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MINIMALITY AND HARMONICITY FOR HOPF VECTOR
FIELDS

K. TSUKADA AND L. VANHECKE

Abstract. We determine when the Hopf vector fields on orientable real
hypersurfaces (M, g) in complex space forms are minimal or harmonic.

Furthermore, we determine when these vector fields give rise to harmonic
maps from (M, g) to the unit tangent sphere bundle (T1M, gS). In
particular, we consider the special case of Hopf hypersurfaces and of
ruled hypersurfaces. The Hopf vector fields on Hopf hypersurfaces with
constant principal curvatures provide examples. The minimal ruled real

hypersurfaces form another class of particular examples.

1. Introduction

Let (M, g) be a Riemannian manifold and let (T1M, gS) be its unit tangent
sphere bundle equipped with the Sasaki metric gS . A unit vector field ξ
on (M, g) determines a map from the manifold into its unit tangent sphere
bundle, and the image of this map is a submanifold of M . When M is closed
and orientable, this gives rise to two functionals on the set of unit vector
fields X 1(M): the energy of the map, called the energy of the vector field ξ,
and the volume of the submanifold, called the volume of ξ. These functionals
yield two critical point conditions, which may also be considered on general
Riemannian manifold with non-empty X 1(M). A unit vector field ξ satisfying
the first critical point condition is called a harmonic vector field, and a field ξ
satisfying the second condition is said to be a minimal vector field. A minimal
unit vector field corresponds to a minimal submanifold, but a harmonic unit
vector field does not necessarily yield a harmonic map. We refer to [7], [8],
[9], [10], [14], [20], [22] and [23] for a general treatment of this and related
problems. Examples of minimal and harmonic vector fields have been given
in [5], [6], [7], [8], [11], [12], [13] and [21].

The main purpose of this paper is to consider another natural class of man-
ifolds equipped with a unit vector field. Let (M, g, J) be an almost Hermitian
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manifold and let (M, g) be an orientable real hypersurface with induced met-
ric g. Furthermore, let N be a unit normal vector field of M . Then ξ = −JN
determines a unit tangent vector field on M , called the Hopf vector field. Here
we investigate the harmonicity and minimality condition for ξ and for the case
when the ambient space (M, g, J) is a complex space form. In particular, we
consider this situation when (M, g) is a Hopf hypersurface, that is, when ξ
is an eigenvector of the shape operator, or a ruled real hypersurface which is
not of Hopf type. This again provides a series of examples, in particular for
Hopf hypersurfaces with constant principal curvatures and for minimal ruled
real hypersurfaces.

2. Preliminaries

In this section we recall some basic facts about minimal and harmonic
vector fields, and about orientable real hypersurfaces in complex space forms.

Let (M, g) be an m-dimensional Riemannian manifold of class C∞, ∇ its
Levi Civita connection and R the Riemannian curvature tensor. Furthermore,
let X 1(M) denote the set of all smooth unit vector fields on M which we sup-
pose to be non-empty. A unit vector field ξ can be regarded as an immersion
of M into its unit tangent sphere bundle (T1M, gS), where gS denotes the
Sasaki metric. Then the induced metric ξ∗gS is given by

(ξ∗gS)(X,Y ) = g(X,Y ) + g(∇Xξ,∇Y ξ).

We define two tensor fields of type (1,1), Aξ and Lξ, by

Aξ = −∇ξ, Lξ = I +AtξAξ

and a function f by f(ξ) = (detLξ)1/2. Then, for a closed oriented manifold
M , the energy E(ξ) and the volume Vol(ξ) of ξ are defined by

E(ξ) = 1
2

∫
M

trLξdv = m
2 vol (M) + 1

2

∫
M
|∇ξ|2dv,

Vol (ξ) =
∫
M
f(ξ)dv,

where dv denotes the volume form on (M, g). Note that E(ξ) is, up to con-
stants, equal to the quantity

∫
M
|∇ξ|2dv, known as the total bending of ξ

[22].
The critical point conditions for the functionals E and Vol on X 1(M) have

been derived in [22] and [8], respectively. (See also [7] for a unified treatment.)
To state these conditions, we introduce some tensor fields. The one-forms νξ
and ν̃ξ associated to the unit vector field ξ are defined by

νξ(X) = tr (Z 7→ (∇ZAtξ)X),
ν̃ξ(X) = tr (Z 7→ R(AξZ, ξ)X).

