Illinois Journal of Mathematics Volume 45, Number 1, Spring 2001, Pages 139–162 S 0019-2082

HOLOMORPHIC AND M-HARMONIC FUNCTIONS WITH FINITE DIRICHLET INTEGRAL ON THE UNIT BALL OF \mathbb{C}^n

MANFRED STOLL

1. Introduction

For a real or complex-valued C^1 function f defined on the unit disc \mathbb{D} in \mathbb{C} and $\gamma \in \mathbb{R}$, the γ -weighted Dirichlet integral of f is defined by

(1.1)
$$D_{\gamma}(f) = \frac{1}{\pi} \iint_{\mathbb{D}} (1 - |z|^2)^{\gamma} |\nabla f(z)|^2 \, dx dy,$$

where $\nabla f = (f_x, f_y)$ is the gradient of f and $|\nabla f|^2 = |f_x|^2 + |f_y|^2$. The results of this paper were partially motivated by the following theorem of Yamashita.

THEOREM A [20, Theorem 1]. Let f be a solution of

$$\Delta f = f_{xx} + f_{yy} = \lambda f, \quad \lambda \ge 0,$$

with $D_{\gamma}(f) < \infty$ for some $\gamma, 0 < \gamma \leq 1$. Then $|f|^{2/\gamma}$ admits a harmonic majorant in \mathbb{D} .

The original goal of the paper was to prove an analogue of Theorem A for eigenfunctions of the Laplace-Beltrami operator $\widetilde{\Delta}$ on B, the unit ball in \mathbb{C}^n . For a real or complex-valued C^1 function f defined on B and $\gamma \in \mathbb{R}$, the integral

(1.2)
$$D_{\gamma}(f) = \int_{B} (1 - |z|^2)^{\gamma} |\widetilde{\nabla}f(z)|^2 d\tau(z)$$

is called the γ -weighted invariant Dirichlet integral of f. Here, ∇ and τ denote, respectively, the gradient and the volume measure corresponding to the Bergman metric on B. We denote by \mathcal{D}_{γ} the weighted Dirichlet space of real or complex-valued C^1 functions f on B satisfying $D_{\gamma}(f) < \infty$, with the Dirichlet norm

(1.3)
$$||f||_{\mathcal{D}_{\gamma}} = |f(0)| + D_{\gamma}(f)^{1/2}.$$

Received July 29, 1999; received in final form October 3, 2000. 2000 Mathematics Subject Classification. Primary 31C25, 32A35.

©2001 University of Illinois

When n = 1, we have $\widetilde{\Delta}f(z) = (1-|z|^2)^2 \Delta f(z)$, $|\widetilde{\nabla}f(z)|^2 = (1-|z|^2)^2 |\nabla f(z)|^2$ and $d\tau(z) = (1-|z|^2)^{-2} dx dy$. Thus $D_{\gamma}(f)$ is the ordinary γ -weighted Dirichlet integral of f, defined in (1.1).

When $\gamma = n$, it is known that if f is \mathcal{M} -harmonic on B, i.e., if $\widetilde{\Delta}f = 0$, then $|f|^2$ has an \mathcal{M} -harmonic majorant if and only if $D_n(f) < \infty$ (see [16]). This suggests that an appropriate generalization of Theorem A is as follows:

If f is a solution of $\widetilde{\Delta}f = \lambda f$, $\lambda \geq 0$, with $D_{\gamma}(f) < \infty$ for some γ , $0 < \gamma \leq n$, then $|f|^{2n/\gamma}$ admits an \mathcal{M} -harmonic majorant on B.

However, we will show in Theorem 3.1 that for $\lambda > 0$, the only function f satisfying $\widetilde{\Delta}f = \lambda f$ with $D_{\gamma}(f) < \infty$ for some $\gamma \leq n$ is the zero function. Even though Δ and $\widetilde{\Delta}$ annihilate the same class of functions on \mathbb{D} , the eigenspaces of Δ and $\widetilde{\Delta}$ corresponding to an eigenvalue λ are significantly different when $\lambda \neq 0$. Thus, a generalization of Theorem A is only possible in the case when $\lambda = 0$, i.e., for the class of \mathcal{M} -harmonic functions on B. In addition to proving Theorem 3.1, we will show in Section 3 that, in the case $n \geq 2$, \mathcal{D}_{γ} contains non-constant holomorphic functions if and only if $\gamma > (n-1)$.

In Section 4 we will prove a generalization of Theorem A to \mathcal{M} -harmonic functions and holomorphic functions on B, as well as a converse result. Our main result, Theorem 4.2, is as follows.

THEOREM B. (a) Let f be \mathcal{M} -harmonic or holomorphic on B. If $f \in \mathcal{D}_{\gamma}$ for some γ , $0 < \gamma \leq n$, then $|f|^p$ has an \mathcal{M} -harmonic majorant for all p, 0 .

(b) Conversely, if f is \mathcal{M} -harmonic on B and, for some p with $1 , <math>|f|^p$ has an \mathcal{M} -harmonic majorant, then $D_{\gamma}(f) < \infty$ for all $\gamma \geq 2n/p$. For holomorphic functions the result holds for all p, 0 .

In Section 5 we restrict ourselves to holomorphic functions on B. In Theorem 5.1 we compute $D_{\gamma}(f)$ in terms of the series expansion of f. Specifically, if $f(z) = \sum a_{\alpha} z^{\alpha}$ is holomorphic in B, then for all $\gamma > (n-1)$,

(1.4)
$$D_{\gamma}(f) = 2\gamma n! \Gamma(\gamma - n + 1) \sum_{k=1}^{\infty} \frac{k}{\Gamma(\gamma + k + 1)} \sum_{|\alpha|=k} \alpha! |a_{\alpha}|^2.$$

Combining this with the results of Section 4 gives the following result (Theorem 5.2).

Suppose $f(z) = \sum a_{\alpha} z^{\alpha}$ is holomorphic in B. If

(1.5)
$$\sum_{k=1}^{\infty} \frac{k}{\Gamma(\frac{2n}{q}+k+1)} \sum_{|\alpha|=k} \alpha! |a_{\alpha}|^2 < \infty$$

for some $q, 2 \leq q < 2n/(n-1)$, then $|f(z)|^q$ has an \mathcal{M} -harmonic majorant on B, i.e., f is in the Hardy space H^q . Conversely, if $f \in H^q$ for some q, $0 < q \leq 2$, then the series in (1.5) converges. When $n \geq 2$, the integral defining the space \mathcal{D}_{γ} for holomorphic functions only makes sense for $\gamma > (n-1)$. On the other hand, the series in (1.4) is defined for all $\gamma > -1$. In Section 6 we consider the space $\widetilde{\mathcal{D}}_{\gamma}$ of holomorphic functions f on B for which this series converges, i.e., which satisfy

(1.6)
$$\widetilde{D}_{\gamma}(f) = \sum_{k=1}^{\infty} \frac{k}{\Gamma(\gamma+k+1)} \sum_{|\alpha|=k} \alpha! |a_{\alpha}|^2 < \infty$$

for some γ , $0 < \gamma \leq n$. We will show in Theorem 6.3 that if $D_{2n/q}(f) < \infty$ for some $q, 2 \leq q < \infty$, then f is in the Hardy space H^q . As a consequence of this result, we show that if f is in the unique Möbius invariant Hilbert space \mathbb{H} on B, then $f \in H^p$ for all p, 0 .

Of particular interest is the case n = 1, which we will consider in greater detail in Section 7. In this case, Theorem 5.2 can be stated as follows:

Suppose that $f(z) = \sum a_k z^k$ is holomorphic in \mathbb{D} , and that

(1.7)
$$\sum_{k=1}^{\infty} k^{1-2/q} |a_k|^2 < \infty$$

for some $q \ge 2$. Then $f \in H^q$. Conversely, if $f \in H^q$ for some $q, 0 < q \le 2$, then the series in (1.7) converges.

This result is closely related to the following theorem of Hardy and Littlewood:

If

(1.8)
$$\sum_{k=1}^{\infty} k^{q-2} |a_k|^q < \infty$$

for some $q \ge 2$, then $f \in H^q$. Conversely, if $f \in H^q$ for some $q, 0 < q \le 2$, then the series in (1.8) converges.

We will give an example showing that, for $q \neq 2$, the convergence of one of the series (1.7) and (1.8) does not imply the convergence of the other series. We will also give examples of holomorphic functions f on \mathbb{D} with $f \in \mathcal{D}_{2/p}$, $0 , which are not in <math>H^p$, and of functions $f \in H^p$, 2 , which are $not in <math>\mathcal{D}_{2/p}$.

Dirichlet type spaces of holomorphic or \mathcal{M} -harmonic functions defined in terms of the invariant gradient $\widetilde{\nabla}$ have been studied by many other authors. K. T. Hahn and E. H. Youssfi [6] considered the spaces $\mathcal{B}_p(B)$ of holomorphic functions f on B for which $|\widetilde{\nabla}f| \in L^p(\tau)$. These spaces were also considered by Arazy, Fisher, Janson and Peetre [2] who showed that $\mathcal{B}_p(B)$ contains nonconstant holomorphic functions if and only if p > 2n. The analogous spaces of \mathcal{M} -harmonic functions were investigated by Hahn and Youssfi [7, 8]. More general types of Dirichlet or Besov spaces of holomorphic functions have been studied by M. Peloso [12].

