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THE TRANSVERSE GEOMETRY OF G-MANIFOLDS AND
RIEMANNIAN FOLIATIONS

KEN RICHARDSON

Abstract. Given a compact Riemannian manifold on which a compact
Lie group acts by isometries, it is shown that there exists a Riemann-

ian foliation whose leaf closure space is naturally isometric (as a metric
space) to the orbit space of the group action. Furthermore, this isome-
try (and foliation) may be chosen so that a leaf closure is mapped to an
orbit with the same volume, even though the dimension of the orbit may
be different from the dimension of the leaf closure. Conversely, given a

Riemannian foliation, there is a metric on the basic manifold (an O(q)-
manifold associated to the foliation) such that the leaf closure space is
isometric to the O(q)-orbit space of the basic manifold via an isometry

that preserves the volume of the leaf closures of maximal dimension.
Thus, the orbit space of any Riemannian G-manifold is isometric to

the orbit space of a Riemannian O(q)-manifold via an isometry that

preserves the volumes of orbits of maximal dimension. Consequently,
the spectrum of the Laplacian restricted to invariant functions on any

G-manifold may be identified with the spectrum of the Laplacian re-
stricted to invariant functions on a Riemannian O(q)-manifold. Other

similar results concerning the spectrum of differential operators on sec-

tions of vector bundles over Riemannian foliations and G-manifolds are
discussed.

1. Introduction

Let M be a compact, Riemannian n-manifold on which a compact Lie
group G acts by orientation-preserving isometries. In this paper, we construct
a Riemannian SO(n)-manifold W that has the following properties. First,
W�SO(n) is isometric as a metric space to M�G. Next, the metric on
W may be chosen so that the isometry preserves the volumes of orbits of
maximal dimension, even though the dimensions of corresponding orbits may
be different. To prove this, in Section 2 we construct a transversally-oriented,
codimension n, Riemannian foliation whose leaf closure space is naturally
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isometric to the orbit space of the group action. The metric on the foliation
may be chosen so that a leaf closure is mapped to an orbit with the same
volume, even though the dimension of the orbit is different from the dimension
of the leaf closure. In Section 2, we show that given any transversally-oriented,
Riemannian foliation of codimension q, there is a metric on the basic manifold
(an SO(q)-manifold associated to the foliation) such that the leaf closure space
is isometric to the SO(q)-orbit space of the basic manifold via an isometry that
preserves the volume of the leaf closures of maximal dimension. By combining
these results, we are able to construct the Riemannian SO(n)-manifoldW that
has the characteristics mentioned above (see Section 4). Another consequence
is the fact that the leaf closure space of any transversally-oriented, Riemannian
foliation of codimension q is isometric to the leaf closure space of another
Riemannian foliation that is constructed by suspending a dense subgroup of
SO(q); again the isometry preserves the volumes of leaf closures of maximal
dimension.

We remark that in cases where the group action does not necessarily pre-
serve orientation and where the foliation is not transversally orientable, results
similar to those in the first paragraph are true with the group SO(∗) replaced
by O(∗).

The consequences of the existence of these “transverse isometries” are dis-
cussed in Sections 5 and 6. The invariant differential forms on a G-manifold
correspond precisely to the basic forms (pullbacks of forms on the local quo-
tients) on the Riemannian foliation constructed in Section 2; in fact, the nat-
ural correspondence gives an isometry between the L2 spaces. This isometry
intertwines the invariant Laplacian on the G-manifold and the basic Lapla-
cian on the Riemannian foliation. Analogously, the spectrum of the basic
Laplacian on functions on a Riemannian foliation (or the spectrum of the
Laplacian on invariant functions on a G-manifold) may be identified with the
spectrum of the Laplacian restricted to invariant functions on a Riemannian
O(q)-manifold. Also, one may write an invariant heat kernel on a G-manifold
in terms of a basic heat kernel on a Riemannian foliation, and vice versa (see
Corollary 5.2 and Corollary 5.4). Other similar results concerning the spec-
trum of differential operators on sections of vector bundles over Riemannian
foliations and G-manifolds are discussed in Section 6. For example, given a
G-equivariant, elliptic differential operator D on sections of a G-equivariant
vector bundle over a G-manifold M, there exists an O(n)-equivariant vector
bundle E′ over an O(n)-manifold M ′, an O(n)-equivariant, transversally el-
liptic differential operator D′, and an invertible map Θ : Γ (E′)O(n) → Γ (E)G

on invariant sections such that DΘ = ΘD′. There are obvious consequences
for spectral theory and index theory.

There are many known results concerning the topology and geometry of
such group actions. We remark that if G acts smoothly on a smooth, compact
manifold, we may choose a Riemannian metric so that the action is isometric.
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By [6], if G acts smoothly and properly, then there is a real analytic struc-
ture on M compatible with the given smooth structure such that the action
becomes real analytic. It is known that the orbit space is triangulable (see
[7], [10], [9]). Also, it is well-known that the orbit space of every G-manifold
may be locally modelled as the space of orbits of a subgroup of the orthogonal
group acting by isometries on a metric ball. In [16], R. Palais showed among
other results that any G-manifold may be imbedded in Euclidean space such
that the group G acts by orthogonal transformations. (G. D. Mostow proved
similar results in [12].) Thus, the orbit space of every G-manifold M is dif-
feomorphic to the space of orbits of a subgroup H of an orthogonal group
acting on M . In the foliation setting, the theory of P. Molino [13] gives a
homeomorphism between the leaf closure space of a Riemannian foliation and
the space of orbits of O(q) acting on the basic manifold, a compact manifold
associated to the foliation. The results of this paper show that the metric on
the basic manifold may be chosen so that the homeomorphism preserves the
transverse geometry and transfers the basic analysis to invariant analysis.