Then ξ is a critical point for the energy functional E if and only if νξ vanishes
on ξ⊥. Here ξ⊥ denotes the distribution determined by tangent vectors or-
thogonal to ξ. A unit vector field ξ on (M, g) is said to be a harmonic vector
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field if νξ vanishes on ξ⊥. A harmonic field ξ does not always give rise to a
harmonic map of (M, g) into (T1M, gS). As was shown in [7], ξ determines a
harmonic map if and only if ξ is harmonic and moreover, ν̃ξ vanishes on the
whole tangent bundle TM .

Next, we define a tensor field Kξ and a one-form ωξ, associated to ξ, by

Kξ = −f(ξ)L−1
ξ Atξ,

ωξ(X) = tr (Z 7→ (∇ZKξ)X).

Then ξ is a critical point for the volume functional Vol if and only if ωξ
vanishes on ξ⊥. A unit vector field ξ is called a minimal vector field if ωξ
vanishes on ξ⊥. A field ξ is minimal if and only if the submanifold ξ(M) is a
minimal submanifold of (T1M, gS) (see [8]).

We now recall some facts about orientable real hypersurfaces in complex
space forms; we refer to [2] and [19] for more details and further references.

We denote by (M(c), g, J) a complex space form of constant holomorphic
sectional curvature c and with real dimension 2n. Let M be a connected,
orientable real hypersurface of M(c) and N a unit normal vector field of M .
For any vector field X on M , we put

(2.1) JX = ϕX + η(X)N, JN = −ξ,
where ϕ is a tensor field of type (1, 1) and ϕX is the tangential part of JX,
η is a one-form and ξ is a unit vector field on M . We also denote by g
the induced Riemannian metric on M . Then (ϕ, ξ, η, g) is an almost contact
metric structure on M , that is, we have

(2.2) ϕ2X = −X + η(X)ξ, η(ξ) = 1, g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y )

for all vector fields X,Y on M . The field ξ is called the Hopf vector field on
M [2].

The Gauss and Weingarten formulas for M are given by

(2.3) ∇XY = ∇XY + g(SX, Y )N, ∇XN = −SX,
where ∇ and ∇ denote the Levi Civita connections of (M̄(c), g) and (M, g)
respectively, and S is the shape operator of M . From (2.1) and (2.3) we obtain

(2.4) (∇Xϕ)Y = η(Y )SX − g(SX, Y )ξ, ∇Xξ = ϕSX.

Furthermore, we have the Gauss and Codazzi equations

R(X,Y )Z =
c

4
{g(Y,Z)X − g(X,Z)Y + g(ϕY,Z)ϕX − g(ϕX,Z)ϕY(2.5)

−2g(ϕX, Y )ϕZ}+ g(SY,Z)SX − g(SX,Z)SY },

(∇XS)Y − (∇Y S)X =
c

4
{η(X)ϕY − η(Y )ϕX − 2g(ϕX, Y )ξ},(2.6)

where R is taken with the sign convention R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].
M is called a Hopf hypersurface if ξ is a principal curvature vector, that

is, if Sξ = αξ. Tubes about complex submanifolds in M(c) provide a class of



444 K. TSUKADA AND L. VANHECKE

nice examples. Hopf hypersurfaces have some remarkable properties. When
c 6= 0, then α is constant, and for principal curvatures λ whose corresponding
principal vectors lie in ξ⊥ (as in [19], we express this by saying that λ is a
principal curvature on ξ⊥) we have the following result.

Proposition 2.1. For X ∈ ξ⊥ and SX = λX, we have

(2λ− α)SϕX = (αλ+
c

2
)ϕX.

Finally, let h = tr S denote the mean curvature of M . Then the following
result holds.

Proposition 2.2. Principal curvatures on ξ⊥ are constant along the in-
tegral curves of ξ. In particular, ξh = 0 for complex space forms of non-zero
curvature.

