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AN ALTERNATIVE TO THE HILBERT FUNCTION FOR
THE IDEAL OF A FINITE SET OF POINTS IN P

n

ANTHONY V. GERAMITA, TADAHITO HARIMA, AND YONG SU SHIN

1. Introduction

Let X = {P1, . . . , Ps} be a set of s distinct points in the projective space
P
n(k), where k = k is an algebraically closed field. Then Pi ↔ ℘i =

(Li1, . . . , Lin) ⊂ R = k[x0, x1, . . . , xn], where the Lij , j = 1, . . . , n, are n
linearly independent linear forms and ℘i is the (homogeneous) prime ideal of
R generated by all the forms which vanish at Pi. The ideal

I = IX := ℘1 ∩ · · · ∩ ℘s
is the ideal generated by all the forms which vanish at all the points of X.

Since R = ⊕∞i=0Ri (Ri being the vector space of dimension
(
i+n
n

)
generated

by all the monomials in R having degree i) and I = ⊕∞i=0Ii, we obtain that

A = R/I = ⊕∞i=0(Ri/Ii) = ⊕∞i=0Ai

is a graded ring. The numerical function

HX(t) = H(A, t) := dimk At = dimk Rt − dimk It

is called the Hilbert function of the set X (or of the ring A).
In this paper, which is the first in a series, we introduce a new “character”

(the n-type vector), which is an alternative to the Hilbert function for the set
of points X. Our main theorem (Theorem 2.6) shows that our new character
is equivalent to the Hilbert function as a tool to describe finite sets of points
in Pn. The proof of this result occupies all of Section 2.

In Section 3 we connect our character with the numerical character in-
troduced in 1978 by Gruson and Peskine [13] in their study of the points
in P2 which are hyperplane sections of a curve in P3. Gruson-Peskine used
the numerical character to reveal properties of all sets of points with a given
Hilbert function. We translate their results using our new character; these
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translations suggest possible generalizations of the Gruson-Peskine results in
P

2 to results in Pn. Indeed, we give some initial applications (Theorem 3.7
and Proposition 3.8) in this direction, which establish an extremal property
of the collection of all sets of points in Pn with a fixed Hilbert function. The
study of such extremal subsets is developed further in the third paper of this
series [8].

We conclude this paper with a discussion of particular families of sets of
points in Pn whose construction is strongly suggested by our character. We
had done something similar in P2 and P3 (see [11], [12]), but it is only now,
with our definition of the n-type vector well understood, that we can give the
definition in higher dimensional spaces. A detailed study of these families of
point sets is undertaken in [7].

We now define some notation and make some preliminary observations.
The collection of functions

Hn := {HX : N→ N | X is a non-degenerate finite set of points in Pn}

has been much studied. For example, we know:
(I) (Macaulay) If H ∈ Hn, then the values of H, i.e.,

H(0) = 1, H(1) = n+ 1, H(2), . . .

form an O-sequence (see [18] for definition).
(II) If H ∈ Hn and H = HX for some set X then, for all t� 0, H(t) = |X|.

(III) If H ∈ Hn and we define the function ∆H by ∆H(0) = 1 and ∆H(t) =
H(t)−H(t− 1) for t > 0, then the values of ∆H, i.e.,

∆H(0) = 1, ∆H(1) = n, ∆H(2), · · ·

form an O-sequence which is eventually 0.
One can prove (see, e.g., [6]) that (III) is equivalent to saying that there is

a homogeneous ideal J ⊂ k[x1, . . . , xn] satisfying
(1) J ∩ (x1, . . . , xn)1 = (0);
(2)
√
J = (x1, . . . , xn);

(3) If B = k[x1, . . . , xn]/J = ⊕∞i=0Bi, then ∆H(t) = dimk Bt.
That is, ∆H is the Hilbert function of some Artinian quotient of k[x1, . . . ,

xn]. In fact, in the terminology of [10] one has the following characterization
of Hn:

• H ∈ Hn (for some n) if and only if H(1) = n+ 1,
• H is a 0-dimensional (condition (II) above), differentiable (III), O-

sequence (I).
We use (III) above to define the set of functions

H−Artn := {H : N→ N | H is the Hilbert function of some Artinian
graded quotient of k[x1, . . . , xn] and H(1) = n. }
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In light of the above remarks, we can consider ∆ as a function from Hn to
H−Artn. Since “integration” of a function in H−Artn is a left inverse to ∆,
we obtain that ∆ is actually a 1-1 function. It is well-known (see, e.g., [6] or
[15]) that ∆ is also a surjective function. Thus, we can often reduce questions
about Hn to analogous questions about H−Artn.

Given H ∈ Hn, we define:

α̃(H) = least integer t such that H(t) <
(
t+ n

n

)
,

σ(H) = least integer t such that ∆H(t+ `) = 0 for all ` ≥ 0.

Notice that if, as above, B is a graded Artinian quotient of k[x1, . . . , xn] and if
Bt = 0 for some t, then Bt+` = 0 for all ` ≥ 0. It follows from this observation
that we could have defined σ(H) as the least integer t such that ∆H(t) = 0.
Clearly, α̃(H) ≤ σ(H), and H ∈ Hn is completely known once we know the
first σ(H) values of H, i.e.,

H(0),H(1) = n+ 1, · · · ,H(σ(H)− 1).

We shall also need to consider degenerate sets of points in Pn and their
Hilbert functions. In order to do that in a systematic manner we define

Sn =
⋃
i≤n

Hi.

Thus, Sn is the collection of Hilbert functions of all sets of points in Pn.
Unfortunately, in the case H ∈ Sn the above definition of α̃(H) is not

appropriate. In order to avoid the possibility of confusion we define, for
H ∈ Sn,

α(H) =

{
1 if H ∈ Hi, i < n,

α̃(H) if H ∈ Hn.
Notice that the definition of σ(H) does not depend on where we consider H.

In [13], Gruson and Peskine studied the case of S2 and observed that H ∈ S2

could, in fact, be completely described by only α(H) numbers, which they
called the numerical character of H.

To understand the Gruson-Peskine result we use the fact that ∆ gives an
isomorphism between the sets Hn and H − Artn and consider only ∆H ∈
H−Art2. Since ∆H is the Hilbert function of some graded Artinian quotient
of k[x1, x2], it is easy to see that

∆H := 1 2 3 · · · α hα hα+1 · · · hσ−1 0 (α ≥ 2),

where α ≥ hα ≥ hα+1 ≥ . . . ≥ hσ−1 > 0 is any non-increasing collection of
non-zero integers and α = α(H), σ = σ(H).

Then the numerical character of H is defined as the sequence (b1, . . . , bα)
with

α ≤ b1 ≤ b2 · · · ≤ bα
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such that, if there are u1 occurrences of b1 in the numerical character then
∆H takes on the value α − u1 at b1 and stays at that value until we arrive
at bu1+1; if there are u2 occurrences of bu1+1 in the numerical character then
∆H takes on the value α− u1 − u2 at bu2+1 and stays at that value until we
arrive at bu1+u2+1; and so on. (For more details the reader is referred to [9].)

