LINEAR RESOLVENT GROWTH OF A WEAK CONTRACTION DOES NOT IMPLY ITS SIMILARITY TO A NORMAL OPERATOR

S. KUPIN AND S. TREIL

Abstract

It was shown in [1] that if T is a contraction in a Hilbert space with finite defect (i.e., $\|T\| \leq 1$ and $\operatorname{rank}\left(I-T^{*} T\right)<\infty$), and if the spectrum $\sigma(T)$ does not coincide with the closed unit disk $\overline{\mathbb{D}}$, then the Linear Resolvent Growth condition $$
\left\|(\lambda I-T)^{-1}\right\| \leq \frac{C}{\operatorname{dist}(\lambda, \sigma(T))}, \lambda \in \mathbb{C} \backslash \sigma(T)
$$ implies that T is similar to a normal operator. The condition $\operatorname{rank}\left(I-T^{*} T\right)<\infty$ measures how close T is to a unitary operator. A natural question is whether this condition can be relaxed. For example, it was conjectured in [1] that this condition can be replaced by the condition $I-T^{*} T \in \mathfrak{S}_{1}$, where \mathfrak{S}_{1} denotes the trace class. In this note we show that this conjecture is not true, and that, in fact, one cannot replace the condition $\operatorname{rank}\left(I-T^{*} T\right)<\infty$ by any reasonable condition of closeness to a unitary operator.

Notation

We denote by \mathbb{D} the unit disk $\{z \in \mathbb{C}:|z|<1\}$ in the complex plane \mathbb{C}. We write $s_{n}(A)$ for the singular number of the operator A, defined by

$$
s_{n}(A)=\inf \{\|A-K\|: \operatorname{rank} K \leq n\}, \quad s_{0}(A)=\|A\|
$$

For a compact operator A, the sequence $s_{k}(A)^{2}, k=0,1,2, \ldots$, is exactly the system of eigenvalues of $A^{*} A$ (counting multiplicities) taken in decreasing order.

For $p>0$, we denote by \mathfrak{S}_{p} the Schatten-von-Neumann class of compact operators A such that $\sum_{k=1}^{\infty} s_{k}(A)^{p}<\infty$, and we write $\|A\|_{\mathfrak{S}_{p}}:=$ $\left(\sum_{0}^{\infty} s_{n}(A)^{p}\right)^{1 / p}$ for the norm in \mathfrak{S}_{p}.

[^0]
0. Introduction and main results

In this note we are concerned with the question of similarity of an operator to a normal operator. We recall that two operators A and B are similar if there exists a (bounded) invertible operator R such that $A=R B R^{-1}$. Similarity of an operator T to a normal operator means that the operator T admits a rich functional calculus, so that, for example, $f(T)$ is well defined for any continuous function f on the complex plane \mathbb{C}.

We first give a brief overview of the history of this question. Probably the first criterion for the similarity of a contraction to a unitary operator was given in a paper by B. Sz.-Nagy and C. Foias [10]. (Recall that an operator T is called a contraction if $\|T\| \leq 1$.) This result was transformed into a resolvent test by I. Gohberg and M. Krein [5]. Further progress on the subject was made by N. Nikolski and S. Khruschev [8] who obtained a counterpart of the Gohberg-Klein result for contractions with spectra inside the unit disk \mathbb{D} and defect operators of rank one. In [1], N.E. Benarama and N. Nikolski generalized this test to contractions of arbitrary finite defects.

Since for a normal operator N the norm of the resolvent can be computed as

$$
\left\|(N-\lambda I)^{-1}\right\|=\frac{1}{\operatorname{dist}(\lambda, \sigma(N))}
$$

the condition

$$
\begin{equation*}
\left\|(T-\lambda I)^{-1}\right\| \leq \frac{C}{\operatorname{dist}(\lambda, \sigma(T))} \tag{0.1}
\end{equation*}
$$

which we will call the Linear Resolvent Growth (LRG) condition, is necessary for the operator T to be similar to a normal operator. However, this condition is clearly not sufficient for similarity to a normal operator: multiplication by the independent variable z on the Hardy space H^{2} clearly satisfies (0.1), but the similarity property does not hold.

However, if the spectrum of an operator is "thin" and the operator is close to a "good" operator, one can expect that the LRG condition (0.1) is sufficient for similarity to a normal operator.

In [1] it was shown that, if a contraction T is close to a unitary operator in the sense that it has a finite rank defect $I-T^{*} T$, and its spectrum does not coincide with the closed unit disk $\overline{\mathbb{D}}$, then LRG implies similarity to a normal operator. It was also shown that for a contraction T the condition $I-T^{*} T \in \mathfrak{S}_{p}, p>1$, where \mathfrak{S}_{p} stands for the Schatten-von-Neumann class, is not sufficient, and it was conjectured that the condition $I-T^{*} T \in \mathfrak{S}_{1}$ (together with the assumption that the spectrum is not the whole closed unit disk $\overline{\mathbb{D}}$) guarantees the equivalence of LRG and similarity to a normal operator.

We will show in this note that this is not the case, i.e., that one can find a contraction T, with simple countable spectrum and such that $I-T^{*} T \in \mathfrak{S}_{1}$
(or even $I-T^{*} T \in \cap_{p>0} \mathfrak{S}_{p}$), which satisfies LRG, but is not similar to a normal operator. Furthermore, we will show that no reasonable condition of closeness to a unitary operator (except for the finite rank defect of $I-T^{*} T$) implies that LRG is equivalent to similarity to a normal operator.

