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REGULARITY OF SOLUTIONS TO THE FREE
SCHRÖDINGER EQUATION WITH RADIAL INITIAL DATA

M.C. VILELA

Abstract. We derive weighted smoothing inequalities for solutions of
the free Schrödinger equation. As an application, we give a new proof

of the endpoint Strichartz estimates in the radial case. We also consider
general dispersive equations and obtain similar estimates in this case.

0. Introduction

Consider the homogeneous initial value problem for the free Schrödinger
equation

(1)

{
i∂tu−∆xu = 0, (x, t) ∈ IRn × IR,

u(x, 0) = u0(x),

and denote its solution by eit∆u0. The problem of finding values q, r for which
the LqtLrx-norm of the solution to (1) is controlled by the L2-norm of the initial
data has been extensively studied by several authors. Here LqtLrx denotes the
space of functions F (x, t) such that

‖F‖LqtLrx =

(∫ +∞

−∞

(∫
IRn
|F (x, t)|r dx

)q/r
dt

)1/q

< +∞.

In the case q = r = 2n/(n + 2), such an estimate was given by R. Strichartz
[13], using ideas developed by E. Stein on the restriction properties of the
Fourier transform on curved surfaces; see [11, p. 374], and the papers [15] and
[16] by P. Tomas.

The estimate was extended to the case q 6= r by J. Ginibre and G. Velo
[5], who used these results in an essential manner to study the Initial Value
Problem of semilinear perturbations of (1).

To state the known results we need the following definition.
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Definition 1. The pair (q, r) is an admissible pair if q, r ≥ 2, (q, r, n/2) 6=
(2,∞, 1), and

(2)
2
q

+
n

r
=
n

2
.

Theorem 1. If (q, r) and (q̃, r̃) are admissible, then we have the following
estimates:

‖eit∆u0‖LqtLrx ≤ c ‖u0‖L2 ,(3) ∥∥∥∥∫
IR

e−is∆F (·, s) ds
∥∥∥∥
L2

≤ c ‖F‖
Lq
′
t L

r′
x
,(4) ∥∥∥∥∫

s<t

ei(t−s)∆F (·, s) ds
∥∥∥∥
LqtL

r
x

≤ c ‖F‖
Lq̃
′
t L

r̃′
x
.(5)

The estimates (3) and (4) are equivalent, and a scaling argument shows that
in this case (2) is necessary. For the last inequality the natural restriction is

2
q

+
n

r
+

2
q̃

+
n

r̃
= n,

which is weaker than (2), so it is possible that (5) holds for a larger range
of pairs. The problem of determining the exact set of pairs for which this
estimate holds is still open.

The case when (q, r) or (q̃, r̃) is equal to the critical value

P =
(

2,
2n
n− 2

)
(n ≥ 3)

was recently settled by M. Keel and T. Tao [8]. The noncritical case had been
solved earlier; see [13] and [5] for the estimates (3) and (4), and [19] and [3]
for (5).

When 1 ≤ q < 2, it is easy to construct an example which shows that
(3) and (4) are false. The same counterexample proves that (5) fails when
1/q+1/q̃ > 1. In the case n = 2 the critical point P = (2,∞) is not admissible.
In fact, (3), (4) and (5) do not hold for this critical value; see [9].

In this paper we prove some weighted smoothing inequalities for arbitrary
solutions of the free Schrödinger equation. In the first section we consider the
homogeneous problem, and in the second section the inhomogeneous problem.
Finally, in the last section we recover the endpoint estimates of Strichartz in
the radial case from previous estimates by using only a radial version of the
Sobolev embedding theorem.

1. The homogeneous case

Given a function f and s ∈ IR we define the homogeneous derivative of
order s of f by D̂sf(ξ) = cs|ξ|sf̂(ξ), and the fractional integral of order s
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of f as Isf = D−sf . For any γ ∈ IR, we denote the Lp-space with measure
|x|γ dx dt by Lptx (|x|γ) , and the Lp-space with measure |x|γ dx by Lpx (|x|γ) .

The main result of this section is the following theorem.