2. Notation and preliminary results

Let *B* denote the unit ball in \mathbb{C}^n with boundary *S*. We will use the notation B_n or S_n if we wish to emphasize the dimension *n*. Throughout this paper B_1 will be denoted by \mathbb{D} . For $z \in B$, let φ_z denote the Möbius transformation of *B* satisfying $\varphi_z(0) = z$ and $\varphi_z \circ \varphi_z = I$, where *I* is the identity map. By [13, p. 26], φ_z satisfies

(2.1)
$$1 - |\varphi_z(w)|^2 = \frac{(1 - |z|^2)(1 - |w|^2)}{|1 - \langle z, w \rangle|^2}.$$

Let \mathcal{M} denote the group of all biholomorphic automorphisms of B. Then any $\psi \in \mathcal{M}$ has a unique representation $\psi = U \circ \varphi_a$ for some $a \in B$ and some unitary transformation U. The invariant volume measure τ corresponding to the Bergman metric is given by $d\tau(w) = (1 - |w|^2)^{-(n+1)} dm(w)$, where m is normalized Lebesgue measure on B.

The Laplace-Beltrami operator or the invariant Laplacian $\tilde{\Delta}$ on B is given by

$$\widetilde{\Delta}f(z) = \Delta(f \circ \varphi_z)(0) = 4(1 - |z|^2) \sum_{i,j=1}^n (\delta_{i,j} - z_j \overline{z}_i) \frac{\partial^2 f(z)}{\partial z_j \partial \overline{z}_i}$$

where Δ is the ordinary Laplacian. Similarly, for a C^1 function f the invariant real gradient $\widetilde{\nabla}$ with respect to the Bergman metric on B is defined by

$$\widetilde{\nabla}f(z) = \nabla(f \circ \varphi_z)(0),$$

where ∇ is the real gradient in \mathbb{R}^{2n} given by

$$\nabla f(z) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial y_1}, \dots, \frac{\partial f}{\partial x_n}, \frac{\partial f}{\partial y_n}\right), \quad z_k = x_k + iy_k.$$

As in [11] we have

$$\widetilde{\nabla}f(z)|^{2} = 2(1 - |z|^{2}) \left[|\partial f(z)|^{2} + |\partial \bar{f}(z)|^{2} - |Rf(z)|^{2} - |R\bar{f}(z)|^{2} \right]$$

where ∂f is the complex gradient of f and Rf is the radial derivative of f given by

$$\partial f(z) = \left(\frac{\partial f}{\partial z_1}, \dots, \frac{\partial f}{\partial z_n}\right)$$
 and $Rf(z) = \sum_{j=1}^n z_j \frac{\partial f}{\partial z_j}$,

respectively. Thus, for a holomorphic function f it follows that

$$|\widetilde{\nabla}f(z)|^2 = 2(1-|z|^2) \left[|\partial f(z)|^2 - |Rf(z)|^2 \right],$$

and for a real-valued C^1 function u we have

$$|\widetilde{\nabla}u|^2 = 4(1-|z|^2) \left[|\partial u|^2 - |Ru|^2 \right].$$

Hence we have

(2.2)
$$4(1-|z|^2)^2 |\partial u(z)|^2 \le |\widetilde{\nabla} u(z)|^2 \le 4(1-|z|^2) |\partial u(z)|^2$$

for all real-valued C^1 functions u. A similar inequality holds for complexvalued functions. The Laplacian $\widetilde{\Delta}$ and the gradient $\widetilde{\nabla}$ are both invariant under \mathcal{M} ; that is, we have $\widetilde{\Delta}(f \circ \psi) = (\widetilde{\Delta}f) \circ \psi$ and $|\widetilde{\nabla}(f \circ \psi)| = |(\widetilde{\nabla}f) \circ \psi|$ for all $\psi \in \mathcal{M}$.

An upper-semicontinuous function $f: B \to [-\infty, \infty)$ is \mathcal{M} -subharmonic or invariant subharmonic if, for each $a \in B$,

(2.3)
$$f(a) \le \int_{S} f(\varphi_a(rt)) \, d\sigma(t), \quad 0 < r < 1,$$

where $d\sigma$ denotes the normalized Lebesgue measure on S. For a C^2 function f this is equivalent to $\widetilde{\Delta}f \geq 0$. A continuous real or complex-valued function f is \mathcal{M} -harmonic on B if equality holds in (2.3). This is the case if and only if f is C^{∞} and satisfies $\widetilde{\Delta}f = 0$. For an \mathcal{M} -subharmonic function f on B, the Riesz measure of f is the nonnegative Borel measure μ_f on B satisfying

(2.4)
$$\int_{B} \psi \, d\mu_{f} = \int_{B} f \, \widetilde{\Delta} \psi \, d\tau$$

for all ψ in $C_c^2(B)$, the class of twice continuously differentiable functions on B with compact support. If f is C^2 , then by Green's identity, $d\mu_f = \widetilde{\Delta}f d\tau$.

Throughout this paper we fix δ , $0 < \delta < 1$, and for $a \in B$ we set

(2.5)
$$E(a) = E(a,\delta) = \{z \in B : |\varphi_a(z)| < \delta\}$$

By [17, p. 33] we have $\tau(E(a, \delta)) = \delta^{2n} / (1 - \delta^2)^n$. Also, there exists a constant c > 0, depending only on δ , such that

(2.6)
$$c^{-1}(1-|a|^2) \le (1-|w|^2) \le c(1-|a|^2)$$
 for all $w \in E(a)$.

The following result, due to M. Pavlovic [11, Theorem 2.1], will be used several times in this paper.

LEMMA 2.1. Let f be a solution of $\widetilde{\Delta}f = \lambda f$, $\lambda \in \mathbb{C}$, and let 0 . $(a) If <math>\lambda \neq 0$, then there exists a constant $C = C(|\lambda|, p, \delta)$ such that

(2.7)
$$F_1^p(a) \le C \int_{E(a)} F_2^p(w) d\tau(w), \quad a \in B,$$

whenever $F_1, F_2 \in \{|f|, |\widetilde{\nabla}f|\}.$

(b) If $\lambda = 0$, then inequality (2.7) holds except for the case when $F_1 = |f|$ and $F_2 = |\tilde{\nabla}f|$.

Throughout this paper we write $f(z) \approx g(z)$ to indicate that there exist positive constants C_1 and C_2 such that

$$C_1 f(z) \le g(z) \le C_2 f(z)$$

for all appropriate z.

3. Eigenfunctions of $\widetilde{\Delta}$ with non-negative eigenvalues

Let $\mathcal{D}_{\gamma} = \mathcal{D}_{\gamma}(B_n)$ denote the weighted Dirichlet space of C^1 real or complexvalued functions f on B_n , as defined in the Introduction. Our first result shows that the only eigenfunction f of $\widetilde{\Delta}$ with positive eigenvalue and satisfying $D_{\gamma}(f) < \infty$ for some $\gamma \leq n$ is the zero function.

THEOREM 3.1. If f is a solution of $\widetilde{\Delta}f = \lambda f$, $\lambda > 0$, with $D_{\gamma}(f) < \infty$ for some $\gamma \leq n$, then f(z) = 0 for all $z \in B$.

Proof. Suppose f satisfies $\widetilde{\Delta}f = \lambda f$ for some $\lambda > 0$. Write f = u + iv, where u and v are real-valued functions. Since λ is real, u and v are both eigenfunctions of $\widetilde{\Delta}$ with eigenvalue λ . Also, since $|\widetilde{\nabla}f|^2 = |\widetilde{\nabla}u|^2 + |\widetilde{\nabla}v|^2$, $D_{\gamma}(f)$ is finite if and only if both $D_{\gamma}(u)$ and $D_{\gamma}(v)$ are finite. Hence without loss of generality we can assume that f is real-valued.

Since $\lambda \neq 0$, we have by (2.6) and (2.7)

$$(1-|z|^2)^{\gamma}|f(z)|^2 \le C \int_{E(z)} (1-|w|^2)^{\gamma} |\widetilde{\nabla}f(w)|^2 d\tau(w),$$

where E(z) is defined by (2.5). Integrating over B gives

$$\int_{B} (1-|z|^{2})^{\gamma} |f(z)|^{2} d\tau(z) \leq C \int_{B} \left[\int_{E(z)} (1-|w|^{2})^{\gamma} |\widetilde{\nabla}f(w)|^{2} d\tau(w) \right] d\tau(z),$$

which by Fubini's theorem is equal to

$$C\int_{B} \tau(E(z))(1-|w|^{2})^{\gamma} |\widetilde{\nabla}f(w)|^{2} d\tau(w).$$

Since $\tau(E(z)) = \tau(E(z,\delta)) = \frac{\delta^{2n}}{(1-\delta^2)^n}$, we obtain $\int_B (1-|z|^2)^{\gamma} |f(z)|^2 d\tau(z) \le C_{\delta} D_{\gamma}(f).$

Since f is real-valued, a straightforward computation gives $\widetilde{\Delta}f^2 = 2|\widetilde{\nabla}f|^2 + 2\lambda f^2$, and thus $\widetilde{\Delta}f^2 \geq 0$, since $\lambda > 0$. Hence f^2 is \mathcal{M} -subharmonic on B. But by Theorem 4.1 of [18], the only non-negative \mathcal{M} -subharmonic function g on B satisfying

$$\int_{B} (1-|z|^2)^{\gamma} g(z) \, d\tau(z) < \infty$$

for some $\gamma < n$ is the zero function. Hence $f(z) = 0$ for all $z \in B$.