Let us explain what we mean by a "reasonable" condition. Suppose we have a function Φ (that measures how small an operator (defect) is) with values in $\mathbb{R}_{+} \cup\{\infty\}$, which is defined on the set of non-negative operators in a Hilbert space H, satisfies $\Phi(\mathbf{0})=0$ and has the following properties:
(1) Φ is increasing, i.e., $\Phi(A) \leq \Phi(B)$ if $A \leq B$;
(2) $\Phi(A)<\infty$ if $\operatorname{rank} A<\infty$;
(3) Φ is upper semicontinuous, i.e., if $A_{n} \nearrow A$ (that is, $A_{n} \leq A$ and $\left.\left\|A_{n}-A\right\| \rightarrow 0\right)$, then $\Phi(A) \leq \lim _{n} \Phi\left(A_{n}\right) ;$
(4) Φ is lower semicontinuous in the following weak sense: if $\operatorname{rank} A<$ ∞, and $\operatorname{rank} A_{n} \leq N$ for some $N<\infty$, and $\lim _{n}\left\|A_{n}\right\|=0$, then $\lim _{n} \Phi\left(A \oplus A_{n}\right)=\Phi(A)$ (where $A \oplus B$ means that range $A \perp$ range B and $\left.(\operatorname{Ker} A)^{\perp} \perp(\operatorname{Ker} B)^{\perp}\right)$.
We extend Φ to non-selfadjoint operators by putting $\Phi(A):=\Phi\left(\left(A^{*} A\right)^{1 / 2}\right)$.
The following are examples of functions Φ of this type:
(1) $\Phi(A)=\|A\|_{\mathfrak{S}_{p}}=\left(\sum s_{n}(A)^{p}\right)^{1 / p}$, where $s_{n}(A)$ is nth singular value of the operator A. In this case $\Phi(A)<\infty$ means exactly $A \in \mathfrak{S}_{p}$;
(2) $\Phi(A):=\sum_{n=1}^{\infty} 2^{-n}\|A\|_{\mathfrak{S}_{1 / n}} /\left(1+\|A\|_{\mathfrak{S}_{1 / n}}\right)$; in this case, $\Phi(A)<\infty$ if and only if $A \in \bigcap_{p>0} \mathfrak{S}_{p} ;$
(3) Any weighted sum of singular numbers, such as

$$
\Phi(A)=\sum_{1}^{\infty} 2^{2^{n}} s_{n}(A)
$$

(4) The function

$$
\Phi_{\psi}(A):=\sum_{0}^{\infty} \psi\left(s_{n}(A)\right)
$$

where $\psi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is increasing, continuous at 0 , and satisfies $\psi(0)=0$. The condition $\Phi_{\psi}(A)<\infty$ characterizes the class \mathfrak{S}_{ψ}, introduced in [1], i.e., we have $A \in \mathfrak{S}_{\psi}$ if and only if $\Phi_{\psi}(A)<\infty$. Note that if we allow $\psi(0)$ to be positive, then for any ψ satisfying $\psi(0)>0$ the class \mathfrak{S}_{ψ} is just the ideal of finite rank operators.
Our main result is the following theorem.
Theorem 0.1. Let Φ be a function satisfying the conditions (1)-(4) above. Given $\varepsilon>0$, there exists a contraction T on a Hilbert space H with the following properties.
(1) The spectrum $\sigma(T)$ is a countable subset of the closed unit disk $\overline{\mathbb{D}}$;
(2) $T=I+K$, where $\Phi(K) \leq \varepsilon$ and $\Phi\left(K^{*}\right) \leq \varepsilon$;
(3) $\Phi\left(I-T^{*} T\right) \leq \varepsilon$ and $\Phi\left(I-T T^{*}\right) \leq \varepsilon$;
(4) T satisfies the Linear Resolvent Growth condition

$$
\left\|(T-\lambda I)^{-1}\right\| \leq \frac{C}{\operatorname{dist}(\lambda, \sigma(T))}
$$

(5) T is not similar to a normal operator.

The authors are thankful to Professor N. Nikolski for turning their attention to this problem and for stimulating discussions on the subject.

1. Proof of the main result

1.1. Preliminaries about bases. Before proceeding to the proof, we recall some well-known facts about bases in a Hilbert space. An exhaustive treatment of the subject can be found on pages 131-133 and 135-142 of the monograph [7]. (See also the papers $[12,13,14]$.)

Let $\left\{f_{n}\right\}_{1}^{\infty}$ be a complete system of vectors in a Hilbert space H. The system is called a basis if any vector $f \in H$ admits a unique decomposition

$$
f=\sum_{1}^{\infty} c_{n} f_{n}
$$

where the series converges (in the norm of H), and the system is called an unconditional basis if it is a basis and the series converges unconditionally (i.e., converges for any reordering).

A complete system is called a Riesz basis if it is equivalent to the orthonormal basis, i.e., if there exists a bounded invertible operator R (the so-called orthogonalizer) such that $R f_{n}=e_{n}$ for all n, where $\left\{e_{n}: n=1,2, \ldots\right\}$ is some orthonormal basis. Clearly, an orthogonalizer is unique up to a unitary factor on the left. The quantity $r\left(\left\{f_{n}\right\}\right):=\|R\| \cdot\left\|R^{-1}\right\|$ is therefore well defined and could serve as a measure of non-orthonormality of the Riesz basis $\left\{f_{n}\right\}$.

Clearly, a Riesz basis is an unconditional basis. Although we do not need this in this paper, we note that the converse is also true: a theorem due to Köthe and Töplitz states that a normalized unconditional basis (with $0<$ $\left.\inf \left\|f_{n}\right\| \leq \sup \left\|f_{n}\right\|<\infty\right)$ is a Riesz basis.

