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SOME PROPERTIES OF MEAN CURVATURE VECTORS
FOR CODIMENSION-ONE FOLIATIONS

GEN-ICHI OSHIKIRI

Abstract. Given a codimension-one foliation F of a closed manifold M
and a vector field X on M , we show that if X is transverse to F , then

there are many functions f on M so that fX is the mean curvature
vector of F with respect to some Riemannian metric on M . Further
we give a necessary and sufficient condition for X to become the mean
curvature vector of F with respect to some Riemannian metric on M .

1. Introduction

Let F be a foliation of any codimension of a compact manifold M and X
be a vector field on M . Recently, P. Schweitzer and P. Walczak [9] provided
some necessary and sufficient conditions for X to become the mean curvature
vector of F with respect to some Riemannian metric on M . In this paper,
we focus on codimension-one foliations and study related topics. Given a
codimension-one foliation F of a closed manifold M and a vector field X on
M , we first show that if X is transverse to F , then there are many functions
f on M so that fX is the mean curvature vector of F with respect to some
Riemannian metric on M . Here we can take f such that supp(f) = M , where
supp(f) is the closure in M of the set {x ∈ M |f(x) 6= 0}. Further we give a
necessary and sufficient condition for X to become the mean curvature vector
of F with respect to some Riemannian metric on M . This condition is similar
to the conditions given in the author’s papers [4], [5], [6].

In Section 2 we shall give some definitions and preliminaries and state our
results. We shall prove the results in Section 3. An example and some remarks
are given in Section 4.
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2. Preliminaries and results

In this paper, we work in the C∞-category. In what follows, we always
assume that foliations are of codimension-one and transversely oriented, and
that the ambient manifolds are closed, connected, oriented and of dimension
n+ 1 ≥ 2, unless otherwise stated (see [1], [11] for generalities on foliations).

Let g be a Riemannian metric of M . Then there is a unique unit vector field
orthogonal to F whose direction coincides with the given transverse orienta-
tion. We denote this vector field by N . Orientations of M and F are related
as follows: Let {X1, X2, . . . , Xn} be an oriented local frame of TF . Then the
orientation of M coincides with the one given by {N,X1, X2, . . . , Xn}.

We denote the mean curvature of a leaf L at x with respect to g and N by
hg(x), that is,

hg =
n∑
i=1

〈∇EiEi, N〉,

where 〈, 〉 means g(, ), ∇ is the Riemannian connection of (M, g) and {E1, E2,
. . . , En} is an oriented local orthonormal frame of TF . The vector field Hg =
hgN is called the mean curvature vector of F with respect to g. A smooth
function f on M is called admissible if f = −hg for some Riemannian metric
g (cf. [4], [12]). We also call a vector field X on M admissible if X = Hg for
some Riemannian metric g. First we shall show that there are many admissible
vector fields for any codimension-one foliations of closed manifolds.

Theorem 1. For any vector field Z transverse to a codimension-one foli-
ation F of a closed oriented manifold M , there is a smooth function f on M
with supp(f) = M so that fZ is admissible.

A characterization of admissible functions is given in [6] (see also [4], [5],
[12]). We shall give a similar but rather complicated characterization of ad-
missible vector fields.

Define an n-form χF on M by

χF (V1, . . . , Vn) = det(〈Ei, Vj〉)i,j=1,...,n for Vj ∈ TM.

The restriction χF |L is the volume element of (L,L|g) for L ∈ F .

Proposition (Rummler [7]). dχF = −hgdV (M, g) = divg(N)dV (M, g),
where dV (M, g) is the volume element of (M, g) and divg(N) is the divergence
of N with respect to g, that is, divg(N) =

∑n
i=1〈∇EiN,Ei〉.

Now recall the set-up introduced by Sullivan [10]. Let Dp be the space of
p-currents, and Dp be the space of differential p-forms on M with the C∞

topology. It is well known that Dp is the dual space of Dp (cf. Schwartz [8]).
Let x ∈M and {e1, . . . , en} be an oriented basis of TxF . We define the Dirac
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current δe1∧···∧en by

δe1∧···∧en(φ) = φx(e1 ∧ · · · ∧ en) for φ ∈ Dn,

and the set CF to be the closed convex cone in Dn spanned by the Dirac
currents δe1∧···∧en for all oriented basis {e1, . . . , en} of TxF and x ∈ M . We
denote a base of CF by C, which is an inverse image L−1(1) of a suitable
continuous linear functional L : Dn → R. It is known that the base C
is compact if L is suitably chosen (see Sullivan [10]). In the following, we
assume that C is compact.