Remark 3.2. In [19] the author showed that if f is a solution of $\widetilde{\Delta}f = \lambda f$ with $\lambda \neq 0$ and $\lambda \geq -n^2$, then $f \in \mathcal{D}_{\gamma}$ if and only if $\gamma > \sqrt{n^2 + \lambda}$.

We now consider the case $\lambda = 0$. In this case the set of eigenfunctions of $\widetilde{\Delta}$ with eigenvalue zero is precisely the class h(B) of \mathcal{M} -harmonic functions

on B, which contains the class $\mathcal{H}(B)$ of holomorphic functions on B. When n = 1, the class of \mathcal{M} -harmonic functions coincides with the class of Euclidean harmonic functions on \mathbb{D} , as mentioned in the Introduction, and we have

$$D_{\gamma}(f) = \frac{1}{\pi} \iint_{\mathbb{D}} (1 - |z|^2)^{\gamma} |\nabla f(z)|^2 \, dx dy.$$

Now, if f is holomorphic or harmonic on \mathbb{D} , then $|\nabla f|^2$ is subharmonic on \mathbb{D} . From this it easily follows that if f is holomorphic or harmonic on \mathbb{D} with $D_{\gamma}(f) < \infty$ for some $\gamma \leq -1$, then f must be constant. On the other hand, any polynomial $p(z, \overline{z})$ on \mathbb{D} satisfies $D_{\gamma}(p) < \infty$ for all $\gamma > -1$. Thus when $n = 1, D_{\gamma}$ contains non-constant harmonic or holomorphic functions if and only if $\gamma > -1$.

For the case $n \ge 2$ the author [17, Proposition 10.9] showed that if f is \mathcal{M} -harmonic on B_n with $D_{\gamma}(f) < \infty$ for some $\gamma \leq (n-2)$, then f must be constant on B_n . However, for holomorphic functions on B_n , $n \ge 2$, we have the following theorem.

THEOREM 3.3. Let $n \geq 2$. Then \mathcal{D}_{γ} contains non-constant holomorphic functions if and only if $\gamma > (n-1)$.

This result is an immediate consequence of the following lemma of Arazy, Fischer, Janson and Peetre [2]; it will also follow from the computations in Theorem 5.1.

LEMMA 3.4 [2, Lemma 4.1]. Let V be a linear subspace of the space $\mathcal{H}(B)$ of holomorphic functions on B such that

(V1) if $f \in V$ and $\phi \in \mathcal{M}$, then $f \circ \phi \in V$, (V2) if $f \in V$ then $g(z) = \frac{1}{2\pi} \int_0^{2\pi} e^{-i\theta} f(e^{i\theta}z) d\theta \in V$.

Then either V contains only constant functions, or V contains the linear function z_1 .

It is easily shown that $\mathcal{D}_{\gamma} \cap \mathcal{H}(B)$ satisfies (V1) and (V2). But when $n \geq 2$, the linear function z_1 is in D_{γ} if and only if $\gamma > (n-1)$.

The above lemma has been used, in some form or other, by several authors in proving similar results.

Remark 3.5. It is not known whether the space $\mathcal{D}_{\gamma}(B_n)$ $(n \geq 2)$ contains non-constant \mathcal{M} -harmonic functions for $(n-2) < \gamma \leq (n-1)$. The proofs which show that $\mathcal{D}_{\gamma} \cap \mathcal{H}(B)$ is trivial (i.e., contains only constant functions) for $\gamma \leq (n-1)$ do not seem to translate to the case of \mathcal{M} -harmonic functions.

4. Harmonic majorants of Dirichlet finite harmonic functions

In this section we investigate the relationship between the Dirichlet spaces \mathcal{D}_{γ} of \mathcal{M} -harmonic and holomorphic functions and the Hardy H^p spaces.

For $0 , we denote by <math>h^p$ (respectively H^p) the Hardy space of \mathcal{M} -harmonic (respectively holomorphic) functions f on B satisfying

$$||f||_p = \sup_{0 < r < 1} \left[\int_S |f(r\zeta)|^p d\sigma(\zeta) \right]^{1/p} < \infty.$$

Clearly, if f is holomorphic or \mathcal{M} -harmonic on B and if $|f|^p$ has an \mathcal{M} -harmonic majorant, then $f \in H^p$ or $f \in h^p$. Conversely, if $f \in H^p$ $(0 or <math>f \in h^p$ $(1 \le p < \infty)$, then $|f|^p$ has an \mathcal{M} -harmonic majorant, and the least \mathcal{M} -harmonic majorant of $|f(z)|^p$ is given by

$$P[|f^*|^p](z) = \int_S P(z,t) |f^*(t)|^p d\sigma(t),$$

where $P(z,t) = (1-|z|^2)^n/|1-\langle z,t\rangle|^{2n}$ is the Poisson kernel for $\widetilde{\Delta}$ on B, and f^* is the boundary function defined by $f^*(\zeta) = \lim_{r \to 1} f(r\zeta)$ a.e. on S. If $f \in h^1$, then the least \mathcal{M} -harmonic majorant of f is given by the Poisson integral of a measure. Since $P(z,\zeta) \leq C(1-|z|^2)^{-n}$, we have

(4.1)
$$|f(z)|^p \le C \left(1 - |z|^2\right)^{-n} ||f||_p^p$$

for all $f \in H^p$ $(0 or <math>f \in h^p$ $(1 \le p < \infty)$.

LEMMA 4.1. Let f be \mathcal{M} -harmonic or holomorphic on B. Then $f \in h^p$ $(1 or <math>f \in H^p$ (0 if and only if

(4.2)
$$\int_{B} (1 - |w|^2)^n d\mu_{|f|^p}(w) < \infty,$$

where $\mu_{|f|^p}$ is the Riesz measure of $|f|^p$ defined by (2.4). Furthermore, if this condition is satisfied, then

(4.3)
$$||f||_p^p = \int_B |f(z)|^p \, dm(z) + \frac{1}{4n^2} \int_B (1 - |z|^2)^n \, d\mu_{|f|^p}(z).$$

Proof. Since, for the given range of p, $|f|^p$ is \mathcal{M} -subharmonic on B, $|f|^p$ has an \mathcal{M} -harmonic majorant if and only if (4.2) holds; see [16, Proposition 4; 17, Theorem 6.14]. Furthermore, by the Riesz decomposition theorem,

(4.4)
$$|f(z)|^{p} = P[|f^{*}|^{p}](z) - \int_{B} G(z, w) \, d\mu_{|f|^{p}}(w),$$

where G(z, w) is the Green function for the Laplace-Beltrami operator $\widetilde{\Delta}$ on B given by $G(z, w) = g(\varphi_z(w))$, where for $z \in B$,

$$g(z) = \frac{1}{2n} \int_{|z|}^{1} t^{-2n+1} (1-t^2)^{n-1} dt.$$

Integrating the identity (4.4) with respect to the normalized Lebesgue measure m gives

$$\int_{B} |f(z)|^{p} dm(z) = \int_{B} P[|f^{*}|^{p}](z) dm(z) - \int_{B} \int_{B} G(z, w) d\mu_{|f|^{p}}(w) dm(z),$$

which, by Fubini's theorem and the fact that $P[|f^*|^p](z)$ is \mathcal{M} -harmonic on B, equals

$$P[|f^*|^p](0) - \int_B \int_B G(z, w) \, dm(z) \, d\mu_{|f|^p}(w).$$

Let $\psi(z) = (1 - |z|^2)^n$. Then $\widetilde{\Delta}\psi(z) = -4n^2(1 - |z|^2)^{n+1}$. Therefore, $\int_B G(z, w) \, dm(z) = -\frac{1}{4n^2} \int_B G(z, w) \, \widetilde{\Delta}\psi(z) \, d\tau(z) = \frac{1}{4n^2} \psi(w).$

The last equality follows from the Riesz decomposition theorem. This integral can also be evaluated directly using polar coordinates. The result now follows from the fact that $P[|f^*|^p](0) = ||f||_p^p$.

We are now ready to state and prove the main result of the paper.

THEOREM 4.2. (a) Let f be \mathcal{M} -harmonic (or holomorphic) on B. If $f \in \mathcal{D}_{\gamma}$ for some γ , $0 < \gamma \leq n$, then $f \in h^p$ (or $f \in H^p$) for all p, 0 , with

$$\|f\|_p \le C \|f\|_{\mathcal{D}_{\gamma}}$$

(b) Conversely, if $f \in H^p$, $0 (or <math>f \in h^p$, $1), then <math>f \in \mathcal{D}_{\gamma}$ for all $\gamma \ge 2n/p$ with

$$\|f\|_{\mathcal{D}_{\gamma}} \le C \|f\|_p.$$

Proof. (a) Suppose f is \mathcal{M} -harmonic on B. Without loss of generality we can assume that f is real-valued and that f(0) = 0.