We also mention the connection between Riesz bases and similarity to normal operators. It is a trivial observation that if T is an operator with simple eigenvalues and with a complete system of eigenvectors $f_{n}, n=1,2, \ldots$, then T is similar to a normal operator if and only if the system of eigenvectors is a Riesz basis. In this case the similarity transformation is given by an orthogonalizer R, and $R T R^{-1}$ is a normal operator.
1.2. Global construction. Suppose we have constructed a sequence of finite rank operators $A_{n}: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$, with simple spectrum, and let $\left\{f_{k}^{n}\right\}_{k=1}^{n}$ be the system of normalized (i.e., $\left\|f_{k}^{n}\right\|=1$) eigenvectors of A_{n}. Suppose, moreover, that the operators A_{n} (which we do not require to be contractions) have the following properties:
(1) The operators A_{n} satisfy LRG uniformly, i.e., we have

$$
\left\|\left(A_{n}-\lambda I\right)^{-1}\right\| \leq \frac{C}{\operatorname{dist}\left(\lambda, \sigma\left(A_{n}\right)\right)}
$$

where the constant C does not depend on n.
(2) We have $\lim _{n} r\left(\mathcal{F}_{n}\right)=\infty$, where $r\left(\mathcal{F}_{n}\right)=\left\|R_{\mathcal{F}_{n}}\right\| \cdot\left\|R_{\mathcal{F}_{n}}^{-1}\right\|$ is the measure of non-orthogonality of the system $\mathcal{F}_{n}=\left\{f_{k}^{n}\right\}_{k=1}^{N_{n}}$ of the eigenvectors of A_{n}. (Recall that $R_{\mathcal{F}_{n}}$ is the orthogonalizer of the system \mathcal{F}_{n}.)
We now show that this implies the assertion of Theorem 0.1.
We construct an operator $T=\oplus_{n=1}^{\infty}\left(a_{n} A_{n}+b_{n} I\right)$, where $\left|b_{n}\right|<1, \lim _{n} b_{n}=$ 1 and $\lim _{n} a_{n}=0$. We choose the numbers a_{n} and b_{n} such that the spectra of the summands $a_{n} A_{n}+b_{n} I$ do not intersect, so that the resulting operator has a simple spectrum.

Since the linear transformation $A \mapsto a A+b I$ does not change the LRG condition, and, moreover, does not change the constant in this condition (we leave the proof of this fact as a simple exercise for the reader), the operator T satisfies $\left\|(T-\lambda I)^{-1}\right\| \leq C / \operatorname{dist}(\lambda, \sigma(T))$.

Furthermore, since the same linear transformation does not change the system of eigenvectors, we can conclude that the system \mathcal{F} of eigenvectors of T is the direct sum of eigenvectors of all A_{n}, i.e., $\mathcal{F}:=\oplus_{n=1}^{\infty} \mathcal{F}_{n}$.

Since $r\left(\mathcal{F}_{n}\right) \rightarrow \infty$ by Property (2) of A_{n}, the system \mathcal{F} of eigenvectors of T is not a Riesz basis, and therefore (since T has simple spectrum) T is not similar to a normal operator.

It remains to show that one can choose numbers a_{n} and b_{n} such that the operator T is close to a unitary operator, in the sense that $\Phi(I-T) \leq \varepsilon$, $\Phi(I-T)^{*} \leq \varepsilon, \Phi\left(I-T^{*} T\right) \leq \varepsilon$, and $\Phi\left(I-T T^{*}\right) \leq \varepsilon$.

We will construct the numbers a_{n}, b_{n} by induction. We will always take a_{n} to satisfy $\left|a_{n}\right| \cdot\left\|A_{n}\right\|<1-\left|b_{n}\right|$. Under this assumption we have

$$
\left\|I-T_{n}\right\|<1-\left|b_{n}\right|+\left|1-b_{n}\right| \leq 2 \cdot\left|1-b_{n}\right|
$$

The simple identity $(I-\Delta)^{*}(I-\Delta)=I-\Delta-\Delta^{*}-\Delta^{*} \Delta$ (applied to $\Delta=I-T_{n}$, $\Delta=I-T_{n}^{*}$) implies that in this case

$$
\left\|I-T^{*} T\right\|,\left\|I-T T^{*}\right\|<6 \cdot\left|1-b_{n}\right|
$$

if $\left|1-b_{n}\right| \leq 1 / 2$.

Therefore, by taking b_{n} sufficiently close to 1 (and a_{n} so that $\left|a_{n}\right| \cdot\left\|A_{n}\right\|<$ $1-\left|b_{n}\right|$ holds) we can make the norms of the finite rank operators $I-T_{n}$, $I-T_{n}^{*} T_{n}$, and $I-T_{n} T_{n}^{*}$, where $T_{n}=a_{n} A_{n}+b_{n} I$, as small as we want.