Let X be a vector field on M . Define the closed linear subspace P (X) of Dn

generated by all the Dirac currents δX(x)∧v1∧···∧vn−1 with v1, . . . , vn−1 ∈ TxF
and x ∈M (see [9] for more details), where δX(x)∧v1∧···∧vn−1 is defined by

δX(x)∧v1∧···∧vn−1(φ) = φx(X(x) ∧ v1 ∧ · · · ∧ vn−1) for φ ∈ Dn.

Let ∂ : Dn+1 → Dn be the boundary operator and set B = ∂(Dn+1). Within
this setting, we characterize admissible vector fields on M .

Theorem 2. For a vector field X on M , the following two conditions are
equivalent.

(1) X is admissible.
(2) There are a volume element dV , a non-vanishing vector field Z trans-

verse to F whose direction coincides with the given transverse ori-
entation of F , a smooth function f on M , and a neighborhood U of
0 ∈ Dn such that
(i) X = −fZ,
(ii)

∫
M
fdV = 0,

(iii)
∫
c
fdV = 0 for all c ∈ ∂−1(P (X) ∩B),

(iv) inf{
∫
c
fdV | c ∈ ∂−1((C + P (X) + U) ∩B)} > 0.

Note that conditions (ii) and (iv) in this theorem mean that the function
f is admissible. In Section 4, by giving a simple example, we shall show that
the condition X = −fZ with f being admissible is not sufficient for X to be
admissible.

3. Proof of the theorems

To prove Theorem 1, we need some lemmas. As the first two lemmas are
easy to prove, we omit the proofs.

Lemma 1. Let M be a closed manifold and N be a non-vanishing vector
field on M . There is a smooth function ϕ on M such that suppN(ϕ) = M .

Lemma 2. Let M , N and ϕ be as in Lemma 1. For any smooth function
h on M there is a positive constant α > 0 so that supp(h− αN(ϕ)) = M .
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The following lemma is proved in [3, Lemma 3], where the equality H ′ =
e−2ψH in (ii) should be replaced by H ′ = e−ψH.

Lemma 3. Let F be a codimension-one foliation of a Riemannian mani-
fold (M, g), N be the unit vector field orthogonal to F defined as in Section
2, and h be the mean curvature function of F with respect to g.

(i) If ḡ = e2ψg, then h̄ = e−ψ(h−N(ψ)), where h̄ is the mean curvature
function of F with respect to ḡ and the unit vector field N̄ orthogonal
to F with respect to ḡ defined as in Section 2.

(ii) If ḡ|TF ⊗TM = g|TF ⊗TM and ḡ(U, V ) = e2ψg(U, V ) for U and V
orthogonal to F , then h̄ = e−ψh.

(iii) Let Z = ϕN + F be a vector field on M with ϕ > 0 and F ∈ Γ(TF).
Define a Riemannian metric ḡ on M as follows: ḡ = g on TF , and
Z is the unit vector field orthogonal to F with respect to ḡ. Then we
have h̄ = ϕh+ F (logϕ)− divg(F ).

Proof of Theorem 1. We may assume that the direction of Z coincides with
the transverse orientation of F . First choose an arbitrary Riemannian metric
g of M . Let N be the unit vector field orthogonal to F defined as in Section
2. Then Z = ρN + F for some positive smooth function ρ > 0 and F ∈
Γ(F). Define a new Riemannian metric ḡ as in Lemma 3 (iii). Then it
follows that Z is the unit vector field orthogonal to F with respect to ḡ and
h̄ = ρh + F (log ρ)− divg(F ). By Lemma 1 and Lemma 2, there is a smooth
function ϕ and a positive constant α > 0 so that supp(h̄ − Z(αϕ)) = M .
Define a Riemannian metric g′ as in Lemma 3 (i), that is, g′ = e2αϕg. Then
it follows that h′ = e−αϕ(h̄ − Z(αϕ)). As supp(h′) =supp(h̄ − Z(αϕ)) = M
and Z is orthogonal to F , e−αϕh′Z is the mean curvature vector of F with
respect to g′. This completes the proof. �

To prove Theorem 2, we follow the proof given in [4] with some mod-
ifications motivated by [9] (see also Sullivan [10]). To do this we need a
Hahn-Banach theorem of the following form (cf. [2]):

Theorem of Hahn-Banach. Let V be a Fréchet space, W be a closed
subspace of V , and C be a compact convex cone at the origin 0 ∈ V . Let
ρ : W → R be a continuous linear functional of W with ρ(v) > 0 for v ∈
C ∩W \ {0}. Then there is a continuous linear extension η : V → R of ρ so
that η(v) > 0 for v ∈ C \ {0}.