Example 1.1. We will consider the numerical characters of all possible
Hilbert functions for sets of 6 nondegenerate points in P2.

(a) X consists of 6 points not on a conic in P2. Then H = HX is given by

H := 1 3 6 6 → and so ∆H := 1 2 3 0,

and the numerical character is (3, 3, 3).
(b) X consists of 6 points on an irreducible conic. Then

H := 1 3 5 6 6 → and so ∆H := 1 2 2 1 0,

and the numerical character is (3, 4).
(c) X consists of 5 points on a line and one point off that line. Then

H := 1 3 4 5 6 6 → and so ∆H := 1 2 1 1 1 0,

and the numerical character is (2, 5).
(d) X consists of 6 points on a line. Then

H := 1 2 3 4 5 6 6 → and so ∆H := 1 1 1 1 1 1 → .

Notice that in the last case we have H ∈ H1. It follows that the numerical
character of H is (6).

It is easy to see that the set S2 is in 1-1 correspondence with the set of
numerical characters. Thus, the numerical character is an alternative to the
Hilbert function for distinguishing sets of points in P2. In fact, Gruson-Peskine
used the numerical character to characterize the Hilbert functions of points
sets in P2 which are general hyperplane sections of irreducible curves in P3

(see also [9]).
We are now ready to define our new “character” (called “type vectors”), and

we show that there is a 1-1 correspondence between Sn and “n-type vectors”.
When n = 2 and H ∈ S2 then the 2-type vector corresponding to H is an α(H)-
tuple of non-negative integers (similar to, but not equal to, the numerical
character) which characterizes H. We will show in Proposition 3.2 how to
pass back and forth between our 2-type vector and the numerical character of
Gruson and Peskine.

Remark 1.2. For n ≥ 2 and H ∈ Sn we also explain how the n-type
vector associated to H can describe certain features of the point sets that
have Hilbert function H.

There is an ambiguity in the above discussion relating to the set H0 = S0.
There is only one Hilbert function in this set, namely the constant function 1.
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This function is precisely the Hilbert function of the ring k[x0]. In this case
we set α(H) = −1 and σ(H) = 1.

2. Type vectors

Definition 2.1.

(1) A 0-type vector is defined to be T = 1. This vector is the only 0-type
vector. We define α(T ) = −1 and σ(T ) = 1.

(2) A 1-type vector is a vector of the form T = (d), where d ≥ 1 is a
positive integer. For such a vector we define α(T ) = d = σ(T ).

(3) A 2-type vector is a vector of the form

T = ((d1), (d2), . . . , (dm)),

where m ≥ 1, the (di) are 1-type vectors, and σ(di) = di < α(di+1) =
di+1. For such a vector T we define α(T ) = m and σ(T ) = σ((dm)) =
dm. Clearly, α(T ) ≤ σ(T ), with equality if and only if T = ((1), (2),
. . . , (m)).
Remark. For simplicity of notation we usually write the 2-type vector
((d1), . . . , (dm)) as (d1, . . . , dm) .

(4) A 3-type vector is an ordered collection of 2-type vectors T1, . . . , Tr,

T = (T1, . . . , Tr),

where σ(Ti) < α(Ti+1) for i = 1, . . . , r − 1. For such a vector T we
define α(T ) = r and σ(T ) = σ(Tr).

(5) Let n ≥ 3. An n-type vector is an ordered collection of (n − 1)-type
vectors, T1, . . . , Ts,

T = (T1, . . . , Ts),

such that σ(Ti) < α(Ti+1) for i = 1, . . . , s − 1. For such a vector T
we define α(T ) = s and σ(T ) = σ(Ts).

Example 2.2. Clearly T1 = (1, 2), T2 = (1, 3, 4), T3 = (1, 2, 3), and
T4 = (2, 3, 4, 5, 6) are all 2-type vectors, but (T3, T2) = ((1, 2, 3), (1, 3, 4)) is not
a 3-type vector since σ(T3) = 3 and α(T2) = 3. However, (T2, T4) is a 3-type
vector. Also,

(T1, T2, T4) = ((1, 2), (1, 3, 4), (2, 3, 4, 5, 6))

is a 3-type vector since σ(T1) = 2 < α(T2) = 3 and σ(T2) = 4 < α(T4) = 5.
We will, from time to time, use the simplified notation

((1, 2), (1, 3, 4), (2, 3, 4, 5, 6)) = (1, 2; 1, 3, 4; 2, 3, 4, 5, 6)

for 3-type vectors (see [12]).
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Note also that ( (T1) ) = ( (1, 2) ) is a 3-type vector and that ( ( (1, 2) ) )
is a 4-type vector. A simple check shows that((

(1, 2), (1, 3, 4), (2, 3, 4, 5, 6)
)
,
(

(1, 2), (1, 2, 4), (2, 3, 4, 5, 6),

(1, 2, 3, 4, 5, 6, 7), (2, 4, 6, 7, 8, 9, 10, 12), (1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 14, 15),

(3, 4, 6, 8, 9, 10, 12, 23, 24, 25, 30, 31, 40, 45, 50, 60)
))

is also a 4-type vector.
Before we begin the proof of our main theorem we recall a construction

given in [10], which is crucial to our discussion of n-type vectors. Let H =
{bi} ∈ Hn (so that H(1) = n+ 1) and write σ = σ(H). Let HPn−1(t) = {dt },
where dt =

(
t+n−1
n−1

)
and define ci = bi+1 − di+1. Then we have:

H : 1
(
n+1

1

)
·
(
α−1+n

n

)
bα · bσ−2 < bσ−1 = bσ

(0) (1) · (α− 1) (α) · (σ − 2) (σ − 1) (σ)

HPn−1 : 1
(
n
1

)
·
(
α+n−2
n−1

) (
α+n−1
n−1

)
·
(
σ+n−3
n−1

) (
σ+n−2
n−1

) (
σ+n−1
n−1

)
1
||
c0

· cα−2 cα−1 · cσ−3 cσ−2 cσ−1

Since the di’s are strictly increasing and the bi’s are eventually constant,
there is a unique integer h such that

1 = c0 ≤ c1 ≤ · · · ≤ ch−1 > ch .

Theorem 2.3 ([10]). The sequences

H1 := 1 c1 · · · ch−1 → and H′1 = {c′i},
where

c′i =


(
i+ n− 1
n− 1

)
for i ≤ h,

bi − ch−1 for i ≥ h,
are 0-dimensional differentiable O-sequences.

We associate to H the (ordered) pair of Hilbert functions (H1,H′1).

Remark 2.4. (1) Notice that c0 = 1 (since H(1) = n + 1) and so
h− 1 ≥ 0, i.e., h ≥ 1. Thus c′1 = n, and this means that H′1 ∈ Hn−1.