Since $\Phi(\mathbf{0})=0$, Property (4) of Φ implies that we can choose a contraction $T_{1}=a_{1} A_{1}+b_{1} I$ such that

$$
\begin{aligned}
\Phi\left(I-T_{1}\right) & \leq \varepsilon / 2, & & \Phi\left(I-T_{1}\right)^{*} \leq \varepsilon / 2 \\
\Phi\left(I-T_{1}^{*} T_{1}\right) & \leq \varepsilon / 2, & & \Phi\left(I-T_{1} T_{1}^{*}\right) \leq \varepsilon / 2
\end{aligned}
$$

Assume we have constructed the finite rank contractions $T_{k}=a_{k} A_{k}+b_{k} I$, $k=1,2, \ldots, n-1$, such that the operator $T^{(n-1)}=T_{1} \oplus T_{2} \oplus \ldots \oplus T_{n-1}$ satisfies $\left\|T^{(n-1)}\right\|<1$, has simple spectrum, and satisfies

$$
\begin{aligned}
\Phi\left(I-T^{(n-1)}\right) & \leq\left(1-2^{-(n-1)}\right) \varepsilon \\
\Phi\left(I-T^{(n-1) *}\right) & \leq\left(1-2^{-(n-1)}\right) \varepsilon \\
\Phi\left(I-T^{(n-1) *} T^{(n-1)}\right) & \leq\left(1-2^{-(n-1)}\right) \varepsilon \\
\Phi\left(I-T^{(n-1)} T^{(n-1) *}\right) & \leq\left(1-2^{-(n-1)}\right) \varepsilon
\end{aligned}
$$

By making the norm $\left\|I-T_{n}\right\|$ sufficiently small we can guarantee that the operator $T^{(n)}=T_{1} \oplus T_{2} \oplus \ldots \oplus T_{n}$ has simple spectrum and satisfies $\left\|T^{(n)}\right\|<1$. Moreover, Property (4) of Φ implies that one can choose $T^{(n)}$ so that, in addition,

$$
\begin{aligned}
\Phi\left(I-T^{(n)}\right) & \leq\left(1-2^{-n}\right) \varepsilon \\
\Phi\left(I-T^{(n) *}\right) & \leq\left(1-2^{-n}\right) \varepsilon \\
\Phi\left(I-T^{(n) *} T^{(n)}\right) & \leq\left(1-2^{-n}\right) \varepsilon \\
\Phi\left(I-T^{(n)} T^{(n) *}\right) & \leq\left(1-2^{-n}\right) \varepsilon
\end{aligned}
$$

Property (3) of Φ implies that the operator $T=\oplus_{n=1}^{\infty} T_{n}$ satisfies

$$
\begin{aligned}
\Phi(I-T) & \leq \varepsilon, & & \Phi\left(I-T^{*}\right) \leq \varepsilon \\
\Phi\left(I-T^{*} T\right) & \leq \varepsilon, & & \Phi\left(I-T T^{*}\right) \leq \varepsilon
\end{aligned}
$$

This completes the proof of Theorem 0.1, modulo the constructing of A_{n}.
1.3. More preliminaries about bases. We will need more information about bases. Let $f_{n}, n=1,2, \ldots$, be a linearly independent sequence of vectors. Let P_{n} denote the projection onto the first n vectors of the system, defined by $P_{n} \sum c_{k} f_{k}=\sum_{1}^{n} c_{k} f_{k}$. (The operators P_{n} are well defined on finite linear combinations of f_{k}.) The following characterization of bases is well-known; see, for example, [11, pp. 46-47], or [15, pp. 37-39].

Theorem 1.1 (Banach Basis Theorem). A complete system of vectors f_{k}, $k=1,2, \ldots$, is a basis if and only if $\sup _{n}\left\|P_{n}\right\|=: K<\infty$.

If one a priori assumes that the projections P_{n} are bounded, then the theorem is just the Banach-Steinhaus Theorem.

We will need the following corollary characterizing the bases in terms of so-called multipliers. For a numerical sequence $\alpha:=\left\{\alpha_{n}\right\}_{1}^{\infty}$, let M_{α} be a multiplier, defined by

$$
M_{\alpha} f_{n}=\alpha_{n} f_{n}, \quad n=1,2, \ldots
$$

(A priori, M_{α} is defined only on finite linear combinations $\sum c_{k} f_{k}$.) For a sequence α its variation $\operatorname{var}(\alpha)$ is defined by

$$
\operatorname{var} \alpha:=\sum_{1}^{\infty}\left|a_{k}-a_{k+1}\right| .
$$

Clearly, if $\operatorname{var} \alpha<\infty$, the limit $\lim _{n} \alpha_{n}=: \alpha_{\infty}$ exists and is finite.
Corollary 1.2. Let a system of vectors $f_{n}, n=1,2, \ldots$, be a basis. If for a numerical sequence $\alpha=\left\{\alpha_{n}\right\}_{1}^{\infty}$ we have var $\alpha<\infty$, then

$$
\left\|M_{\alpha}\right\| \leq K \operatorname{var} \alpha+\left|\alpha_{\infty}\right|
$$

where K is the constant from the Banach Basis Theorem (Theorem 1.1), and $\alpha_{\infty}:=\lim _{n} \alpha_{n}$.

Proof. The result follows immediately from the formula

$$
M_{\alpha}=\sum_{n=1}^{\infty}\left(\alpha_{n}-\alpha_{n+1}\right) P_{n}+\alpha_{\infty} I
$$

where the operators P_{n} are the projections in the Banach Basis Theorem.
REMARK 1.3. The above corollary holds for bases in finite-dimensional spaces as well: one simply has to extend the finite sequence α to an infinite sequence, by adding zeroes.