2. Constructing Riemannian foliations from G-manifolds

Let G be a compact Lie group that acts on the right by isometries on
an n-dimensional Riemannian manifold M . We now construct a Riemannian
foliation

(
M̃,F

)
such that the leaf closure space M̃�F is isometric to the

orbit space M�G. This foliation is a suspension of a dense subgroup of G.
First, let T1, T2, ..., T` be a collection of maximal tori of G such that their Lie
algebras span the Lie algebra of G. For each i, choose gi ⊂ Ti such that the
cyclic group generated by gi is dense in Ti. The subgroup Γ0 generated by
{g1, g2, ..., g`} is dense in the connected component of the identity in G. By
adding a finite set {g`+1, g`+2, ..., gk} of group elements to the list, we may
assume that the subgroup Γ generated by {g1, g2, ..., gk} is dense in G. Next,
let X be any compact, connected Riemannian manifold with volume 1 such
that there is a surjective homomorphism µ : π1 (X) → Γ. For example, X
could be homeomorphic to the connected sum of k copies of S1 × S2, since
its fundamental group is the free group on k generators. We now form the
Riemannian foliation defined by suspension. Let X̃ be the universal cover of
X with the induced metric, and let π1 (X) act isometrically on X̃ on the left
by deck transformations. Let M̃ = X̃ ×M� ∼, where the metric on M̃
is locally the product metric and where (x, y) ∼

(
[γ−1]x, y µ ([γ])

)
for every

x ∈ X̃, y ∈ M , and [γ] ∈ π1 (X). The codimension n foliation F on M̃ is
defined by letting the leaves be sets of the form Ly0 =

{
[(x, y0)]∼ |x ∈ X̃

}
(note that Ly0 = Ly1 does not necessarily imply that y1 = y0). One can check
that the chosen metric is bundlelike for this foliation. We have the following:
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Lemma 2.1. The leaf closures of
(
M̃,F

)
are sets of the form LC ={

[(x, y)]∼ |x ∈ X̃, y ∈ C
}

, where C is an orbit of G in M . Given such a
leaf closure, the orbit C is uniquely determined; the closure of the leaf Ly0 is
LC0 , where C0 is the orbit of G in M containing y0.

Proof. Given a leaf Ly0 and any [(x, y0)]∼ ∈ Ly0 , we also have [([γ]x, y0)]∼
∈ Ly0 for any [γ] ∈ π1 (X). This implies that [(x, y0 µ ([γ]))]∼ ∈ Ly0 for every
[γ] ∈ π1 (X), so that [(x, y0 g)]∼ ∈ Ly0 for every g ∈ Γ. Thus, [(x, y0 g)]∼ ∈
Ly0 for every g ∈ G, so that Ly0 ⊆ LC0 ⊆ Ly0 . Next, suppose that S =
{[(xi, y0gi)]∼} is a sequence of points in LC0 . Then, if p : X̃ → X is the
covering map, the sequence {p (xi)} has a subsequence which converges to
x ∈ X since X is compact. By trivializing the cover near x and choosing
different representatives (xi, y0gi) if necessary, we may assume that we have
a subsequence S2 = {[(xi, y0gi)]∼} of S such that xi → x for some x ∈ X̃.
Since G is compact, we may assume that there is another subsequence S3 =
{[(xi, y0gi)]∼} of S such that xi → x for some x ∈ X̃ and gi → g for some
g ∈ G. Thus, S3 converges to [(x, y0g)]∼ ∈ LC0 . We have shown that LC0 is
compact, so that LC0 = Ly0 . �

Observe that the distance between leaf closures, respectively orbits, makes
M̃�F , respectivelyM�G, into a metric space. We will now show that the leaf
closure space M̃�F is isometric to the orbit space M�G. Let Φ : M�G →
M̃�F be defined by Φ (C) = LC . By the previous lemma, this map is a
bijection. Let C1 and C2 be two orbits on M , and let α be a minimal geodesic
connecting them, so that the length of α is the distance between them. Then
α is perpendicular to each of the orbits. For any x ∈ X̃, the curve α̃ =
[(x, α)]∼ ⊂ M̃ connects LC1 to LC2 and is a geodesic because the metric on
M̃ is locally the product metric. We claim that the length of α̃, which is the
same as the length of α, is the distance between the leaf closures LC1 and
LC2 . Suppose that the claim is false; then there exists a smooth curve β(t) =
[(x(t), y(t))]∼, 0 ≤ t ≤ 1, that is shorter than α̃ and such that y (0) ∈ C1 and
y (1) ∈ C2. By choosing representatives in the equivalence class [(x(t), y(t))]∼
carefully, we may assume that y(t) is a smooth curve in M connecting the
leaf closures C1 and C2. Since we are using the product metric, the length
of β(t) = [(x(t), y(t))]∼ is greater than or equal to the length of y(t), so that
the length of y(t) is less than the length of α. This contradicts the fact that
α realizes the distance between C1 and C2. We have the following result.

Theorem 2.2. The function Φ : M�G → M̃�F defined above is an
isometry of metric spaces. In addition, for any orbit C, the volume of Φ(C)
has the same volume as C.
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Proof. We have already shown that the continuous bijection Φ preserves
distances and is therefore an isometry. The last statement follows from the
fact that the volume of X is one. �

Remark 2.1. Observe that if G acts by orientation-preserving isometries,
then

(
M̃,F

)
is transversally orientable.

Remark 2.2. It is possible to modify the arguments above to prove that
the pseudogroups of local isometries generated by (M,G) and by the singular,
orbit-like Riemannian foliation

(
M̃,F

)
are isometrically equivalent (see [19]

for a discussion of these definitions).

3. Constructing G-manifolds from Riemannian foliations

Let (M̃,F) be a transversally oriented n-codimensional foliation. We now
construct the basic manifold W , a compact SO(n)-manifold associated to
the Riemannian foliation M̃�F . We will show that with a naturally chosen
metric on W , the orbit space W�SO(n) is isometric to the leaf closure space
M̃�F . We remark that if (M̃,F) is not transversally orientable, we replace
SO(n) with O(n) in the following discussion.

Let M̂ be the oriented transverse orthonormal frame bundle of (M̃,F), and
let π be the natural projection π : M̂ → M̃ . The manifold M̂ is a principal
SO(n)-bundle over M̃ . Associated to F is the lifted foliation F̂ on M̂ . The
lifted foliation is transversely parallelizable, and the closures of the leaves
are fibers of a fiber bundle ρ : M̂ → W . The manifold W is smooth and is
called the basic manifold (see [13]). The right action of SO(q) on M̂ naturally
descends to an isometric right action of SO(n) on W . We remark that on an
open, dense subset of W , the orbits are principal; these orbits correspond to
the leaf closures of maximal dimension on M̃ . Let F̂ denote the foliation of
M̂ by leaf closures of F̂ .