Proof. Let E be a local unit vector field on ξ⊥ satisfying SE = λE. (As
usual, we restrict to the dense open subset of M on which the multiplicities
of the eigenvalues of S are locally constant, if necessary.) Then, by (2.6), we
have

0 = g((∇ξS)E,E)− g((∇ES)ξ, E)
= ξλ+ (λ− α)g(∇Eξ, E)
= ξλ+ (λ− α)λg(ϕE,E)
= ξλ.

Since α is constant for complex space forms with c 6= 0, it is obvious that
ξh = 0. �

3. Harmonic Hopf vector fields

We start this section by deriving a useful criterion for the harmonicity of
a Hopf vector field.

Theorem 3.1. Let M be a (connected) orientable real hypersurface of a
complex space form M(c). Then the Hopf vector field ξ is harmonic if and
only if

(3.1) Xh− g(ϕS2ξ,X) = 0

for all X ∈ ξ⊥, where h denotes the mean curvature of M .

Proof. Since Aξ = −∇ξ = −ϕS, we have Atξ = Sϕ. Further, let Y be an
arbitrary vector field of ξ⊥ and {E1, · · · , E2n−1} a local orthonormal frame
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field. Then

νξ(Y ) =
2n−1∑
i=1

g((∇EiAtξ)Y,Ei) =
2n−1∑
i=1

g((∇Ei(Sϕ))Y,Ei)

=
2n−1∑
i=1

g((∇EiS)ϕY,Ei) +
2n−1∑
i=1

g(S(∇Eiϕ)Y,Ei).

For the first term we use (2.6) to obtain
2n−1∑
i=1

g((∇EiS)ϕY,Ei) =
2n−1∑
i=1

g((∇ϕY S)Ei, Ei) = (ϕY )h.

For the second term we obtain, using (2.4),
2n−1∑
i=1

g(S(∇Eiϕ)Y,Ei) =
2n−1∑
i=1

g((∇Eiϕ)Y, SEi) = −g(S2ξ, Y ).

Therefore we have
νξ(Y ) = (ϕY )h− g(S2ξ, Y ),

and the required result follows by setting Y = ϕX. �

From this we get immediately, using Proposition 2.2, the following corollary.

Corollary 3.2. Let (M, g) be a Hopf hypersurface in a complex space
form M̄(c), c 6= 0. Then ξ is harmonic if and only if the mean curvature is
constant.

Next, by using (2.5), we obtain

ν̃ξ(X) =
2n−1∑
i=1

g(R(AξEi, ξ)X,Ei)

= −
2n−1∑
i=1

g(R(ϕSEi, ξ)X,Ei)(3.2)

=
c

4
g(ϕSξ,X) + g(SϕS2ξ,X).

This yields the following result.

Proposition 3.3. Let (M, g) be a (connected) orientable real hypersurface
of M(c), c 6= 0, with constant mean curvature. Then ξ determines a harmonic
map of (M, g) into (T1M, gS) if and only if (M, g) is a Hopf hypersurface.

Proof. For a Hopf hypersurface the result follows at once from Corollary
3.2 and (3.2). Conversely, let ξ determine a harmonic map. Then (3.1) yields
ϕS2ξ = 0 and since ν̃ξ(X) = 0 for all X, we then obtain ϕSξ = 0 or, equiva-
lently, Sξ = αξ. Thus, (M, g) is a Hopf hypersurface. �
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Corollary 3.4. The Hopf vector field on a Hopf hypersurface with con-
stant principal curvatures determines a harmonic map.

Note that Hopf hypersurfaces with constant principal curvatures have been
classified in [3] and [15].

Next, we turn to another interesting class of hypersurfaces which are not
of Hopf type. Let M be an orientable real hypersurface of M(c), c 6= 0. If the
distribution ξ⊥ is integrable and each integral submanifold of ξ⊥ is a totally
geodesic submanifold in M(c), then M is called a ruled real hypersurface (see
[16], [17]). For such a hypersurface it is easily seen [17] that the shape operator
satisfies

Sξ = µξ + νU, ν 6= 0,
SU = νξ,(3.3)
SX = 0 for any X ⊥ ξ, U,

where U is a unit vector field of ξ⊥ and µ and ν are differentiable functions
on M . Then the mean curvature h is equal to µ and the Hopf vector field ξ
is not a principal curvature vector. From (2.4) we get ∇Xξ = 0 for X ∈ ξ⊥.
Furthermore, from (2.6) we obtain

(3.4) Xµ− µνg(X,ϕU)− νg(X,∇ξU) = 0, Uµ = ξν,

for X orthogonal to the two-plane field determined by ξ and U . Now, applying
Theorem 3.1, yields the following result.