Remark 1.4. Although we do not need this fact here, we mention that the converse of Corollary 1.2 is also true. Namely, a system of vectors f_{n}, $n=1,2, \ldots$, is a basis if and only if for any numerical sequence α of bounded variation the corresponding multiplier M_{α} is bounded. The proof is quite easy; see [7, 11].
1.4. Construction of the operators A_{n}. To construct the operators A_{n} described in Section 1.2, consider a normalized $\left(\left\|f_{n}\right\|=1\right)$ system of vectors $\mathcal{F}:=\left\{f_{n}\right\}_{1}^{\infty}$, which is a basis but not a Riesz basis. Such systems do exist; an example is given in Section 2 below. The measure of non-orthogonality of this system is

$$
r(\mathcal{F}):=\left\|R_{\mathcal{F}}\right\| \cdot\left\|R_{\mathcal{F}}^{-1}\right\|=\infty
$$

Therefore, for finite truncations $\mathcal{F}_{n}=\left\{f_{k}\right\}_{k=1}^{n}$ we have

$$
r\left(\mathcal{F}_{n}\right):=\left\|R_{\mathcal{F}_{n}}\right\| \cdot\left\|R_{\mathcal{F}_{n}}^{-1}\right\| \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

We define operators A_{n} as follows. Let $\left\{\lambda_{n}\right\}_{1}^{\infty}$ be a strictly increasing sequence of real numbers. Define an operator A_{n} on $\mathcal{L}\left\{f_{k}: k=1, \ldots N_{n}\right\}$ by $A_{n} f_{k}=\lambda_{k} f_{k}$. It is easy to see that the operator A_{n} has simple spectrum, and that Property (2) of A_{n} is satisfied.

We have to show that Property (1) holds, i.e., that

$$
\left\|\left(A_{n}-\lambda I\right)^{-1}\right\| \leq \frac{C}{\operatorname{dist}\left(\lambda, \sigma\left(A_{n}\right)\right)}
$$

To estimate the norm $\left\|\left(A_{n}-\lambda I\right)^{-1}\right\|$ we will use Corollary 1.2. Namely, if we put $\alpha:=\left\{\alpha_{k}\right\}_{1}^{\infty}$ with

$$
\alpha_{k}= \begin{cases}\left(\lambda_{k}-\lambda\right)^{-1}, & k \leq n \\ 0, & k>n\end{cases}
$$

then

$$
\left\|\left(A_{n}-\lambda I\right)^{-1}\right\| \leq\left\|M_{\alpha}\right\| \leq K \cdot \operatorname{var} \alpha
$$

Thus, we need to show that

$$
\operatorname{var} \alpha \leq \frac{C}{\operatorname{dist}\left(\lambda, \sigma\left(A_{n}\right)\right)}
$$

Suppose first that $\lambda_{m} \leq \operatorname{Re} \lambda<\lambda_{m+1}$ for some $m \in\{1,2, \ldots, n-1\}$. Then

$$
\operatorname{var} \alpha=\sum_{k=1}^{m-1}\left|\alpha_{k}-\alpha_{k+1}\right|+\sum_{k=m+1}^{n-1}\left|\alpha_{k}-\alpha_{k+1}\right|+\left|\alpha_{m}-\alpha_{m+1}\right|+\left|\alpha_{n}\right|
$$

The last two terms are easy to estimate:

$$
\left|\alpha_{m}-\alpha_{m+1}\right|+\left|\alpha_{n}\right| \leq\left|\alpha_{m}\right|+\left|\alpha_{m+1}\right|+\left|\alpha_{n}\right| \leq \frac{3}{\operatorname{dist}\left(\lambda, \sigma\left(A_{n}\right)\right)}
$$

For the first term, we use the estimate

$$
\begin{aligned}
\sum_{k=1}^{m-1}\left|\alpha_{k}-\alpha_{k+1}\right| & \leq \sum_{k=1}^{m-1}\left|\frac{1}{\lambda_{k}-\lambda}-\frac{1}{\lambda_{k+1}-\lambda}\right| \\
& =\sum_{k=1}^{m-1}\left|\int_{\lambda_{k}}^{\lambda_{k+1}} \frac{d z}{(z-\lambda)^{2}}\right| \leq \int_{\lambda_{1}}^{\lambda_{m}} \frac{d z}{|z-\lambda|^{2}} \leq \frac{C}{\left|\lambda-\lambda_{m}\right|}
\end{aligned}
$$

Similarly, we have

$$
\sum_{k=m+1}^{n-1}\left|\alpha_{k}-\alpha_{k+1}\right| \leq \frac{C}{\left|\lambda-\lambda_{m}\right|}
$$

and the desired estimate follows.
In the cases when $\operatorname{Re} \lambda<\lambda_{1}$ or $\operatorname{Re} \lambda \geq \lambda_{n}$, the same argument applies, with only one sum. Hence we are done.

REmark 1.5. The fact that the operators A_{n} satisfy LRG follows immediately from a more general result about operators with spectrum on Ahlfors curves, proved in [1]. We gave the proof here only for the reader's convenience.

Note that the above argument would also work if we consider different monotone sequences $\left\{\lambda_{k}^{n}\right\}_{k=1}^{n}, n=1,2, \ldots$, and put $A_{n} f_{k}:=\lambda_{k}^{n} f_{n}$.

2. Nontrivial conditional bases

Let us consider the space $L^{2}(w)$, where $w(t)$ is a nonnegative measurable function on the unit circle $\mathbb{T}=\partial \mathbb{D}$ and

$$
\|f\|_{L^{2}(w)}^{2}:=\int_{-\pi}^{\pi}\left|f\left(e^{i t}\right)\right|^{2} w\left(e^{i t}\right) \frac{d t}{2 \pi} .
$$

We will study properties of the system of exponents $\left\{z^{n}\right\}_{n=0}^{\infty}$. We have the following result.

Proposition 2.1 ([14]). Consider the system of exponents $\left\{z^{n}\right\}_{n=0}^{\infty}$ in the closed linear span in $L^{2}(w)$ that it generates.
(1) $\left\{z_{n}\right\}$ is a basis if and only if the weight w satisfies the Muckenhoupt $\left(A_{2}\right)$ condition

$$
\sup _{I}\left(\frac{1}{|I|} \int_{I} w\right) \cdot\left(\frac{1}{|I|} \int_{I} w^{-1}\right)<\infty
$$

(2) $\left\{z_{n}\right\}$ is an unconditional (Riesz) basis if and only if $w \in L^{\infty}(\mathbb{T})$ and $1 / w \in L^{\infty}(\mathbb{T})$.

