HOLOMORPHIC AND \mathcal{M}-HARMONIC FUNCTIONS
 WITH FINITE DIRICHLET INTEGRAL ON THE UNIT BALL OF \mathbb{C}^{n}

MANFRED STOLL

1. Introduction

For a real or complex-valued C^{1} function f defined on the unit disc \mathbb{D} in \mathbb{C} and $\gamma \in \mathbb{R}$, the γ-weighted Dirichlet integral of f is defined by

$$
\begin{equation*}
D_{\gamma}(f)=\frac{1}{\pi} \iint_{\mathbb{D}}\left(1-|z|^{2}\right)^{\gamma}|\nabla f(z)|^{2} d x d y \tag{1.1}
\end{equation*}
$$

where $\nabla f=\left(f_{x}, f_{y}\right)$ is the gradient of f and $|\nabla f|^{2}=\left|f_{x}\right|^{2}+\left|f_{y}\right|^{2}$. The results of this paper were partially motivated by the following theorem of Yamashita.

Theorem A [20, Theorem 1]. Let f be a solution of

$$
\Delta f=f_{x x}+f_{y y}=\lambda f, \quad \lambda \geq 0,
$$

with $D_{\gamma}(f)<\infty$ for some $\gamma, 0<\gamma \leq 1$. Then $|f|^{2 / \gamma}$ admits a harmonic majorant in \mathbb{D}.

The original goal of the paper was to prove an analogue of Theorem A for eigenfunctions of the Laplace-Beltrami operator $\widetilde{\Delta}$ on B, the unit ball in \mathbb{C}^{n}. For a real or complex-valued C^{1} function f defined on B and $\gamma \in \mathbb{R}$, the integral

$$
\begin{equation*}
D_{\gamma}(f)=\int_{B}\left(1-|z|^{2}\right)^{\gamma}|\widetilde{\nabla} f(z)|^{2} d \tau(z) \tag{1.2}
\end{equation*}
$$

is called the γ-weighted invariant Dirichlet integral of f. Here, $\widetilde{\nabla}$ and τ denote, respectively, the gradient and the volume measure corresponding to the Bergman metric on B. We denote by \mathcal{D}_{γ} the weighted Dirichlet space of real or complex-valued C^{1} functions f on B satisfying $D_{\gamma}(f)<\infty$, with the Dirichlet norm

$$
\begin{equation*}
\|f\|_{\mathcal{D}_{\gamma}}=|f(0)|+D_{\gamma}(f)^{1 / 2} . \tag{1.3}
\end{equation*}
$$

Received July 29, 1999; received in final form October 3, 2000.
2000 Mathematics Subject Classification. Primary 31C25, 32A35.

When $n=1$, we have $\widetilde{\Delta} f(z)=\left(1-|z|^{2}\right)^{2} \Delta f(z),|\widetilde{\nabla} f(z)|^{2}=\left(1-|z|^{2}\right)^{2}|\nabla f(z)|^{2}$ and $d \tau(z)=\left(1-|z|^{2}\right)^{-2} d x d y$. Thus $D_{\gamma}(f)$ is the ordinary γ-weighted Dirichlet integral of f, defined in (1.1).

When $\gamma=n$, it is known that if f is \mathcal{M}-harmonic on B, i.e., if $\widetilde{\Delta} f=0$, then $|f|^{2}$ has an \mathcal{M}-harmonic majorant if and only if $D_{n}(f)<\infty$ (see [16]). This suggests that an appropriate generalization of Theorem A is as follows:

If f is a solution of $\widetilde{\Delta} f=\lambda f, \lambda \geq 0$, with $D_{\gamma}(f)<\infty$ for some $\gamma, 0<\gamma \leq$ n, then $|f|^{2 n / \gamma}$ admits an \mathcal{M}-harmonic majorant on B.

However, we will show in Theorem 3.1 that for $\lambda>0$, the only function f satisfying $\widetilde{\Delta} f=\lambda f$ with $D_{\gamma}(f)<\infty$ for some $\gamma \leq n$ is the zero function. Even though Δ and $\widetilde{\Delta}$ annihilate the same class of functions on \mathbb{D}, the eigenspaces of Δ and $\widetilde{\Delta}$ corresponding to an eigenvalue λ are significantly different when $\lambda \neq 0$. Thus, a generalization of Theorem A is only possible in the case when $\lambda=0$, i.e., for the class of \mathcal{M}-harmonic functions on B. In addition to proving Theorem 3.1, we will show in Section 3 that, in the case $n \geq 2, \mathcal{D}_{\gamma}$ contains non-constant holomorphic functions if and only if $\gamma>(n-1)$.

In Section 4 we will prove a generalization of Theorem A to \mathcal{M}-harmonic functions and holomorphic functions on B, as well as a converse result. Our main result, Theorem 4.2, is as follows.

TheOrem B. (a) Let f be \mathcal{M}-harmonic or holomorphic on B. If $f \in \mathcal{D}_{\gamma}$ for some $\gamma, 0<\gamma \leq n$, then $|f|^{p}$ has an \mathcal{M}-harmonic majorant for all $p, 0<$ $p \leq 2 n / \gamma$.
(b) Conversely, if f is \mathcal{M}-harmonic on B and, for some p with $1<p \leq 2$, $|f|^{p}$ has an \mathcal{M}-harmonic majorant, then $D_{\gamma}(f)<\infty$ for all $\gamma \geq 2 n / p$. For holomorphic functions the result holds for all $p, 0<p \leq 2$.

In Section 5 we restrict ourselves to holomorphic functions on B. In Theorem 5.1 we compute $D_{\gamma}(f)$ in terms of the series expansion of f. Specifically, if $f(z)=\sum a_{\alpha} z^{\alpha}$ is holomorphic in B, then for all $\gamma>(n-1)$,

$$
\begin{equation*}
D_{\gamma}(f)=2 \gamma n!\Gamma(\gamma-n+1) \sum_{k=1}^{\infty} \frac{k}{\Gamma(\gamma+k+1)} \sum_{|\alpha|=k} \alpha!\left|a_{\alpha}\right|^{2} \tag{1.4}
\end{equation*}
$$

Combining this with the results of Section 4 gives the following result (Theorem 5.2).

Suppose $f(z)=\sum a_{\alpha} z^{\alpha}$ is holomorphic in B. If

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{k}{\Gamma\left(\frac{2 n}{q}+k+1\right)} \sum_{|\alpha|=k} \alpha!\left|a_{\alpha}\right|^{2}<\infty \tag{1.5}
\end{equation*}
$$

for some $q, 2 \leq q<2 n /(n-1)$, then $|f(z)|^{q}$ has an \mathcal{M}-harmonic majorant on B, i.e., f is in the Hardy space H^{q}. Conversely, if $f \in H^{q}$ for some q, $0<q \leq 2$, then the series in (1.5) converges.

When $n \geq 2$, the integral defining the space \mathcal{D}_{γ} for holomorphic functions only makes sense for $\gamma>(n-1)$. On the other hand, the series in (1.4) is defined for all $\gamma>-1$. In Section 6 we consider the space $\widetilde{\mathcal{D}}_{\gamma}$ of holomorphic functions f on B for which this series converges, i.e., which satisfy

$$
\begin{equation*}
\widetilde{D}_{\gamma}(f)=\sum_{k=1}^{\infty} \frac{k}{\Gamma(\gamma+k+1)} \sum_{|\alpha|=k} \alpha!\left|a_{\alpha}\right|^{2}<\infty \tag{1.6}
\end{equation*}
$$

for some $\gamma, 0<\gamma \leq n$. We will show in Theorem 6.3 that if $\widetilde{D}_{2 n / q}(f)<\infty$ for some $q, 2 \leq q<\infty$, then f is in the Hardy space H^{q}. As a consequence of this result, we show that if f is in the unique Möbius invariant Hilbert space \mathbb{H} on B, then $f \in H^{p}$ for all $p, 0<p<\infty$.

Of particular interest is the case $n=1$, which we will consider in greater detail in Section 7. In this case, Theorem 5.2 can be stated as follows:

Suppose that $f(z)=\sum a_{k} z^{k}$ is holomorphic in \mathbb{D}, and that

$$
\begin{equation*}
\sum_{k=1}^{\infty} k^{1-2 / q}\left|a_{k}\right|^{2}<\infty \tag{1.7}
\end{equation*}
$$

for some $q \geq 2$. Then $f \in H^{q}$. Conversely, if $f \in H^{q}$ for some $q, 0<q \leq 2$, then the series in (1.7) converges.

This result is closely related to the following theorem of Hardy and Littlewood:

If

$$
\begin{equation*}
\sum_{k=1}^{\infty} k^{q-2}\left|a_{k}\right|^{q}<\infty \tag{1.8}
\end{equation*}
$$

for some $q \geq 2$, then $f \in H^{q}$. Conversely, if $f \in H^{q}$ for some $q, 0<q \leq 2$, then the series in (1.8) converges.

We will give an example showing that, for $q \neq 2$, the convergence of one of the series (1.7) and (1.8) does not imply the convergence of the other series. We will also give examples of holomorphic functions f on \mathbb{D} with $f \in \mathcal{D}_{2 / p}, 0<$ $p<2$, which are not in H^{p}, and of functions $f \in H^{p}, 2<p<\infty$, which are not in $\mathcal{D}_{2 / p}$.

Dirichlet type spaces of holomorphic or \mathcal{M}-harmonic functions defined in terms of the invariant gradient $\widetilde{\nabla}$ have been studied by many other authors. K. T. Hahn and E. H. Youssfi [6] considered the spaces $\mathcal{B}_{p}(B)$ of holomorphic functions f on B for which $|\widetilde{\nabla} f| \in L^{p}(\tau)$. These spaces were also considered by Arazy, Fisher, Janson and Peetre [2] who showed that $\mathcal{B}_{p}(B)$ contains nonconstant holomorphic functions if and only if $p>2 n$. The analogous spaces of \mathcal{M}-harmonic functions were investigated by Hahn and Youssfi [7, 8]. More general types of Dirichlet or Besov spaces of holomorphic functions have been studied by M. Peloso [12].

