

0(∂Ω), then n = 2 and Ω is a disk.

There is some related work in connection with the electrostatic theory.
In [5], Mendez and Reichel proved that if ρ = const is the only solution
of the integral equation −(1/2)ρ + K∗Ωρ = 0 and Ω is a bounded convex
Lipschitz domain, then Ω is a ball. Since the null space of −(1/2)I + K∗Ω is
one dimensional [8], it follows that K∗Ω1 = 1/2 if and only if Ω is a ball. Since
KΩ1 = 1/2 for any bounded Lipschitz domain Ω, Theorem 1.1 for convex
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domains follows from the result of Mendez and Reichel. However, our results
apply to both convex and nonconvex domains. Other characterization of balls
by means of layer potentials have been given in [6] and [7].

Acknowledgements. I am very grateful to the referee for many valuable
suggestions and remarks and for pointing out the existence of the papers
[5], [6], [7]. It is a pleasure to thank Professor Hyeonbae Kang for many
stimulating discussions on this work.

2. Proofs

In this section, we prove Proposition 1.2 and Theorem 1.3.
Let Ω be a bounded Lipschitz domain in Rn and suppose (1.1) holds on

∂Ω × ∂Ω. We first extend ν to a function ν̃ : ∂Ω → Sn−1, while preserving
the property (1.1). Let

V := {(x, y) ∈ ∂Ω× ∂Ω | ν(x), ν(y) exist and 〈x− y, ν(x)〉 = 〈y − x, ν(y)〉}.

Then V contains almost all points of ∂Ω×∂Ω by our assumption. Thus almost
all points of ∂Ω are contained in the set

W := {y ∈ ∂Ω | (x, y) ∈ V for a.e. x ∈ ∂Ω}.

Moreover, ∂Ω cannot be contained in a hyperplane. Hence there exist
y0, · · · , yn ∈W such that y0, · · · , yn do not lie in a hyperplane. Define

S := {x ∈ ∂Ω | (x, yj) ∈ V for all j = 0, · · · , n}.

Then S contains almost all points of ∂Ω. Hence for each x ∈ ∂Ω there exists
a sequence {xn} in S converging to x. We may choose a subsequence, say
{xn}, such that {ν(xn)} is also convergent, since Sn−1 is compact. Define

ν̃(x) := lim
n→∞

ν(xn).

Applying (1.1) to (xn, yj), we have that for all n ∈ N

〈xn − yj , ν(xn)〉 = 〈yj − xn, ν(yj)〉, 0 ≤ j ≤ n.

Hence

(2.1) 〈x− yj , ν̃(x)〉 = 〈yj − x, ν(yj)〉, 0 ≤ j ≤ n.

Note that x, y0, · · · , yn are not contained in a single hyperplane. Hence y0 −
x, · · · , yn − x generate Rn. Thus (2.1) implies that the definition of ν̃(x) is
independent of the choice of {xn}, and ν̃(x) = ν(x) for all x ∈ S.

Lemma 2.1.

(i) We have 〈x− y, ν̃(x)〉 = 〈y − x, ν̃(y)〉 for all x, y ∈ ∂Ω.
(ii) Let L−(x) := {x + tν̃(x) | t < 0}

⋂
∂Ω. Then L−(x) 6= φ for all

x ∈ ∂Ω.
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Proof. (i) Note that (S × S)
⋂
V contains almost all points of ∂Ω × ∂Ω.

For each pair x, y ∈ ∂Ω there exists a sequence {(xn, yn)} in (S × S)
⋂
V

converging to (x, y) such that

ν̃(x) = lim
n→∞

ν(xn), ν̃(y) = lim
n→∞

ν(yn).

Applying (1.1) to (xn, yn), we obtain

〈xn − yn, ν(xn)〉 = 〈yn − xn, ν(yn)〉 for all n ∈ N.

Hence

(2.2) 〈x− y, ν̃(x)〉 = 〈y − x, ν̃(y)〉.

(ii) For each x ∈ S, there exists a normal vector ν(x), and ν̃(x) = ν(x).
Define

L(x) := {x+ tν̃(x) | t ∈ R}.
Since there is a normal vector at x, there exists a point wx in (L(x)

⋂
∂Ω)\{x}

for which the line segment joining x and wx is contained in Ω̄. Since ν(x) is
the outward normal vector at x, we have

(2.3) ν(x) =
x− wx
|x− wx|

.

By (2.2),

〈x− wx,
x− wx
|x− wx|

〉 = 〈wx − x, ν̃(wx)〉.

Hence
|x− wx| = 〈wx − x, ν̃(wx)〉.

Since |ν̃(wx)| = 1, we conclude that

(2.4) ν̃(wx) =
wx − x
|wx − x|

= −ν(x).

Now let x, y ∈ S. We have from (2.2) and (2.4)

〈x− y, ν(x)〉 = 〈y − x, ν(y)〉,
〈wx − wy,−ν(x)〉 = 〈wy − wx,−ν(y)〉.