Direct computations show that a weight with power singularity, say $w(z)=$ $|z-1|^{\alpha}$ satisfies the Muckenhoupt $\left(A_{2}\right)$-condition if and only if $-1<\alpha<1$. By choosing any non-zero α in this interval we get an example of a basis which is not an unconditional (Riesz) basis.

Proof of Proposition 2.1. The statement is probably well-known, and we present the proof only for the reader's convenience.

By the Banach Basis Theorem (Theorem 1.1 above) the system $\left\{z^{n}\right\}_{n=0}^{\infty}$ is a basis if and only if the projections P_{n} defined by $P_{n}\left(\sum c_{k} z^{k}\right)=\sum_{k=0}^{n} c_{k} z^{k}$ are uniformly bounded.

Consider the so-called Riesz projection P_{+}, defined by $P_{+}\left(\sum c_{k} z^{k}\right)=$ $\sum_{k=0}^{\infty} c_{k} z^{k}$. Since for $f \in \mathcal{L}\left(z^{n}: n \geq 0\right)$

$$
P_{n} f=f-z^{n+1} P_{+}\left(\bar{z}^{n+1} f\right)
$$

and multiplication by the independent variable z is a unitary operator on $L^{2}(w)$, it is easy to show that the operators P_{n} are uniformly bounded (on the closed linear span of $\left\{z^{n}\right\}_{n=0}^{\infty}$ in $L^{2}(w)$) if and only if the operator P_{+}is bounded on $L^{2}(w)$. The latter condition is equivalent to the boundedness of the Hilbert Transform T given by $T:=-i P_{+} i\left(I-P_{+}\right)$, and it is well known
(see [6] or [3, p. 254]) that T is bounded on $L^{2}(w)$ if and only if the weight w satisfies the Muckenhoupt $\left(A_{2}\right)$-condition. This proves part (1) of Proposition 2.1.

To prove part (2), note that the system of exponents is a Riesz basis if, for any analytic polynomial $f=\sum_{k=0}^{N} c_{k} z^{k}$,

$$
c\|f\|_{L^{2}(w)}^{2} \leq \sum\left|c_{k}\right|^{2}=\|f\|_{L^{2}}^{2} \leq C\|f\|_{L^{2}(w)}^{2}
$$

Since the multiplication by z is a unitary operator on $L^{2}(w)$, the last estimate should hold for any trigonometric polynomial $f=\sum_{-N}^{N} c_{k} z^{k}$. This is possible if and only if w and $1 / w$ belong to L^{∞}.

3. Linear fractional transformations and the Linear Resolvent Growth condition

The main reason why Theorem 0.1 holds is that LRG and similarity to a normal operator are both "Möbius invariant", while the conditions like $I-T^{*} T \in \mathfrak{S}_{p}$ are not, if one pays attention to constants.

Let us clarify this statement. First, note that if $T=R N R^{-1}$, then $\varphi(T)=$ $R \varphi(N) R^{-1}$ for any function φ that is analytic in a neighborhood of $\sigma(T)$. Thus, similarity to a normal operator is preserved for $\varphi(T)$.

We next show that LRG is preserved under linear fractional transformations $\varphi(T)=(a T+b I)(c T+d I)^{-1}$.

LEMmA 3.1. Let $\varphi(z)=(a z+b) /(c z+d)$ be a linear fractional transformation (which may be degenerate, i.e., $a=0$ or $c=0$). If an operator T (which does not have to be a contraction) satisfies the Linear Resolvent Growth condition

$$
\begin{equation*}
\left\|(T-\lambda I)^{-1}\right\| \leq \frac{C}{\operatorname{dist}(\lambda, \sigma(T))} \tag{3.1}
\end{equation*}
$$

then

$$
\|\varphi(T)\| \leq 10 C \sup _{z \in \sigma(T)}|\varphi(z)|
$$

Corollary 3.2. Let $\varphi(z)=(a z+b) /(c z+d)$ be a linear fractional transformation. If an operator T satisfies the Linear Resolvent Growth condition (3.1), then the operator $\varphi(T)$ satisfies the same condition with constant $10 C$, i.e.,

$$
\left\|(\varphi(T)-\lambda I)^{-1}\right\| \leq \frac{10 C}{\operatorname{dist}\{\lambda, \sigma(\varphi(T))\}}
$$

Proof. Consider the function $\tau(z):=1 /(z-\lambda)$. The composition $\varphi_{1}:=\tau \circ \varphi$ is a linear fractional transformation (as can be seen, for example, by noting
that it is a conformal automorphism of the Riemann sphere $\hat{\mathbb{C}}:=\mathbb{C} \cup \infty)$. Therefore Lemma 3.1 implies

$$
\begin{aligned}
\left\|(\varphi(T)-\lambda I)^{-1}\right\| & =\|\tau(\varphi(T))\|=\left\|\varphi_{1}(T)\right\| \\
& \leq 10 C \sup _{z \in \sigma(T)}|\tau(\varphi(z))| \\
& =10 C \sup _{w \in \varphi(\sigma(T))}|\tau(w)|=\frac{10 C}{\operatorname{dist}\{\lambda, \varphi(\sigma(T))\}} .
\end{aligned}
$$

To complete the proof it suffices to note that, by the Spectral Mapping Theorem (see [2, Theorem VII.3.11]), we have $\sigma(\varphi(T))=\varphi(\sigma(T))$ for any function φ that is analytic in a neighborhood of $\sigma(T)$.