2. Notation and preliminary results

Let B denote the unit ball in \mathbb{C}^{n} with boundary S. We will use the notation B_{n} or S_{n} if we wish to emphasize the dimension n. Throughout this paper B_{1} will be denoted by \mathbb{D}. For $z \in B$, let φ_{z} denote the Möbius transformation of B satisfying $\varphi_{z}(0)=z$ and $\varphi_{z} \circ \varphi_{z}=I$, where I is the identity map. By [13, p. 26], φ_{z} satisfies

$$
\begin{equation*}
1-\left|\varphi_{z}(w)\right|^{2}=\frac{\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)}{|1-\langle z, w\rangle|^{2}} \tag{2.1}
\end{equation*}
$$

Let \mathcal{M} denote the group of all biholomorphic automorphisms of B. Then any $\psi \in \mathcal{M}$ has a unique representation $\psi=U \circ \varphi_{a}$ for some $a \in B$ and some unitary transformation U. The invariant volume measure τ corresponding to the Bergman metric is given by $d \tau(w)=\left(1-|w|^{2}\right)^{-(n+1)} d m(w)$, where m is normalized Lebesgue measure on B.

The Laplace-Beltrami operator or the invariant Laplacian $\widetilde{\Delta}$ on B is given by

$$
\widetilde{\Delta} f(z)=\Delta\left(f \circ \varphi_{z}\right)(0)=4\left(1-|z|^{2}\right) \sum_{i, j=1}^{n}\left(\delta_{i, j}-z_{j} \bar{z}_{i}\right) \frac{\partial^{2} f(z)}{\partial z_{j} \partial \bar{z}_{i}}
$$

where Δ is the ordinary Laplacian. Similarly, for a C^{1} function f the invariant real gradient $\widetilde{\nabla}$ with respect to the Bergman metric on B is defined by

$$
\widetilde{\nabla} f(z)=\nabla\left(f \circ \varphi_{z}\right)(0)
$$

where ∇ is the real gradient in $\mathbb{R}^{2 n}$ given by

$$
\nabla f(z)=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial y_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}, \frac{\partial f}{\partial y_{n}}\right), \quad z_{k}=x_{k}+i y_{k}
$$

As in [11] we have

$$
|\widetilde{\nabla} f(z)|^{2}=2\left(1-|z|^{2}\right)\left[|\partial f(z)|^{2}+|\partial \bar{f}(z)|^{2}-|R f(z)|^{2}-|R \bar{f}(z)|^{2}\right]
$$

where ∂f is the complex gradient of f and $R f$ is the radial derivative of f given by

$$
\partial f(z)=\left(\frac{\partial f}{\partial z_{1}}, \ldots, \frac{\partial f}{\partial z_{n}}\right) \quad \text { and } \quad R f(z)=\sum_{j=1}^{n} z_{j} \frac{\partial f}{\partial z_{j}}
$$

respectively. Thus, for a holomorphic function f it follows that

$$
|\widetilde{\nabla} f(z)|^{2}=2\left(1-|z|^{2}\right)\left[|\partial f(z)|^{2}-|R f(z)|^{2}\right]
$$

and for a real-valued C^{1} function u we have

$$
|\widetilde{\nabla} u|^{2}=4\left(1-|z|^{2}\right)\left[|\partial u|^{2}-|R u|^{2}\right]
$$

Hence we have

$$
\begin{equation*}
4\left(1-|z|^{2}\right)^{2}|\partial u(z)|^{2} \leq|\widetilde{\nabla} u(z)|^{2} \leq 4\left(1-|z|^{2}\right)|\partial u(z)|^{2} \tag{2.2}
\end{equation*}
$$

for all real-valued C^{1} functions u. A similar inequality holds for complexvalued functions. The Laplacian $\widetilde{\Delta}$ and the gradient $\widetilde{\nabla}$ are both invariant under \mathcal{M}; that is, we have $\widetilde{\Delta}(f \circ \psi)=(\widetilde{\Delta} f) \circ \psi$ and $|\widetilde{\nabla}(f \circ \psi)|=|(\widetilde{\nabla} f) \circ \psi|$ for all $\psi \in \mathcal{M}$.

An upper-semicontinuous function $f: B \rightarrow[-\infty, \infty)$ is \mathcal{M}-subharmonic or invariant subharmonic if, for each $a \in B$,

$$
\begin{equation*}
f(a) \leq \int_{S} f\left(\varphi_{a}(r t)\right) d \sigma(t), \quad 0<r<1 \tag{2.3}
\end{equation*}
$$

where $d \sigma$ denotes the normalized Lebesgue measure on S. For a C^{2} function f this is equivalent to $\widetilde{\Delta} f \geq 0$. A continuous real or complex-valued function f is \mathcal{M}-harmonic on B if equality holds in (2.3). This is the case if and only if f is C^{∞} and satisfies $\widetilde{\Delta} f=0$. For an \mathcal{M}-subharmonic function f on B, the Riesz measure of f is the nonnegative Borel measure μ_{f} on B satisfying

$$
\begin{equation*}
\int_{B} \psi d \mu_{f}=\int_{B} f \widetilde{\Delta} \psi d \tau \tag{2.4}
\end{equation*}
$$

for all ψ in $C_{c}^{2}(B)$, the class of twice continuously differentiable functions on B with compact support. If f is C^{2}, then by Green's identity, $d \mu_{f}=\widetilde{\Delta} f d \tau$.

Throughout this paper we fix $\delta, 0<\delta<1$, and for $a \in B$ we set

$$
\begin{equation*}
E(a)=E(a, \delta)=\left\{z \in B:\left|\varphi_{a}(z)\right|<\delta\right\} \tag{2.5}
\end{equation*}
$$

By [17, p. 33] we have $\tau(E(a, \delta))=\delta^{2 n} /\left(1-\delta^{2}\right)^{n}$. Also, there exists a constant $c>0$, depending only on δ, such that

$$
\begin{equation*}
c^{-1}\left(1-|a|^{2}\right) \leq\left(1-|w|^{2}\right) \leq c\left(1-|a|^{2}\right) \quad \text { for all } \quad w \in E(a) \tag{2.6}
\end{equation*}
$$

The following result, due to M. Pavlovic [11, Theorem 2.1], will be used several times in this paper.

Lemma 2.1. Let f be a solution of $\widetilde{\Delta} f=\lambda f, \lambda \in \mathbb{C}$, and let $0<p<\infty$. (a) If $\lambda \neq 0$, then there exists a constant $C=C(|\lambda|, p, \delta)$ such that

$$
\begin{equation*}
F_{1}^{p}(a) \leq C \int_{E(a)} F_{2}^{p}(w) d \tau(w), \quad a \in B \tag{2.7}
\end{equation*}
$$

whenever $F_{1}, F_{2} \in\{|f|,|\widetilde{\nabla} f|\}$.
(b) If $\lambda=0$, then inequality (2.7) holds except for the case when $F_{1}=|f|$ and $F_{2}=|\widetilde{\nabla} f|$.

Throughout this paper we write $f(z) \approx g(z)$ to indicate that there exist positive constants C_{1} and C_{2} such that

$$
C_{1} f(z) \leq g(z) \leq C_{2} f(z)
$$

for all appropriate z.

3. Eigenfunctions of $\widetilde{\Delta}$ with non-negative eigenvalues

Let $\mathcal{D}_{\gamma}=\mathcal{D}_{\gamma}\left(B_{n}\right)$ denote the weighted Dirichlet space of C^{1} real or complexvalued functions f on B_{n}, as defined in the Introduction. Our first result shows that the only eigenfunction f of $\widetilde{\Delta}$ with positive eigenvalue and satisfying $D_{\gamma}(f)<\infty$ for some $\gamma \leq n$ is the zero function.

THEOREM 3.1. If f is a solution of $\widetilde{\Delta} f=\lambda f, \lambda>0$, with $D_{\gamma}(f)<\infty$ for some $\gamma \leq n$, then $f(z)=0$ for all $z \in B$.

Proof. Suppose f satisfies $\widetilde{\Delta} f=\lambda f$ for some $\lambda>0$. Write $f=u+i v$, where u and v are real-valued functions. Since λ is real, u and v are both eigenfunctions of $\widetilde{\Delta}$ with eigenvalue λ. Also, since $|\widetilde{\nabla} f|^{2}=|\widetilde{\nabla} u|^{2}+|\widetilde{\nabla} v|^{2}$, $D_{\gamma}(f)$ is finite if and only if both $D_{\gamma}(u)$ and $D_{\gamma}(v)$ are finite. Hence without loss of generality we can assume that f is real-valued.

Since $\lambda \neq 0$, we have by (2.6) and (2.7)

$$
\left(1-|z|^{2}\right)^{\gamma}|f(z)|^{2} \leq C \int_{E(z)}\left(1-|w|^{2}\right)^{\gamma}|\widetilde{\nabla} f(w)|^{2} d \tau(w)
$$

where $E(z)$ is defined by (2.5). Integrating over B gives

$$
\int_{B}\left(1-|z|^{2}\right)^{\gamma}|f(z)|^{2} d \tau(z) \leq C \int_{B}\left[\int_{E(z)}\left(1-|w|^{2}\right)^{\gamma}|\widetilde{\nabla} f(w)|^{2} d \tau(w)\right] d \tau(z)
$$

which by Fubini's theorem is equal to

$$
C \int_{B} \tau(E(z))\left(1-|w|^{2}\right)^{\gamma}|\widetilde{\nabla} f(w)|^{2} d \tau(w)
$$

Since $\tau(E(z))=\tau(E(z, \delta))=\delta^{2 n} /\left(1-\delta^{2}\right)^{n}$, we obtain

$$
\int_{B}\left(1-|z|^{2}\right)^{\gamma}|f(z)|^{2} d \tau(z) \leq C_{\delta} D_{\gamma}(f)
$$

Since f is real-valued, a straightforward computation gives $\widetilde{\Delta} f^{2}=2|\widetilde{\nabla} f|^{2}+$ $2 \lambda f^{2}$, and thus $\widetilde{\Delta} f^{2} \geq 0$, since $\lambda>0$. Hence f^{2} is \mathcal{M}-subharmonic on B. But by Theorem 4.1 of [18], the only non-negative \mathcal{M}-subharmonic function g on B satisfying

$$
\int_{B}\left(1-|z|^{2}\right)^{\gamma} g(z) d \tau(z)<\infty
$$

for some $\gamma \leq n$ is the zero function. Hence $f(z)=0$ for all $z \in B$.
Remark 3.2. In [19] the author showed that if f is a solution of $\widetilde{\Delta} f=\lambda f$ with $\lambda \neq 0$ and $\lambda \geq-n^{2}$, then $f \in \mathcal{D}_{\gamma}$ if and only if $\gamma>\sqrt{n^{2}+\lambda}$.