Proposition 3.5. The Hopf vector field ξ on a ruled real hypersurface is
harmonic if and only if

(3.5) (ϕU)µ− µν = 0, Xµ = 0,

for all X orthogonal to ξ and ϕU .

Corollary 3.6. The Hopf vector field on a minimal ruled real hypersur-
face is always harmonic.

Examples of minimal ruled real hypersurfaces have been given in [1], [4],
[16], and [18].

Note that, since ν̃ξ(X) = c
4νg(ϕU,X), ξ never determines a harmonic map.

4. Minimal Hopf vector fields on Hopf hypersurfaces

In this section we concentrate on the minimality condition for the Hopf
vector field on a Hopf hypersurface M in a complex space form M(c). Let
λi, i = 1, · · · , 2(n− 1), be the principal curvatures corresponding to principal
vectors in ξ⊥, and let U be the dense open subset of M where the multiplicities
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of these principal curvatures are locally constant. Furthermore, let h̃ be the
modified mean curvature function defined by

h̃ =
2(n−1)∑
i=1

arc cot λi

where 0 < arc cot λi < π. Then h̃ is differentiable on U and we have the
following general result.

Theorem 4.1. On U we have

ωξ(X) = f(ξ)dh̃(L−1
ξ ϕX)

for X ∈ ξ⊥.

Proof. On U we choose a local orthonormal frame field {E1, · · · , E2(n−1)}
of ξ⊥ which satisfies SEi = λiEi for i = 1, · · · , 2(n− 1). Since Aξ = −∇ξ =
−ϕS, we have

Lξξ = ξ, LξEi = (1 + λ2
i )Ei

and hence

f(ξ) = (det Lξ)1/2 =

2(n−1)∏
i=1

(1 + λ2
i )

1/2

,

L−1
ξ ξ = ξ , L−1

ξ Ei = (1 + λ2
i )
−1Ei .

Since Kξ = −f(ξ)L−1
ξ Atξ = −f(ξ)L−1

ξ Sϕ, we get Kξξ = 0,Kξ(ξ⊥) ⊂ ξ⊥. In
particular, for X ∈ ξ⊥ we have

g((∇ξKξ)X, ξ) = 0.

Note that ∇ξξ = 0. Therefore we have

ωξ(X) =
2(n−1)∑
i=1

g((∇EiKξ)X,Ei).

Now, put X = ϕEj in this formula to get

(4.1) ωξ(ϕEj) =
2(n−1)∑
i=1

g(∇Ei(KξϕEj), Ei)−
2(n−1)∑
i=1

g(Kξ∇Ei(ϕEj), Ei).

We evaluate the two terms on the right-hand side of this relation.



448 K. TSUKADA AND L. VANHECKE

For the first term we have

2(n−1)∑
i=1

g(∇Ei(KξϕEj), Ei) =
2(n−1)∑
i=1

g(∇Ei(f(ξ)
λj

1 + λ2
j

Ej), Ei)

= Ej(f(ξ)
λj

1 + λ2
j

) + f(ξ)
λj

1 + λ2
j

2(n−1)∑
i=1

g(∇EiEj , Ei).

Furthermore,

Ejf(ξ) = Ej(det Lξ)1/2 =
1
2
f(ξ)Ej(log detLξ)

=
1
2
f(ξ)Ej(log

2(n−1)∏
i=1

(1 + λ2
i )) = f(ξ)

2(n−1)∑
i=1

λi
1 + λ2

i

Ej(λi).

Hence, we get

Ej(f(ξ)
λj

1 + λ2
j

) = f(ξ)

 1
(1 + λ2

j )2
Ej(λj) +

λj
1 + λ2

j

∑
i 6=j

λi
1 + λ2

i

Ej(λi)

 .