Theorem 2. We have

‖Ds
xe
it∆u0‖L2

tx(|x|−α) ≤ c ‖u0‖L2 ,(6) ∥∥∥∥Ds
x

(∫
IR

e−iτ∆F (·, τ) dτ
)∥∥∥∥

L2

≤ c ‖F‖L2
tx(|x|α),(7)

if and only if α = 2(1− s), 1 < α < n and n ≥ 2.

Remark 1. Estimates of this type have also been studied in [18].

Remark 2. We have stated Theorem 2 in terms of the solution to the
Schrödinger equation, but the theorem holds in a more general setting. In
fact, take u to be the solution to the problem{

i∂tu+ (−∆x)a/2u = 0, (x, t) ∈ IRn × IR, a > 0,

u(x, 0) = u0(x),

which we denote by eit∆
a/2
u0. The result in this case is that

‖Ds
xe
it∆a/2

u0‖L2
tx(|x|−α) ≤ c ‖Dβu0‖L2 ,∥∥∥∥Ds

x

(∫
IR

e−iτ∆a/2
F (·, τ) dτ

)∥∥∥∥
L2

≤ c ‖DβF‖L2
tx(|x|α),

hold if and only if α = 2(1− s), 1 < α < n, β = 1− a/2, and n ≥ 2.

Proof of Theorem 2. By duality, (6) and (7) are equivalent, and because of
the scale the restriction α = 2(1− s) is necessary.

In order to prove (6) for 1 < α < n, we use polar coordinates and a change
of variable to write

Ds
xe
it∆u0(x) =

∫
IRn

eix·ξ
(
Ds
xe
it∆u0

)̂
(ξ) dξ

=
∫ +∞

0

eitr
2
rs
(∫

Sn−1
r

eix·ξû0(ξ) dσr(ξ)
)
dr

=
1
2

∫ +∞

0

eitu

(∫
Sn−1√

u

u
s−1

2 eix·ξû0(ξ) dσ√u(ξ)

)
du.
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Using this identity together with Plancherel’s identity in the variable t, we
have

‖eit∆u0‖L2
tx(|x|−α)

= c

∫
IRn
|x|−α

∫ +∞

0

∣∣∣∣∣
∫
Sn−1√

u

u
s−1

2 eix·ξû0(ξ) dσ√u(ξ)

∣∣∣∣∣
2

du dx

1/2

= c

(∫
IRn
|x|−α

∫ +∞

0

∣∣∣∣∫
Sn−1
r

rs−1eix·ξû0(ξ) dσr(ξ)
∣∣∣∣2 r dr dx

)1/2

= c

(∫ +∞

0

(∫
IRn
|x|−α

∣∣∣∣∫
Sn−1
r

eix·ξû0(ξ) dσr(ξ)
∣∣∣∣2 dx

)
r2s−1 dr

)1/2

.

Hence it is enough to prove that∫
IRn
|x|−α

∣∣∣∣∫
Sn−1
r

eix·ξû0(ξ) dσr(ξ)
∣∣∣∣2 dx ≤ c r1−2s

∫
Sn−1
r

|û0(ξ)|2 dσr(ξ).

Since α = 2(1 − s), this inequality is invariant under dilations, so we may
assume without loss of generality that r = 1. Then,∫

IRn
|x|−α

∣∣∣∣∫
Sn−1

eix·ξg(ξ) dσ(ξ)
∣∣∣∣2

=
∫
|x|≤1

|x|−α
∣∣∣∣∫
Sn−1

eix·ξg(ξ) dσ(ξ)
∣∣∣∣2 dx

+
∫
|x|>1

|x|−α
∣∣∣∣∫
Sn−1

eix·ξg(ξ) dσ(ξ)
∣∣∣∣2 dx = I + II.

When α < n, we have

I ≤
∥∥∥∥∫

Sn−1
eix·ξg(ξ) dσ(ξ)

∥∥∥∥2

L∞x

∫
|x|≤1

|x|−α dx

≤ c

(∫
Sn−1

|g(ξ)| dσ(ξ)
)2

≤ c

∫
Sn−1

|g(ξ)|2 dσ(ξ).

To estimate the integral II, we need the following lemma.