(2) By construction, σ(H1) ≤ h and (since H′1 ∈ Hn−1) we have α(H′1) ≥
h+ 1. Thus, σ(H1) < α(H′1).

The following key lemma will be used often in the sequel.

Lemma 2.5. Let H ∈ Hn, H1 and H′1 be as above. Then σ(H) = σ(H′1).
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Proof. Embedded in the proof that H′1 is an O-sequence is the fact that

c′h = bh − ch−1 and c′h+1 = bh+1 − ch−1 .

Thus, if bh < bh+1 then c′h < c′h+1. It is easy to see that, in this case, the
numbers bh become constant exactly when the numbers c′h become constant;
i.e., we have σ(H) = σ(H′1).

Suppose that bh = bh+1. Then c′h = c′h+1 and we obtain σ(H′1) ≤ h + 1.
Since we always have c′h−1 < c′h, we also have σ(H′1) ≥ h + 1. Thus the
hypothesis bh = bh+1 gives σ(H′1) = h + 1, and it remains to show that this
assumption also implies that σ(H) = h+ 1.

Now, bh = bh+1 certainly implies that σ(H) ≤ h+ 1, so it suffices to prove
that bh−1 < bh. But if bh−1 = bh, then

ch−2 = bh−1 −
(
h+ n− 2
n− 1

)
> bh −

(
h+ n− 1
n− 1

)
= ch−1,

and this contradicts the definition of h. Thus, we have again σ(H) = h + 1,
and the proof of the lemma is complete. �

We are now ready to prove the main theorem of this paper.

Theorem 2.6. There is a 1-1 correspondence

Sn ↔ {n-type vectors }
such that if H ∈ Sn and H↔ T , then α(H) = α(T ) and σ(H) = σ(T ).

Proof. We begin defining an assignment of an n-type vector to an element
of Sn.

Case n = 0: When n = 0, H0 = S0 and the only element H ∈ H0 is
H := 1 →. We associate the only 0-type vector, T = 1, to H. By the
definition, we then have α(H) = α(T ) and σ(H) = σ(T ).

Case n = 1: Let H ∈ S1 and consider H(1). If H(1) = 1 then H ∈ S0

and, by induction, H (considered as an element of S0) corresponds to the
0-type vector 1. We let H, now considered as an element of S2, correspond
to T = (1). Then, by definition, α(H) = 1 and α(T ) = 1. Also, σ(H) = 1
(this value has not changed) and, by definition, σ(T ) = 1. Thus we are done
in this case.

We may therefore assume that H ∈ H1, i.e., H(1) = 2 and so α = α(H) >
1, i.e.,

H := 1 2 · · · α α · · ·
(0) (1) (α− 1) (α)

We associate to H the 1-type vector (α) = T . All conditions are clearly
satisfied in this case since α(H) = α = σ(H) and α(T ) = α = σ(T ).

Case n = 2: Now suppose that H ∈ S2 and consider H(1). If H(1) < 3
then H ∈ S1 and by induction, H (considered as an element of S1) corresponds
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to the 1-type vector T = (e) where H (again considered as an element of S1)
satisfies

α(H) = α(T ) = e = σ(H) = σ(T ) .

Now, considering H as an element of S2, we let H ↔ ( (e) ) = (T ) = T ′.
Then, by definition, α(H) = α(T ′) = 1 and σ(H) = e with e = σ(T ). Thus,
σ(H) = σ(T ′), and we are done in this case.

We may therefore assume that H(1) = 3, i.e., H ∈ H2 and α = α(H) > 1.
Writing H(i) = bi, we have

H := 1 3 · · ·
(
α+1

2

)
bα · · · bσ−2 < bσ−1 = bσ · · ·

(0) (1) · · · (α− 1) (α) · · · (σ − 2) (σ − 1) (σ)

where σ = σ(H). Thus, bα <
(
α+2

2

)
.

We now apply the above-mentioned construction in [10] to H, this time
letting {di} = HP1(i), to obtain H1 and H′1, and we let H → (H1,H′1).
There are two separate cases to consider: α(H) = 2 and α(H) > 2.

Case 1 (α(H)=2): In this case we have b2 < 6 and so c1 = b2−d2 = b2−3 <
6 − 3 = 3. Since c1 < 3 we have H1 ∈ S1, and so by induction H1 → (e1),
and since H′1 ∈ S1 (by Remark 2.4(1) above), we obtain H′1 → (e2). By
Remark 2.4(2) we have e1 < e2. Thus T = ((e1), (e2)) is a 2-type vector.

In order to associate T with H we must ensure that α(T ) = α(H) (this
is obvious by construction) and that σ(T ) = σ(H). To obtain the latter
condition note that, by definition, σ(T ) = σ((e2)) = e2 = σ(H′1). Thus, it
suffices to show that σ(H′1) = σ(H), and this follows from Lemma 2.5.

Case 2 (α(H) > 2): As in the previous case we let H → (H1,H′1). In
this case, cα−2 =

(
α+1

2

)
− α =

(
α
2

)
and, since α = α(H) > 2, we have

c1 = H1(1) = 3. Thus, H1 ∈ H2. Moreover,

cα−1 = bα − (α+ 1) <
(
α+ 2

2

)
− (α+ 1) =

(
α+ 1

2

)
and we conclude that α(H1) = α(H)− 1. Hence, by induction on α, we have

H1 → ((e1), . . . , (eα(H1))),

where the (ei) are 1-type vectors and σ(H1) = σ( (eα(H1)) ) = eα(H1).
We have already remarked that H′1 ∈ H1, so we have H′1 → (e). We now

define the association

H→ ((e1), . . . , (eα(H1)), (e)),

but to do that we must verify the following:
(1) T = ((e1), . . . , (eα(H1)), (e)) is a 2-type vector;
(2) α(H) = α(T ) ;
(3) σ(H) = σ(T ).
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To prove (1) it suffices to prove that

σ((e1), . . . , (eα(H1))) < α( (e) ),

i.e., eα(H1) = σ(H1) < α(H′1). But this is precisely the content of Re-
mark 2.4(2). As for (2) and (3), we have α(H) = α(H1) + 1 and so α(H) =
α(T ). Since σ(H′1) = σ(H) by Lemma 2.5, we also have σ(H) = σ(T ). This
completes the proof for the case n = 2.

Case n ≥ 3: Let H ∈ Sn (n ≥ 3) and consider H(1). If H(1) ≤ n, then, by
induction, we have an assignment H→ T , where T is an (n− 1)-type vector,
with α(H) = α(T ) and σ(H) = σ(T ). In this case we assign H→ (T ) = T ′.
Since H ∈ Sn−1 also, we have α(H) = 1 and α(T ′) = 1. By definition,
σ(T ′) = σ(T ), so using induction we obtain σ(T ′) = σ(H). Thus we are done
in this case. Now assume that H(1) = n+ 1, i.e., H ∈ Hn and α = α(H) > 1.
We write H(i) = bi. We have

H := 1
(
n+1

1

)
· · ·

(
α−1+n

n

)
bα · · · bσ−2 < bσ−1 = bσ · · ·

(0) (1) · · · (α− 1) (α) · · · (σ − 2) (σ − 1) (σ) · · ·

where σ = σ(H). So bα <
(
α+n
n

)
.