Endow M̂ with the metric gM̃ + gSO(n), where gM̃ is the pullback of the
metric on M̃ , and gSO(n) is the standard, normalized, biinvariant metric on
the fibers. By this, we mean that we are using the transverse Levi–Civita
connection to do the following. We calculate the inner product of two hori-
zontal vectors in Tx̂M̂ by using gM̃ , and we calculate the inner product of two
vertical vectors using gSO(n). We require that vertical vectors are orthogonal
to horizontal vectors. This metric is bundlelike for both (M̂, F̂) and (M̂, F̂).
We remark that the tangent bundle to the foliation F̂ is the intersection of
the tangent bundle of π−1F with the horizontal subbundle of TM̂ coming
from the transverse Levi-Civita connection. The transverse metric on (M̂, F̂)
induces a well-defined Riemannian metric on W . Note that the leaf closures
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of (M̂, F̂) cover the leaf closures of M̃ , so that for every orbit wSO(n) on W ,
ρ−1 (wSO(n)) = π−1LC for some leaf closure LC of (M̃,F) . By the way the
metrics have been defined, the transverse metric to the orbit wSO(n) is the
same as the transverse metric to the leaf closure LC . That is, given two vec-
tors X,Y ∈ NxF , the unique horizontal lifts X̂, Ŷ as SO(n)–invariant vector
fields on π−1(x) get mapped by ρ∗ in a well-defined way to vector fields XW ,
YW that are normal to the orbit ρ

(
π−1(x)

)
. The inner product of X and Y in

NxF is the same as the inner product of XW and YW at any w ∈ ρ
(
π−1(x)

)
.

In fact, even more is true.

Theorem 3.1. The map Θ : M̃�F −→ W�SO(n) defined by Θ(L) =
ρ
(
π−1(L)

)
is a metric space isometry. Moreover, the volume Vol

(
L
)

of the
leaf closure L is related to the volume Vol

(
Θ
(
L
))

of the orbit Θ
(
L
)

by the
formula Vol

(
Θ
(
L
))
· ψ(L) = Vol

(
L
)
. Here, ψ : M̃�F −→ R is the contin-

uous function defined uniquely by ψ(L) = Vol
(
L̂
)
, and L̂ is any leaf closure

of (M̂, F̂) that projects to L.

Proof. The map Θ is clearly one-to-one and continuous. Suppose that the
leaf closures L1 and L2 are separated by a distance D, so that there exists
a minimal geodesic α : [0, 1] → M̃ of length D such that α(0) ∈ L1 and
α(1) ∈ L2. Let the geodesic α̂ : [0, 1] → M̂ be any horizontal lift of α.
By the choice of the metric on M̂ , the length of α̂ is D as well. The curve
ρ ◦ α̂ : [0, 1] → W has the property that ρ ◦ α̂ (0) ∈ Θ

(
L1

)
and ρ ◦ α̂ (1) ∈

Θ
(
L2

)
. Therefore, dist

(
Θ
(
L1

)
,Θ
(
L2

))
≤ length (ρ ◦ α̂) ≤ D since ρ is

a Riemannian submersion. Next, let β : [0, 1] → W be a geodesic such that
β (0) ∈ Θ

(
L1

)
, β (1) ∈ Θ

(
L2

)
, β′ is orthogonal to the orbits, and length (β) =

dist
(
Θ
(
L1

)
,Θ
(
L2

))
. Choosing any ρ-horizontal lift β̂ of β to M̂ , we find that

β̂ is a geodesic of length dist
(
Θ
(
L1

)
,Θ
(
L2

))
connecting a leaf closure L̂1 to

a leaf closure L̂2, where π
(
L̂i

)
= Li. Then π◦β̂ is a curve in M̃ connecting L1

and L2 such that D ≤ length
(
π ◦ β̂

)
≤ length

(
β̂
)

= dist
(
Θ
(
L1

)
,Θ
(
L2

))
.

We have shown that Θ preserves distance and is therefore an isometry.
Next, observe that for any leaf closure L ⊂ M̃ , the volume of π−1L ⊂ M̂ is

the same as the volume of L, by the way the metrics have been defined. The
last statement of the theorem follows from the definition of the metric on W
and the fact that SO(n) acts by foliation-preserving isometries on M̂ . �

We will now show that by choosing a different metric on W , we can show
that there exists a Riemannian SO(n)-manifold that is isometric to M̃�F as
before and such that the isometry preserves volumes. We have the following
result concerning G -manifolds.
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Theorem 3.2. Let (W, g) be a compact, connected, m-dimensional, Rie-
mannian manifold endowed with an isometric right action by a compact Lie
group G. Let h : W → R be a positive, smooth, G-invariant function. Let
W0 be the union of principal orbits in W . Given w ∈ W0, consider the orbit
wG. Let gT

w denote the restriction of g to Tw(wG), and let gN
w denote the

restriction of g to the normal space Nw(wG). Define the metric ghw on TwW
by ghw = h(w) gT

w + gN
w . Then gh extends to a smooth metric on W , and the

extended gh is a smooth function of the parameter h ∈ C∞ (W ). The extended
metric has the additional property that given any w ∈W \W0, the metric on
Tw (wG) is h(w) gT

w.

Proof. We prove this result by induction on m. If dimW = 1, then W =
S1, and the orbits are either unions of isolated points or the entire manifold;
the result follows trivially. We now assume that the result is true if the
manifold has dimension less than m. Observe that since W0 is open and
dense, the metric gh is clearly smooth and depends smoothly on h on any
open subset whose closure is contained in W0. Choose a biinvariant metric
on G. Given any w ∈ W \W0 with isotropy H, let Bε ⊂ Nw(wG) be the
ball of radius ε in the normal space, and let Dε be a metric ball of radius ε
centered at 0 in the NeH ⊂ g. Choose coordinates η : Dε × Bε → W for a
neighborhood of w ∈W by η(x, y) = expWw (y) expGe (x). Using geodesic polar
coordinates y = rσ with 0 ≤ r < ε and σ ∈ Sk−1 with k = dimNw(wG), the
original metric g has the form

g (x, r, σ) = g1 (x, rσ) + dr2 + r2g2 (x, r, σ) ,

where g1 (x, rσ) is the inner product on the normal bundle N(x, rσ) of the
submanifold V (x) = η (x,Bε) ⊂ W and dr2 + r2g2 (x, r, σ) is the metric on
the tangent bundle of V (x). Observe that g2 (x, r, σ) is a family of metrics on
Sk−1 depending smoothly on r and x and converging to a smooth metric on
Sk−1 as r → 0 and x→ 0. Because the local foliation {V (x) | − ε ≤ x ≤ ε} is
smooth, its normal and tangent bundles are smooth subbundles. Also, observe
that the local expG (Dε)-orbits W (rσ) = η (Dε, rσ) form a smooth foliation of
the image of η as well. Since TwW (0) = N(0, 0) = Tw(wG), the inner product
g1 (x, rσ) on N(x, rσ) and the inner product on Tη(x,rσ)W (rσ) both converge
smoothly to the inner product on Tw(wG) as (x, rσ)→ (0, 0). Using the same
coordinates, we now write

gh (x, r, σ) = gh1 (x, rσ) + dr2 + r2gh2 (x, r, σ) ,

where gh1 (x, rσ) is the metric on N(x, rσ) and dr2 +r2gh2 (x, r, σ) is the metric
on the tangent bundle of V (x) in polar coordinates, as before. Since the
original inner product on Tη(x,rσ)W (rσ) is multiplied by the smooth factor
h(x, rσ), the comments above imply that gh1 (x, rσ) converges smoothly to an
inner product gh1 (0, 0) = h(0, 0)g1 (0, 0) = h(w)g1 (w) on Tw(wG) as (x, rσ)→
(0, 0). Observe that g1 (0, 0) = g1(w) is the metric gT

w. Next, the family of
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metrics gh2 (x, r, σ) on Sk−1 is obtained by multiplying the metric g2 (x, r, σ)
by h(x, rσ) along the orbits of the H-action given by σ′ = σt if and only if
η(x, rσ′) = η(x, rσ) ·