Proof of Lemma 3.1. We first observe that a linear transformation $T \mapsto$ $a T+b$ preserves LRG and, moreover, preserves the constant implicit in the LRG condition. This is indeed trivial for the shift $T \mapsto T+b I$, and for the transformation $T \mapsto a T$ it follows from the following chain of estimates:

$$
\begin{aligned}
\left\|(a T-\lambda I)^{-1}\right\| & =|a|^{-1}\left\|\left(T-\frac{\lambda}{a} I\right)^{-1}\right\| \\
& \leq \frac{1}{|a|} \cdot \frac{C}{\operatorname{dist}\left(\frac{\lambda}{a}, \sigma(T)\right)}=\frac{C}{\operatorname{dist}(\lambda, \sigma(a T))}
\end{aligned}
$$

We now prove the lemma. Consider first the case when φ is a linear function. Since the LRG condition is preserved under linear transformations, we can assume, without loss of generality, that $\varphi(z)=z$. By the Riesz-Dunford formula we have

$$
T=\frac{1}{2 \pi i} \int_{\gamma} z \cdot(z I-T)^{-1} d z
$$

where γ is a contour surrounding $\sigma(T)$ in positive direction.
Take γ to be the circle with center at 0 of radius $R>\rho(T)$, where $\rho(T)=$ $\sup _{z \in \sigma(T)}|z|$ is the spectral radius of T. Then

$$
\|T\| \leq \frac{1}{2 \pi} \cdot 2 \pi R \cdot \rho(T) \cdot \frac{C}{R-\rho(T)}=\rho(T) \cdot \frac{C R}{R-\rho(T)}
$$

Taking the limit as $R \rightarrow \infty$ we get

$$
\|T\| \leq C \rho(T)=C \sup _{z \in \sigma(T)}|z|
$$

Next, consider the case when φ is a proper rational function, i.e., $\varphi=$ $a /(b z+c)$. In this case the conclusion of the lemma is just the LRG condition, so the conclusion trivially holds with the same constant C.

Finally consider the general case

$$
\varphi=\frac{a z+b}{c z+d}, \quad a \neq 0, \quad c \neq 0
$$

Let τ be a linear transformation of \mathbb{C} which maps -1 to $-b / a$ and 0 to $-d / c$. Then $\varphi \circ \tau=\alpha \cdot(z-1) / z$, where $\alpha \in \mathbb{C}$. Since linear transformations preserve the LRG property, it is enough to prove the result for the case $\varphi=(z-1) / z$.

Let

$$
\delta:=\sup _{z \in \sigma(T)}|\varphi(z)|=\sup _{z \in \sigma(T)}\left|\frac{z-1}{z}\right|
$$

and consider first the case when $\delta \geq 1 / 2$. We write

$$
\varphi(T)=\frac{1}{2 \pi i} \int_{\Gamma} \varphi(z)(z I-T)^{-1} d z
$$

with $\Gamma=\gamma_{r} \cup \gamma_{R}$, where γ_{r} and γ_{R} denote the circles $|z|=r$ and $|z|=R$ in negative and positive directions, respectively. Letting $r \rightarrow 0$ and $R \rightarrow \infty$, we have

$$
\lim _{R \rightarrow \infty}\left\|\int_{\gamma_{R}} \ldots\right\| \leq \lim _{R \rightarrow \infty} \frac{1}{2 \pi} \cdot 2 \pi R \cdot \frac{C}{R}=C
$$

and

$$
\lim _{r \rightarrow 0}\left\|\int_{\gamma_{r}} \cdots\right\| \leq \lim _{r \rightarrow 0} \frac{1}{2 \pi} \cdot 2 \pi r \cdot \frac{1}{r} \cdot \frac{C}{\operatorname{dist}(0, \sigma(T))}=\frac{C}{\operatorname{dist}(0, \sigma(T))} .
$$

One can easily see (by explicitly computing the level sets of $|\varphi|$) that the set $\{z:|\varphi(z)| \leq \delta\}$ lies outside the disk $\{z:|z|=1 /(1+\delta)\}$, so that $\operatorname{dist}(0, \sigma(T)) \geq 1 /(1+\delta)$. Therefore,

$$
\lim _{r \rightarrow 0}\left\|\int_{\gamma_{r}} \ldots\right\| \leq C \cdot(1+\delta),
$$

and so

$$
\|\varphi(T)\| \leq C \cdot(2+\delta) \leq 5 C \delta=5 C \sup _{z \in \sigma(T)}|\varphi(z)|
$$

if $\delta \geq 1 / 2$.
Now consider the case $\delta \leq 1 / 2$. It is easy to check that for $\delta<1$ the level set $\{z:|\varphi(z)| \leq \delta\}$ is the closed disk centered at $c=1 /\left(1-\delta^{2}\right)$ and of radius $r=\delta /\left(1-\delta^{2}\right)$. By the definition of δ, the spectrum $\sigma(T)$ is contained in this level set. As before, we can write

$$
\varphi(T)=\frac{1}{2 \pi i} \int_{\Gamma} \varphi(z)(z I-T)^{-1} d z
$$

where Γ is now the circle of radius $\frac{3}{2} r$ centered at $c=1 /\left(1-\delta^{2}\right)$. We have

$$
\|\varphi(T)\| \leq \lim _{r \rightarrow 0} \frac{1}{2 \pi} \cdot 2 \pi \frac{3}{2} r \cdot \frac{C}{r / 2} \cdot \sup _{z \in \Gamma}|\varphi(z)|=3 C \sup _{z \in \Gamma}|(z-1) / z| .
$$

Note that the supremum $\sup _{z \in \Gamma}|\varphi(z)|$ is attained at the point $x=c-\frac{3}{2} r=$ $\frac{1-3 \delta / 2}{1-\delta^{2}}$. Therefore

$$
\sup _{z \in \Gamma}|\varphi(z)|=\frac{1-x}{x}=\delta \cdot \frac{3 / 2-\delta}{1-3 \delta / 2} \leq \delta \cdot \frac{3 / 2}{1-3 / 4}=6 \delta .
$$

Hence $\|\varphi(T)\| \leq 6 C \delta$, and we are done.