As in the case n = 2, there are two cases to consider: α(H) = 2 and
α(H) > 2.

Case 1 (α(H)=2): We have

c1 = b2 −
(
n+ 1
n− 1

)
<

(
n+ 2
n

)
−
(
n+ 1
n− 1

)
= n+ 1,

and there are three possibilities for c1, namely c1 ≤ 0, c1 = 1, and c1 > 1.
Case c1 ≤ 0: Then h = 1 and

H1 := 1 → and H′1 := 1 n c′2 · · ·
By induction, we have H1 → T1, where T1 is an (n − 1)-type vector with
σ(H1) = 1 = σ(T1) and H′1 → T2, where T2 is an (n − 1)-type vector with
α(H′1) = α(T2). But H′1(1) = n and so α(H′1) ≥ 2. Thus, σ(T1) < α(T2) and
we associate

H→ (T1, T2) = T .

Since α(T ) = 2 we have α(H) = α(T ). It remains to show that σ(H) =
σ(T ) = σ(T2). This will follow if we can show that σ(H) = σ(H′1). But
the latter relation follows from Lemma 2.5, and we thus have obtained the
required result.

Case c1 = 1: In this case we have h ≥ 2 and

H1 := 1 → and H′1 := 1 n c′2 · · · c′h c′h+1 · · · .
By induction, we have H1 → T1 with σ(T1) = 1 and H′1 → T2 with α(T2) ≥
h+ 1. Thus, σ(T1) < α(T2) and so

T = (T1, T2)
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is an n-type vector, which we associate to H.
By construction, α(H) = α(T ), so it remains to show that σ(H) = σ(T ).

But σ(T ) = σ(T2) (by definition) and σ(T2) = σ(H′1) (by induction). Lemma
2.5 now completes the proof in this case.

Case n ≥ c1 > 1: As above, we have H → (H1,H′1) with H1(1) = c1. In
this case we have H1 → T1 and H′1 → T2 and (by Remark 2.4(2)) σ(H1) <
α(H′1), so T = (T1, T2) is an n-type vector with α(H) = α(T ) = 2.

Hence from Lemma 2.5 we obtain σ(H′1) = σ(H), which completes the
proof for the case α(H) = 2).

Case 2 (α(H) > 2): We form H1 and H′1 in the usual way from H. But
now observe that

cα−2 = bα−1 − dα−1 =
(
α− 1 + n

α− 1

)
−
(
α− 2 + n

α− 1

)
=
(
α− 2 + n

α− 2

)
.

Since α > 2, we have α− 2 ≥ 1 and c1 = n+ 1 and so H1 ∈ Hn. Also,

cα−1 = bα − dα <
(
α+ n

α

)
−
(
α− 1 + n

α

)
=
(
α− 1 + n

α− 1

)
.

Thus, α(H1) = α(H)− 1 Hence by induction on α we obtain

H1 → (T1, . . . , Tα(H1)),

where the Ti are (n− 1)-type vectors and σ(H1) = σ(Tα(H1)).
Since H′1 ∈ Hn−1, we have, by induction, H′1 → T ′, where T ′ is an (n−1)-

type vector with α(H′1) = α(T ′) and σ(H′1) = σ(T ′).
Consider

T = (T1, . . . , Tα(H1), T ′) .
By Remark 2.4(2), this is an n-type vector. By construction, α(H) = α(T )
and σ(T ) = σ(T ′) = σ(H′1). But, by Lemma 2.5, σ(H′1) = σ(H) and so
H→ T is an appropriate correspondence.

Now that we have defined how to associate to a Hilbert function in Sn an
n-type vector, we next show that this correspondence is a 1-1 correspondence.
We begin by first defining an assignment in the opposite direction. In order
to simplify our discussion, let us denote the assignments defined above by the
letters χn, i.e.,

χn : Sn −→ { n-type vectors }
We now define (inductively) assignments

ρn : { n-type vectors } −→ Sn,

such that α(T ) = α(ρn(T )) and σ(T ) = σ(ρn(T )).

Case n = 0: Since there is only one element in either of the sets involved,
the assignment is obvious.
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Case n = 1: Let T = (a) be a 1-type vector with a ≥ 1. We define
ρ1(T ) = H by setting

H := 1 2 · · · a a →
(0) (1) · · · (a− 1) (a)

Clearly ρ1 and χ1 are inverses of each other, thus proving the 1-1 correspon-
dence of the theorem for n = 1. It is also obvious that α(T ) = α(ρ1(T )) and
σ(T ) = σ(ρ1(T )).

Case n ≥ 2: Let T = (T1, . . . , Tr) be an n-type vector. Then the vectors
Ti are (n− 1)-type vectors and, by induction, we have ρn−1(Ti) = H̃i ∈ Sn−1

and ρn−1 is a 1-1 correspondence between the set of (n− 1)-type vectors and
Sn−1, which respects both α and σ. We define ρn(T ) = H, where

H(t) = H̃r(t) + H̃r−1(t− 1) + · · ·+ H̃1(t− (r − 1))

(with H̃i(j) = 0 if j < 0). We need to verify that this definition actually gives
an element of Sn, which respects α and σ.

Let T be an n-type vector and suppose first that α(T ) = 1. Then T = (T1)
where T1 is an (n − 1)-type vector. By induction, we have ρn−1(T1) = H̃1 ∈
Sn−1. Then we also have ρn(T ) = H̃1, and obviously H̃1 is a 0-dimensional
differentiable O-sequence with H̃1(1) ≤ n (and hence H̃1(1) ≤ n+ 1). Thus,
H̃1, considered as an element of Sn, satisfies α(H̃1) = α(T ) = 1. We have
σ(H̃1) = σ(T1), by induction, and since σ(T ) = σ(T1) by definition, we obtain
σ(T ) = σ(H̃1), and we are done.

Now assume that α(T ) = u > 1, i.e., T = (T1, . . . , Tu). As above, we
consider two cases, u = 2 and u > 2. We will leave the simple argument in
case u = 2 to the reader and concentrate on the case u > 2.

Let H1(t) = H̃1(t − (u − 2)) + · · · + H̃u−1(t) = [ρn(T1, . . . , Tu−1)](t) and
let H′1(t) = H̃u(t) = [ρn−1(Tu)](t). Then H1 and H′1 are both 0-dimensional
differentiable O-sequences in Sn, as can be seen by induction on u in the case
of H1 and by induction on n in the case of H′1. We want to prove that the
same is true for

[ρn(T )](t) = H(t) = H1(t− 1) + H′1(t) .