Next, we compute the second term in (4.1). We have

2(n−1)∑
i=1

g(Kξ∇Ei(ϕEj), Ei) = f(ξ)
2(n−1)∑
i=1

g(∇Ei(ϕEj), ϕSL−1
ξ Ei)

= f(ξ)
2(n−1)∑
i=1

λi
1 + λ2

i

g(∇Ei(ϕEj), ϕEi)

= f(ξ)
2(n−1)∑
i=1

λi
1 + λ2

i

g(∇EiEj , Ei).

Thus we obtain

ωξ(ϕEj) = f(ξ)

 1
(1 + λ2

j )2
Ej(λj) +

λj
1 + λ2

j

∑
i 6=j

λi
1 + λ2

i

Ej(λi)

+
∑
i 6=j

1− λiλj
(1 + λ2

j )(1 + λ2
i )

(λj − λi)g(∇EiEj , Ei)

 .

Now, by (2.6) we have

Ej(λi) = (λj − λi)g(∇EiEj , Ei) for i 6= j.
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Hence we obtain

ωξ(ϕEj) = f(ξ)
1

1 + λ2
j

2(n−1)∑
i=1

1
1 + λ2

i

Ej(λi)

= −f(ξ)
1

1 + λ2
j

2(n−1)∑
i=1

Ej(arc cot λi)

= −f(ξ)
1

1 + λ2
j

Ej(h̃).

On the other hand, we have

f(ξ)dh̃(L−1
ξ ϕ2Ej) = −f(ξ)

1
1 + λ2

j

Ej(h̃).

The required result now follows. �

Using again Proposition 2.2, we obtain the following corollary.

Corollary 4.2. Let M be a Hopf hypersurface in a complex space form
M(c). Then the Hopf vector field ξ is minimal if and only if h̃ is constant.

This corollary implies that the Hopf vector fields on Hopf hypersurfaces
with constant principal curvatures are always minimal vector fields. When
the holomorphic sectional curvature equals 4, we have a remarkable stronger
result.

Corollary 4.3. Let M be a Hopf hypersurface in M(4). Then the Hopf
vector field is always minimal.

Proof. Put

f(λ) = arc cot λ+ arc cot
αλ+ 2
2λ− α

.

The function f is discontinuous at λ = α/2. Furthermore, we have f ′(λ) = 0
at λ 6= α/2 and

lim
λ→+∞

f(λ) = arc cot
α

2
, lim

λ→−∞
f(λ) = arc cot

α

2
+ π.

Hence, f(λ) = arc cot (α/2) when λ > α/2 and f(λ) = arc cot (α/2) + π
when λ < α/2.

Denote by m+ (respectively m−) the number of principal curvatures which
are larger (respectively smaller) than α/2. The numbers m+ and m− are both
even and locally constant, and since M is connected, they are constant on M .
Therefore we have

h̃ =
m+

2
arc cot

α

2
+
m−
2

(arc cot
α

2
+ π)

= (n− 1) arc cot
α

2
+
m−
2

π.
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Hence, h̃ is constant, and the result follows from Corollary 4.2. �

To conclude this paper, we consider again ruled real hypersurfaces and de-
rive a criterion for the minimality of the Hopf vector field ξ. A straightforward
computation, using the formulas given in Section 3, yields

Kξξ = 0, Kξ(ϕU) =
ν

(1 + ν2)1/2
ξ, KξX = 0 for X ⊥ ξ, ϕU.

Now, let {E0 = ξ, E1, · · · , E2(n−1)} be a local orthonormal frame field. Then,
for Y ∈ ξ⊥ we have

ωξ(Y ) =
2(n−1)∑
i=0

{g(∇Ei(KξY ), Ei)− g(∇EiY,Kt
ξEi)}

= g(∇ξ(KξY ), ξ)− ν

(1 + ν2)1/2
g(∇ξY, ϕU).

Therefore, ξ is minimal if and only if the following conditions are satisfied:

(4.2) g(∇ξU,X) = 0 for all X ⊥ ξ, U ; ξν = 0.

Using (3.4), it follows now that (4.2) holds if and only if (3.5) holds. Thus we
have the following result.

Proposition 4.4. The Hopf vector field on a ruled real hypersurface is
minimal if and only if it is harmonic.

From this result and Corollary 3.6 we deduce the following corollary.

Corollary 4.5. The Hopf vector field on a minimal ruled real hypersur-
face is always minimal.
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