(
expG x

)−1
t
(
expG x

)
for any t ∈ H. By the induction

hypothesis, the resulting metric gh2 (x, r, σ) is smooth and depends smoothly
on r and x and converges smoothly to a smooth metric on Sk−1 as (x, r) →
(0, 0). Therefore, the metric gh satisfies the conclusion of the theorem. �

Remark 3.1. In the theorem above, the G-action on
(
W, gh

)
is isometric,

because the operation that is applied to the original metric commutes with
the induced G-action on (0, 2)-tensors.

Let φ : W → R be the function defined by φ(w) = Vol
(
ρ−1 (w)

)
; φ is

positive and smooth because ρ is a smooth fibration.

Theorem 3.3. There exists a (smooth) metric g′ on the basic manifold
W such that

(1) the SO(n)-action on (W, g′) is isometric,
(2) the map Θ : M̃�F −→ (W, g′)�SO(n) defined by Θ(L) = ρ

(
π−1(L)

)
is a metric space isometry, and

(3) Volg′
(
Θ
(
L
))

= Vol
(
L
)

for every leaf closure L ∈ M̃�F of minimum
codimension.

Proof. Let g be the original metric defined naturally on W . Let wSO(n)
denote the orbit of w ∈ W , and let Lw denote the corresponding leaf closure
Θ−1 (wSO(n)) = π

(
ρ−1 (wSO(n))

)
. By Theorem 3.1, we have the equation

Volg (wSO(n)) · φ(w) = Vol
(
Lw
)
.

Let s be the dimension of the principal orbits. Let g′ = gh as in the last
theorem, where h(w) = (φ(w))−2/s. Then the volumes of the s-dimensional
orbits in W will be multiplied by a factor of 1

φ(w) , so that

Volg′ (wSO(n)) = Vol
(
Lw
)

if the dimension of wSO(n) is maximal, or equivalently if Lw has minimum
codimension. The transverse metrics corresponding to g and g′ are the same,
so all of the conditions are satisfied. �

Remark 3.2. In the context of the theorem above, if Lw is a leaf closure
whose codimension is not minimal, then the dimension a of the orbit wSO(n)
will be less than s. Thus

Volg′ (wSO(n)) · (φ(w))a/s = Vol
(
Lw
)
,

so that the third statement of the theorem does not necessarily hold for more
general orbits.
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Remark 3.3. It is possible to show that the pseudogroups of local isome-
tries generated by (W,G, g′) and by the singular, orbit-like Riemannian foli-
ation

(
M̃,F

)
are isometrically equivalent (again, see [19] for a discussion).

4. Transverse classification of G-manifolds and Riemannian
foliations

The following results are immediate consequences of the main theorems.

Corollary 4.1. Let G be any compact Lie group that acts by isometries
on a compact, n-dimensional Riemannian manifold M . Then there exists a
Riemannian O(n) -manifold W such that W�O(n) is isometric to M�G via
an isometry that preserves the volumes of orbits of maximal dimension. If G
acts by orientation-preserving isometries, then the group O(n) may be replaced
by SO(n) in the statement above.

Proof. Let
(
M̃,F

)
be a Riemannian foliation with a bundle-like metric

constructed as in Section 2. Next, we use Theorem 3.3 to construct a metric
on the basic manifold W associated to

(
M̃,F

)
. The result follows from

Theorem 2.2 and Theorem 3.3. �

Remark 4.1. Note that orthogonal group actions are very special cases of
compact group actions, so that it is surprising that the orbit spaces of arbitrary
compact group actions are classified up to isometry by those corresponding
to orthogonal group actions.

Corollary 4.2. Let (M,F) be a codimension-q Riemannian foliation on
a compact manifold endowed with a bundlelike metric, and let q be the mini-
mal codimension of the leaf closures. Let a be the dimension of the principal
isotropy groups corresponding to the orthogonal group action on the basic man-
ifold associated to this foliation. Then there exists a Riemannian manifold M̃
along with a Riemannian foliation F̃ on M̃ of codimension q+ q(q−1)

2 −a that
is constructed by suspending an action of a subgroup of O(q), such that the leaf

closure spaces M�F and M̃�F̃ are isometric via an isometry that preserves
volumes of the leaf closures of maximal dimension. If (M,F) is transversally
orientable, the group O(q)may be replaced by SO(q) in the statement above.

Proof. We use Theorem 3.3 to construct a metric on the basic manifold
W associated to (M,F). Next, let

(
M̃, F̃

)
be a Riemannian foliation with

a bundle-like metric constructed as in Section 2. The result follows from
Theorem 3.3 and Theorem 2.2. �

Remark 4.2. Note that these suspension foliations are very special cases
of Riemannian foliations; they are totally geodesic and have an involutive



526 KEN RICHARDSON

normal bundle that is also totally geodesic and Riemannian. It is surprising
that the leaf closure spaces of arbitrary Riemannian foliations are classified
by those constructed by suspending subgroups of orthogonal groups.

Therefore, problems concerning the geometry and topology of orbit spaces
of general G-manifolds can be reduced to problems concerning orbit spaces
of SO(n)-manifolds and O(n)-manifolds. Similarly, problems concerning the
transverse geometry and topology of general Riemannian foliations can be
reduced to problems concerning Riemannian foliations obtained by suspending
orthogonal group actions.