Let $p = 2n/\gamma$. Since $0 < \gamma \leq n$, we have $p \geq 2$ and thus $|f|^p$ is C^2 on B. A straightforward computation shows that $\widetilde{\Delta}|f|^p = p(p-1)|f|^{p-2}|\widetilde{\nabla}f|^2$. Thus the Riesz measure of $|f|^p$ is given by

$$d\mu_{|f|^{p}}(z) = \widetilde{\Delta}|f(z)|^{p} d\tau(z) = p(p-1)|f(z)|^{p-2}|\widetilde{\nabla}f(z)|^{2} d\tau(z)$$

If f is holomorphic on B, then the Riesz measure of $|f|^p$ is given by $d\mu_{|f|^p}(z) = \frac{1}{4}p^2|f(z)|^{p-2}|\widetilde{\nabla}f(z)|^2d\tau(z)$. By Lemma 4.1, f is in h^p if and only if

$$\int_{B} (1 - |w|^2)^n \widetilde{\Delta} |f(w)|^p \, d\tau(w) < \infty.$$

This, however, is the case if and only if the integral

$$I = \int_{B} (1 - |w|^{2})^{n} |f(w)|^{p-2} |\widetilde{\nabla}f(w)|^{2} d\tau(w)$$

is finite. Since $(1 - |z|^2) \approx (1 - |w|^2)$ for all $z \in E(w)$, (2.7) gives

$$(1-|z|^2)^{\gamma}|\widetilde{\nabla}f(z)|^2 \le C \int_{E(z)} (1-|w|^2)^{\gamma}|\widetilde{\nabla}f(w)|^2 d\tau(w) \le CD_{\gamma}(f) < \infty.$$

Therefore

(4.5)
$$|\widetilde{\nabla}f(z)| \le CD_{\gamma}(f)^{1/2}(1-|z|^2)^{-\gamma/2}$$

for some positive constant C. For $z \in B$ and $t \in [0, 1]$ set g(t) = f(tz). Since f(0) = 0, we obtain from (2.2) and (4.5)

$$\begin{aligned} |f(z)| &\leq \int_0^1 |g'(t)| dt \leq 2|z| \int_0^1 |\partial f(tz)| \, dt \leq |z| \int_0^1 \frac{|\widetilde{\nabla} f(tz)|}{(1-t^2|z|^2)} \, dt \\ &\leq |z| D_{\gamma}(f)^{1/2} \int_0^1 (1-t^2|z|^2)^{-(\gamma/2)-1} \, dt. \end{aligned}$$

Thus

(4.6) $|f(z)| \le CD_{\gamma}(f)^{1/2}(1-|z|^2)^{-\gamma/2}$

for some positive constant C. It follows that

$$I = \int_{B} (1 - |z|^{2})^{n} |f(z)|^{p-2} |\widetilde{\nabla}f(z)|^{2} d\tau(z)$$

$$\leq C D_{\gamma}(f)^{(1/2)(p-2)} \int_{B} (1 - |z|^{2})^{n-(p-2)(\gamma/2)} |\widetilde{\nabla}f(z)|^{2} d\tau(z).$$

With $p = 2n/\gamma$ we have $n - (p - 2)(\gamma/2) = \gamma$ and therefore

$$I \le C D_{\gamma}(f)^{(1/2)(p-2)} \int_{B} (1-|z|^{2})^{\gamma} |\widetilde{\nabla}f(z)|^{2} d\tau(z) \le C D_{\gamma}(f)^{p/2},$$

or

(4.7)
$$\int_{B} (1-|z|^{2})^{n} d\mu_{|f|^{p}}(z) \leq C D_{\gamma}(f)^{p/2}, \quad p = 2n/\gamma.$$

Hence, by Lemma 4.1, we have $f \in h^{2n/\gamma}$, and thus $|f|^p$ has an \mathcal{M} -harmonic majorant on B for all p, 0 .

It remains to show that $\hat{\int_B} |f(z)|^p dm(z) \leq C D_{\gamma}(f)^{p/2}$. In the case $p = 2n/\gamma$ we have

$$\int_{B} |f(z)|^{p} dm(z) = \int_{B} (1 - |z|^{2})^{n+1} |f(z)|^{p} d\tau(z),$$

which by [17, Theorem 10.10] is

$$\leq C \int_B (1-|z|^2)^{n+1} |\widetilde{\nabla}f(z)|^p d\tau(z).$$

By inequality (4.5) the last integral is

$$\leq C D_{\gamma}(f)^{(1/2)(p-2)} \int_{B} (1-|z|^{2})^{\gamma+1} |\widetilde{\nabla}f(z)|^{2} d\tau(z) \leq C D_{\gamma}(f)^{p/2}$$

Combining this with (4.7) and Lemma 4.1 gives $||f||_{2n/\gamma} \leq CD_{\gamma}(f)^{1/2}$ for $p = 2n/\gamma$, from which the result follows for all p with 0 .

(b) We first prove the result for a real-valued \mathcal{M} -harmonic function f in the class $h^p (1 . Note that, for <math>1 , the function <math>|f|^p$ is, in general, not C^2 on B. To overcome this difficulty, we set $f_{\epsilon}(z) = f(z) + i\epsilon$, $\epsilon > 0$. Then f_{ϵ} is \mathcal{M} -harmonic on B with $f_{\epsilon} \in h^p$ and $f_{\epsilon}(z) \neq 0$ for all $z \in B$. Thus $|f_{\epsilon}|^p$ is C^2 on B. A straightforward computation shows

$$\begin{split} \widetilde{\Delta} |f_{\epsilon}|^{p} &= p |f_{\epsilon}|^{p-2} \left[\frac{(p-1)|f|^{2} + \epsilon^{2}}{|f|^{2} + \epsilon^{2}} \right] |\widetilde{\nabla}f|^{2} \\ &\geq p(p-1)|f_{\epsilon}|^{p-2} |\widetilde{\nabla}f|^{2}. \end{split}$$

Moreover, by (4.1) we have $(1 - |z|^2) \leq C |f_{\epsilon}(z)|^{-p/n} ||f_{\epsilon}||_p^{p/n}$ for all $z \in B$. Hence, if $\gamma \geq n$, then

$$\begin{aligned} D_{\gamma}(f) &= \int_{B} (1 - |z|^{2})^{\gamma} |\widetilde{\nabla}f(z)|^{2} d\tau(z) \\ &= \int_{B} (1 - |z|^{2})^{n + (\gamma - n)} |\widetilde{\nabla}f(z)|^{2} d\tau(z) \\ &\leq C \|f_{\epsilon}\|_{p}^{(p/n)(\gamma - n)} \int_{B} (1 - |z|^{2})^{n} |f_{\epsilon}(z)|^{-(p/n)(\gamma - n)} |\widetilde{\nabla}f(z)|^{2} d\tau(z). \end{aligned}$$

In the case $\gamma = 2n/p$ we have $(p/n)(\gamma - n) = 2 - p$. Therefore

$$D_{2n/p}(f) \le C \|f_{\epsilon}\|_{p}^{2-p} \int_{B} (1-|z|^{2})^{n} |f_{\epsilon}(z)|^{p-2} |\widetilde{\nabla}f(z)|^{2} d\tau(z)$$

$$\le \frac{C}{p(p-1)} \|f_{\epsilon}\|_{p}^{2-p} \int_{B} (1-|z|^{2})^{n} \widetilde{\Delta} |f_{\epsilon}(z)|^{2} d\tau(z),$$

which by Lemma 4.1 is

$$\leq C_{n,p} \|f_{\epsilon}\|_{p}^{2-p} \|f_{\epsilon}\|_{p}^{p} = C_{n,p} \|f_{\epsilon}\|_{p}^{2}.$$

Since $||f_{\epsilon}||_p \to ||f||_p$ as $\epsilon \to 0$, we have $D_{2n/p}(f) \leq C_{n,p} ||f||_p^2$. Finally, since $|f(0)|^p \leq P[|f^*|^p](0) = ||f||_p^p$, we obtain

$$||f||_{\mathcal{D}_{2n/p}} \le C_{n,p} ||f||_p.$$

The conclusion now follows since $D_{\gamma}(f) \leq D_{2n/p}(f)$ for all $\gamma \geq 2n/p$.

Finally, suppose $f \in H^p$, $0 . In [16] we proved that the Riesz measure of <math>|f|^p$ is given by $d\mu_{|f|^p} = f_p^{\sharp} d\tau$ where

$$f_p^\sharp(z) = \tfrac{1}{4} p^2 |f(z)|^{p-2} |\widetilde{\nabla} f(z)|^2 \qquad \text{a.e. on } B.$$

This is valid for all $p, 0 . Since the zero set of a holomorphic function has <math>\tau$ measure zero, (4.1) gives

$$(1-|z|^2)^{\gamma-n} \le C ||f||_p^{2-p} |f(z)|^{p-2} \qquad au$$
-a.e.

In the case $\gamma = 2n/p$ we conclude, as above,

$$D_{2n/p}(f) = \int_{B} (1 - |z|^{2})^{\gamma} |\widetilde{\nabla}f(z)|^{2} d\tau(z)$$

$$\leq C_{n,p} ||f||_{p}^{2-p} \int_{B} (1 - |z|^{2})^{n} |f(z)|^{p-2} |\widetilde{\nabla}f(z)|^{2} d\tau(z) \leq C_{n,p} ||f||_{p}^{2}.$$

This implies that $||f||_{\mathcal{D}_{\gamma}} \leq C_{n,p} ||f||_p$ for all $\gamma \geq 2n/p$.

Remark 4.3. One can restate part (a) of Theorem 4.2 as follows:

Let f be \mathcal{M} -harmonic (or holomorphic) on B. If $f \in \mathcal{D}_{2n/p}$ for some $p \geq 2$, then $f \in h^p$ (respectively H^p).

As we have shown in Section 3, in the case $n \ge 2$, the only holomorphic functions f on B for which $D_{\gamma}(f)$ is finite for $\gamma \le (n-1)$ are the constant functions. Thus the hypothesis $(n-1) < \gamma \le n$ forces $2 \le p < 2n/(n-1)$.