We now consider the case $\lambda=0$. In this case the set of eigenfunctions of $\widetilde{\Delta}$ with eigenvalue zero is precisely the class $h(B)$ of \mathcal{M}-harmonic functions
on B, which contains the class $\mathcal{H}(B)$ of holomorphic functions on B. When $n=1$, the class of \mathcal{M}-harmonic functions coincides with the class of Euclidean harmonic functions on \mathbb{D}, as mentioned in the Introduction, and we have

$$
D_{\gamma}(f)=\frac{1}{\pi} \iint_{\mathbb{D}}\left(1-|z|^{2}\right)^{\gamma}|\nabla f(z)|^{2} d x d y
$$

Now, if f is holomorphic or harmonic on \mathbb{D}, then $|\nabla f|^{2}$ is subharmonic on \mathbb{D}. From this it easily follows that if f is holomorphic or harmonic on \mathbb{D} with $D_{\gamma}(f)<\infty$ for some $\gamma \leq-1$, then f must be constant. On the other hand, any polynomial $p(z, \bar{z})$ on \mathbb{D} satisfies $D_{\gamma}(p)<\infty$ for all $\gamma>-1$. Thus when $n=1, D_{\gamma}$ contains non-constant harmonic or holomorphic functions if and only if $\gamma>-1$.

For the case $n \geq 2$ the author [17, Proposition 10.9] showed that if f is \mathcal{M}-harmonic on B_{n} with $D_{\gamma}(f)<\infty$ for some $\gamma \leq(n-2)$, then f must be constant on B_{n}. However, for holomorphic functions on $B_{n}, n \geq 2$, we have the following theorem.

Theorem 3.3. Let $n \geq 2$. Then \mathcal{D}_{γ} contains non-constant holomorphic functions if and only if $\gamma>(n-1)$.

This result is an immediate consequence of the following lemma of Arazy, Fischer, Janson and Peetre [2]; it will also follow from the computations in Theorem 5.1.

Lemma 3.4 [2, Lemma 4.1]. Let V be a linear subspace of the space $\mathcal{H}(B)$ of holomorphic functions on B such that
(V1) if $f \in V$ and $\phi \in \mathcal{M}$, then $f \circ \phi \in V$,
(V2) if $f \in V$ then $g(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i \theta} f\left(e^{i \theta} z\right) d \theta \in V$.
Then either V contains only constant functions, or V contains the linear function z_{1}.

It is easily shown that $\mathcal{D}_{\gamma} \cap \mathcal{H}(B)$ satisfies (V1) and (V2). But when $n \geq 2$, the linear function z_{1} is in D_{γ} if and only if $\gamma>(n-1)$.

The above lemma has been used, in some form or other, by several authors in proving similar results.

Remark 3.5. It is not known whether the space $\mathcal{D}_{\gamma}\left(B_{n}\right)(n \geq 2)$ contains non-constant \mathcal{M}-harmonic functions for $(n-2)<\gamma \leq(n-1)$. The proofs which show that $\mathcal{D}_{\gamma} \cap \mathcal{H}(B)$ is trivial (i.e., contains only constant functions) for $\gamma \leq(n-1)$ do not seem to translate to the case of \mathcal{M}-harmonic functions.

4. Harmonic majorants of Dirichlet finite harmonic functions

In this section we investigate the relationship between the Dirichlet spaces \mathcal{D}_{γ} of \mathcal{M}-harmonic and holomorphic functions and the Hardy H^{p} spaces.

For $0<p<\infty$, we denote by h^{p} (respectively H^{p}) the Hardy space of \mathcal{M} harmonic (respectively holomorphic) functions f on B satisfying

$$
\|f\|_{p}=\sup _{0<r<1}\left[\int_{S}|f(r \zeta)|^{p} d \sigma(\zeta)\right]^{1 / p}<\infty
$$

Clearly, if f is holomorphic or \mathcal{M}-harmonic on B and if $|f|^{p}$ has an \mathcal{M} harmonic majorant, then $f \in H^{p}$ or $f \in h^{p}$. Conversely, if $f \in H^{p}(0<p<$ $\infty)$ or $f \in h^{p}(1 \leq p<\infty)$, then $|f|^{p}$ has an \mathcal{M}-harmonic majorant, and the least \mathcal{M}-harmonic majorant of $|f(z)|^{p}$ is given by

$$
P\left[\left|f^{*}\right| p^{p}\right](z)=\int_{S} P(z, t)\left|f^{*}(t)\right|^{p} d \sigma(t)
$$

where $P(z, t)=\left(1-|z|^{2}\right)^{n} /|1-\langle z, t\rangle|^{2 n}$ is the Poisson kernel for $\widetilde{\Delta}$ on B, and f^{*} is the boundary function defined by $f^{*}(\zeta)=\lim _{r \rightarrow 1} f(r \zeta)$ a.e. on S. If $f \in h^{1}$, then the least \mathcal{M}-harmonic majorant of f is given by the Poisson integral of a measure. Since $P(z, \zeta) \leq C\left(1-|z|^{2}\right)^{-n}$, we have

$$
\begin{equation*}
|f(z)|^{p} \leq C\left(1-|z|^{2}\right)^{-n}\|f\|_{p}^{p} \tag{4.1}
\end{equation*}
$$

for all $f \in H^{p}(0<p<\infty)$ or $f \in h^{p}(1 \leq p<\infty)$.
Lemma 4.1. Let f be \mathcal{M}-harmonic or holomorphic on B. Then $f \in h^{p}$ $(1<p<\infty)$ or $f \in H^{p}(0<p<\infty)$ if and only if

$$
\begin{equation*}
\int_{B}\left(1-|w|^{2}\right)^{n} d \mu_{|f|^{p}}(w)<\infty \tag{4.2}
\end{equation*}
$$

where $\mu_{|f|^{p}}$ is the Riesz measure of $|f|^{p}$ defined by (2.4). Furthermore, if this condition is satisfied, then

$$
\begin{equation*}
\|f\|_{p}^{p}=\int_{B}|f(z)|^{p} d m(z)+\frac{1}{4 n^{2}} \int_{B}\left(1-|z|^{2}\right)^{n} d \mu_{|f|^{p}}(z) \tag{4.3}
\end{equation*}
$$

Proof. Since, for the given range of $p,|f|^{p}$ is \mathcal{M}-subharmonic on $B,|f|^{p}$ has an \mathcal{M}-harmonic majorant if and only if (4.2) holds; see [16, Proposition 4; 17, Theorem 6.14]. Furthermore, by the Riesz decomposition theorem,

$$
\begin{equation*}
|f(z)|^{p}=P\left[\left|f^{*}\right|^{p}\right](z)-\int_{B} G(z, w) d \mu_{|f|^{p}}(w) \tag{4.4}
\end{equation*}
$$

where $G(z, w)$ is the Green function for the Laplace-Beltrami operator $\widetilde{\Delta}$ on B given by $G(z, w)=g\left(\varphi_{z}(w)\right)$, where for $z \in B$,

$$
g(z)=\frac{1}{2 n} \int_{|z|}^{1} t^{-2 n+1}\left(1-t^{2}\right)^{n-1} d t
$$

Integrating the identity (4.4) with respect to the normalized Lebesgue measure m gives

$$
\int_{B}|f(z)|^{p} d m(z)=\int_{B} P\left[\left|f^{*}\right|^{p}\right](z) d m(z)-\int_{B} \int_{B} G(z, w) d \mu_{|f|^{p}}(w) d m(z)
$$

which, by Fubini's theorem and the fact that $P\left[\left|f^{*}\right|^{p}\right](z)$ is \mathcal{M}-harmonic on B, equals

$$
P\left[\left|f^{*}\right|^{p}\right](0)-\int_{B} \int_{B} G(z, w) d m(z) d \mu_{|f|^{p}}(w)
$$

Let $\psi(z)=\left(1-|z|^{2}\right)^{n}$. Then $\widetilde{\Delta} \psi(z)=-4 n^{2}\left(1-|z|^{2}\right)^{n+1}$. Therefore,

$$
\int_{B} G(z, w) d m(z)=-\frac{1}{4 n^{2}} \int_{B} G(z, w) \widetilde{\Delta} \psi(z) d \tau(z)=\frac{1}{4 n^{2}} \psi(w)
$$

The last equality follows from the Riesz decomposition theorem. This integral can also be evaluated directly using polar coordinates. The result now follows from the fact that $P\left[\left|f^{*}\right|^{p}\right](0)=\|f\|_{p}^{p}$.

We are now ready to state and prove the main result of the paper.
Theorem 4.2. (a) Let f be \mathcal{M}-harmonic (or holomorphic) on B. If $f \in$ \mathcal{D}_{γ} for some $\gamma, 0<\gamma \leq n$, then $f \in h^{p}\left(\right.$ or $\left.f \in H^{p}\right)$ for all $p, 0<p \leq 2 n / \gamma$, with

$$
\|f\|_{p} \leq C\|f\|_{\mathcal{D}_{\gamma}}
$$

(b) Conversely, if $f \in H^{p}, 0<p \leq 2$ (or $f \in h^{p}, 1<p \leq 2$), then $f \in \mathcal{D}_{\gamma}$ for all $\gamma \geq 2 n / p$ with

$$
\|f\|_{\mathcal{D}_{\gamma}} \leq C\|f\|_{p}
$$

Proof. (a) Suppose f is \mathcal{M}-harmonic on B. Without loss of generality we can assume that f is real-valued and that $f(0)=0$.