5. Laplacians on Riemannian foliations and G-manifolds

Let (M,F) be a transversally-oriented, codimension-q Riemannian folia-
tion on a compact Riemannian manifold. We now consider a generalization
of the Laplacian that reflects the Riemannian foliation structure—the basic
Laplacian. Let the set of basic forms ΩB(M) be the space of smooth forms ω
such that i (X)ω = i (X) dω = 0 for any X ∈ TF , where i (X) denotes interior
product with X. For example, the basic functions are the functions that are
constant on the leaves of F . The exterior derivative d maps ΩB(M) to itself.
The basic Laplacian is defined by ∆B = δBd+ dδB ,where δB is the adjoint of
d on L2 (Ω∗B). If F is the foliation by points of M , the basic Laplacian is the
ordinary Laplacian. In the more general case, analysis of the basic Laplacian
provides information about the transverse geometry of (M,F). We remark
that this operator is the restriction of the ordinary Laplacian only in special
cases, but it is always the restriction of an elliptic operator on the space of
all forms (see [15]). Since this operator is not a differential operator on the
space of all sections of a vector bundle, many of the standard facts about such
operators do not easily follow for the basic Laplacian. We refer the reader to
[1], [4], [8], [11], [14], [15], [17], [18], [20], and [21] for some results concerning
the basic Laplacian.

On the other hand, suppose that G is a compact Lie group that acts
on a compact, connected, oriented Riemannian manifold M ′ by orientation-
preserving isometries. Associated to such a G-manifold are various spaces
of differential forms. Let ΩG (M ′) denote the space of invariant differential
forms, and let ∆G be the invariant Laplacian, which is the restriction of the
ordinary Laplacian to ΩG (M ′). A G-basic form associated to the G-action
is a form ω on M ′ that is G-invariant and satisfies i (X)ω = 0 for every vec-
tor field X that is tangent to the orbits. Let ΩGB (M ′) denote the space of
smooth G-basic forms on M ′, and let ∆G

B denote the Laplacian on G-basic
forms (a restriction of the ordinary Laplacian). Another space of forms asso-
ciated to a group action is the space Ωg (M ′) of equivariant forms (see [2], [3,
Chapter 16]). There are many relationships between these spaces of forms;
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for example, the spaces of 0-forms and their differentials coincide in the three
associated differential complexes.

Let the (M,F) be as above, and let W be the basic manifold associated to
this Riemannian foliation, with G = SO(q). We endow W with the metric g′

used in Theorem 3.3 . Let ω be a G-basic form on W . If ρ : M̂ → W is the
basic fibration, then ρ∗ω is a form on the orthonormal transverse frame bundle
M̂ that is basic for the pullback foliation π−1F . Therefore, ρ∗ω = π∗βω for
some basic form βω on M . Since βω is uniquely determined by ω, we have
a function S : ΩGB (W ) → ΩB (M,F) defined by S (ω) = βω. Since pullbacks
commute with the exterior derivative, we have that dS = Sd . Also, observe
that S is invertible on

(
ΩGB
)0 (W ), and dS−1 = S−1d on Ω0

B (M,F). Observe
that if f ∈ Ω0

B (M,F) and L ∈ M�F , then S−1f (w) = f (x) for any x ∈ L
and w ∈ Θ

(
L
)
, using the notation from Theorem 3.3.

We consider the L2 inner product on basic functions. On an open, dense
subset W0 of W , the orbits are principal so that W0 → W0�G is a Rie-
mannian fiber bundle. Similarly, on an open, dense subset M0 of M , the leaf
closures have maximal dimension so that M0 →M0�F is a Riemannian fiber
bundle. By Theorem 3.3, W0�G is isometric to M0�F , and the fibers of
these fibrations are mapped to ones with equal volumes under the isometry
Θ. Therefore, for any basic function f ∈ Ω0

B (M, F) (or,equivalently, any ba-
sic function g = S−1f ∈

(
ΩGB
)0 (W ) ),

∫
W

(
S−1f

)
(w) dVW =

∫
M
f (x) dVM .

Moreover, we have that 〈g1, g2〉W = 〈Sg1, Sg2〉M for any g1, g2 ∈
(
ΩGB
)0 (W ).

We now examine the properties of L2 inner products on basic one-forms.
Let f and g be G-basic functions on W . The inner product on one-forms
satisfies 〈df, dg〉W = 〈Vf , Vg〉W , where Vf and Vg are the gradient vector
fields, the vector fields dual to the differentials of the functions. Observe that
Vf (w) and Vg(w) are normal to the orbit through any w ∈W . Let the vector
fields V̂f , V̂g on ρ−1 (w) be their ρ-horizontal lifts; these vectors are normal
to the pullback foliation π−1F on M̂ . Then π∗V̂f , π∗V̂g are well-defined
basic vector fields normal to the leaf closure π

(
ρ−1 (w)

)
. By construction

and choice of metrics on M̂ and W , we have

〈Vf (w), Vg (w)〉W =
〈
π∗V̂f (x) , π∗V̂g (x)

〉
M
,

where x̂ ∈ ρ−1 (w), π (x̂) = x . Next, observe that V̂f is a restriction of
the gradient of ρ∗f , and using the same reasoning, we have that π∗V̂f is a
restriction of the gradient of Sf . Since similar statements are true for g, we
have that for any G-basic functions f and g,

〈df, dg〉W = 〈dSf, dSg〉M = 〈Sdf, Sdg〉M .

From the above we have that 〈df, dg〉W = 〈dSf, dSg〉M =
〈
f, S−1δBSdg

〉
W

,
which implies that δW = S−1δBS on differentials of G-basic functions, where
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δW denotes the adjoint of d on G-basic differential forms on W . Thus, for G
-basic functions f ,

S∆G
Bf = SδW df = δBSdf = δBdSf = ∆BSf.

Similarly, S−1∆Bh = ∆G
BS
−1h for h ∈ Ω0

B (M,F). We have shown the
following:

Theorem 5.1. Let F be a transversally-oriented Riemannian foliation on
a compact, connected Riemannian manifold M . Let W be the basic manifold
associated to this foliation, endowed with the metric g′ used in Theorem 3.3.
Then the spectrum of the G -basic (or G-invariant, or G-equivariant) Lapla-
cian ∆G

B on functions on W is the same as the spectrum of the basic Laplacian
∆B on Ω0

B (M,F). Moreover, f ∈
(
ΩGB
)0 (W ) is a G-basic eigenfunction with

eigenvalue λ if and only if Sf ∈ Ω0
B (M,F) is a basic eigenfunction with

eigenvalue λ.

Corollary 5.2. With (M,F) and (W, g′) as above, the G-invariant (or
G-basic, or G -equivariant) heat kernel KG on

(
ΩG
)0 (W ) is related to the

basic heat kernel KB on Ω0
B (M,F) by the formula

KB (t, x1, x2) = KG (t, w1, w2)

if xi ∈ π
(
ρ−1 (wi)

)
for i = 1, 2.