Examples 4.4.

(a) We first show that the hypothesis $u \in \mathcal{D}_{\gamma}$ of part (a) of Theorem 4.2 cannot be replaced by $u \in \mathcal{D}_{\gamma+\epsilon}$ for any $\epsilon > 0$. Let u be defined by $u(z) = \operatorname{Re} f(z)$, where

$$f(z) = (1 - z_1)^{-\gamma/2}.$$

We will show that for $(n-1) \leq \gamma \leq n$, $D_{\gamma+\epsilon}(u)$ is finite for all $\epsilon > 0$, but that $|u(z)|^{2n/\gamma}$ does not have an \mathcal{M} -harmonic majorant. Since $2n/\gamma \geq 2$, if $|u(z)|^{2n/\gamma}$ had an \mathcal{M} -harmonic majorant, then the generalization of the M. Riesz theorem to the unit ball (see [15]) would imply that f is in the Hardy space $H^{2n/\gamma}$. We will show that this is not the case.

Since f is a function of z_1 only, and $u = \operatorname{Re} f$, we have

$$\begin{split} \widetilde{\nabla} u(z)|^2 &= 4(1-|z|^2) \left[|\partial u(z)|^2 - |Ru(z)|^2 \right] \\ &= (1-|z|^2)(1-|z_1|^2)|f'(z_1)|^2 \\ &= \frac{\gamma^2(1-|z|^2)(1-|z_1|^2)}{4|1-z_1|^{\gamma+2}}. \end{split}$$

By the inequality $(1 - |z_1|^2) \leq 2|1 - z_1|$ it follows that $|\widetilde{\nabla} u(z)|^2 \leq C(1 - |z|^2)|1 - z_1|^{-(\gamma+1)}$ for some constant C. Hence

$$D_{\gamma+\epsilon}(u) = \int_{B} (1-|z|^{2})^{\gamma+\epsilon} |\widetilde{\nabla}u(z)|^{2} d\tau(z)$$

$$\leq C \int_{0}^{1} r^{2n-1} (1-r^{2})^{\gamma+\epsilon-n} \int_{S} \frac{d\sigma(\zeta)}{|1-r\zeta_{1}|^{\gamma+1}} dr.$$

By [13, Proposition 1.4.10], we have for all $z \in B$ and c real,

(4.8)
$$\int_{S} \frac{d\sigma(\zeta)}{|1 - \langle z, \zeta \rangle|^{n+c}} \approx \begin{cases} (1 - |z|^2)^{-c}, & c > 0, \\ \log \frac{1}{(1 - |z|^2)}, & c = 0, \\ 1, & c < 0. \end{cases}$$

Thus, with $c = \gamma - (n - 1)$ we have

$$D_{\gamma+\epsilon}(u) \le C \int_0^1 r^{2n-1} (1-r^2)^{\epsilon-1} dr$$

for $\gamma > (n-1)$, and

$$D_{\gamma+\epsilon}(u) \le C \int_0^1 r^{2n-1} (1-r^2)^{\epsilon-1} \log \frac{1}{(1-r^2)} dr$$

for $\gamma = (n-1)$. Both of these integrals are finite for all $\epsilon > 0$. On the other hand, we have

$$\int_{S} |f(r\zeta)|^{2n/\gamma} d\sigma(\zeta) = \int_{S} \frac{d\sigma(\zeta)}{|1 - r\zeta_1|^n} \approx \log \frac{1}{(1 - r^2)}.$$

Hence $f \notin H^{2n/\gamma}$

(b) We next show that the hypothesis $f \in H^p$ ($0) of part (b) of Theorem 4.2 cannot be replaced by <math>f \in H^q$ for all q < p. As in (a), let

$$f(z) = (1 - z_1)^{-n/p}.$$

Then for q < p we have, by (4.8),

$$\int_{S} |f(r\zeta)|^{q} d\sigma(\zeta) = \int_{S} \frac{d\sigma(\zeta)}{|1 - r\zeta_{1}|^{n+n((q/p)-1)}} \le C$$

for all $r, 0 \leq r < 1$. Thus $f \in H^q$ for all q < p. On the other hand, we now show that $f \notin \mathcal{D}_{2n/p}$. As above, we let

$$|\widetilde{\nabla}f(z)|^2 = \frac{n^2(1-|z|^2)(1-|z_1|^2)}{p^2|1-z_1|^{(2n/p)+2}} \ge \frac{n^2(1-|z|^2)^2}{p^2|1-z_1|^{(2n/p)+2}}$$

By integration in polar coordinates it follows that

$$D_{2n/p}(f) \ge C_{n,p} \int_0^\rho r^{2n-1} (1-r^2)^{(2n/p)-n+1} \int_S \frac{d\sigma(\zeta)}{|1-r\zeta_1|^{(2n/p)+2}} dr$$

for any ρ with $0 < \rho < 1$. But by (4.8) we have

$$\int_{S} \frac{d\sigma(\zeta)}{|1 - r\zeta_1|^{(2n/p)+2}} \ge C(1 - r^2)^{n - (2n/p) - 2}$$

and thus

$$D_{2n/p}(f) \ge C \log \frac{1}{(1-\rho^2)}.$$

for any ρ , $0 < \rho < 1$. Hence $D_{2n/p}(f) = \infty$ and thus $f \notin D_{2n/p}$.

(c) Our final example shows that the conclusion of Theorem 4.2(b) need not hold for $h \in h^1$. Set

$$h(z) = P(z, e_1) = \frac{(1 - |z|^2)^n}{|1 - z_1|^{2n}}$$

Then h is a non-negative \mathcal{M} -harmonic function on B and thus is an element of the \mathcal{M} -harmonic Hardy space h^1 . We will show that $h \notin \mathcal{D}_{2n}$. Since h is harmonic, we have $|\widetilde{\nabla}h(z)|^2 = (1/2)\widetilde{\Delta}h^2(z)$. But $P^2(z, e_1)$ is an eigenfunction of $\widetilde{\Delta}$ with eigenvalue $8n^2$ (see [13, Theorem 4.2.2]). Thus

$$|\widetilde{\nabla}h(z)|^2 = 4n^2h^2(z) = 4n^2\frac{(1-|z|^2)^{2n}}{|1-z_1|^{4n}}$$

In the case $\gamma = 2n$, an integration in polar coordinates shows that, for any ρ with $0 < \rho < 1$,

$$D_{2n}(h) \ge 2n \int_0^{\rho} r^{2n-1} (1-r^2)^{n-1} \int_S |\widetilde{\nabla}h(r\zeta)|^2 \, d\sigma(\zeta) \, dr$$
$$= 8n^3 \int_0^{\rho} r^{2n-1} (1-r^2)^{3n-1} \int_S \frac{d\sigma(\zeta)}{|1-r\zeta_1|^{4n}} \, dr$$

which by (4.8) is

$$\geq C \int_0^{\rho} r^{2n-1} (1-r^2)^{-1} dr \approx \log \frac{1}{(1-\rho^2)}.$$

Therefore $D_{2n}(h) = \infty$ and hence $h \notin D_{2n}$.

It is easily seen that in the last example,
$$h \in \mathcal{D}_{\gamma}$$
 for all $\gamma > 2n$. We now show that this is always the case.

PROPOSITION 4.5. If $f \in h^1$, then $f \in \mathcal{D}_{\gamma}$ for all $\gamma > 2n$.

Proof. If $h \in h^1$, then $h(z) = P[\nu](z)$, where ν is a signed measure on S with total variation $|\nu|(S) = ||h||_1$. By [17, Proposition 10.3] we have $|\widetilde{\nabla}h(z)| \leq 2nP[|\nu|](z)$. Thus, by Hölder's inequality,

$$|\widetilde{\nabla}h(z)|^2 \le 2n|\nu|(S) \int_S P^2(z,t) \, d|\nu|(t),$$

and as above

$$\int_{S} |\widetilde{\nabla}h(r\zeta)|^2 d\sigma(\zeta) \le C(1-r^2)^{-n}.$$

From this it follows that $D_{\gamma}(h) < \infty$ for all $\gamma > 2n$.

5. Holomorphic functions in \mathcal{D}_{γ}

In this section we consider $\mathcal{D}_{\gamma} \cap \mathcal{H}(B)$, where $\mathcal{H}(B)$ is the set of holomorphic functions on B. We begin by computing $D_{\gamma}(f)$ for $f \in \mathcal{H}(B)$. For a multiindex $\alpha = (\alpha_1, ..., \alpha_n)$, where each α_i is a non-negative integer, we use the standard notations

$$a_{\alpha} = a_{\alpha_1,\dots,\alpha_n}, \quad \alpha! = \alpha_1! \cdots \alpha_n!, \quad |\alpha| = \alpha_1 + \cdots + \alpha_n.$$

Also, for $z = (z_1, \ldots, z_n)$ we set $Z_{\alpha}(z) = z^{\alpha} = z_1^{\alpha_1} \cdots z_n^{\alpha_n}$. It is well known that the monomials $\{Z_{\alpha}\}_{\alpha}$ are orthogonal on S.