Proof of Theorem 2. (1)⇒(2): Assume that there is a Riemannian metric
g of M so that X is the mean curvature vector of F . Let N be the unit
vector field orthogonal to F , and χF be the n-form defined in Section 2. If
C is chosen to be L−1(1) of a continuous linear functional L : Dn → R with
C being compact, as χF : Dn → R is also continuous, there is a positive



MEAN CURVATURE VECTORS FOR CODIMENSION-ONE FOLIATIONS 163

constant ε > 0 such that χF ≥ ε > 0 on C. We choose U = χ−1
F (−ε/2, ε/2)

as a neighborhood of 0 ∈ Dn. Set dV = dV (M, g), Z = N , and f = divg(N).
We show that dV , Z, f , and U satisfy conditions (i)–(iv) in (2). As X =
hgN = −divg(N)N = −fZ, this shows that condition (i) is satisfied. As M
is closed and oriented, it follows that∫

M

fdV =
∫
M

divg(N)dV (M, g) = 0,

which implies that condition (ii) is satisfied. For c ∈ ∂−1(P (X) ∩ B), as
dχF = fdV (M, g) by the Proposition, we have∫

c

fdV =
∫
c

fdV (M, g) =
∫
c

dχF =
∫
∂c

χF .

Since χF (X,V1, . . . , Vn−1) = χF (−fN, V1, . . . , Vn−1) = 0 for any V1, . . . , Vn−1

∈ TF , it follows that
∫
c
fdV = 0, which shows that condition (iii) is satisfied.

For c ∈ ∂−1((C+P (X)+U)∩B) with ∂c = v+z+u (v ∈ C, z ∈ P (X), u ∈ U),
by the same argument as above, we have∫

c

fdV =
∫
∂c

χF =
∫
v

χF +
∫
z

χF +
∫
u

χF =
∫
v

χF +
∫
u

χF > ε/2 > 0,

because χF = 0 on P (X), χF ≥ ε on the compact set C, and |
∫
u
χF | < ε/2.

This shows that condition (iv) is satisfied.
(2)⇒(1): Let dV , Z, f , U satisfy the conditions of (2). Condition (ii)

implies that fdV = dφ for some φ ∈ Dn. By the duality of Dp and Dp due
to Schwartz, we can regard φ as a continuous linear functional k : Dn → R.
Note that the restriction of k on B = ∂(Dn+1) is independent of the choice
of φ. By condition (iii), we may assume that k|(P (X) ∩ B) = 0. Extend
k : B → R to a function k̃ defined on the subspace P (X) + B by defining
k̃(z+ b) = k(b) for z ∈ P (X) and b ∈ B. As k|(P (X)∩B) = 0, this extension
is well-defined and is continuous on P (X) +B. Note that, by condition (iv),
k̃ > 0 on CF∩(P (X)+B)\{0}. Extend k̃ continuously to a function κ defined
on the closed subspace W = P (X) +B. We have to show that κ(v) > 0 for
v ∈ CF∩W \{0} in order to apply the Hahn-Banach Theorem quoted above to
the case V = Dn, W = P (X) +B, C = CF and ρ = κ. For v ∈ CF ∩W \{0},
as C is a base of CF , there is a positive number a > 0 so that av ∈ C. As
κ(v) = κ(av)/a and a > 0, it is sufficient to show that κ(v) > 0 for v ∈ C∩W .

Take v ∈ C ∩W and a net {wλ : λ ∈ Λ} converging to v (cf. [2]). As
W = P (X) +B, we can take wλ = zλ + bλ with zλ ∈ P (X) and bλ ∈ B. Set
uλ = v − zλ − bλ. Then, as {wλ} converges to v, uλ converges to 0. Since
U is a neighborhood of 0 ∈ Dn, there is a λ0 ∈ Λ so that vλ ∈ U for all
λ ≥ λ0. Thus bλ = v − zλ − uλ ∈ (C + P (X) + U) ∩ B. By assumption, it
follows that κ(bλ) ≥ ε > 0. Note that uλ ∈W = Dom(κ) because v ∈W and
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zλ + bλ ∈ P (X) +B ⊂W for λ ≥ λ0. It follows that

κ(v) = κ(zλ + bλ + uλ)

= κ(zλ) + κ(bλ) + κ(uλ)

= κ(bλ) + κ(uλ) for all λ ≥ λ0.