Lemma 1 (Trace lemma; see [1]). We have

sup
x0,R

1
R

∫
B(xo,R)

∣∣∣∣∫
Sn−1
r

eix·ξf(ξ) dσr(ξ)
∣∣∣∣2 dx ≤ c ∫

Sn−1
r

|f(ξ)|2 dσr(ξ),
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where the constant c is independent of r, Sn−1
r is the Euclidean sphere of

radius r, dσr is the surface measure, xo ∈ IRn, and R, r > 0.

Dividing the range of integration in II diadically, we can write

II =
+∞∑
j=0

∫
2j<|x|≤2j+1

|x|−α
∣∣∣∣∫
Sn−1

eix·ξg(ξ) dσ(ξ)
∣∣∣∣2 dx

≤ c
+∞∑
j=0

2−j(α−1) 1
2j+1

∫
|x|≤2j+1

∣∣∣∣∫
Sn−1

eix·ξg(ξ) dσ(ξ)
∣∣∣∣2 dx

≤ c

∫
Sn−1

|g(ξ)|2 dσ(ξ).

The last inequality is a consequence of the trace lemma and the fact that
α > 1.

When n = 1, the estimate (6) fails. To see this, take u0 such that û0 is
an even function; then (6) does not hold because cosx /∈ L2

x (|x|−α) for any
α ∈ IR. When n ≥ 2, (6) fails whenever α ≤ 1 or α ≥ n. To see this, take
u0 such that û0 is a radial function; then (6) fails because d̂σ /∈ L2

x (|x|−α) ,
where dσ denotes the surface measure of the unit Euclidean sphere. �

Remark 3. When α = 1 and s = 1/2, then (6) also fails. However, in
this case we have the following substitute of this estimate:

sup
R>0

1
R

∫
B(0,R)

∫ +∞

−∞

∣∣∣D1/2
x eit∆u0(x)

∣∣∣2 dt dx ≤ c ‖u0‖2L2 .

This Kato type smoothing estimate was proved in [4], [10] and [17].

2. The inhomogeneous case

In this section we consider the inhomogeneous Initial Value Problem

(8)

{
i∂tu−∆xu = F (x, t), (x, t) ∈ IRn × IR,

u(x, 0) = 0.

Using Duhamel’s formula we can write the solution of (8) in the form

u(x, t) =
1
i

∫ t

0

ei(t−τ)∆F (x, τ) dτ.

Our main result is the following theorem.

Theorem 3. The solution to the IVP (8) satisfies

(9) ‖Ds1
x u‖L2

tx(|x|−α1 ) ≤ c ‖Is2F‖L2
tx(|x|α2 ),

whenever αi = 2(1− si), 1 < αi < n (i = 1, 2), and n ≥ 2.
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Remark 4. As in the homogeneous case, Theorem 3 can be formulated in
a more general setting for the solution of the IVP (8), where −∆x is replaced
by (−∆x)a/2. In this case we have the estimate

‖Ds1
x u‖L2

tx(|x|−α1 ) ≤ c ‖Dβ
xIs2F‖L2

tx(|x|α2 ),

whenever αi = 2(1− si), β = 1− a/2, 1 < αi < n (i = 1, 2) and n ≥ 2.

Proof of Theorem 3. We follow the argument used in Theorem 2.3 of [7]
and formally write the solution of (8) in the form

u(x, t) = v(x, t)−
(
eit∆v(·, 0)

)
(x),

where

v(x, t) =
∫
IR×IRn

1
|ξ|2 − τ

F̂ x,t(ξ, τ)eitτ+ix·ξ dξ dτ.

Here F̂ x,t denotes the Fourier transform of F in both variables.
To estimate the second term, we use Theorem 2. To control the first term,

we rewrite this term as

v(x, t) =
∫ +∞

−∞
Tτ

(
F̂ t(τ)

)
(x)eitτ dτ,

where Tτ is the Helmholtz operator defined by

(10) T̂τf(ξ) =
1

|ξ|2 − τ
f̂(ξ).