THEOREM 5.1. Suppose $f(z) = \sum_{\alpha} a_{\alpha} z^{\alpha} = \sum_{k=0}^{\infty} \sum_{|\alpha|=k} a_{\alpha} z^{\alpha}$ is holomorphic on B. Then we have, for all $\gamma > (n-1)$,

(5.1)
$$D_{\gamma}(f) = 2\gamma n! \Gamma(\gamma - n + 1) \sum_{k=1}^{\infty} \frac{k}{\Gamma(\gamma + k + 1)} \sum_{|\alpha|=k}^{\infty} \alpha! |a_{\alpha}|^2,$$

and

(5.2)
$$D_{\gamma}(f) = \frac{2\gamma \Gamma(\gamma - n + 1)}{\Gamma(\gamma - n + 2)} \int_{B} (1 - |z|^2)^{\gamma + 2} |\partial f(z)|^2 d\tau(z).$$

Furthermore, if $n \geq 2$, then $\mathcal{D}_{\gamma} \cap \mathcal{H}(B)$ is nontrivial if and only if $\gamma > (n-1)$.

Proof. Since f is holomorphic, we have

$$\widetilde{\nabla} f(z)|^2 = 2(1-|z|^2)[|\partial f(z)|^2 - |Rf(z)|^2].$$

Thus, by integration in polar coordinates,

$$\begin{aligned} D_{\gamma}(f) &= \int_{B} (1 - |z|^{2})^{\gamma} |\widetilde{\nabla}f(z)|^{2} d\tau(z) \\ &= 2 \int_{B} (1 - |z|^{2})^{\gamma - n} \left[|\partial f(z)|^{2} - |Rf(z)|^{2} \right] dm(z) \\ &= 4n \int_{0}^{1} r^{2n - 1} (1 - r^{2})^{\gamma - n} \int_{S} \left[|\partial f(r\zeta)|^{2} - |Rf(r\zeta)|^{2} \right] d\sigma(\zeta) dr. \end{aligned}$$

We now compute

$$I = \int_{S} \left[|\partial f(r\zeta)|^2 - |Rf(r\zeta)|^2 \right] \, d\sigma(\zeta)$$

Consider first

$$I_1 = \int_S |\partial f(r\zeta)|^2 d\sigma(\zeta) = \sum_{j=1}^n \int_S |\partial_j f(r\zeta)|^2 d\sigma(\zeta)$$

For j = 1, ..., n, set $\hat{\alpha}(j) = (\alpha_1, ..., \alpha_j - 1, ..., \alpha_n)$. Then

$$\partial_j f(z) = \sum_{k=1}^{\infty} \sum_{|\alpha|=k} a_{\alpha} \alpha_j Z_{\hat{\alpha}(j)}(z).$$

Since the monomials $Z_{\beta}(z)$ are orthogonal on S,

$$\int_{S} |\partial_j f(r\zeta)|^2 d\sigma(\zeta) = \sum_{k=1}^{\infty} \sum_{|\alpha|=k} |a_{\alpha}|^2 \alpha_j^2 \int_{S} |Z_{\hat{\alpha}(j)}(r\zeta)|^2 d\sigma(\zeta)$$
$$= \sum_{k=1}^{\infty} \sum_{|\alpha|=k} |a_{\alpha}|^2 \alpha_j^2 r^{2|\alpha|-2} \int_{S} |Z_{\hat{\alpha}(j)}(\zeta)|^2 d\sigma(\zeta) dr$$

By [13, Proposition 1.4.9] we have

$$\int_{S} |Z_{\hat{\alpha}(j)}(\zeta)|^2 = \frac{(n-1)!\hat{\alpha}(j)!}{(n-1+|\hat{\alpha}(j)|)!}$$

Since $\alpha_j \hat{\alpha}(j)! = \alpha!$ and $|\hat{\alpha}(j)| = |\alpha| - 1$, we have

$$\int_{S} |\partial_{j} f(r\zeta)|^{2} d\sigma(\zeta) = (n-1)! \sum_{k=1}^{\infty} \sum_{|\alpha|=k} \frac{|a_{\alpha}|^{2} \alpha_{j} \alpha! r^{2|\alpha|-2}}{(n+|\alpha|-2)!}.$$

Finally, summing over j = 1, ..., n gives

(5.3)
$$I_1 = \int_S |\partial f(r\zeta)|^2 d\sigma(\zeta) = (n-1)! \sum_{k=1}^\infty \frac{k r^{2k-2}}{(n+k-2)!} \sum_{|\alpha|=k} \alpha! |a_\alpha|^2.$$

We next evaluate the integral $I_2 = \int_S |Rf(r\zeta)|^2 d\sigma(\zeta)$. Since

$$Rf(z) = \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j} = \sum_{k=1}^{\infty} \sum_{|\alpha|=k} a_\alpha \sum_{j=1}^{n} z_j \frac{\partial Z_\alpha}{\partial z_j} = \sum_{k=1}^{\infty} \sum_{|\alpha|=k} a_\alpha |\alpha| Z_\alpha(z)$$

by the orthogonality of $\{Z_{\alpha}\}$, we obtain

$$I_2 = (n-1)! \sum_{k=1}^{\infty} \frac{k^2 r^{2k}}{(n+k-1)!} \sum_{|\alpha|=k} \alpha! |a_{\alpha}|^2.$$

Combining this with the above identity for ${\cal I}_1$ gives

$$I = I_1 - I_2 = (n-1)! \sum_{k=1}^{\infty} \frac{k r^{2k-2} [(n-1) + k(1-r^2)]}{(n+k-1)!} \sum_{|\alpha|=k} \alpha! |a_{\alpha}|^2.$$

Hence

(5.4)
$$D_{\gamma}(f) = 2n! \sum_{k=1}^{\infty} \frac{k I(k)}{(n+k-1)!} \sum_{|\alpha|=k} \alpha! |a_{\alpha}|^2,$$

where

(5.5)
$$I(k) = 2 \int_0^1 r^{2n+2k-3} \left[(n-1) + k(1-r^2) \right] (1-r^2)^{\gamma-n} dr.$$

Since

$$2\int_0^1 r^{2m-3}(1-r^2)^{\alpha} dr = \int_0^1 s^{m-2}(1-s)^{\alpha} ds = \frac{\Gamma(m-1)\Gamma(\alpha+1)}{\Gamma(m+\alpha)}$$

for all m > 1 and $\alpha > -1$ (where Γ is the Gamma function), we have

$$\begin{split} I(k) &= (n-1) \frac{\Gamma(n+k-1)\Gamma(\gamma-n+1)}{\Gamma(\gamma+k)} + k \, \frac{\Gamma(n+k-1)\Gamma(\gamma-n+2)}{\Gamma(\gamma+k+1)} \\ &= \frac{\gamma \, \Gamma(\gamma-n+1)\Gamma(n+k)}{\Gamma(\gamma+k+1)}. \end{split}$$

Substituting this into (5.4) gives

$$D_{\gamma}(f) = 2\gamma \, n! \, \Gamma(\gamma - n + 1) \sum_{k=1}^{\infty} \frac{k}{\Gamma(\gamma + k + 1)} \sum_{|\alpha|=k}^{\infty} \alpha! \, |a_{\alpha}|^2.$$

We next derive equation (5.2). Using again integration in polar coordinates, we obtain

$$\begin{split} \int_{B} (1 - |z|^2)^{\gamma + 2} |\partial f(z)|^2 d\tau(z) \\ &= 2n \int_0^1 r^{2n - 1} (1 - r^2)^{\gamma - n + 1} \int_{S} |\partial f(r\zeta)|^2 d\sigma(\zeta) \, dr. \end{split}$$

By (5.3), this is equal to

$$n! \sum_{k=1}^{\infty} \sum_{|\alpha|=k} \frac{k \,\alpha! |a_{\alpha}|^2}{\Gamma(n+k-1)} 2 \int_0^1 r^{2n+2k-3} (1-r^2)^{\gamma-n+1} dr$$
$$= n! \Gamma(\gamma-n+2) \sum_{k=1}^{\infty} \frac{k}{\Gamma(\gamma+k+1)} \sum_{|\alpha|=k} \alpha! |a_{\alpha}|^2,$$

and (5.2) now follows. Finally, suppose that n > 1. By (5.5) we have

$$I(k) \ge (n-1) \int_0^1 r^{2n+2k-3} (1-r^2)^{\gamma-n} dr,$$

which is finite if and only if $\gamma > (n-1)$. Thus, for $\gamma \leq n-1$, the only holomorphic functions in $\mathcal{D}_{\gamma} \cap \mathcal{H}(B)$ are the constant functions. \Box

Combining Theorem 4.2 with Theorem 5.1 gives the following result.

Theorem 5.2. Suppose $f(z) = \sum_{\alpha} a_{\alpha} z^{\alpha}$ is holomorphic in B. If the sequence $\{a_{\alpha}\}$ satisfies

(5.6)
$$\sum_{k=1}^{\infty} \frac{k}{\Gamma(\frac{2n}{q}+k+1)} \sum_{|\alpha|=k} \alpha! |a_{\alpha}|^2 < \infty$$

for some $q, 2 \leq q < 2n/(n-1)$, then $f \in H^q$. Conversely, if $f \in H^q$, $0 < q \leq 2$, then (5.6) holds.