Remark 5.1. The above results are false for higher degree forms; the
problem is that not every basic form α ∈ Ω∗B (M,F) can be written as α = Sβ

for some β ∈
(
ΩGB
)∗ (W ).

Remark 5.2. The corollary above could be taken as the definition of KB .
The G -invariant heat kernel is easily calculated from the ordinary heat kernel
K on W :

KG (t, w1, w2) =
∫
G

K (t, w1, w2g) dV (g) ,

where dV (g) is the volume form corresponding to the normalized biinvariant
metric. The properties of the basic heat kernel on functions follow from the
equation in Corollary 5.2, so that we could use the ideas of this section to
give a new proof of the existence and asymptotics of the basic heat kernel
KB (t, x1, x2). See [8], [14], [15], [17], [18] for previous work on this problem.

Next, let G′ be any compact Lie Group, and let M ′ be any compact,
Riemannian manifold on which G′ acts isometrically. As in Section 2, we con-
struct a Riemannian foliation

(
M̃, F̃

)
and an isometry Φ : M ′�G′ −→ M̃�F̃

that preserves the volumes of the orbits. Let Γ′ be the discrete, dense subgroup
used in the construction of

(
M̃, F̃

)
. The basic forms of the suspension folia-

tion correspond exactly to the Γ′ -invariant forms of the suspended manifold
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M ′, which therefore correspond exactly to the G′-invariant forms of M ′, by
the smoothness of the map G′ → Isom (M ′). Thus, we have an isomorphism

S : ΩjB
(
M̃, F̃

)
→
(

ΩG
′
)j

(M ′), defined in the obvious way by restricting to

the suspension fibers. More specifically, given ω ∈ ΩB
(
M̃, F̃

)
, we extend it

to be an element of ΩΓ
B

(
X̃ ×M ′

)
, the Γ-invariant basic forms on the product

foliation X̃×M ′, where γ ∈ Γ′ acts on X̃×M ′ by (x, y) γ =
(
[γ−1]x, y µ ([γ])

)
.

Because the basic forms are simply forms on M ′, we may define Sω to be the
restriction of ω to the M ′ factor.

We now consider the L2 inner product on basic forms on M ′ and on M̃ . By
the way the metrics are defined, it is clear that the pointwise inner product
of any two basic forms α, β ∈ ΩB

(
M̃, F̃

)
satisfies (α, β)

M̃
=
(
Sα, Sβ

)
M ′

.

Because the isometry Φ : M ′�G′.→ M̃�F̃ maps orbits to leaf closures with
the same volume, it follows that

〈α, β〉
M̃

=
∫
M̃

(α, β)
M̃

(x) dV
M̃

=
∫
M ′

(
Sα, Sβ

)
M ′

(y) dVM ′ =
〈
Sα, Sβ

〉
M ′

.

Using the product coordinate description of the map S, it is clear that dSα =
Sdα for all α ∈ ΩB

(
M̃, F̃

)
. The above implies that δM ′Sα = SδBα, where

δM ′ is the adjoint of d on M ′ and δB is the adjoint of d restricted to basic
forms on

(
M̃, F̃

)
. Therefore, ∆GS = S∆B .

We now have the following:

Theorem 5.3. Let G′ be any compact Lie Group, and let M ′ be any
compact, Riemannian manifold on which G′ acts isometrically. Let

(
M̃, F̃

)
be a Riemannian foliation constructed from this group action as in Section 2.
Then the spectrum of the G′-invariant Laplacian ∆G′ on j-forms on M ′ is the
same as the spectrum of the basic Laplacian ∆B on ΩjB

(
M̃, F̃

)
. Moreover,

α ∈ ΩjB
(
M̃, F̃

)
is a basic eigenform with eigenvalue λ if and only if Sα ∈(

ΩG
′
)j

(M ′) is a G′-invariant eigenform with eigenvalue λ.

Corollary 5.4. With
(
M̃, F̃

)
and (M ′, G′) as above, the G′-invariant

heat kernel KG′ on
(
ΩG
)j (W ) is related to the basic heat kernel KB on

ΩjB
(
M̃, F̃

)
by the formula

(
KG

)j
(t, w1, w2) = Kj

B (t, x1, x2)



530 KEN RICHARDSON

if xi ∈ Φ (Owi) for i = 1, 2. Here, Ow denotes the orbit of w ∈M ′, and Φ is
the isometry Φ : M ′�G′ → M̃�F̃ .

By constructing in sequence (M,F) 99K (W,O(q) or SO(q)) 99K
(
M̃, F̃

)
and (M,G) 99K

(
M̃,F

)
99K (W,O(q) or SO(q)), we obtain the following

corollaries:

Corollary 5.5. Given any Riemannian foliation F of codimension q on
a compact manifold M , the spectrum of its basic Laplacian on functions is
identical to the spectrum of the basic Laplacian on functions of a Riemannian
foliation

(
M̃, F̃

)
that is constructed by suspending a Γ-action, where Γ is a

dense subgroup of SO(q) (for the transversally oriented case) or O(q) (for
foliations (M,F) that are not transversally orientable).

Corollary 5.6. Given any compact Lie Group G that acts by orientation-
preserving isometries on a compact, Riemannian manifold M , the spectrum
of its G -invariant Laplacian on functions is identical to the spectrum of the
SO(q)-invariant Laplacian on a compact, Riemannian manifold W , which is
constructed from the original group action. The analogous statement is true
for actions that do not necessarily preserve orientation with SO(q) replaced
by O(q).

6. Differential Operators on Sections of Vector bundles

We begin by describing the holonomy groupoid of a Riemannian foliation.
Let F be a p-dimensional Riemannian foliation on a compact, n-dimensional
Riemannian manifold N , and let GF denote the holonomy groupoid of (N,F)
(see [22] ). An element of GF is an ordered triple (x1, x2, [γ]), where x1 and
x2 are points of a leaf L and [γ] is an equivalence class of piecewise smooth
paths in L starting at x1 and ending at x2; two such paths α and β are equiv-
alent if and only if β−1α has trivial holonomy. Multiplication is defined by
(x1, x2, [α]) (x2, x3, [ω]) = (x1, x3, [αω]), where αω is the obvious concatena-
tion. Because (N,F) is Riemannian, GF is endowed with the structure of a
smooth n+ p-dimensional manifold (see [22]).