Let $p=2 n / \gamma$. Since $0<\gamma \leq n$, we have $p \geq 2$ and thus $|f|^{p}$ is C^{2} on B. A straightforward computation shows that $\widetilde{\Delta}|f|^{p}=p(p-1)|f|^{p-2}|\widetilde{\nabla} f|^{2}$. Thus the Riesz measure of $|f|^{p}$ is given by

$$
d \mu_{|f|^{p}}(z)=\widetilde{\Delta}|f(z)|^{p} d \tau(z)=p(p-1)|f(z)|^{p-2}|\widetilde{\nabla} f(z)|^{2} d \tau(z)
$$

If f is holomorphic on B, then the Riesz measure of $|f|^{p}$ is given by $d \mu_{|f|^{p}}(z)=$ $\frac{1}{4} p^{2}|f(z)|^{p-2}|\widetilde{\nabla} f(z)|^{2} d \tau(z)$. By Lemma 4.1, f is in h^{p} if and only if

$$
\int_{B}\left(1-|w|^{2}\right)^{n} \widetilde{\Delta}|f(w)|^{p} d \tau(w)<\infty
$$

This, however, is the case if and only if the integral

$$
I=\int_{B}\left(1-|w|^{2}\right)^{n}|f(w)|^{p-2}|\widetilde{\nabla} f(w)|^{2} d \tau(w)
$$

is finite. Since $\left(1-|z|^{2}\right) \approx\left(1-|w|^{2}\right)$ for all $z \in E(w)$, (2.7) gives

$$
\left(1-|z|^{2}\right)^{\gamma}|\widetilde{\nabla} f(z)|^{2} \leq C \int_{E(z)}\left(1-|w|^{2}\right)^{\gamma}|\widetilde{\nabla} f(w)|^{2} d \tau(w) \leq C D_{\gamma}(f)<\infty
$$

Therefore

$$
\begin{equation*}
|\widetilde{\nabla} f(z)| \leq C D_{\gamma}(f)^{1 / 2}\left(1-|z|^{2}\right)^{-\gamma / 2} \tag{4.5}
\end{equation*}
$$

for some positive constant C. For $z \in B$ and $t \in[0,1]$ set $g(t)=f(t z)$. Since $f(0)=0$, we obtain from (2.2) and (4.5)

$$
\begin{aligned}
|f(z)| & \leq \int_{0}^{1}\left|g^{\prime}(t)\right| d t \leq 2|z| \int_{0}^{1}|\partial f(t z)| d t \leq|z| \int_{0}^{1} \frac{|\widetilde{\nabla} f(t z)|}{\left(1-t^{2}|z|^{2}\right)} d t \\
& \leq|z| D_{\gamma}(f)^{1 / 2} \int_{0}^{1}\left(1-t^{2}|z|^{2}\right)^{-(\gamma / 2)-1} d t
\end{aligned}
$$

Thus

$$
\begin{equation*}
|f(z)| \leq C D_{\gamma}(f)^{1 / 2}\left(1-|z|^{2}\right)^{-\gamma / 2} \tag{4.6}
\end{equation*}
$$

for some positive constant C. It follows that

$$
\begin{aligned}
I & =\int_{B}\left(1-|z|^{2}\right)^{n}|f(z)|^{p-2}|\widetilde{\nabla} f(z)|^{2} d \tau(z) \\
& \leq C D_{\gamma}(f)^{(1 / 2)(p-2)} \int_{B}\left(1-|z|^{2}\right)^{n-(p-2)(\gamma / 2)}|\widetilde{\nabla} f(z)|^{2} d \tau(z)
\end{aligned}
$$

With $p=2 n / \gamma$ we have $n-(p-2)(\gamma / 2)=\gamma$ and therefore

$$
I \leq C D_{\gamma}(f)^{(1 / 2)(p-2)} \int_{B}\left(1-|z|^{2}\right)^{\gamma}|\widetilde{\nabla} f(z)|^{2} d \tau(z) \leq C D_{\gamma}(f)^{p / 2}
$$

or

$$
\begin{equation*}
\int_{B}\left(1-|z|^{2}\right)^{n} d \mu_{|f|^{p}}(z) \leq C D_{\gamma}(f)^{p / 2}, \quad p=2 n / \gamma \tag{4.7}
\end{equation*}
$$

Hence, by Lemma 4.1, we have $f \in h^{2 n / \gamma}$, and thus $|f|^{p}$ has an \mathcal{M}-harmonic majorant on B for all $p, 0<p \leq 2 n / \gamma$.

It remains to show that $\int_{B}|f(z)|^{p} d m(z) \leq C D_{\gamma}(f)^{p / 2}$. In the case $p=$ $2 n / \gamma$ we have

$$
\int_{B}|f(z)|^{p} d m(z)=\int_{B}\left(1-|z|^{2}\right)^{n+1}|f(z)|^{p} d \tau(z)
$$

which by [17, Theorem 10.10] is

$$
\leq C \int_{B}\left(1-|z|^{2}\right)^{n+1}|\widetilde{\nabla} f(z)|^{p} d \tau(z)
$$

By inequality (4.5) the last integral is

$$
\leq C D_{\gamma}(f)^{(1 / 2)(p-2)} \int_{B}\left(1-|z|^{2}\right)^{\gamma+1}|\widetilde{\nabla} f(z)|^{2} d \tau(z) \leq C D_{\gamma}(f)^{p / 2}
$$

Combining this with (4.7) and Lemma 4.1 gives $\|f\|_{2 n / \gamma} \leq C D_{\gamma}(f)^{1 / 2}$ for $p=2 n / \gamma$, from which the result follows for all p with $0<p \leq 2 n / \gamma$.
(b) We first prove the result for a real-valued \mathcal{M}-harmonic function f in the class $h^{p}(1<p \leq 2)$. Note that, for $1<p<2$, the function $|f|^{p}$ is, in general, not C^{2} on B. To overcome this difficulty, we set $f_{\epsilon}(z)=f(z)+i \epsilon, \epsilon>0$. Then f_{ϵ} is \mathcal{M}-harmonic on B with $f_{\epsilon} \in h^{p}$ and $f_{\epsilon}(z) \neq 0$ for all $z \in B$. Thus $\left|f_{\epsilon}\right|^{p}$ is C^{2} on B. A straightforward computation shows

$$
\begin{aligned}
\widetilde{\Delta}\left|f_{\epsilon}\right|^{p} & =p\left|f_{\epsilon}\right|^{p-2}\left[\frac{(p-1)|f|^{2}+\epsilon^{2}}{|f|^{2}+\epsilon^{2}}\right]|\widetilde{\nabla} f|^{2} \\
& \geq p(p-1)\left|f_{\epsilon}\right|^{p-2}|\widetilde{\nabla} f|^{2} .
\end{aligned}
$$

Moreover, by (4.1) we have $\left(1-|z|^{2}\right) \leq C\left|f_{\epsilon}(z)\right|^{-p / n}\left\|f_{\epsilon}\right\|_{p}^{p / n}$ for all $z \in B$. Hence, if $\gamma \geq n$, then

$$
\begin{aligned}
D_{\gamma}(f) & =\int_{B}\left(1-|z|^{2}\right)^{\gamma}|\widetilde{\nabla} f(z)|^{2} d \tau(z) \\
& =\int_{B}\left(1-|z|^{2}\right)^{n+(\gamma-n)}|\widetilde{\nabla} f(z)|^{2} d \tau(z) \\
& \leq C\left\|f_{\epsilon}\right\|_{p}^{(p / n)(\gamma-n)} \int_{B}\left(1-|z|^{2}\right)^{n}\left|f_{\epsilon}(z)\right|^{-(p / n)(\gamma-n)}|\widetilde{\nabla} f(z)|^{2} d \tau(z) .
\end{aligned}
$$

In the case $\gamma=2 n / p$ we have $(p / n)(\gamma-n)=2-p$. Therefore

$$
\begin{aligned}
D_{2 n / p}(f) & \leq C\left\|f_{\epsilon}\right\|_{p}^{2-p} \int_{B}\left(1-|z|^{2}\right)^{n}\left|f_{\epsilon}(z)\right|^{p-2}|\widetilde{\nabla} f(z)|^{2} d \tau(z) \\
& \leq \frac{C}{p(p-1)}\left\|f_{\epsilon}\right\|_{p}^{2-p} \int_{B}\left(1-|z|^{2}\right)^{n} \widetilde{\Delta}\left|f_{\epsilon}(z)\right|^{2} d \tau(z)
\end{aligned}
$$

which by Lemma 4.1 is

$$
\leq C_{n, p}\left\|f_{\epsilon}\right\|_{p}^{2-p}\left\|f_{\epsilon}\right\|_{p}^{p}=C_{n, p}\left\|f_{\epsilon}\right\|_{p}^{2}
$$

Since $\left\|f_{\epsilon}\right\|_{p} \rightarrow\|f\|_{p}$ as $\epsilon \rightarrow 0$, we have $D_{2 n / p}(f) \leq C_{n, p}\|f\|_{p}^{2}$. Finally, since $|f(0)|^{p} \leq P\left[\left|f^{*}\right|^{p}\right](0)=\|f\|_{p}^{p}$, we obtain

$$
\|f\|_{\mathcal{D}_{2 n / p}} \leq C_{n, p}\|f\|_{p} .
$$

The conclusion now follows since $D_{\gamma}(f) \leq D_{2 n / p}(f)$ for all $\gamma \geq 2 n / p$.
Finally, suppose $f \in H^{p}, 0<p<2$. In [16] we proved that the Riesz measure of $|f|^{p}$ is given by $d \mu_{|f|^{p}}=f_{p}^{\sharp} d \tau$ where

$$
f_{p}^{\sharp}(z)=\frac{1}{4} p^{2}|f(z)|^{p-2}|\widetilde{\nabla} f(z)|^{2} \quad \text { a.e. on } B .
$$

This is valid for all $p, 0<p<\infty$. Since the zero set of a holomorphic function has τ measure zero, (4.1) gives

$$
\left(1-|z|^{2}\right)^{\gamma-n} \leq C\|f\|_{p}^{2-p}|f(z)|^{p-2} \quad \tau \text {-a.e. }
$$

In the case $\gamma=2 n / p$ we conclude, as above,

$$
\begin{aligned}
D_{2 n / p}(f) & =\int_{B}\left(1-|z|^{2}\right)^{\gamma}|\widetilde{\nabla} f(z)|^{2} d \tau(z) \\
& \leq C_{n, p}\|f\|_{p}^{2-p} \int_{B}\left(1-|z|^{2}\right)^{n}|f(z)|^{p-2}|\widetilde{\nabla} f(z)|^{2} d \tau(z) \leq C_{n, p}\|f\|_{p}^{2}
\end{aligned}
$$

This implies that $\|f\|_{\mathcal{D}_{\gamma}} \leq C_{n, p}\|f\|_{p}$ for all $\gamma \geq 2 n / p$.
Remark 4.3. One can restate part (a) of Theorem 4.2 as follows:
Let f be \mathcal{M}-harmonic (or holomorphic) on B. If $f \in \mathcal{D}_{2 n / p}$ for some $p \geq 2$, then $f \in h^{p}$ (respectively H^{p}).

As we have shown in Section 3, in the case $n \geq 2$, the only holomorphic functions f on B for which $D_{\gamma}(f)$ is finite for $\gamma \leq(n-1)$ are the constant functions. Thus the hypothesis $(n-1)<\gamma \leq n$ forces $2 \leq p<2 n /(n-1)$.