6. Fractional derivatives and holomorphic functions in $\widetilde{\mathcal{D}}_{\gamma}$

The restriction q < 2n/(n-1) in Theorem 5.2 is due to the fact that, in the case $n \ge 2$, the integral defining $\mathcal{D}_{\gamma}(f)$ is only defined for $\gamma > (n-1)$. However, the series in (5.1) is defined for all $\gamma > 0$, and in fact for $\gamma > -1$. Thus, for $\gamma > -1$ it makes sense to consider the space $\widetilde{\mathcal{D}}_{\gamma}$ of holomorphic functions $f(z) = \sum a_{\alpha} z^{\alpha}$ on B for which

(6.1)
$$\widetilde{D}_{\gamma}(f) = \sum_{k=1}^{\infty} \frac{k}{\Gamma(\gamma+k+1)} \sum_{|\alpha|=k} \alpha! |a_{\alpha}|^2$$

is finite, with norm

$$||f||_{\widetilde{\mathcal{D}}_{\gamma}} = |f(0)| + (\widetilde{D}_{\gamma}(f))^{1/2}.$$

It is natural to ask the following question:

Suppose that $f \in \mathcal{H}(B)$ and $D_{\gamma}(f)$ is finite for some γ , $0 < \gamma \leq (n-1)$. Does it follow that $f \in H^{2n/\gamma}$? Alternately, if n > 1 and $f = \sum a_{\alpha} z^{\alpha}$ satisfies

$$\sum_{k=1}^{\infty} \frac{k}{\Gamma(\frac{2n}{p}+k+1)} \sum_{|\alpha|=k} \alpha! |a_{\alpha}|^2 < \infty$$

for some p, $2n/(n-1) \le p < \infty$, is f in H^p ?

As we will show in Theorem 6.3 below, the answer is yes.

To this end, we introduce the radial fractional derivative of f. As in [1, 3,5], if f is holomorphic in B with homogeneous expansion

$$f(z) = \sum_{k=0}^{\infty} f_k(z)$$
 where $f_k(z) = \sum_{|\alpha|=k} a_{\alpha} z^{\alpha}$,

for $\beta > 0$, the radial fractional derivative of f of order β , denoted by $R^{\beta}f$, is defined by

(6.2)
$$R^{\beta}f(z) = \sum_{k=0}^{\infty} (k+1)^{\beta} f_k(z).$$

The function $R^{\beta}f$ is clearly holomorphic on B. When $\beta = 1$, $R^{1}f = f + Rf$ where R is the radial derivative introduced in Section 2. For $0 < \beta < n$, let k_{β} denote the kernel

$$k_{\beta}(\zeta,\eta) = \frac{1}{|1 - \langle \zeta, \eta \rangle|^{n-\beta}}, \qquad \zeta, \eta \in S,$$

and for $g \in L^p(S), p \ge 1$, set

$$(k_{\beta} * g)(\zeta) = \int_{S} k_{\beta}(\zeta, \eta) g(\eta) d\sigma(\eta).$$

The following lemma will be the key step in the proof of Theorem 6.3 below.

LEMMA 6.1. Let $1 and <math>0 < \beta < n$. If $R^{\beta}f \in H^p$, then $f \in H^q$, where $1/q = 1/p - \beta/n$, with $||f||_q \leq C ||R^{\beta}f||_p$.

Proof. By [1, Lemma 1.7], if $R^{\beta} \in H^p$, then there exists $g \in L^p(S)$ with $||R^{\beta}f||_p = ||g||_p$ such that

$$|f(z)| \le P[k_{\beta} * g](z).$$

But by Theorem 3 of [5], the mapping $g \to k_{\beta} * g$ is a bounded mapping of $L^{p}(S)$ to $L^{q}(S)$, where $1/q = 1/p - \beta/n$. Thus we have $f \in H^{q}$ with

$$||f||_q \le ||k_\beta * g||_q \le C ||g||_p = C ||R^\beta f||_p.$$

Remark 6.2. Lemma 6.1 has also been proved, using different methods, by Wu Young Chen [3]

THEOREM 6.3. Suppose $f(z) = \sum a_{\alpha} z^{\alpha}$ is holomorphic on *B*. If $\widetilde{D}_{\gamma}(f) < \infty$ for some γ , $0 < \gamma \leq n$, then $f \in H^{2n/\gamma}$ with

$$\|f\|_{2n/\gamma} \le C \|f\|_{\widetilde{\mathcal{D}}_{\gamma}}.$$

Proof. Given $0 < \gamma \le (n-1)$, choose $\beta > 0$ such that $(n-1) < \gamma + 2\beta \le n$. Then by Theorem 5.1,

$$D_{\gamma+2\beta}(R^{\beta}f) = C_{\gamma,\beta} \sum_{k=1}^{\infty} \frac{k(k+1)^{2\beta}}{\Gamma(\gamma+2\beta+k+1)} \sum_{|\alpha|=k} \alpha! |a_{\alpha}|^2.$$

Since $\lim_{k\to\infty} k^{b-a} \Gamma(k+a) / \Gamma(k+b) = 1$, we have

(6.3)
$$\frac{(k+1)^{2\beta}}{\Gamma(\gamma+2\beta+k+1)} \approx \frac{1}{\Gamma(\gamma+k+1)}$$

Thus $D_{\gamma+2\beta}(R^{\beta}f) \approx \widetilde{D}_{\gamma}(f)$. Hence by Theorem 4.2, $R^{\beta}f \in H^{p}$ with

$$\|R^{\beta}f\|_{p} \leq C \|R^{\beta}f\|_{\mathcal{D}_{\gamma+2\beta}} \leq C \|f\|_{\widetilde{\mathcal{D}}_{\gamma}},$$

where $p = 2n/(\gamma + 2\beta)$. But then by Lemma 6.1, we have $f \in H^q$ with $||f||_q \leq C ||R^{\beta}f||_p$, where

$$\frac{1}{q} = \frac{1}{p} - \frac{\beta}{n} = \frac{\gamma}{2n}.$$

This proves the result.

From Theorem 5.2 and Theorem 6.3 we deduce the following result.

COROLLARY 6.4. Let
$$f(z) = \sum a_{\alpha} z^{\alpha}$$
 be holomorphic in *B*. If

$$\sum_{k=1}^{\infty} \frac{k}{\Gamma(\frac{2n}{p} + k + 1)} \sum_{|\alpha|=k} \alpha! |a_{\alpha}|^2 < \infty$$

for some $p, 2 \leq p < \infty$, then $f \in H^p$ with $||f||_p \leq C ||f||_{\mathcal{D}_{2n/p}}$.

K. Zhu [21] proved the existence of a unique Hilbert space \mathbb{H} of holomorphic functions in B_n which is Möbius invariant. Zhu also showed that a function $f(z) = \sum_{\alpha} a_{\alpha} z^{\alpha}$ is in \mathbb{H} if and only if

$$\sum_{\alpha} |a_{\alpha}|^2 \frac{\alpha!}{|\alpha|!} |\alpha| < \infty.$$

This, however, is just the special case $\gamma = 0$ of (6.1). Thus

$$\mathbb{H} = \{ f \in \mathcal{H}(B) : \widetilde{D}_0(f) < \infty \}.$$

When n = 1, \mathbb{H} is simply the Dirichlet space \mathcal{D}_0 of holomorphic functions f on U satisfying

$$\int_U |f'(z)|^2 \, dA(z) < \infty.$$

The space \mathbb{H} has also been identified by M. Peloso [12] as the 2–Besov space \mathcal{B}_2 of holomorphic functions f on B for which $(1 - |z|^2)^m |R^m f(z)| \in L^2(\tau)$, where m is any integer with m > n/2.

Since $\Gamma(\gamma + k + 1) \ge \Gamma(k + 1)$ for all $\gamma \ge 0$, $\widetilde{D}_0(f) < \infty$ implies $\widetilde{D}_{\gamma}(f) < \infty$ for all $\gamma > 0$. We thus have the following result, which represents a generalization of a result that is known in the case n = 1 (see [4, Exercise 7, p. 106]).

PROPOSITION 6.5. If f is in the unique Möbius invariant Hilbert space \mathbb{H} on B, then $f \in H^p$ for all p, 0 .

7. The special case n = 1

In this section we consider the results of the previous sections for the special case of the unit disc \mathbb{D} in \mathbb{C} . When n = 1, (6.3) gives

$$D_{\gamma}(f) \approx \sum_{k=1}^{\infty} k^{1-\gamma} |a_k|^2,$$

and Theorem 5.2 therefore reduces to the following result.

THEOREM 7.1. Suppose $f(z) = \sum a_k z^k$ is holomorphic in the unit disc \mathbb{D} .

(a) If the sequence $\{a_k\}$ satisfies

(7.1)
$$\sum_{k=1}^{\infty} k^{1-2/q} |a_k|^2 < \infty$$

for some $q \geq 2$, then $f \in H^q(\mathbb{D})$.

(b) Conversely, if $f \in H^q(\mathbb{D})$ for some $q, 0 < q \leq 2$, then (7.1) holds.¹

Part (a) of Theorem 7.1 is Theorem 2 of [20]. This result is closely related to the following results of Hardy and Littlewood (see [4, Theorems 6.2 and 6.3]):

If $f(z) = \sum a_k z^k$ is holomorphic in |z| < 1, and if the sequence $\{a_k\}$ satisfies

(7.2)
$$\sum_{k=1}^{\infty} k^{q-2} |a_k|^q < \infty$$

for some $q \ge 2$, then $f \in H^q$ Conversely, if $f \in H^q$ for some $q, 0 < q \le 2$, then (7.2) holds.

For a generalization of these theorems see J. H. Shi [14].