Given a G-manifold M and G-equivariant vector bundle E −→ M , we
construct a foliation

(
M̃, F

)
by suspending a dense subgroup Γ as in Sec-

tion 2. We have that M̃ = X̃ ×M�π1 (X), where π1 (X) acts by (x, y) [γ] =([
γ−1

]
x, yµ ([γ])

)
. We define the space Ẽ = X̃ × E�π1 (X), where π1 (X)

acts by (x, vp) [γ] =
([
γ−1

]
x,Rµ([γ])vp

)
. It is easy to see that Ẽ is a vector

bundle over M̃ , with the equivalence class of (x, vp) ∈ X̃ × E�π1 (X) map-

ping to the equivalence class of (x, p) ∈ X̃ ×M�π1 (X). Also, rank
(
Ẽ
)

=



G-MANIFOLDS AND RIEMANNIAN FOLIATIONS 531

rank (E). Next, let a1 = [(x1, p1)] and a2 = [(x2, p2)] be points of a leaf
of X̃ ×M�π1 (X), and let g = (a1, a2, [γ]) ∈ GF , the holonomy groupoid
of (M,F). Since a1 and a2 are points of the same leaf, we may choose the
element (x2, p2) of the equivalence class a2 such that p2 = p1. We define
S̃g : Ẽa1 −→ Ẽa2 by S̃g [(x1, vp1)] = [(x2, vp1)]; simple calculations show that
this map is well-defined and that S̃gS̃h = S̃hg. Therefore, the action of G on
the vector bundle E −→ M induces an action of GF on the vector bundle
Ẽ −→ M̃ .

Suppose s : M −→ E is any G-invariant section. Then, we define Ks :
M̃ −→ Ẽ by Ks [(x, p)] = [(x, s (p))]. Note that[([

γ−1
]
x, s (yµ ([γ]))

)]
=
[([
γ−1

]
x,Rµ([γ])s (y)

)]
,

so the map is well-defined. For any g = ([(x1, p)] , [(x2, p)] , [γ]) ∈ GF ,

S̃gKs [(x1, p)] = S̃g [(x1, s(p))] = [(x2, s(p))] = Ks [(x2, p)] .

Thus, K : ΓG(M,E) −→ ΓB
(
M̃, Ẽ

)
. Similarly, let s̃ : M̃ −→ Ẽ be a basic

section. Fixing x ∈ X̃ and p ∈ M , the equation s̃ [(x, p)] = [(x, vp)] uniquely
defines the vector vp ∈ Ep. Because s̃ is basic, the vector vp is independent of
the fixed x chosen; it defines a section v of E −→ M . Since s̃ is well-defined
on equivalence classes, the section v is Γ-invariant and thus G-invariant. It
is clear that Kv = s̃, so the map K : ΓG(M,E) −→ ΓB

(
M̃, Ẽ

)
is a vector

space isomorphism with K−1s̃ = v, as defined above.
Now, suppose that D : Γ(M,E) −→ Γ(M,E) is a G-equivariant differential

operator, so that it maps ΓG(M,E) to itself. Then, we observe that KDK−1 :
ΓB
(
M̃, Ẽ

)
−→ ΓB

(
M̃, Ẽ

)
is also the restriction of a differential operator by

examining the map in a local trivialization, and it is GF -equivariant. We may
choose a G-invariant metric on E, and the resulting L2 metric will allow us to
complete Γ(M,E) to a Hilbert space. This metric on E induces a metric on
Ẽ by the equation 〈Ks,Kt〉Ẽ := 〈s, t〉E that is GF -invariant; the analogous
equation of L2-metrics holds. By defining the metric in this way, we force K
to be a unitary equivalence between L2

(
ΓG(M,E)

)
and L2

(
ΓB
(
M̃, Ẽ

))
.

Using the observations above and the results of the previous sections, we
have the following:

Theorem 6.1. Let E −→ M be a G-equivariant vector bundle, endowed
with a metric that is invariant under the G-action. Suppose that D : Γ(M,E)
−→ Γ(M,E) is a G-equivariant differential operator. Then the bundle Ẽ

over the suspension foliation
(
M̃,F

)
, which is constructed above, is GF -

equivariant and inherits a natural GF -invariant metric from the metric on
E. The operator KDK−1 : ΓB

(
M̃, Ẽ

)
−→ ΓB

(
M̃, Ẽ

)
is the restriction of
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a differential operator and is GF -equivariant. The operators D|ΓG(M,E) and
KDK−1

∣∣
ΓB(M̃,Ẽ) have the same spectrum and are unitarily equivalent.

Remark 6.1. Observe that if D : Γ(M,E) −→ Γ(M,E) is an elliptic
operator, then KDK−1 is the restriction of a transversally elliptic operator
on Γ

(
M̃, Ẽ

)
.

Next, let (Y,F) be any transversally oriented Riemannian foliation of codi-
mension q, and let E −→ Y be a GF -equivariant vector bundle of rank k.
Assume that we have chosen a GF -invariant metric for E. Let π : Ŷ → Y
be the orthonormal transverse frame bundle of (Y,F). Associated to F is the
canonical lifted foliation F̂ on Ŷ . Let ρ : Ŷ → W be the projection onto
the basic manifold W = Ŷ�F̂ , the leaf closure space of

(
Ŷ , F̂

)
. An element

of GF̂ is a triple of the form (x̂, ŷ, [·]), where [·] is the set of all piecewise
smooth curves starting at x̂ and ending at ŷ, since the holonomy is trivial on
Ŷ . The GF -action on E induces a GF̂ -action on π∗E, defined as follows.Given
a vector (x̂, v) ∈ (π∗E)x̂ so that x̂ ∈ Ŷ , v ∈ Eπ(x̂), we define the action of
ĝ = (x̂, ŷ, [·]) by Sĝ (x̂, v) = (ŷ, Sgv), where g = (π (x̂) , π (ŷ) , [γ]) ∈ GF and
[γ] is the unique equivalence class of piecewise smooth curves from π (x̂) to
π (ŷ) in the leaf containing π (x̂) that lift to leafwise curves in Ŷ from x̂ to ŷ.
It is easy to check that this action makes π∗E into a GF̂ -equivariant vector
bundle.The pullback π∗ maps basic sections of E to basic sections of π∗E.
Also, the SO(q)-action on

(
Ŷ , F̂

)
induces an action of SO(q) on π∗E that is

trivial on the fibers and preserves the basic sections.
In the case of a foliation that is not transversally orientable, replace SO(q)

with O(q) in the discussion above.
Observe that if s ∈ ΓB (Y,E), then π∗s is a basic section of π∗E that

is G-invariant. Conversely, if ŝ is G-invariant, then ŝ = π∗s for some s ∈
Γ (Y,E). If ŝ is also basic, then for any g = (π (x̂) , π (ŷ) , [γ]) ∈ GF as above,
Sg (s (π (x̂))) = S(x̂,ŷ,[·]) (ŝ (x̂)) = ŝ (ŷ) = s (π (ŷ)). Thus, π∗ : ΓB (Y,E) →(

ΓB
(
Ŷ , π∗E

))G
is an isomorphism.