Examples 4.4.
(a) We first show that the hypothesis $u \in \mathcal{D}_{\gamma}$ of part (a) of Theorem 4.2 cannot be replaced by $u \in \mathcal{D}_{\gamma+\epsilon}$ for any $\epsilon>0$. Let u be defined by $u(z)=\operatorname{Re} f(z)$, where

$$
f(z)=\left(1-z_{1}\right)^{-\gamma / 2}
$$

We will show that for $(n-1) \leq \gamma \leq n, D_{\gamma+\epsilon}(u)$ is finite for all $\epsilon>0$, but that $|u(z)|^{2 n / \gamma}$ does not have an \mathcal{M}-harmonic majorant. Since $2 n / \gamma \geq 2$, if $|u(z)|^{2 n / \gamma} \operatorname{had}$ an \mathcal{M}-harmonic majorant, then the generalization of the M. Riesz theorem to the unit ball (see [15]) would imply that f is in the Hardy space $H^{2 n / \gamma}$. We will show that this is not the case.

Since f is a function of z_{1} only, and $u=\operatorname{Re} f$, we have

$$
\begin{aligned}
|\widetilde{\nabla} u(z)|^{2} & =4\left(1-|z|^{2}\right)\left[|\partial u(z)|^{2}-|R u(z)|^{2}\right] \\
& =\left(1-|z|^{2}\right)\left(1-\left|z_{1}\right|^{2}\right)\left|f^{\prime}\left(z_{1}\right)\right|^{2} \\
& =\frac{\gamma^{2}\left(1-|z|^{2}\right)\left(1-\left|z_{1}\right|^{2}\right)}{4\left|1-z_{1}\right|^{\gamma+2}}
\end{aligned}
$$

By the inequality $\left(1-\left|z_{1}\right|^{2}\right) \leq 2\left|1-z_{1}\right|$ it follows that $|\widetilde{\nabla} u(z)|^{2} \leq C(1-$ $\left.|z|^{2}\right)\left|1-z_{1}\right|^{-(\gamma+1)}$ for some constant C. Hence

$$
\begin{aligned}
D_{\gamma+\epsilon}(u) & =\int_{B}\left(1-|z|^{2}\right)^{\gamma+\epsilon}|\widetilde{\nabla} u(z)|^{2} d \tau(z) \\
& \leq C \int_{0}^{1} r^{2 n-1}\left(1-r^{2}\right)^{\gamma+\epsilon-n} \int_{S} \frac{d \sigma(\zeta)}{\left|1-r \zeta_{1}\right|^{\gamma+1}} d r .
\end{aligned}
$$

By [13, Proposition 1.4.10], we have for all $z \in B$ and c real,

$$
\int_{S} \frac{d \sigma(\zeta)}{|1-\langle z, \zeta\rangle|^{n+c}} \approx \begin{cases}\left(1-|z|^{2}\right)^{-c}, & c>0 \tag{4.8}\\ \log \frac{1}{\left(1-|z|^{2}\right)}, & c=0 \\ 1, & c<0\end{cases}
$$

Thus, with $c=\gamma-(n-1)$ we have

$$
D_{\gamma+\epsilon}(u) \leq C \int_{0}^{1} r^{2 n-1}\left(1-r^{2}\right)^{\epsilon-1} d r
$$

for $\gamma>(n-1)$, and

$$
D_{\gamma+\epsilon}(u) \leq C \int_{0}^{1} r^{2 n-1}\left(1-r^{2}\right)^{\epsilon-1} \log \frac{1}{\left(1-r^{2}\right)} d r
$$

for $\gamma=(n-1)$. Both of these integrals are finite for all $\epsilon>0$. On the other hand, we have

$$
\int_{S}|f(r \zeta)|^{2 n / \gamma} d \sigma(\zeta)=\int_{S} \frac{d \sigma(\zeta)}{\left|1-r \zeta_{1}\right|^{n}} \approx \log \frac{1}{\left(1-r^{2}\right)}
$$

Hence $f \notin H^{2 n / \gamma}$.
(b) We next show that the hypothesis $f \in H^{p}(0<p \leq 2)$ of part (b) of Theorem 4.2 cannot be replaced by $f \in H^{q}$ for all $q<p$. As in (a), let

$$
f(z)=\left(1-z_{1}\right)^{-n / p}
$$

Then for $q<p$ we have, by (4.8),

$$
\int_{S}|f(r \zeta)|^{q} d \sigma(\zeta)=\int_{S} \frac{d \sigma(\zeta)}{\left|1-r \zeta_{1}\right|^{n+n((q / p)-1)}} \leq C
$$

for all $r, 0 \leq r<1$. Thus $f \in H^{q}$ for all $q<p$. On the other hand, we now show that $f \notin \mathcal{D}_{2 n / p}$. As above, we let

$$
|\widetilde{\nabla} f(z)|^{2}=\frac{n^{2}\left(1-|z|^{2}\right)\left(1-\left|z_{1}\right|^{2}\right)}{p^{2}\left|1-z_{1}\right|^{(2 n / p)+2}} \geq \frac{n^{2}\left(1-|z|^{2}\right)^{2}}{p^{2}\left|1-z_{1}\right|^{(2 n / p)+2}}
$$

By integration in polar coordinates it follows that

$$
D_{2 n / p}(f) \geq C_{n, p} \int_{0}^{\rho} r^{2 n-1}\left(1-r^{2}\right)^{(2 n / p)-n+1} \int_{S} \frac{d \sigma(\zeta)}{\left|1-r \zeta_{1}\right|^{(2 n / p)+2}} d r
$$

for any ρ with $0<\rho<1$. But by (4.8) we have

$$
\int_{S} \frac{d \sigma(\zeta)}{\left|1-r \zeta_{1}\right|^{(2 n / p)+2}} \geq C\left(1-r^{2}\right)^{n-(2 n / p)-2}
$$

and thus

$$
D_{2 n / p}(f) \geq C \log \frac{1}{\left(1-\rho^{2}\right)}
$$

for any $\rho, 0<\rho<1$. Hence $D_{2 n / p}(f)=\infty$ and thus $f \notin D_{2 n / p}$.
(c) Our final example shows that the conclusion of Theorem 4.2(b) need not hold for $h \in h^{1}$. Set

$$
h(z)=P\left(z, e_{1}\right)=\frac{\left(1-|z|^{2}\right)^{n}}{\left|1-z_{1}\right|^{2 n}}
$$

Then h is a non-negative \mathcal{M}-harmonic function on B and thus is an element of the \mathcal{M}-harmonic Hardy space h^{1}. We will show that $h \notin \mathcal{D}_{2 n}$. Since h is harmonic, we have $|\widetilde{\nabla} h(z)|^{2}=(1 / 2) \widetilde{\Delta} h^{2}(z)$. But $P^{2}\left(z, e_{1}\right)$ is an eigenfunction of $\widetilde{\Delta}$ with eigenvalue $8 n^{2}$ (see [13, Theorem 4.2.2]). Thus

$$
|\widetilde{\nabla} h(z)|^{2}=4 n^{2} h^{2}(z)=4 n^{2} \frac{\left(1-|z|^{2}\right)^{2 n}}{\left|1-z_{1}\right|^{4 n}}
$$

In the case $\gamma=2 n$, an integration in polar coordinates shows that, for any ρ with $0<\rho<1$,

$$
\begin{aligned}
D_{2 n}(h) & \geq 2 n \int_{0}^{\rho} r^{2 n-1}\left(1-r^{2}\right)^{n-1} \int_{S}|\widetilde{\nabla} h(r \zeta)|^{2} d \sigma(\zeta) d r \\
& =8 n^{3} \int_{0}^{\rho} r^{2 n-1}\left(1-r^{2}\right)^{3 n-1} \int_{S} \frac{d \sigma(\zeta)}{\left|1-r \zeta_{1}\right|^{4 n}} d r
\end{aligned}
$$

which by (4.8) is

$$
\geq C \int_{0}^{\rho} r^{2 n-1}\left(1-r^{2}\right)^{-1} d r \approx \log \frac{1}{\left(1-\rho^{2}\right)}
$$

Therefore $D_{2 n}(h)=\infty$ and hence $h \notin D_{2 n}$.
It is easily seen that in the last example, $h \in \mathcal{D}_{\gamma}$ for all $\gamma>2 n$. We now show that this is always the case.

Proposition 4.5. If $f \in h^{1}$, then $f \in \mathcal{D}_{\gamma}$ for all $\gamma>2 n$.
Proof. If $h \in h^{1}$, then $h(z)=P[\nu](z)$, where ν is a signed measure on S with total variation $|\nu|(S)=\|h\|_{1}$. By [17, Proposition 10.3] we have $|\widetilde{\nabla} h(z)| \leq 2 n P[|\nu|](z)$. Thus, by Hölder's inequality,

$$
|\widetilde{\nabla} h(z)|^{2} \leq 2 n|\nu|(S) \int_{S} P^{2}(z, t) d|\nu|(t)
$$

and as above

$$
\int_{S}|\widetilde{\nabla} h(r \zeta)|^{2} d \sigma(\zeta) \leq C\left(1-r^{2}\right)^{-n}
$$

From this it follows that $D_{\gamma}(h)<\infty$ for all $\gamma>2 n$.

5. Holomorphic functions in \mathcal{D}_{γ}

In this section we consider $\mathcal{D}_{\gamma} \cap \mathcal{H}(B)$, where $\mathcal{H}(B)$ is the set of holomorphic functions on B. We begin by computing $D_{\gamma}(f)$ for $f \in \mathcal{H}(B)$. For a multiindex $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, where each α_{i} is a non-negative integer, we use the standard notations

$$
a_{\alpha}=a_{\alpha_{1}, \ldots, \alpha_{n}}, \quad \alpha!=\alpha_{1}!\cdots \alpha_{n}!, \quad|\alpha|=\alpha_{1}+\cdots+\alpha_{n} .
$$

Also, for $z=\left(z_{1}, \ldots, z_{n}\right)$ we set $Z_{\alpha}(z)=z^{\alpha}=z_{1}^{\alpha_{1}} \cdots z_{n}^{\alpha_{n}}$. It is well known that the monomials $\left\{Z_{\alpha}\right\}_{\alpha}$ are orthogonal on S.