We have, by induction, α(H1) = u − 1, σ(H1) = σ(ρn−1(Tu−1)), α(H′1) =
α(ρn−1(Tu)) and σ(H′1) = σ(ρn−1(Tu)).

Let α = α(H1). Then H1(t − 1) is generic for t − 1 < α (i.e., for every
t ≤ α). Since α ≤ σ(H1) < α(H′1), it follows that H′1(t) is generic for
t ≤ α, and hence H(t) is generic for t ≤ α. Thus, H is a differentiable O-
sequence for t ≤ α. Since [ρn(T )](t) = H(t) is generic for t ≤ α, we have
α(H) ≥ α + 1. If α(H) > α + 1, then H is also generic for t = α + 1. It
follows that H′1(t) and H1(t− 1) are generic for t ≤ α+ 1, which implies that
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α(H1) ≥ α + 1, a contradiction. Hence α(H) = α(H1) + 1 = α + 1 and so
α(H)− 1 = α(H1) ≤ σ(H1). In particular, α(H) = α(T ).

By the definition of H and by induction on u we also have σ(H1) < α(H′1)
(and, in general, α(H′1) ≤ σ(H′1). Thus, ∆H′1(t) = 0 implies that t ≥ σ(H′1)
and so t > σ(H1), i.e., t− 1 ≥ σ(H1). Since ∆H(t) = ∆H1(t− 1) + ∆H′1(t),
this shows that ∆H′1(t) = 0 and thus ∆H(t) = 0. Since the reverse implication
is obvious, we find that σ(H) = σ(H′1). Thus it only remains to show that
ρn(T ) behaves like an O-sequence in degrees ≥ α.

We first consider the case when α(H) − 1 = σ(H1). Then the Hilbert
functions H1 and H′1 are, respectively,

H1 : 1
(
n+ 1

1

) (
n+ 2

2

)
· · ·

(
n+ α− 1
α− 1

)
→

H′1 : 1
(
n

1

) (
n+ 1

2

)
· · ·

(
n+ α− 2
α− 1

) (
n+ α− 1

α

)
· · ·

(0) (1) (2) · · · (α− 1) (α)

Now ∆H(t) = ∆H1(t− 1) + ∆H′1(t), so if t− 1 ≥ α then ∆H1(t− 1) = 0
and so ∆H(t) = ∆H′1(t). Thus, for t ≥ α+ 1, H behaves like a differentiable
O-sequence. Hence, it only remains to verify that

∆H(α+ 1) ≤ (∆H(α))<α> .

But ∆H(α+ 1) = ∆H′1(α+ 1), and this is always

≤
(

(α+ 1) + (n− 2)
α+ 1

)
=
(
α+ n− 1
α+ 1

)
,

since ∆H′1(1) = n− 1. Now,

∆H(α) = ∆H1(α− 1) + ∆H′1(α)

=
(

(α− 1) + (n− 1)
α− 1

)
+
(
α+ n− 2

α

)
=
(
α+ n− 2
α− 1

)
+
(
α+ n− 2

α

)
=
(
α+ n− 1

α

)
,

and thus (∆H(α))<α> =
(
α+n
α+1

)
. Since

(
α+n−1
α+1

)
<
(
α+n
α+1

)
, this completes the

proof of the claim that, in the case α(H)− 1 = σ(H1), ∆H is a differentiable
O-sequence.

Now assume α(H) ≤ σ(H1) and consider those t for which α+1 = α(H) ≤
t ≤ σ(H1). We first consider the passage from α to α+ 1. We have

∆H(α) = ∆H1(α− 1) + ∆H′1(α).
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Since α < σ(H1) < α(H′1), ∆H′1(1) = n− 1 and ∆H1(1) = n, we have

∆H(α) =
(

(α− 1) + (n− 1)
α− 1

)
+
(
α+ n− 2

α

)
=
(
α+ n− 1

α

)
.

Therefore

(∆H(α))<α> =
(
α+ n

α+ 1

)
.

Since ∆H(α+ 1) = ∆H1(α) + ∆H′1(α+ 1), which is

≤
(
α+ n− 1

α

)
+
(

(α+ 1) + (n− 2)
α+ 1

)
=
(
α+ n

α+ 1

)
= (∆H(α))<α>,

we obtain that ∆H behaves like an O-sequence when passing from α to α+1.
Now consider any t in the range α + 1 ≤ t ≤ σ(H1) < α(H′1) and the

passage from ∆H(t) to ∆H(t + 1). Since in this range, ∆H′1(t) =
(
t+n−2

t

)
,

we have

∆H(t) = ∆H1(t− 1) +
(
t+ n− 2

t

)
.

Since ∆H1(t− 1) <
(
t+n−2
t−1

)
, the (t− 1)-binomial expansion of ∆H1(t− 1) is

(∆H1(t− 1))(t−1) =
(
mt−1

t− 1

)
+ · · ·+

(
mj

j

)
,

where t+ n− 2 > mt−1 > · · · > mj ≥ j ≥ 1. Thus,

∆H(t) =
(
t+ n− 2

t

)
+
(
mt−1

t− 1

)
+ · · ·+

(
mj

j

)
,

and since t+n− 2 > mt−1, this is the t-binomial expansion of ∆H(t). Hence,

(∆H(t))<t> =
(
t+ n− 1
t+ 1

)
+
(
mt−1 + 1

t

)
+ · · ·+

(
mj + 1
j + 1

)
= (∆H′1(t))<t> + (∆H1(t− 1))<t−1> .

Since, by induction, ∆H′1(t + 1) ≤ (∆H′1(t))<t> and ∆H1(t) ≤ (∆H1(t −
1))<t−1>, we are done in this case as well.

It only remains to consider the case when t ≥ σ(H1) + 1. But in this case,
∆H(t) = ∆H′1(t), and the result easily follows.

This completes the proof of the existence of assignments ρn that respect
both α and σ. We now show that ρn is injective for each n. We have already
seen that this is true for n = 0 and n = 1. For the general case, we need the
following lemma.

Lemma 2.7. Let T = (T1, . . . , Tu) be an n-type vector, where u ≥ 2. Let
σ = σ(T1) and ρn−1(Ti) = H̃i. Then

H̃i(σ + (i− 2)) =
(
n+ (σ + (i− 2))− 1

n− 1

)
for i = 2, . . . , u .
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In other words, H̃i(t) is maximal (i.e., generic) in k[x1, . . . , xn] for t ≤ σ +
(i− 2) and i = 2, . . . , u.

Proof. Since σ = σ(T1) ≤ α(Ti) − (i − 1) for i = 2, . . . , u, we have σ +
(i − 2) < α(Ti), for i in this range. The conclusion is immediate from this
observation. �

We now return to the proof of Theorem 2.6. Let n ≥ 2 and let T =
(T1, . . . , Tu) and T ′ = (T ′1 , . . . , T ′v ) be two n-type vectors such that ρn(T ) =
ρn(T ′). Since, by construction, ρn(T ) is generic up to u − 1 and ρn(T ′) is
generic up to v − 1, we obtain u = v.