4. Conjectures and open questions

To conclude this paper, let us state some conjectures. Let T be a contraction, and let $\sigma(T) \neq \overline{\mathbb{D}}$. Denote by T_{μ} the "Möbius transformation" of T, i.e.,

$$
T_{\mu}:=(T-\mu I)(I-\bar{\mu} T)^{-1}, \quad \mu \in \mathbb{D}
$$

Note that if $\|T\| \leq 1$, then $\left\|T_{\mu}\right\| \leq 1$ for all $\mu \in \mathbb{D}$. Recall that $\|A\|_{\mathfrak{S}_{p}}$ stands for the Schatten-von-Neumann norm of the operator A,

$$
\|A\|_{\mathfrak{S}_{p}}=\left(\sum_{0}^{\infty} s_{n}(A)^{p}\right)^{1 / p}
$$

In Section 3 we showed that LRG, as well as similarity to a normal operator, are invariant with respect to linear fractional transformations, and hence, in particular, with respect to the above "Möbius transformations". Since the "Möbius transformation" maps a contraction to a contraction, the following conjecture seems plausible.

Conjecture 4.1. If $\|T\| \leq 1, \sigma(T) \neq \overline{\mathbb{D}}$, and

$$
\begin{equation*}
\sup _{\mu \in \mathbb{D}}\left\|I-T_{\mu}^{*} T_{\mu}\right\|_{\mathfrak{S}_{1}}<\infty \tag{4.1}
\end{equation*}
$$

then the $L R G$ condition (0.1) implies that T is similar to a normal operator.
We believe that the trace class \mathfrak{S}_{1} plays a critical role here.
CONJECTURE 4.2. The condition (4.1) is sharp, i.e., given $p>1$ one can find an operator T with $\|T\| \leq 1$ and $\sigma(T) \neq \overline{\mathbb{D}}$, which satisfies $L R G$ and

$$
\sup _{\mu \in \mathbb{D}}\left\|I-T_{\mu}^{*} T_{\mu}\right\|_{\mathfrak{S}_{p}}<\infty
$$

but which is not similar to a normal operator.

References

[1] N. E. Benamara and N. K. Nikolski, Resolvent tests for similarity to a normal operator, Proc. London. Math. Soc. 78 (1999), 585-626.
[2] N. Dunford and J. T. Schwartz, Linear operators. Part I: General theory, John Wiley \& Sons, New York, 1988.
[3] J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
[4] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Amer. Math. Soc., Providence, 1969.
[5] , On a description of contraction operators similar to unitary ones, Funkcional. Anal. i Prilozen. 1 (1967), 38-60 (Russian); English translation: Amer. Math. Soc. Transl., vol. 85, Amer. Math. Soc., Providence, 1969.
[6] R. Hunt, B. Muckenhoupt and R. Wheeden, Weighted norm inequalities for conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227-251.
[7] N. K. Nikolskii, Treatise on the shift operator, Springer-Verlag, New York, 1985.
[8] N. Nikolski and S. V. Khruschev, A function model and some problems in spectral function theory, Trudy Math. Inst. Steklov 176 (1987), 97-210 (Russian); English translation: Proc. Steklov Inst. Math. 176 (1988), 111-214.
[9] B. Sz.-Nagy and C. Foias, Harmonic analysis of operators in Hilbert space, Akadémia Kiadó, Budapest, 1970.
[10] , Sur les contractions de l'espace de Hilbert. X. Contractions similaires à des transformations unitaires, Acta. Sci. Math. 26 (1965), 79-91.
[11] I. Singer, Bases in Banach spaces, I, Springer-Verlag, New York, 1970.
[12] S. R. Treil, Geometric methods in spectral theory of vector-valued functions: Some recent results, Oper. Theory Adv. Appl. 42 (1989), 209-280.
[13] , Hankel operators, embedding theorems, and bases of the invariant subspaces of the multiple shift, Algebra i Analiz 1 (1989), 200-234 (Russian); English translation: St. Petersburg Math. J. 1 (1990), 1515-1548.
[14] , Unconditional bases of invariant subspaces of a contraction with finite defects, Indiana Univ. Math. J. 46 (1997), 1021-1054.
[15] P. Wojtaszczyk, Banach spaces for analysts, Cambridge University Press, Cambridge, 1991.
S. Kupin, Institute of Low Temperature Physics, Lenin's Ave., 47, 61164 Kharkov, Ukraine

Current address: Mathematics 253-37, Caltech, Pasadena, CA 91125, USA
E-mail address: kupin@its.caltech.edu
S. Treil, Department of Mathematics, Michigan State University, East LansING, MI 48824, USA

E-mail address: treil@math.msu.edu

[^0]: Received October 12, 1999.
 2000 Mathematics Subject Classification. Primary 47A10. Secondary 47A55, 47A11, 47B10.

 The second author was partially supported by NSF grant DMS 9970395.