Theorem 5.1. Suppose $f(z)=\sum_{\alpha} a_{\alpha} z^{\alpha}=\sum_{k=0}^{\infty} \sum_{|\alpha|=k} a_{\alpha} z^{\alpha}$ is holomorphic on B. Then we have, for all $\gamma>(n-1)$,

$$
\begin{equation*}
D_{\gamma}(f)=2 \gamma n!\Gamma(\gamma-n+1) \sum_{k=1}^{\infty} \frac{k}{\Gamma(\gamma+k+1)} \sum_{|\alpha|=k} \alpha!\left|a_{\alpha}\right|^{2} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{\gamma}(f)=\frac{2 \gamma \Gamma(\gamma-n+1)}{\Gamma(\gamma-n+2)} \int_{B}\left(1-|z|^{2}\right)^{\gamma+2}|\partial f(z)|^{2} d \tau(z) \tag{5.2}
\end{equation*}
$$

Furthermore, if $n \geq 2$, then $\mathcal{D}_{\gamma} \cap \mathcal{H}(B)$ is nontrivial if and only if $\gamma>(n-1)$.
Proof. Since f is holomorphic, we have

$$
|\widetilde{\nabla} f(z)|^{2}=2\left(1-|z|^{2}\right)\left[|\partial f(z)|^{2}-|R f(z)|^{2}\right]
$$

Thus, by integration in polar coordinates,

$$
\begin{aligned}
D_{\gamma}(f) & =\int_{B}\left(1-|z|^{2}\right)^{\gamma}|\widetilde{\nabla} f(z)|^{2} d \tau(z) \\
& =2 \int_{B}\left(1-|z|^{2}\right)^{\gamma-n}\left[|\partial f(z)|^{2}-|R f(z)|^{2}\right] d m(z) \\
& =4 n \int_{0}^{1} r^{2 n-1}\left(1-r^{2}\right)^{\gamma-n} \int_{S}\left[|\partial f(r \zeta)|^{2}-|R f(r \zeta)|^{2}\right] d \sigma(\zeta) d r
\end{aligned}
$$

We now compute

$$
I=\int_{S}\left[|\partial f(r \zeta)|^{2}-|R f(r \zeta)|^{2}\right] d \sigma(\zeta)
$$

Consider first

$$
I_{1}=\int_{S}|\partial f(r \zeta)|^{2} d \sigma(\zeta)=\sum_{j=1}^{n} \int_{S}\left|\partial_{j} f(r \zeta)\right|^{2} d \sigma(\zeta)
$$

For $j=1, \ldots, n$, set $\hat{\alpha}(j)=\left(\alpha_{1}, \ldots, \alpha_{j}-1, \ldots, \alpha_{n}\right)$. Then

$$
\partial_{j} f(z)=\sum_{k=1}^{\infty} \sum_{|\alpha|=k} a_{\alpha} \alpha_{j} Z_{\hat{\alpha}(j)}(z)
$$

Since the monomials $Z_{\beta}(z)$ are orthogonal on S,

$$
\begin{aligned}
\int_{S}\left|\partial_{j} f(r \zeta)\right|^{2} d \sigma(\zeta) & =\sum_{k=1}^{\infty} \sum_{|\alpha|=k}\left|a_{\alpha}\right|^{2} \alpha_{j}^{2} \int_{S}\left|Z_{\hat{\alpha}(j)}(r \zeta)\right|^{2} d \sigma(\zeta) \\
& =\sum_{k=1}^{\infty} \sum_{|\alpha|=k}\left|a_{\alpha}\right|^{2} \alpha_{j}^{2} r^{2|\alpha|-2} \int_{S}\left|Z_{\hat{\alpha}(j)}(\zeta)\right|^{2} d \sigma(\zeta) d r
\end{aligned}
$$

By [13, Proposition 1.4.9] we have

$$
\int_{S}\left|Z_{\hat{\alpha}(j)}(\zeta)\right|^{2}=\frac{(n-1)!\hat{\alpha}(j)!}{(n-1+|\hat{\alpha}(j)|)!}
$$

Since $\alpha_{j} \hat{\alpha}(j)!=\alpha!$ and $|\hat{\alpha}(j)|=|\alpha|-1$, we have

$$
\int_{S}\left|\partial_{j} f(r \zeta)\right|^{2} d \sigma(\zeta)=(n-1)!\sum_{k=1}^{\infty} \sum_{|\alpha|=k} \frac{\left|a_{\alpha}\right|^{2} \alpha_{j} \alpha!r^{2|\alpha|-2}}{(n+|\alpha|-2)!}
$$

Finally, summing over $j=1, \ldots, n$ gives

$$
\begin{equation*}
I_{1}=\int_{S}|\partial f(r \zeta)|^{2} d \sigma(\zeta)=(n-1)!\sum_{k=1}^{\infty} \frac{k r^{2 k-2}}{(n+k-2)!} \sum_{|\alpha|=k} \alpha!\left|a_{\alpha}\right|^{2} \tag{5.3}
\end{equation*}
$$

We next evaluate the integral $I_{2}=\int_{S}|R f(r \zeta)|^{2} d \sigma(\zeta)$. Since

$$
R f(z)=\sum_{j=1}^{n} z_{j} \frac{\partial f}{\partial z_{j}}=\sum_{k=1}^{\infty} \sum_{|\alpha|=k} a_{\alpha} \sum_{j=1}^{n} z_{j} \frac{\partial Z_{\alpha}}{\partial z_{j}}=\sum_{k=1}^{\infty} \sum_{|\alpha|=k} a_{\alpha}|\alpha| Z_{\alpha}(z)
$$

by the orthogonality of $\left\{Z_{\alpha}\right\}$, we obtain

$$
I_{2}=(n-1)!\sum_{k=1}^{\infty} \frac{k^{2} r^{2 k}}{(n+k-1)!} \sum_{|\alpha|=k} \alpha!\left|a_{\alpha}\right|^{2}
$$

Combining this with the above identity for I_{1} gives

$$
I=I_{1}-I_{2}=(n-1)!\sum_{k=1}^{\infty} \frac{k r^{2 k-2}\left[(n-1)+k\left(1-r^{2}\right)\right]}{(n+k-1)!} \sum_{|\alpha|=k} \alpha!\left|a_{\alpha}\right|^{2}
$$

Hence

$$
\begin{equation*}
D_{\gamma}(f)=2 n!\sum_{k=1}^{\infty} \frac{k I(k)}{(n+k-1)!} \sum_{|\alpha|=k} \alpha!\left|a_{\alpha}\right|^{2} \tag{5.4}
\end{equation*}
$$

where

$$
\begin{equation*}
I(k)=2 \int_{0}^{1} r^{2 n+2 k-3}\left[(n-1)+k\left(1-r^{2}\right)\right]\left(1-r^{2}\right)^{\gamma-n} d r \tag{5.5}
\end{equation*}
$$

Since

$$
2 \int_{0}^{1} r^{2 m-3}\left(1-r^{2}\right)^{\alpha} d r=\int_{0}^{1} s^{m-2}(1-s)^{\alpha} d s=\frac{\Gamma(m-1) \Gamma(\alpha+1)}{\Gamma(m+\alpha)}
$$

for all $m>1$ and $\alpha>-1$ (where Γ is the Gamma function), we have

$$
\begin{aligned}
I(k) & =(n-1) \frac{\Gamma(n+k-1) \Gamma(\gamma-n+1)}{\Gamma(\gamma+k)}+k \frac{\Gamma(n+k-1) \Gamma(\gamma-n+2)}{\Gamma(\gamma+k+1)} \\
& =\frac{\gamma \Gamma(\gamma-n+1) \Gamma(n+k)}{\Gamma(\gamma+k+1)}
\end{aligned}
$$

Substituting this into (5.4) gives

$$
D_{\gamma}(f)=2 \gamma n!\Gamma(\gamma-n+1) \sum_{k=1}^{\infty} \frac{k}{\Gamma(\gamma+k+1)} \sum_{|\alpha|=k} \alpha!\left|a_{\alpha}\right|^{2}
$$

We next derive equation (5.2). Using again integration in polar coordinates, we obtain

$$
\begin{aligned}
\int_{B}(1 & \left.-|z|^{2}\right)^{\gamma+2}|\partial f(z)|^{2} d \tau(z) \\
& =2 n \int_{0}^{1} r^{2 n-1}\left(1-r^{2}\right)^{\gamma-n+1} \int_{S}|\partial f(r \zeta)|^{2} d \sigma(\zeta) d r
\end{aligned}
$$

By (5.3), this is equal to

$$
\begin{aligned}
& n!\sum_{k=1}^{\infty} \sum_{|\alpha|=k} \frac{k \alpha!\left|a_{\alpha}\right|^{2}}{\Gamma(n+k-1)} 2 \int_{0}^{1} r^{2 n+2 k-3}\left(1-r^{2}\right)^{\gamma-n+1} d r \\
& =n!\Gamma(\gamma-n+2) \sum_{k=1}^{\infty} \frac{k}{\Gamma(\gamma+k+1)} \sum_{|\alpha|=k} \alpha!\left|a_{\alpha}\right|^{2}
\end{aligned}
$$

and (5.2) now follows. Finally, suppose that $n>1$. By (5.5) we have

$$
I(k) \geq(n-1) \int_{0}^{1} r^{2 n+2 k-3}\left(1-r^{2}\right)^{\gamma-n} d r
$$

which is finite if and only if $\gamma>(n-1)$. Thus, for $\gamma \leq n-1$, the only holomorphic functions in $\mathcal{D}_{\gamma} \cap \mathcal{H}(B)$ are the constant functions.

Combining Theorem 4.2 with Theorem 5.1 gives the following result.
TheOrem 5.2. Suppose $f(z)=\sum_{\alpha} a_{\alpha} z^{\alpha}$ is holomorphic in B. If the sequence $\left\{a_{\alpha}\right\}$ satisfies

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{k}{\Gamma\left(\frac{2 n}{q}+k+1\right)} \sum_{|\alpha|=k} \alpha!\left|a_{\alpha}\right|^{2}<\infty \tag{5.6}
\end{equation*}
$$

for some $q, 2 \leq q<2 n /(n-1)$, then $f \in H^{q}$. Conversely, if $f \in H^{q}$, $0<q \leq 2$, then (5.6) holds.