Observe that

〈x− wx, ν(x)〉+ 〈wx − y, ν(x)〉 = 〈y − wy, ν(y)〉+ 〈wy − x, ν(y)〉,
〈wx − x,−ν(x)〉+ 〈x− wy,−ν(x)〉 = 〈wy − y,−ν(y)〉+ 〈y − wx,−ν(y)〉.

Adding the two equations, we obtain

2〈x− wx, ν(x)〉+ 〈wx − y, ν(x)〉+ 〈x− wy,−ν(x)〉
= 2〈y − wy, ν(y)〉+ 〈wy − x, ν(y)〉+ 〈y − wx,−ν(y)〉.
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From (2.2) and (2.4) we have

〈wx − y, ν(x)〉 = 〈y − wx,−ν(y)〉,
〈x− wy,−ν(x)〉 = 〈wy − x, ν(y)〉.

It then follows that

〈x− wx, ν(x)〉 = 〈y − wy, ν(y)〉.
Hence |x− wx| is a constant for all x ∈ S. Let C denote this constant.

Now we consider the points in ∂Ω \ S. Let x ∈ ∂Ω. Then

ν̃(x) = lim
n→∞

ν(xn)

for some sequence {xn} in S converging to x. By (2.4),

wxn = xn − Cν(xn) for all n ∈ N.
Define

z := lim
n→∞

wxn .

Then z ∈ ∂Ω and
z = x− Cν̃(x).

It follows that L−(x) is non-empty. �

Proof of Proposition 1.2. The single layer potential of a constant 1 is de-
fined by

SΩ1(x) =


1

(2− n)wn

∫
∂Ω

1
|y − x|n−2

dσ(y), n ≥ 3,

1
2π

∫
∂Ω

log |y − x|dσ(y), n = 2,

and satisfies

lim
t→0−

〈5SΩ1(x+ tν(x)), ν(x)〉 = −1
2

+K∗Ω1(x),

lim
t→0+

〈5SΩ1(x+ tν(x)), ν(x)〉 =
1
2

+K∗Ω1(x), a.e. x ∈ ∂Ω.

By the assumption, we have K∗Ω1 = 1/2. Hence SΩ1 is constant in the interior
of Ω, and its exterior boundary gradient is equal to the unit normal vector
ν(x). Let u(x) := SΩ1(x) for x ∈ Rn \ Ω. By (2.2) we have

ν̃(x) · x− ν̃(x) · y − ν̃(y) · y + ν̃(y) · x = 0,

ν̃(x) · x− ν̃(x) · wy − ν̃(wy) · wy + ν̃(wy) · x = 0.

Adding these two equations and using (2.4), we get

2ν̃(x) · x− ν̃(x) · (y + wy)− ν̃(y) · (y − wy) = 0.

Since the last term is independent of y, it follows that

2ν̃(x) · x− ν̃(x) · (y + wy)− C = 0.
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and thus
25 u(x) · x−5u(x) · (y + wy)− C = 0.

Hence, for each y, the function5u(x)·(y+wy) is a harmonic function decaying
at ∞ with the same boundary values. The maximum principle implies that
this function is a harmonic function independent of y. From this we conclude
that the function y+wy is independent of y. Indeed, if y+wy were dependent
of y, then u would have a directional derivative that is constant and equal
to zero, which is impossible because u is decaying at ∞. Since |y − wy| is
constant, it follows that Ω is a ball. �

Proof of Theorem 1.3. Let f ∈ L2(∂Ω). Then

KΩf(x) = KΩ

(
f − 1
|∂Ω|

∫
∂Ω

f(y)dσ(y) +
1
|∂Ω|

∫
∂Ω

f(y)dσ(y)
)

(x)

= KΩ1(x)
1
|∂Ω|

∫
∂Ω

f(y)dσ(y).

Note that

KΩ1(x) =
1
wn

p.v.

∫
∂Ω

〈y − x, ν(y)〉
|y − x|n

dσ(y) =
1
2

a.e. x ∈ ∂Ω.

Thus

KΩf(x) =
1

2|∂Ω|

∫
∂Ω

f(y)dσ(y) a.e. x ∈ ∂Ω

and hence

(2.5)
〈y − x, ν(y)〉
|y − x|n

=
wn

2|∂Ω|
a.e. x, y ∈ ∂Ω.

Applying Proposition 1.2 we obtain

Ω = Ba(r)

for some a ∈ Rn and r > 0. Let

S := {a+ r(cos θ, sin θ, 0, · · · , 0) | θ ∈ [0, 2π]}.

Then S is contained in ∂Ω and is a circle.
Therefore, if x, y ∈ S, then

〈y − x, ν(y)〉
|y − x|2

=
1
2
〈y − x, ν(y)− ν(x)〉

|y − x|2
=

1
2r
.

It then follows from (2.5) that for all x, y ∈ S

1
2rn−1

=
〈y − x, ν(y)〉
|y − x|n

=
1

|y − x|n−2

1
2r
.

Thus n = 2, and Ω is a disk. �
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