We now construct a vector bundle Ẽ −→ W . Given w ∈ W , ρ−1 (w) is
a leaf closure in Ŷ . Consider a section s ∈ ΓB (π∗E) restricted to ρ−1 (w).
Given any x̂ ∈ ρ−1 (w), the vector s (x̂) determines s on this leaf closure, by
the action of GF̂ on π∗E. Thus, the space Ẽw := ΓB

(
Ŷ , π∗E

)
�˜w is a

finite-dimensional vector space, where two basic sections s, s′ : Ŷ −→ π∗E
are equivalent (s˜ws′) if s (x̂) = s′ (x̂) for all x̂ ∈ ρ−1 (w). We let [s]w denote

the equivalence class of s ∈ ΓB
(
Ŷ , π∗E

)
. The dimension of this vector space

is less than or equal to the rank of π∗E (= rank of E), and the union of the
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vector spaces
{
Ẽw |w ∈W

}
forms a smooth vector bundle, as shown in [5,

Proposition 2.7.2].
We let Φ : Γ

(
W, Ẽ

)
→ ΓB

(
Ŷ , π∗E

)
be the almost tautological map de-

fined as follows. Given a section s̃ of Ẽ, its value at each w ∈W is an equiv-
alence class [ŝ]w of basic sections. We define for any x̂ ∈ ρ−1(w), Φ (s̃) (x̂) =
ŝ (x̂) . It is easily seen that this map is well-defined and maps sections of Ẽ to
basic sections of π∗E. Moreover, Φ is invertible with Φ−1 (ŝ) (w) = [ŝ]w for
every ŝ ∈ ΓB

(
Ŷ , π∗E

)
. Note that the SO (q)-actions on

(
Ŷ , F̂

)
and on π∗E

induce well-defined actions of SO(q) on W and Ẽ. We choose the metric on
W as in Theorem 3.3. Suppose that we have chosen a GF -invariant metric on
E; then this metric may be lifted to a GF̂ -invariant, SO(q)-invariant metric
on π∗E. Thus, the metric descends to a natural SO(q)-invariant metric on
Ẽ. Similar to arguments in the proof of Theorem 5.1, the resulting L2 inner
products of sections are preserved under the map Φ. Note that the restricted

map Φ : ΓG
(
W, Ẽ

)
→
(

ΓB
(
Ŷ , π∗E

))SO(q)

also extends to an L2 isome-

try. Note that since the fibers of the submersion Ŷ
π−→ Y have volume one,

π∗ : ΓB(Y,E) −→
(

ΓB
(
Ŷ , π∗E

))SO(q)

extends to an L2 isometry as well.
We now have the following:

Theorem 6.2. Let (Y,F) be any transversally oriented Riemannian fo-
liation, and let E −→ Y be a GF -equivariant vector bundle, endowed with
a metric that is GF -invariant. Suppose that D : ΓB(Y,E) −→ ΓB(Y,E)
is a GF -equivariant differential operator. Then the bundle Ẽ over the basic
manifold W , which is constructed above, is SO(q)-equivariant, and it inher-
its a natural SO(q)-invariant metric from the metric on E. The operator
Φ−1π∗D (π∗)−1 Φ : ΓSO(q)

(
W, Ẽ

)
−→ ΓSO(q)

(
W, Ẽ

)
is the restriction of

a differential operator and is SO(q)-equivariant. The operators D|ΓB(Y,E)

and Φ−1π∗D (π∗)−1 Φ
∣∣∣
ΓSO(q)(W,Ẽ)

have the same spectrum and are unitarily

equivalent.

Proof. All that remains to be shown is that Φ−1π∗D (π∗)−1 Φ
∣∣∣
ΓSO(q)(W,Ẽ)

is the restriction of a differential operator. Since D : ΓB(Y,E) −→ ΓB(Y,E)
is GF -equivariant, it has a local expression over a neighborhood U of Y
in terms of matrices of basic differential operators. Given a small neigh-
borhood V in π−1 (U) ⊂ Ŷ , the differential operator π∗D (π∗)−1 acting on(

ΓB
(
Ŷ , π∗E

))SO(q)

has a local expression in terms of matrices of differential
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operators that are basic with respect to the pullback foliation π−1F . Choos-
ing coordinates adapted to this foliation, we see that this differential operator
on V descends to a differential operator on the quotient ρ (V ) since the op-
erator is certainly basic with respect to the fibers of ρ. The new operator on

Γ
(
ρ (V ) , Ẽ

∣∣∣
ρ(V )

)
gives a local expression for Φ−1π∗D (π∗)−1 Φ

∣∣∣
ΓSO(q)(W,Ẽ)

.

�

Remark 6.2. Observe that if D : ΓB(Y,E) −→ ΓB(Y,E) is the re-
striction of a transversally elliptic operator D̄ : Γ(Y,E) −→ Γ(Y,E), then
Φ−1π∗D (π∗)−1 Φ

∣∣∣
ΓSO(q)(W,Ẽ)

is the restriction of a transversally elliptic op-

erator on Γ
(
W, Ẽ

)
.

Corollary 6.3. Let G be a compact Lie group that acts on a Riemannian
n-manifold M be orientation-preserving isometries. Let E −→ M be a G-
equivariant vector bundle, endowed with a metric that is invariant under the
G-action. Suppose that D : Γ(M,E) −→ Γ(M,E) is a G-equivariant, elliptic
differential operator. Then there exists

(1) a vector bundle Ē over an SO(n)-manifold W that is SO(n)-equiva-
riant and inherits a natural SO(n)-invariant metric from the metric
on E, and

(2) a transversally elliptic, SO(n)-equivariant differential operator D̄ :
Γ(W, Ē) −→ Γ(W, Ē),

such that the operators D|ΓG(M,E) and D̄
∣∣
ΓG(W,Ē)

are unitarily equivalent
with respect to the L2 inner products.

Proof. Combine Theorem 6.1 and Theorem 6.2. �

As an example of an application of the corollary above, observe that the
index of any elliptic operator restricted to sections of an equivariant vector
bundle that are invariant under a compact Lie group action is the same as
the index of a transversally elliptic operator acting on O(n)-invariant sections
over an equivariant vector bundle over another manifold (the group O(n) is
replaced by SO(n) if the group action preserves orientation). Of course, this
corollary contains geometric information as well.
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