Suppose first that u = 1, i.e., T = (T1) and T ′ = (T ′1 ), where T1 and
T ′1 are both (n − 1)-type vectors. By construction, ρn(T ) = ρn−1(T1) and
ρn(T ′) = ρn−1(T ′1 ). So, by induction on n we get T1 = T ′1 and so T = T ′.

Now suppose that u > 1. If T1 = T ′1 then, by construction, ρn(T2, . . . , Tu) =
ρn(T ′2 , . . . , T ′u). By induction on u we get Ti = T ′i for i = 2, . . . , u and so
T = T ′ in this case. If T1 6= T ′1 then, by induction on u, ρn(T1)(t) 6= ρn(T ′1 )(t)
for some t. Let s be the least such integer t. We can assume, without loss of
generality, that σ(T1) ≤ σ(T ′1 ). Then clearly s ≤ σ = σ(T1).

Write H̃i = ρn−1(Ti) and H̃
′
i = ρn−1(T ′i ). If s < σ, we have, by Lemma

2.7,

H̃i(s+ (i− 1)) = H̃
′
i(s+ (i− 1)) =

(
n+ (s+ (i− 1))− 1

n− 1

)
for i = 2, . . . , u. But then

H(s+ (u− 1)) = H̃1(s) + [H̃2(s+ 1) + · · ·+ H̃u(s+ (u− 1))]
6= H̃

′
1(s) + [H̃

′
2(s+ 1) + · · ·+ H̃

′
u(s+ (u− 1))]

= ρn(T ′)(s+ (u− 1)),

which contradicts the relation ρn(T ) = ρn(T ′).
Now suppose that s = σ(T1). This forces σ(T1) < σ(T2) and hence H̃1(s) <

H̃
′
1(s). Since s < σ(T ′1 ) we have, by Lemma 2.7,

H̃
′
i(s+ (i− 1)) =

(
n+ (s+ (i− 1))− 1

n− 1

)
and clearly

H̃i(s+ (i− 1)) ≤
(
n+ (s+ (i− 1))− 1

n− 1

)
.

Since ρn(T )(s+ (u− 1)) = ρn(T ′)(s+ (u− 1)) we must have H̃1(s) ≥ H̃
′
1(s),

which is a contradiction. Therefore T1 = T ′1 , and so T = T ′ as we wanted to
show.

The proof will be complete if we can show that, for each n, the composition
ρnχn is the identity map. We have already shown this for the cases n = 0
and n = 1. Now suppose that n ≥ 2, let H ∈ Sn, and consider H(1). If
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H(1) < n + 1 then H ∈ Sn−1 and by induction ρn−1χn−1(H) = H. If
χn−1(H) = T , where T is an (n − 1)-type vector, then χn(H) = (T ) and
ρn((T )) = ρn−1(T ) = H, and we are done.

Suppose now that H(1) = n + 1 and, as above, let H → (H1,H′1). If
α(H) = 2 then, as we have shown above, H1 and H′1 are both in Sn−1 and

χn(H) = (χn−1(H1), χn−1(H′1)) = (T1, T2),

where the Ti are (n− 1)-type vectors. By definition,

ρn(T1, T2)(t) = ρn−1(T2)(t) + ρn−1(T1)(t− 1)
= H′1(t) + H1(t− 1).

by induction on n. Now, it is immediate from the definitions of H1 and H′1
that this is the description of H(t). Thus, we are done in this case as well.

The case α > 2 is handled similarly, where now H→ (H1,H′1) with H1 ∈
Sn and H′1 ∈ Sn−1. This time, however, α(H1) < α(H) and we must also use
induction on α. This completes the proof of the main theorem. 2

3. Some applications

In this section we give a few applications to illustrate the idea of the “type
vector” of a Hilbert function H ∈ Sn.

The numerical character. As mentioned in the introduction, Gruson
and Peskine [13] introduced, for H ∈ S2, an α(H)-tuple of non-negative inte-
gers called the numerical character of H. (See [9] for a thorough discussion.)

Recall that a set of points X ∈ Pn is said to have the uniform position
property (UPP for short) if, whenever X1 and X2 are subsets of X with the
same cardinality, then HX1 = HX2 . There has been a great deal of work done
in an attempt to characterize the Hilbert functions of points in Pn with UPP
- we will not go into the reasons as to why this is an interesting question, but
refer the reader instead to some of the works which consider this problem ([1],
[2], [3], [5], and [16]). Combining the work of [13] and [16] we now state the
solution to this problem for points in P2 given in these papers.

Theorem 3.1. Let H ∈ S2 and let (p1, . . . , pα(H)) be the numerical char-
acter of H. Then H is the Hilbert function of a set of points in P2 with UPP
if and only if

pi+1 ≤ pi + 1 for i = 1, . . . , α(H)− 1 .

We now exhibit the relationship between the numerical character and the
2-type vector for a Hilbert function H ∈ S2. Consider H(1). If H(1) = 2 then
α(H) = 1 and the numerical character is (p) and the 2-type vector of H is
((e)) = (e), where e ≥ 1. In this case p = σ(H) = e and both the numerical
character and the 2-type vector of H agree.

Now suppose that H(1) = 3, i.e., that α(H) > 1.
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Proposition 3.2. If (p1, p2, . . . , pα−1, pα) is the numerical character of
H ∈ S2, then

(e1, . . . , eα) = (p1 − (α− 1), p2 − (α− 2), . . . , pα−1 − 1, pα)

is the 2-type vector associated to H.

Proof. We leave this simple exercise to the reader. �

It follows from this result that

pi+1 ≤ pi + 1⇔ ei+1 ≤ ei + 2 .

Thus, the result of Gruson-Peskine and Maggioni-Ragusa can be stated very
simply in terms of 2-type vectors:

Corollary 3.3. Let H ∈ H2 and let T = (e1, . . . , eα(H)) be the 2-type
vector associated to H. The following are equivalent:

(1) H is the Hilbert function of a set of points in P2 with UPP.
(2) ei+1 − ei ≤ 2 for i = 1, . . . , α(H)− 1.

There exists a somewhat more precise result which, in the case of H2, is
due to E.D. Davis [4] (see also [1] for a generalization). The result of Davis
can be rephrased in terms of 2-type vectors as follows. Let H ∈ S2 and
let T = (e1, . . . , er) be the 2-type vector associated to H. Choose i so that
1 < i < r and let T1 = (e1, . . . , ei) and T2 = (ei+1, . . . , er). Then T1 and T2

are also 2-type vectors, and so we let T1 ↔ H1 and T2 ↔ H2.

Theorem 3.4 ([4]). Suppose that ei+1 − ei > 2 and let X be any set of
points in P2 with Hilbert function H. Then X = X1 ∪ X2 (where the union is
disjoint) and HX1 = H1 and HX2 = H2.