Although the convergence of either of the series in (7.1) or (7.2) for some $q \ge 2$ implies that $f(z) = \sum a_k z^k$ is in the Hardy space H^q , we remark that for $q \ne 2$ the convergence of one series does not imply the convergence of the other series. For example, if $a_k = k^{(1/q)-1} (\log k)^{-1/2}$, $k \ge 2$, then

$$\sum_{k=2}^{\infty} k^{1-2/q} a_k^2 = \sum_{k=2}^{\infty} \frac{\log k}{k} = \infty, \text{ but } \sum_{k=2}^{\infty} k^{q-2} a_k^q = \sum_{k=2}^{\infty} \frac{1}{k (\log k)^{q/2}} < \infty$$

for all q > 2. In the other direction, the following example was suggested by my colleague Stephen Dilworth. Let

$$a_{k} = \begin{cases} 2^{n((1/q) - (1/2))} \frac{1}{n}, & \text{when } k = 2^{n}, \\ 0, & \text{elsewhere.} \end{cases}$$

Then

$$\sum_{k=1}^{\infty} k^{1-2/q} a_k^2 = \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty, \text{ but } \sum_{k=1}^{\infty} k^{q-2} a_k^q = \sum_{n=1}^{\infty} 2^{n((q/2)-1)} \frac{1}{n^q} = \infty$$

for all q > 2. Similar examples can be constructed for the case q < 2.

Example 7.2. We consider the holomorphic function $f_{p,q}$ on \mathbb{D} defined by

$$f_{p,q}(z) = (1-z)^{-1/p} \left\{ \frac{1}{z} \log \frac{1}{(1-z)} \right\}^{-1/q}.$$

We will prove the following result.

(a) If $0 , then for any q with <math>p \leq q < 2$, we have $f_{p,q} \in \mathcal{D}_{2/p}$, but $f_{p,q} \notin H^p$.

¹Added in proof: Theorem 7.1(b) for the case $1 \le q \le 2$ was known to G.H. Hardy and J.E. Littlewood [Math. Ann. **97** (1926), 159–209]. For related results, see the article by P.L. Duren and G.D. Taylor [Illinois J. Math. **14** (1970), 419–423].

(b) If $2 , then for any q with <math>2 \le q < p$, we have $f_{p,q} \in H^p$, but $f_{p,q} \notin \mathcal{D}_{2/p}$.

J. E. Littlewood ([10, pp. 93–96]) has shown that the Taylor coefficients $\{a_n\}$ of $f_{p,q}$ satisfy

$$a_n \approx n^{\frac{1}{p}-1} \left(\log n\right)^{-1/q}.$$

Thus

$$D_{2/p}(f_{p,q}) \approx \sum_{n=2}^{\infty} n^{1-\frac{2}{p}} |a_n|^2 = \sum_{n=2}^{\infty} \frac{1}{n(\log n)^{2/q}}.$$

The above series converges for all q < 2 and diverges for all $q \ge 2$. Thus

$$f_{p,q} \in \mathcal{D}_{2/p}(\mathbb{D}) \iff q < 2.$$

On the other hand, we also have that

$$f_{p,q} \in H^p(\mathbb{D}) \iff q < p.$$

For q < p, straightforward estimates give

$$\int_{-\pi}^{\pi} |f_{p,q}(re^{i\theta})|^p \, d\theta \le C_1 + C_2 \left[\log \frac{1}{(1-r)} \right]^{1-p/q}$$

Thus $f_{p,q} \in H^p$ for all q, q < p. On the other hand, if $f \in H^p$, then its boundary function $f^*(e^{i\theta})$ is in $L^p[0, 2\pi]$. But for $0 < |\theta| < \pi$ we have

$$|f_{p,q}^*(e^{i\theta})|^p \approx \frac{1}{\theta |\log \theta|^{p/q}}$$

which is not integrable for any $q \ge p$. Thus $f_{p,q} \notin H^p$ for any $q \ge p$.

Remark 7.3. The existence of functions having the desired properties (a) and (b) above can also be ascertained from a theorem of Littlewood [9] (see also [4, Theorem A.5]).

8. Comparison with a theorem of Yamashita

For $N \geq 3$, let B_N denote the unit ball in \mathbb{R}^N . Yamashita [20, Theorem 3] proved the following generalization of Theorem A for Euclidean harmonic functions on B_N .

THEOREM. Let u be a harmonic function in B_N ($N \ge 3$) satisfying

(8.1)
$$\int_{B_N} (1-|x|)^{\alpha} |\nabla u(x)|^2 dx < \infty$$

for some α , $0 \le \alpha \le 1$. Then for $p = 2(N-1)/(N+\alpha-2)$ the function $|u|^p$ admits a harmonic majorant in B_N .

Let n > 1 and suppose that f is holomorphic on $B \subset \mathbb{C}^n$ with $D_{\gamma}(f) < \infty$ for some γ , $(n-1) < \gamma \leq n$. Identify \mathbb{C}^n with \mathbb{R}^{2n} and B with $B_{2n} \subset \mathbb{R}^{2n}$. If $u = \operatorname{Re} f$, then u is pluriharmonic on B and thus also (Euclidean) harmonic on B_{2n} . Also, since $D_{\gamma}(f) < \infty$, (5.2) gives

$$\int_{B} (1-|z|^{2})^{\gamma+2} |\partial u(z)|^{2} d\tau(z) = \int_{B} (1-|z|^{2})^{\gamma-n+1} |\partial u(z)|^{2} dm(z) < \infty.$$

But $|\partial u|^2 = (1/4)|\nabla u|^2$. Hence u satisfies (8.1) with $\alpha = \gamma - n + 1$. Thus for $p = 2(2n-1)/(n+\gamma-1)$, the function $|u|^p$ admits a (Euclidean) harmonic majorant F on B_{2n} . But since F satisfies the mean-value property,

$$\sup_{0 < r < 1} \int_{S} |u(r\zeta)|^p \, d\sigma(\zeta) \le \int_{\partial B_{2n}} F(r\zeta) \, d\sigma(\zeta) = F(0).$$

Since p > 1, by [15, Theorem 1] the function f is in H^p with $p = 2(2n - 1)/(n + \gamma - 1)$. However, when n > 1 and $(n - 1) < \gamma < n$, this value of p is strictly smaller than the value $2n/\gamma$ given by Theorem 4.2.

References

- P. Ahern & W. Cohn, Exceptional sets for Hardy Sobolev functions, p > 1, Indiana Univ. Math. J. 38 (1989), 417–453.
- [2] J. Arazy, S. Fisher, S. Janson, and J. Peetre, Membership of Hankel operators on the ball in unitary ideals, J. London Math. Soc. (2) 43 (1991), 485–508.
- [3] W. Y. Chen, A generalization of a dual theorem of Hardy and Littlewood over bounded symmetric domains, Chinese J. Math. 5 (1977), 183–201.
- [4] P. Duren, Theory of H^p spaces, Academic Press, New York, NY, 1970.
- [5] I. Graham, The radial derivative, fractional integrals, and the comparative growth of means of holomorphic functions on the unit ball in Cⁿ, in: Recent developments in several complex variables (Proc. Conf., Princeton, 1979), Ann. of Math. Studies, vol. 100, Princeton Univ. Press, Princeton, 1981, pp. 171–178.
- [6] K. T. Hahn and E. H. Youssfi, Möbius invariant Besov p-spaces and Hankel operators in the Bergman space on the ball in Cⁿ, Complex Variables Theory Appl. 17 (1991), 89–104.
- [7] _____, \mathcal{M} -harmonic Besov p-spaces and Hankel operators in the Bergman space on the ball in \mathbb{C}^n , Manuscripta Math. **71** (1991), 67–81.
- [8] _____, Tangential boundary behavior of *M*-harmonic Besov functions in the unit ball, J. Math. Analysis Appl. 175 (1993), 206-221.
- [9] J. E. Littlewood, On the mean values of power series (II), J. London Math. Soc. 5 (1930), 179–182.
- [10] _____, Lectures on the theory of functions, Oxford Univ. Press, London, 1944.
- [11] M. Pavlovic, Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball, Indag. Math. (N. S.) 2 (1991), 89–98.
- [12] M. M. Peloso, Möbius invariant spaces on the unit ball, Michigan Math. J. 39 (1992), 509–536.
- [13] W. Rudin, Function theory in the unit ball of \mathbb{C}^n , Springer-Verlag, New York, 1980.
- [14] J. H. Shi, Hardy-Littlewood theorems on bounded symmetric domains of Cⁿ, Scientia Sinica **31** (1988), 916–926.
- [15] M. Stoll, Integral formula for pluriharmonic functions on bounded symmetric domains, Duke Math. J. 41 (1974), 393–404.

- [16] _____, A characterization of Hardy spaces on the unit ball of \mathbb{C}^n , J. London Math. Soc. 48 (1993), 126–136.
- [17] _____, Invariant potential theory in the unit ball of \mathbb{C}^n , London Mathematical Society Lecture Notes Series, vol. 199, Cambridge Univ. Press, Cambridge, 1994.
- [18] _____, Boundary limits and non-integrability of \mathcal{M} -subharmonic functions in the unit ball of \mathbb{C}^n , Trans. Amer. Math. Soc. **349** (1997), 3773–3785.
- [19] _____, On the integrability of eigenfunctions of the Laplace-Beltrami operator, Potential Analysis (to appear).
- [20] S. Yamashita, Dirichlet-finite functions and harmonic majorants, Illinois J. Math. 25 (1981), 626–631.
- [21] K. Zhu, Möbius invariant Hilbert spaces of holomorphic functions in the unit ball of Cⁿ, Trans. Amer. Math. Soc. **323** (1991), 823–842.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SOUTH CAROLINA, COLUMBIA, SC 29208 *E-mail address:* stoll@math.sc.edu