Using Plancherel’s identity in the variable t we have

‖Ds1
x v‖L2

tx(|x|−α1 ) =
∥∥∥∥∥∥∥(Ds1

x Tτ

(
F̂ t(τ)

))̂t(t)∥∥∥
L2
t

∥∥∥∥
L2
x(|x|−α1 )

=
∥∥∥∥∥∥∥Ds1

x Tτ

(
F̂ t(τ)

)∥∥∥
L2
τ

∥∥∥∥
L2
x(|x|−α1 )

(11)

=
∥∥∥∥∥∥∥Ds1

x Tτ

(
F̂ t(τ)

)∥∥∥
L2
x(|x|−α1 )

∥∥∥∥
L2
τ

.

The following proposition will allow us to complete the proof.

Proposition 1. The Helmholtz operator Tτ defined by (10) satisfies

(12) ‖Ds1
x Tτf‖L2(|x|−α1 ) ≤ c ‖Is2f‖L2(|x|α2 ),

whenever αi = 2(1 − si), 1 < αi < n (i = 1, 2), and n ≥ 2. Here c is a
constant independent of τ .
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Using this proposition in (11) and the Plancherel identity in the t variable,
we have

‖Ds1
x v‖L2

tx(|x|−α1 ) ≤ c

∥∥∥∥∥∥∥Is2 F̂ t(τ)
∥∥∥
L2
x(|x|α2 )

∥∥∥∥
L2
τ

= c
∥∥∥∥∥(Is2F )t(τ)

∥∥
L2
τ

∥∥∥
L2
x(|x|α2 )

= c
∥∥∥‖Is2F‖L2

t

∥∥∥
L2
x(|x|α2 )

= c ‖Is2F‖L2
tx(|x|α2 ).

The above formal process can be justified by applying it to the equation

i∂tu−∆xu+ iεu = F (x, t), (x, t) ∈ IRn × IR, ε > 0.

In this case the estimate (9) holds uniformly in ε and the result follows on
letting ε→ 0. �

To prove the proposition we need the following two lemmas.

Lemma 2 ([12]). Let 0 < β < n, 1 < p < ∞ and pβ − n < r < n(p − 1).
Then

‖Iβf‖Lp(|x|r−pβ) ≤ c ‖f‖Lp(|x|r).

Lemma 3 ([6], [7]). Let ϕ ∈ C∞(IR) with supp ϕ ⊆ [−1, 1], ϕ = 1 on the
interval [−1/2, 1/2] and 0 ≤ ϕ ≤ 1. Given s ∈ IR, define the operator S by

Ŝf(ξ) =
|ξ|s

|ξ|2 − 1
ϕ(2(|ξ| − 1))f̂(ξ).

If f has compact support, then

R−1 ‖Sf‖2L2(B(0,R))) ≤ c d(supp f)‖f‖2L2 ,

where d(supp f) is the diameter of the support of f and R > 0.

Proof of Proposition 1. By a scaling argument it is enough to prove (12)
when τ = ±1.

In the case τ = −1 we have no singularity. Therefore |Ds1
x T−1f(x)| ≤

c I2−s1 |f |(x), and the result follows from Lemma 2.
When τ = 1, we take ϕ ∈ C∞0 (IR) with supp ϕ ⊆ [−1, 1], ϕ = 1 on

[−1/2, 1/2] and 0 ≤ ϕ ≤ 1. Let ϕ1(ξ) = ϕ(2(|ξ| − 1)) and ϕ2(ξ) = 1− ϕ1(ξ),
and define the operators T1,1 and T1,2 by

(T1,if )̂ (ξ) = mi(ξ)f̂(ξ) =
|ξ|s1
|ξ|2 − 1

ϕi(ξ)f̂(ξ), i = 1, 2.

Then we have

‖Ds1
x T1f‖L2(|x|−α1 ) ≤ ‖T1,1f‖L2(|x|−α1 ) + ‖T1,2f‖L2(|x|−α1 ).
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The second term can be controlled as in the case τ = −1 because m2

has no singularity. To control the first term, we replace the homogeneous
weights |x|−α1 and |x|α2 with the inhomogeneous weights 〈x〉−α1 and 〈x〉α2 ,
respectively, where 〈x〉 =

(
1 + |x|2

)1/2
. This is possible, by the Littlewood-

Paley localization and the estimates

‖∆0f‖L2(|x|−α1 ) ≤ c ‖f‖L2(〈x〉−α1 ),

‖∆0f‖L2(〈x〉α2 ) ≤ c ‖f‖L2(|x|α2 ),

for 0 ≤ αi < n (i = 1, 2), where ∆0 is the Littlewood-Paley projection to
frequencies |ξ| ∼ 1.