In particular, in the above notation we have:

Corollary 3.5. Suppose that ei+1 − ei > 2 for i = 1, . . . , r − 1. Then,
if X is any set of points in P2 with Hilbert function H, we can find a set of
lines L1, . . . ,Lr in P2 and subsets Xi of X with the property that

(i) Xi ⊂ Li and Xi ∩ Xj = ∅ if i 6= j;
(ii) |Xi| = ei;
(iii) ∪ri=1Xi = X.

Thus the 2-type vectors of Corollary 3.5 correspond to Hilbert functions of
very special point sets in P2.

Another special class of Hilbert functions in S2 are the Hilbert functions of
complete intersections. A Hilbert function H ∈ S2 is a complete intersection
Hilbert function if ∆H satisfies

∆H(σ − (i+ 1)) = ∆H(i) for 0 ≤ i ≤ σ = σ(H)
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(i.e., if ∆H is symmetric). It is a simple matter to verify that, if H has
numerical character (p1, . . . , pr) and associated 2-type vector (e1, . . . , er), then
the following result holds.

Proposition 3.6. The following are equivalent:
(1) H is a complete intersection Hilbert function;
(2) pi+1 = pi + 1 for all i = 1, . . . , r − 1;
(3) ei+1 − ei = 2 for all i = 1, . . . , r − 1.

Since, for a set X of points in P2, A = k[x0, x1, x2]/IX is a Gorenstein
ring if and only if IX is a complete intersection ideal in R = k[x0, x1, x2],
we obtain that H(A,−) is a complete intersection Hilbert function. Thus,
using Proposition 3.6 we see that the 2-type vectors can be used to describe
all possible Hilbert functions of Gorenstein sets of points in P2.

Extremal subsets. Let H ∈ Sn and let X be a set of points in Pn with
Hilbert function H. We consider all the subsets of X which lie on a hyperplane
of Pn. (To avoid trivialities, we will assume that not all of X is in a hyperplane
of Pn, i.e., H(1) = n+ 1).

We can then partially order the Hilbert functions of the subsets of X that
arise in this way as follows. Suppose that X1 and X2 are two subsets of X
which lie in hyperplanes of Pn. Then we define

HX1 ≤ HX2 := HX1(i) ≤ HX2(i) for every i .

Clearly, if X1 ⊆ X2 then HX1 ≤ HX2 . We do this for every set X in Pn with
Hilbert function H and thus obtain a finite, partially ordered set of Hilbert
functions in Hn−1, which we will call LinSub(H).

Now suppose that χn(H) = T = (T1, . . . , Tr). Then we have the following
interesting result.

Theorem 3.7. LinSub(H) contains a maximal element, namely ρn−1(Tr).

Proof. We have stated more than what we will prove in this section. The
proof given below will show that ρn−1(Tr) is an upper bound for the elements
of LinSub(H). The proof will be completed in the next section (more precisely,
in Remark 4.3(1)) when we construct, for any Hilbert function H ∈ Sn, a set of
points with Hilbert function H having a subset on a hyperplane with Hilbert
function ρn−1(Tr).

Let ρn−1(Tr) = Hr, let Z be any set of points in Pn with Hilbert function
H, and consider L a hyperplane of Pn. We will show that

∆H(Z ∩ L, j) ≤ ∆Hr(j) for every j.

This will be enough to prove that Hr is an upper bound for the elements of
LinSub(H).
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Now Hr(j) is generic in Pn−1 for 0 ≤ j < α(Hr), so we obviously have

∆H(Z ∩ L, j) ≤ ∆Hr(j) for 0 ≤ j < α(Hr) .

The result for j ≥ α(Hr) will follow easily from the following claim:

∆Hr(j) = ∆H(j) for all j ≥ α(Hr).

To prove this claim, let T̃ = (T1, . . . , Tr−1) and ρn(T̃ ) = H1. Then, as we
have seen,

H(j) = Hr(j) + H1(j − 1) for all j.

By definition, σ(H1) < α(Hr). Let s be the (eventually) constant value of
H1, i.e., H1(t) = s for all t ≥ σ(H1)− 1. Then, for all j ≥ α(Hr)− 1 we have

H(j) = Hr(j) + s

and so
∆H(j) = ∆Hr(j)

for all j ≥ α(Hr), as we wanted to prove.

Since Z∩L ⊆ Z, we have ∆H(Z∩L, j) ≤ ∆H(j) for all j. Combining this
with the observations made above completes the proof. �

There is one final observation we would like to make about sets of points
X ⊂ P

n which have Hilbert function H, where H = ρn(T ), with T =
(T1, . . . , Tr), an n-type vector. Theorem 3.7 tells us that any subset of such
a set X, which lies on a hyperplane, must have a Hilbert function which is
≤ ρn−1(Tr). The following proposition deals with the situation in which a
set X with Hilbert function H actually has a (hyperplane) subset U for which
HU = ρn−1(Tr).

Proposition 3.8. Let X, H and T be as above and let U ⊂ X be such
that the Hilbert function of U, HU, satisfies HU = ρn−1(Tr). Then, setting
T ′ = (T1, . . . , Tr−1) and X′ = X− U, we have HX′ = ρn(T ′).

Proof. Let L be the linear form in R = k[x0, . . . , xn] which describes the
hyperplane containing the points of U. We have the exact sequence

(3.1) 0→ IX′(−1) ×L→ IX → (IX + (L))/(L)→ 0,

since X′ is precisely the set of points of X that do not lie on the hyperplane
defined by L. Let IU be the ideal (in R) of the set of points U. Then J =
IX + (L) ⊆ IU. Thus,

(3.2) HR/J (t) = H(R/(IX + (L)), t) ≥ HR/IU(t) = HU(t) .

From (3.1) we obtain

(3.3) HX(t) = HX′(t− 1) + HR/J (t) .
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From our earlier discussion of n-type vectors we also have

(3.4) HX(t) = HT ′(t− 1) + HU(t) .

Let β be the smallest integer such that

HX(β)−
(
n+ β − 1

β

)
> HX(β + 1)−

(
n+ β

β + 1

)
and let cβ−1 = HX(β)−

(
n+β−1

β

)
. Then the Hilbert function of U is

HU(t) = HTr (t) =


(
n+ t− 1

t

)
for t ≤ β,

HX(t)− cβ−1 for t ≥ β.