As {uλ} converges to 0, {κ(uλ)} converges to 0. Thus we have κ(v) > 0, since
κ(bλ) ≥ ε > 0.

By applying the Hahn-Banach Theorem in this situation, we obtain a con-
tinuous linear map η : Dn → R with η|B = k|B , η(v) > 0 for v ∈ CF \ {0},
and η(z) = 0 for z ∈ P (X). By the duality due to Schwartz, we have an
n-form χ on M so that χ > 0 on F , dχ = fdV , and ιXχ = 0, where ιX is the
interior product.

Now define a Riemannian metric g as follows: On each leaf L ∈ F , χ|L
is the volume form of (L, g|L), kerχ is orthogonal to F , and on kerχ the
metric is determined by requiring dV (M, g) = dV , where dV is the n-form in
condition (2). Choose the unit vector field N orthogonal to F as in Section
2. As ιXχ = 0 and both kerχ and N are orthogonal to F , if X(x) 6= 0,
then X(x) and N(x) are linearly dependent. Thus the directions of Z(x) and
N(x) coincide on the set {x ∈ M | X(x) 6= 0}, and, consequently, on the set
supp(X). Since Z and N are defined globally on M , there is a smooth function
α on M so that N = e−2αZ on supp(X). Thus, we have fN = e−2αfZ on M .
By the relation fdV = dχ = −hgdV (M, g) and condition (i), it follows that
Hg = hgN = −fN = −e−2αfZ = e−2αX on M . We deform this metric g into
ḡ as follows: g|TF ⊗ TM = ḡ|TF ⊗ TM and g(U, V ) = e2αḡ(U, V ) for U and
V orthogonal to F . By Lemma 3 (ii), it follows that Hg = e−2αHḡ, where Hg

(resp. Hḡ) is the mean curvature vector of F with respect to the metric g (resp.
ḡ). With respect to this metric ḡ we have X = e2αHg = e2αe−2αHḡ = Hḡ,
which completes the proof. �

Remark. Note that if the subspace P (X)+B is already closed, it is easy
to see that condition (iv) can be weakened to the following condition, which
does not need any assumption on the existence of U :∫

c

fdV > 0 for all c ∈ ∂−1((C + P (X)) ∩B).

However, the closedness of P (X) +B seems to be not so easy to show.

4. Example and a concluding remark

In this section, we give a simple example which shows that the condition
X = −fZ with f being admissible is not sufficient for X to be admissible.

Let T 2 be the two dimensional torus with the canonical coordinate {x, y}.
Define a foliation F by {S1 × {y} | y ∈ S1}. As this foliation is taut, any
smooth function f on T 2 with f(x) ·f(y) < 0 for some x, y ∈ T 2 is admissible.
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Take the vector filed ∂y as a transverse vector field Z to F , choose a smooth
function f which is positive except in a small neighborhood U of a fixed point
(x0, y0) ∈ T 2, where f(x0, y0) < 0, and set X = −fZ. We show that X
cannot be the mean curvature vector with respect to any Riemannian metric
of T 2.

Assume that there is a Riemannian metric g of T 2 so that the mean
curvature vector is X = −fZ. Take the unit normal vector field N to F
such that 〈N,Z〉 > 0. Then divg(N) = −〈X,N〉. Take a compact domain
D = [a, b]×S1 ⊂ T 2 with D∩U = ∅. Then we have

∫
D

divg(N) =
∫
∂D
〈ν,N〉,

where ν is the unit vector field orthogonal to ∂D and is pointing outwards to
D on ∂D. As ν is tangent to F , 〈ν,N〉 = 0, which means that

∫
D

divg(N) = 0.
On the other hand, since divg(N) = −〈X,N〉 = f〈Z,N〉 > 0 on D, we have∫
D

divg(N) > 0. This is a contradiction.
As is explained in [9], if X has a closed orbit and the holonomy is expanding

along the orbit, then X cannot be admissible, because the area of a piece of
leaves decreases under the mean curvature flow. Note that this property
of X is independent of the given codimension-one foliations. In this case,
(P (X)+B)∩C might not be empty even though P (X)∩C = ∅ and B∩C = ∅.
Thus condition (iv) in Theorem 2 seems to be difficult to check. Further
interesting and complicated examples are discussed in [9]. It seems to be of
some interest to study the geometric conditions under which conditions (iii)
and (iv) in Theorem 2 are satisfied.
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