We now divide IRn and decompose f into

IRn =
+∞⋃
j=0

Xj , f =
+∞∑
k=0

fk,

where X0 = {x : |x| ≤ 1}, Xj = {x : 2j−1 < |x| ≤ 2j} for j ≥ 1 and
fk = fχXk . Using these decompositions, Lemma 3, and the Cauchy-Schwarz
inequality, we have

‖T1,1f‖L2(〈x〉−α1 ) ≤
+∞∑
k=0

‖T1,1fk‖L2(〈x〉−α1 )

≤
+∞∑
k=0

+∞∑
j=0

2−jα1 ‖T1,1fk‖2L2(B(0,2j))

1/2

≤ c
+∞∑
k=0

+∞∑
j=0

2−j(α1−1) 2k ‖fk‖2L2

1/2

≤ c
+∞∑
k=0

2k/2 ‖fk‖L2

≤ c

(
+∞∑
k=0

2kα2 ‖fk‖2L2

)1/2

≤ c ‖f‖L2(〈x〉α2 ),

whenever 1 < αi < n (i = 1, 2). �

3. Application

From Theorems 2 and 3 we can derive the Strichartz estimates (3), (4) and
(5) in the critical case and for radial initial data whenever n ≥ 3, using only
the following radial version of the Hardy-Littlewood-Sobolev theorem.
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Lemma 4. Let f be a radial function. Then

‖Isf‖Lq(IRn) ≤ c ‖f‖Lp(|x|−α),

whenever

1
p
− 1
q
≤ s ≤ n

(
1
p
− 1
q

)
, α = p

[
n

(
1
p
− 1
q

)
− s
]
, 1 < p < q <∞.

This lemma can be proved using the ideas in [12]. The fact that f is radial
allows us to reduce s to 1/p− 1/q.

Given a radial initial data u0, e
it∆u0 is radial too, so we can apply Lemma

4 with p = 2 and r = 2n/(n− 2) (n ≥ 3) to obtain

‖eit∆u0‖Lrx ≤ c ‖D
s
xe
it∆u0‖L2

x(|x|−α),

whenever 1/n ≤ s ≤ 1, α = 2(1 − s). Taking the L2-norm in time and using
Theorem 2, we get the estimates

(13) ‖eit∆u0‖L2
tL

r
x
≤ c ‖Ds

xe
it∆u0‖L2

tx(|x|−α) ≤ c ‖u0‖L2 ,

for 1/n ≤ s < 1/2.
The dual version of (13) is∥∥∥∥∫

IR

e−is∆F (·, s) ds
∥∥∥∥
L2

≤ c ‖IsF‖L2
tx(|x|α) ≤ c ‖F‖L2

tL
r′
x
,

and the analogous result for the solution u of the inhomogeneous problem is

(14) ‖u‖L2
tL

r
x
≤ c ‖Ds

xu‖L2
tx(|x|−α) ≤ c ‖IsF‖L2

tx(|x|α) ≤ c ‖F‖L2
tL

r′
x
.

Here F is a radial function in the x-variable, and IsF denotes the fractional
integral in the x variable.

When n = 2 and r = ∞, this method fails because Lemma 4 is false for
p = 2 and q = ∞. However, Tao [14] recently showed that the estimates (3),
(4) and (5) hold in this case for radial data whenever (q̃, r̃) is an admissible
pair.

Estimates similar to (14) have recently been used by Bourgain [2] to prove
the global existence for the defocusing quintic nonlinear Schrödinger equation
with radial data and arbitrary large energy norm. In particular, Bourgain used
estimates such as (14) to prove that solutions which cease to exist in finite
time must concentrate. This property has not been established for dimensions
n ≥ 3, and data in L2, even in the radial case. We shall study these questions
elsewhere.
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