Hence

(3.5) HU(t) = HTr (t) = HR/J (t) =
(
n+ t− 1

t

)
for t ≤ β. Moreover,

(3.6) ∆HU(t) = ∆HTr (t) = ∆HR/J (t)

for such t. Since σ(HT ′) ≤ β, we see that

(3.7) ∆HT ′(t) = 0

for every t ≥ β. From (3.3) and (3.4) we have

∆HX(t) = ∆HT ′(t− 1) + ∆HU(t)(3.8)
= ∆HX′(t− 1) + ∆HR/J (t).(3.9)

Since ∆HT ′(t− 1) = 0 and ∆HX′(t− 1) ≥ 0 for t− 1 ≥ β, we have

(3.10) ∆HU(t) ≥ ∆HR/J (t)

for every t ≥ β + 1. From (3.6) and (3.10), we obtain

(3.11) ∆HU(t) ≥ ∆HR/J (t)

for every t ≥ 0. Hence we have

(3.12) HU(t) ≥ HR/J (t)

for such t. It follows from (3.2) and (3.12) that

(3.13) HU(t) = HR/J (t)

for every t ≥ 0. Therefore, we obtain from (3.3), (3.4), and (3.13) that

HX′(t) = HT ′(t)

for every t ≥ 0 and we are done. �

Notice that, as a bonus, we obtain that IX + (L) = IU in this case.
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4. k-configurations in Pn

Let H ∈ Sn. Then H can, in general, be the Hilbert function of many
different sets of points in Pn. For example, if

H := 1 3 5 6 → ∈ S2,

then H is the Hilbert function of the complete intersection of a conic and a
cubic. However, H is also the Hilbert function of the set

• •
• • • •

which (by Bezout) cannot be the complete intersection of a conic and a cubic.
We will show how to associate, to any Hilbert function H ∈ Sn, a special

point set in Pn which, naturally, has Hilbert function H and is “extremal”
with respect to Theorem 3.7.

These types of point sets have been studied in P2 and P3 by Geramita,
Harima, and Shin [7], Geramita, Pucci, and Shin [11], Geramita and Shin [12],
Harima [14], and Shin [17]. In this section we will define the point sets in
question and give a few of their elementary properties. A deeper study will
be carried out in a subsequent paper [7].

Our assignment of a point set to a Hilbert function H ∈ Sn will be done
inductively.

Definition 4.1 (k-configuration in Pn).
S0: The only element in S0 is H := 1 →, which is the Hilbert function

of P0, which is a single point. This is the only k-configuration in P0.
S1: Let H ∈ S1. Then χ1(H) = T = (e), where e ≥ 1. We associate to H

any set of e distinct points in P1. Clearly, any set of e distinct points
in P1 has Hilbert function H. A set of e distinct points in P1 will be
called a k-configuration in P1 of type T = (e).

S2: Let H ∈ S2 and let T = ((e1), . . . , (er)) = χ2(H), where T i = (ei) is a
1-type vector. Choose r distinct sets P1’ in P2, i.e., lines in P2, and la-
bel these L1, . . . ,Lr. By induction we choose, on Li, a k-configuration
Xi in P1 of type T i = (ei) such that no point of Li contains a point
of Xj for j < i. The set X =

⋃
Xi is called a k-configuration in P2 of

type T .
Sn, n > 2: Now suppose that we have defined a k-configuration of type

T̃ ∈ Pn−1, where T̃ is an (n− 1)-type vector associated to G ∈ Sn−1.
Let H ∈ Sn and suppose that χn(H) = T = (T 1, . . . , T r), where the
T i are (n − 1)-type vectors. Then ρn−1(T i) = Hi and Hi ∈ Sn−1.
Consider distinct hyperplanes H1, . . . ,Hr in Pn, and let Xi be a k-
configuration in Hi of type T i such that Hi does not contain any
point of Xj for any j < i. The set X =

⋃
Xi is called a k-configuration

in Pn of type T .
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We claim that the set of points so chosen has Hilbert function H. To prove
this claim, we proceed by induction on r.

The case r = 1 is obvious. Suppose r ≥ 2. We will have shown, by
induction, that Hi = ρ1(Ti) is the Hilbert function of Xi and that H̃(t) :=
H1(t − (r − 2)) + · · · + Hr−2(t − 1) + Hr−1(t) is the Hilbert function of
X1 ∪ · · · ∪ Xr−1. By Corollary 2.8 of [10] (which is applicable here since
σ(H̃) < α(Hr) and the line containing Xr contains no point of X1∪· · ·∪Xr−1)
we obtain

HX(t) = H̃(t− 1) + Hr(t) .
As we have seen, this is the description of the Hilbert function associated to
T , i.e. H. This completes the proof of the claim.

Notation and Terminology: If H ∈ Sn and χn(H) = T , where T is an
n-type vector, and X is a k-configuration associated to H (or T ), then we say
that X is a k-configuration in P

n of type T .

If we write T = (T1, . . . , Tr) and let X be a k-configuration in Pn of type T
then, by definition,

X = X1 ∪ . . . ∪ Xr with a disjoint union,

where Xi is a k-configuration of type Ti and Xi ⊆ Li, where Li ' Pn−1 is a
linear subspace of Pn. We will call the Xi the (first) sub-k-configurations of
X.

Now Ti = (Ti1, . . . , Tiri) where the Tij are (n− 2)-type vectors. Thus

Xi = Xi,1 ∪ . . . ∪ Xi,ri ,
where the Xi,j are in linear subspaces Li,j of Li and Xi,j is a k-configuration
of type Ti,j in Pn−2 ' Li,j . The spaces Xi,j , 1 ≤ i ≤ r, 1 ≤ j ≤ ri are called
the (second) sub-k-configurations of X. The description of the remainder of
this hierarchical decomposition of X should now be clear.

Example 4.2. Let H be the Hilbert function

H := 1 4 9 12 15 17 19 21 22 →
Then H↔ T = ((1, 2), (3, 7, 9)).

A k-configuration in P3 of type T is a set of points X = X1 ∪ X2 where
X1 ⊆ L1 and X2 ⊆ L2 (where L1 and L2 are two distinct linear subspaces of
P

3) and no point of X1 ∪ X2 is in L1 ∩ L2. Moreover, X1 is a k-configuration
in L1 ' P2 of type (1, 2), X2 a k-configuration in L2 ' P2 of type (3, 7, 9),
and X1 and X2 are the first sub-k-configurations of X. Now X1 consists of
3 points on two distinct lines in L1 ' P

2, L1,1 and L1,2, with one point
in L1,1 (say, X1,1) and 2 points on L1,2 (say, X1,2) of X. Similarly X2 =
X2,1 ∪ X2,2 ∪ X2,3 where X2,1 contains 3 points, X2,2 contains 7 points and
X2,3 contains 9 points, on three separate lines L2,1, L2,2, and L2,3 in L2 ' P2.
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The sets X1,1, X1,2, X2,1, X2,2, X2,3 are the (second) sub-k-configurations of
X.

Remark 4.3.

(1) Notice that if H ↔ T = (T1, . . . , Tr) and if X is a k-configuration
of type T , then the first sub-k-configuration Xr has Hilbert function
ρn−1(Tr). This remark, then, completes the proof of Theorem 3.7.

(2) Corollary 3.5 shows that, for some Hilbert functions H ∈ S2, the only
possible point sets with Hilbert function H are k-configurations in P2.
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