6. Fractional derivatives and holomorphic functions in $\widetilde{\mathcal{D}}_{\gamma}$

The restriction $q<2 n /(n-1)$ in Theorem 5.2 is due to the fact that, in the case $n \geq 2$, the integral defining $\mathcal{D}_{\gamma}(f)$ is only defined for $\gamma>(n-1)$. However, the series in (5.1) is defined for all $\gamma>0$, and in fact for $\gamma>-1$. Thus, for $\gamma>-1$ it makes sense to consider the space $\widetilde{\mathcal{D}}_{\gamma}$ of holomorphic functions $f(z)=\sum a_{\alpha} z^{\alpha}$ on B for which

$$
\begin{equation*}
\widetilde{D}_{\gamma}(f)=\sum_{k=1}^{\infty} \frac{k}{\Gamma(\gamma+k+1)} \sum_{|\alpha|=k} \alpha!\left|a_{\alpha}\right|^{2} \tag{6.1}
\end{equation*}
$$

is finite, with norm

$$
\|f\|_{\widetilde{\mathcal{D}}_{\gamma}}=|f(0)|+\left(\widetilde{D}_{\gamma}(f)\right)^{1 / 2}
$$

It is natural to ask the following question:
Suppose that $f \in \mathcal{H}(B)$ and $\widetilde{D}_{\gamma}(f)$ is finite for some $\gamma, 0<\gamma \leq(n-1)$. Does it follow that $f \in H^{2 n / \gamma}$? Alternately, if $n>1$ and $f=\sum a_{\alpha} z^{\alpha}$ satisfies

$$
\sum_{k=1}^{\infty} \frac{k}{\Gamma\left(\frac{2 n}{p}+k+1\right)} \sum_{|\alpha|=k} \alpha!\left|a_{\alpha}\right|^{2}<\infty
$$

for some $p, 2 n /(n-1) \leq p<\infty$, is f in H^{p} ?
As we will show in Theorem 6.3 below, the answer is yes.
To this end, we introduce the radial fractional derivative of f. As in [1, $3,5]$, if f is holomorphic in B with homogeneous expansion

$$
f(z)=\sum_{k=0}^{\infty} f_{k}(z) \quad \text { where } \quad f_{k}(z)=\sum_{|\alpha|=k} a_{\alpha} z^{\alpha}
$$

for $\beta>0$, the radial fractional derivative of f of order β, denoted by $R^{\beta} f$, is defined by

$$
\begin{equation*}
R^{\beta} f(z)=\sum_{k=0}^{\infty}(k+1)^{\beta} f_{k}(z) \tag{6.2}
\end{equation*}
$$

The function $R^{\beta} f$ is clearly holomorphic on B. When $\beta=1, R^{1} f=f+R f$ where R is the radial derivative introduced in Section 2. For $0<\beta<n$, let k_{β} denote the kernel

$$
k_{\beta}(\zeta, \eta)=\frac{1}{|1-\langle\zeta, \eta\rangle|^{n-\beta}}, \quad \zeta, \eta \in S
$$

and for $g \in L^{p}(S), p \geq 1$, set

$$
\left(k_{\beta} * g\right)(\zeta)=\int_{S} k_{\beta}(\zeta, \eta) g(\eta) d \sigma(\eta)
$$

The following lemma will be the key step in the proof of Theorem 6.3 below.
Lemma 6.1. Let $1<p<\infty$ and $0<\beta<n$. If $R^{\beta} f \in H^{p}$, then $f \in H^{q}$, where $1 / q=1 / p-\beta / n$, with $\|f\|_{q} \leq C\left\|R^{\beta} f\right\|_{p}$.

Proof. By [1, Lemma 1.7], if $R^{\beta} \in H^{p}$, then there exists $g \in L^{p}(S)$ with $\left\|R^{\beta} f\right\|_{p}=\|g\|_{p}$ such that

$$
|f(z)| \leq P\left[k_{\beta} * g\right](z)
$$

But by Theorem 3 of [5], the mapping $g \rightarrow k_{\beta} * g$ is a bounded mapping of $L^{p}(S)$ to $L^{q}(S)$, where $1 / q=1 / p-\beta / n$. Thus we have $f \in H^{q}$ with

$$
\|f\|_{q} \leq\left\|k_{\beta} * g\right\|_{q} \leq C\|g\|_{p}=C\left\|R^{\beta} f\right\|_{p}
$$

Remark 6.2. Lemma 6.1 has also been proved, using different methods, by Wu Young Chen [3]

TheOrem 6.3. Suppose $f(z)=\sum a_{\alpha} z^{\alpha}$ is holomorphic on B. If $\widetilde{D}_{\gamma}(f)<$ ∞ for some $\gamma, 0<\gamma \leq n$, then $f \in H^{2 n / \gamma}$ with

$$
\|f\|_{2 n / \gamma} \leq C\|f\|_{\tilde{\mathcal{D}}_{\gamma}} .
$$

Proof. Given $0<\gamma \leq(n-1)$, choose $\beta>0$ such that $(n-1)<\gamma+2 \beta \leq n$. Then by Theorem 5.1,

$$
D_{\gamma+2 \beta}\left(R^{\beta} f\right)=C_{\gamma, \beta} \sum_{k=1}^{\infty} \frac{k(k+1)^{2 \beta}}{\Gamma(\gamma+2 \beta+k+1)} \sum_{|\alpha|=k} \alpha!\left|a_{\alpha}\right|^{2} .
$$

Since $\lim _{k \rightarrow \infty} k^{b-a} \Gamma(k+a) / \Gamma(k+b)=1$, we have

$$
\begin{equation*}
\frac{(k+1)^{2 \beta}}{\Gamma(\gamma+2 \beta+k+1)} \approx \frac{1}{\Gamma(\gamma+k+1)} . \tag{6.3}
\end{equation*}
$$

Thus $D_{\gamma+2 \beta}\left(R^{\beta} f\right) \approx \widetilde{D}_{\gamma}(f)$. Hence by Theorem $4.2, R^{\beta} f \in H^{p}$ with

$$
\left\|R^{\beta} f\right\|_{p} \leq C\left\|R^{\beta} f\right\|_{\mathcal{D}_{\gamma+2 \beta}} \leq C\|f\|_{\tilde{\mathcal{D}}_{\gamma}},
$$

where $p=2 n /(\gamma+2 \beta)$. But then by Lemma 6.1 , we have $f \in H^{q}$ with $\|f\|_{q} \leq C\left\|R^{\beta} f\right\|_{p}$, where

$$
\frac{1}{q}=\frac{1}{p}-\frac{\beta}{n}=\frac{\gamma}{2 n}
$$

This proves the result.
From Theorem 5.2 and Theorem 6.3 we deduce the following result.

Corollary 6.4. Let $f(z)=\sum a_{\alpha} z^{\alpha}$ be holomorphic in B. If

$$
\sum_{k=1}^{\infty} \frac{k}{\Gamma\left(\frac{2 n}{p}+k+1\right)} \sum_{|\alpha|=k} \alpha!\left|a_{\alpha}\right|^{2}<\infty
$$

for some $p, 2 \leq p<\infty$, then $f \in H^{p}$ with $\|f\|_{p} \leq C\|f\|_{\mathcal{D}_{2 n / p}}$.
K. Zhu [21] proved the existence of a unique Hilbert space \mathbb{H} of holomorphic functions in B_{n} which is Möbius invariant. Zhu also showed that a function $f(z)=\sum_{\alpha} a_{\alpha} z^{\alpha}$ is in \mathbb{H} if and only if

$$
\sum_{\alpha}\left|a_{\alpha}\right|^{2} \frac{\alpha!}{|\alpha|!}|\alpha|<\infty
$$

This, however, is just the special case $\gamma=0$ of (6.1). Thus

$$
\mathbb{H}=\left\{f \in \mathcal{H}(B): \widetilde{D}_{0}(f)<\infty\right\} .
$$

When $n=1, \mathbb{H}$ is simply the Dirichlet space \mathcal{D}_{0} of holomorphic functions f on U satisfying

$$
\int_{U}\left|f^{\prime}(z)\right|^{2} d A(z)<\infty
$$

The space \mathbb{H} has also been identified by M. Peloso [12] as the 2 -Besov space \mathcal{B}_{2} of holomorphic functions f on B for which $\left(1-|z|^{2}\right)^{m}\left|R^{m} f(z)\right| \in L^{2}(\tau)$, where m is any integer with $m>n / 2$.

Since $\Gamma(\gamma+k+1) \geq \Gamma(k+1)$ for all $\gamma \geq 0, \widetilde{D}_{0}(f)<\infty$ implies $\widetilde{D}_{\gamma}(f)<$ ∞ for all $\gamma>0$. We thus have the following result, which represents a generalization of a result that is known in the case $n=1$ (see [4, Exercise 7, p. 106]).

Proposition 6.5. If f is in the unique Möbius invariant Hilbert space \mathbb{H} on B, then $f \in H^{p}$ for all $p, 0<p<\infty$.

7. The special case $n=1$

In this section we consider the results of the previous sections for the special case of the unit disc \mathbb{D} in \mathbb{C}. When $n=1$, (6.3) gives

$$
D_{\gamma}(f) \approx \sum_{k=1}^{\infty} k^{1-\gamma}\left|a_{k}\right|^{2}
$$

and Theorem 5.2 therefore reduces to the following result.
Theorem 7.1. Suppose $f(z)=\sum a_{k} z^{k}$ is holomorphic in the unit disc D.
(a) If the sequence $\left\{a_{k}\right\}$ satisfies

$$
\begin{equation*}
\sum_{k=1}^{\infty} k^{1-2 / q}\left|a_{k}\right|^{2}<\infty \tag{7.1}
\end{equation*}
$$

for some $q \geq 2$, then $f \in H^{q}(\mathbb{D})$.
(b) Conversely, if $f \in H^{q}(\mathbb{D})$ for some $q, 0<q \leq 2$, then (7.1) holds. ${ }^{1}$

Part (a) of Theorem 7.1 is Theorem 2 of [20]. This result is closely related to the following results of Hardy and Littlewood (see [4, Theorems 6.2 and 6.3]):

If $f(z)=\sum a_{k} z^{k}$ is holomorphic in $|z|<1$, and if the sequence $\left\{a_{k}\right\}$ satisfies

$$
\begin{equation*}
\sum_{k=1}^{\infty} k^{q-2}\left|a_{k}\right|^{q}<\infty \tag{7.2}
\end{equation*}
$$

for some $q \geq 2$, then $f \in H^{q}$ Conversely, if $f \in H^{q}$ for some $q, 0<q \leq 2$, then (7.2) holds.

For a generalization of these theorems see J. H. Shi [14].
Although the convergence of either of the series in (7.1) or (7.2) for some $q \geq 2$ implies that $f(z)=\sum a_{k} z^{k}$ is in the Hardy space H^{q}, we remark that for $q \neq 2$ the convergence of one series does not imply the convergence of the other series. For example, if $a_{k}=k^{(1 / q)-1}(\log k)^{-1 / 2}, k \geq 2$, then

$$
\sum_{k=2}^{\infty} k^{1-2 / q} a_{k}^{2}=\sum_{k=2}^{\infty} \frac{\log k}{k}=\infty, \text { but } \sum_{k=2}^{\infty} k^{q-2} a_{k}^{q}=\sum_{k=2}^{\infty} \frac{1}{k(\log k)^{q / 2}}<\infty
$$

for all $q>2$. In the other direction, the following example was suggested by my colleague Stephen Dilworth. Let

$$
a_{k}= \begin{cases}2^{n((1 / q)-(1 / 2))} \frac{1}{n}, & \text { when } k=2^{n} \\ 0, & \text { elsewhere }\end{cases}
$$

Then

$$
\sum_{k=1}^{\infty} k^{1-2 / q} a_{k}^{2}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty, \text { but } \sum_{k=1}^{\infty} k^{q-2} a_{k}^{q}=\sum_{n=1}^{\infty} 2^{n((q / 2)-1)} \frac{1}{n^{q}}=\infty
$$

for all $q>2$. Similar examples can be constructed for the case $q<2$.
Example 7.2. We consider the holomorphic function $f_{p, q}$ on \mathbb{D} defined by

$$
f_{p, q}(z)=(1-z)^{-1 / p}\left\{\frac{1}{z} \log \frac{1}{(1-z)}\right\}^{-1 / q}
$$

We will prove the following result.
(a) If $0<p<2$, then for any q with $p \leq q<2$, we have $f_{p, q} \in \mathcal{D}_{2 / p}$, but $f_{p, q} \notin H^{p}$.

[^0](b) If $2<p<\infty$, then for any q with $2 \leq q<p$, we have $f_{p, q} \in H^{p}$, but $f_{p, q} \notin \mathcal{D}_{2 / p}$.
J. E. Littlewood ([10, pp. 93-96]) has shown that the Taylor coefficients $\left\{a_{n}\right\}$ of $f_{p, q}$ satisfy
$$
a_{n} \approx n^{\frac{1}{p}-1}(\log n)^{-1 / q}
$$

Thus

$$
D_{2 / p}\left(f_{p, q}\right) \approx \sum_{n=2}^{\infty} n^{1-\frac{2}{p}}\left|a_{n}\right|^{2}=\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{2 / q}}
$$

The above series converges for all $q<2$ and diverges for all $q \geq 2$. Thus

$$
f_{p, q} \in \mathcal{D}_{2 / p}(\mathbb{D}) \quad \Longleftrightarrow \quad q<2 .
$$

On the other hand, we also have that

$$
f_{p, q} \in H^{p}(\mathbb{D}) \quad \Longleftrightarrow \quad q<p
$$

For $q<p$, straightforward estimates give

$$
\int_{-\pi}^{\pi}\left|f_{p, q}\left(r e^{i \theta}\right)\right|^{p} d \theta \leq C_{1}+C_{2}\left[\log \frac{1}{(1-r)}\right]^{1-p / q}
$$

Thus $f_{p, q} \in H^{p}$ for all $q, q<p$. On the other hand, if $f \in H^{p}$, then its boundary function $f^{*}\left(e^{i \theta}\right)$ is in $L^{p}[0,2 \pi]$. But for $0<|\theta|<\pi$ we have

$$
\left|f_{p, q}^{*}\left(e^{i \theta}\right)\right|^{p} \approx \frac{1}{\theta|\log \theta|^{p / q}}
$$

which is not integrable for any $q \geq p$. Thus $f_{p, q} \notin H^{p}$ for any $q \geq p$.
Remark 7.3. The existence of functions having the desired properties (a) and (b) above can also be ascertained from a theorem of Littlewood [9] (see also [4, Theorem A.5]).

8. Comparison with a theorem of Yamashita

For $N \geq 3$, let B_{N} denote the unit ball in \mathbb{R}^{N}. Yamashita [20, Theorem 3] proved the following generalization of Theorem A for Euclidean harmonic functions on B_{N}.

THEOREM. Let u be a harmonic function in $B_{N}(N \geq 3)$ satisfying

$$
\begin{equation*}
\int_{B_{N}}(1-|x|)^{\alpha}|\nabla u(x)|^{2} d x<\infty \tag{8.1}
\end{equation*}
$$

for some $\alpha, 0 \leq \alpha \leq 1$. Then for $p=2(N-1) /(N+\alpha-2)$ the function $|u|^{p}$ admits a harmonic majorant in B_{N}.

Let $n>1$ and suppose that f is holomorphic on $B \subset \mathbb{C}^{n}$ with $D_{\gamma}(f)<\infty$ for some $\gamma,(n-1)<\gamma \leq n$. Identify \mathbb{C}^{n} with $\mathbb{R}^{2 n}$ and B with $B_{2 n} \subset \mathbb{R}^{2 n}$. If $u=\operatorname{Re} f$, then u is pluriharmonic on B and thus also (Euclidean) harmonic on $B_{2 n}$. Also, since $D_{\gamma}(f)<\infty,(5.2)$ gives

$$
\int_{B}\left(1-|z|^{2}\right)^{\gamma+2}|\partial u(z)|^{2} d \tau(z)=\int_{B}\left(1-|z|^{2}\right)^{\gamma-n+1}|\partial u(z)|^{2} d m(z)<\infty
$$

But $|\partial u|^{2}=(1 / 4)|\nabla u|^{2}$. Hence u satisfies (8.1) with $\alpha=\gamma-n+1$. Thus for $p=2(2 n-1) /(n+\gamma-1)$, the function $|u|^{p}$ admits a (Euclidean) harmonic majorant F on $B_{2 n}$. But since F satisfies the mean-value property,

$$
\sup _{0<r<1} \int_{S}|u(r \zeta)|^{p} d \sigma(\zeta) \leq \int_{\partial B_{2 n}} F(r \zeta) d \sigma(\zeta)=F(0)
$$

Since $p>1$, by [15, Theorem 1] the function f is in H^{p} with $p=2(2 n-$ $1) /(n+\gamma-1)$. However, when $n>1$ and $(n-1)<\gamma<n$, this value of p is strictly smaller than the value $2 n / \gamma$ given by Theorem 4.2.

References

[1] P. Ahern \& W. Cohn, Exceptional sets for Hardy Sobolev functions, $p>1$, Indiana Univ. Math. J. 38 (1989), 417-453.
[2] J. Arazy, S. Fisher, S. Janson, and J. Peetre, Membership of Hankel operators on the ball in unitary ideals, J. London Math. Soc. (2) 43 (1991), 485-508.
[3] W. Y. Chen, A generalization of a dual theorem of Hardy and Littlewood over bounded symmetric domains, Chinese J. Math. 5 (1977), 183-201.
[4] P. Duren, Theory of H^{p} spaces, Academic Press, New York, NY, 1970.
[5] I. Graham, The radial derivative, fractional integrals, and the comparative growth of means of holomorphic functions on the unit ball in \mathbb{C}^{n}, in: Recent developments in several complex variables (Proc. Conf., Princeton, 1979), Ann. of Math. Studies, vol. 100, Princeton Univ. Press, Princeton, 1981, pp. 171-178.
[6] K. T. Hahn and E. H. Youssfi, Möbius invariant Besov p-spaces and Hankel operators in the Bergman space on the ball in \mathbb{C}^{n}, Complex Variables Theory Appl. 17 (1991), 89-104.
[7] , M-harmonic Besov p-spaces and Hankel operators in the Bergman space on the ball in \mathbb{C}^{n}, Manuscripta Math. 71 (1991), 67-81.
[8] , Tangential boundary behavior of \mathcal{M}-harmonic Besov functions in the unit ball, J. Math. Analysis Appl. 175 (1993), 206-221.
[9] J. E. Littlewood, On the mean values of power series (II), J. London Math. Soc. 5 (1930), 179-182.
[10] , Lectures on the theory of functions, Oxford Univ. Press, London, 1944.
[11] M. Pavlovic, Inequalities for the gradient of eigenfunctions of the invariant Laplacian in the unit ball, Indag. Math. (N. S.) 2 (1991), 89-98.
[12] M. M. Peloso, Möbius invariant spaces on the unit ball, Michigan Math. J. 39 (1992), 509-536.
[13] W. Rudin, Function theory in the unit ball of \mathbb{C}^{n}, Springer-Verlag, New York, 1980.
[14] J. H. Shi, Hardy-Littlewood theorems on bounded symmetric domains of \mathbb{C}^{n}, Scientia Sinica 31 (1988), 916-926.
[15] M. Stoll, Integral formula for pluriharmonic functions on bounded symmetric domains, Duke Math. J. 41 (1974), 393-404.
[16] _ A characterization of Hardy spaces on the unit ball of \mathbb{C}^{n}, J. London Math. Soc. 48 (1993), 126-136.
[17] , Invariant potential theory in the unit ball of \mathbb{C}^{n}, London Mathematical Society Lecture Notes Series, vol. 199, Cambridge Univ. Press, Cambridge, 1994.
[18] _, Boundary limits and non-integrability of \mathcal{M}-subharmonic functions in the unit ball of \mathbb{C}^{n}, Trans. Amer. Math. Soc. 349 (1997), 3773-3785.
[19] _, On the integrability of eigenfunctions of the Laplace-Beltrami operator, Potential Analysis (to appear).
[20] S. Yamashita, Dirichlet-finite functions and harmonic majorants, Illinois J. Math. 25 (1981), 626-631.
[21] K. Zhu, Möbius invariant Hilbert spaces of holomorphic functions in the unit ball of \mathbb{C}^{n}, Trans. Amer. Math. Soc. 323 (1991), 823-842.

Department of Mathematics, University of South Carolina, Columbia, SC 29208
E-mail address: stoll@math.sc.edu

[^0]: ${ }^{1}$ Added in proof: Theorem 7.1 (b) for the case $1 \leq q \leq 2$ was known to G.H. Hardy and J.E. Littlewood [Math. Ann. 97 (1926), 159-209]. For related results, see the article by P.L. Duren and G.D. Taylor [Illinois J. Math. 14 (1970), 419-423].

