AN ALTERNATIVE TO THE HILBERT FUNCTION FOR THE IDEAL OF A FINITE SET OF POINTS IN \mathbb{P}^{n}

ANTHONY V. GERAMITA, TADAHITO HARIMA, AND YONG SU SHIN

1. Introduction

Let $\mathbb{X}=\left\{P_{1}, \ldots, P_{s}\right\}$ be a set of s distinct points in the projective space $\mathbb{P}^{n}(k)$, where $k=\bar{k}$ is an algebraically closed field. Then $P_{i} \leftrightarrow \wp_{i}=$ $\left(L_{i 1}, \ldots, L_{i n}\right) \subset R=k\left[x_{0}, x_{1}, \ldots, x_{n}\right]$, where the $L_{i j}, j=1, \ldots, n$, are n linearly independent linear forms and \wp_{i} is the (homogeneous) prime ideal of R generated by all the forms which vanish at P_{i}. The ideal

$$
I=I_{\mathbb{X}}:=\wp_{1} \cap \cdots \cap \wp_{s}
$$

is the ideal generated by all the forms which vanish at all the points of \mathbb{X}.
Since $R=\oplus_{i=0}^{\infty} R_{i}$ (R_{i} being the vector space of dimension $\binom{i+n}{n}$ generated by all the monomials in R having degree i) and $I=\oplus_{i=0}^{\infty} I_{i}$, we obtain that

$$
A=R / I=\oplus_{i=0}^{\infty}\left(R_{i} / I_{i}\right)=\oplus_{i=0}^{\infty} A_{i}
$$

is a graded ring. The numerical function

$$
\mathbf{H}_{\mathbb{X}}(t)=\mathbf{H}(A, t):=\operatorname{dim}_{k} A_{t}=\operatorname{dim}_{k} R_{t}-\operatorname{dim}_{k} I_{t}
$$

is called the Hilbert function of the set $\mathbb{X}($ or of the ring $A)$.
In this paper, which is the first in a series, we introduce a new "character" (the n-type vector), which is an alternative to the Hilbert function for the set of points \mathbb{X}. Our main theorem (Theorem 2.6) shows that our new character is equivalent to the Hilbert function as a tool to describe finite sets of points in \mathbb{P}^{n}. The proof of this result occupies all of Section 2.

In Section 3 we connect our character with the numerical character introduced in 1978 by Gruson and Peskine [13] in their study of the points in \mathbb{P}^{2} which are hyperplane sections of a curve in \mathbb{P}^{3}. Gruson-Peskine used the numerical character to reveal properties of all sets of points with a given Hilbert function. We translate their results using our new character; these

[^0]translations suggest possible generalizations of the Gruson-Peskine results in \mathbb{P}^{2} to results in \mathbb{P}^{n}. Indeed, we give some initial applications (Theorem 3.7 and Proposition 3.8) in this direction, which establish an extremal property of the collection of all sets of points in \mathbb{P}^{n} with a fixed Hilbert function. The study of such extremal subsets is developed further in the third paper of this series [8].

We conclude this paper with a discussion of particular families of sets of points in \mathbb{P}^{n} whose construction is strongly suggested by our character. We had done something similar in \mathbb{P}^{2} and \mathbb{P}^{3} (see [11], [12]), but it is only now, with our definition of the n-type vector well understood, that we can give the definition in higher dimensional spaces. A detailed study of these families of point sets is undertaken in [7].

We now define some notation and make some preliminary observations. The collection of functions

$$
\mathcal{H}_{n}:=\left\{\mathbf{H}_{\mathbb{X}}: \mathbb{N} \rightarrow \mathbb{N} \mid \mathbb{X} \text { is a non-degenerate finite set of points in } \mathbb{P}^{n}\right\}
$$

has been much studied. For example, we know:
(I) (Macaulay) If $\mathbf{H} \in \mathcal{H}_{n}$, then the values of \mathbf{H}, i.e.,

$$
\mathbf{H}(0)=1, \mathbf{H}(1)=n+1, \mathbf{H}(2), \ldots
$$

form an O-sequence (see [18] for definition).
(II) If $\mathbf{H} \in \mathcal{H}_{n}$ and $\mathbf{H}=\mathbf{H}_{\mathbb{X}}$ for some set \mathbb{X} then, for all $t \gg 0, \mathbf{H}(t)=|\mathbb{X}|$.
(III) If $\mathbf{H} \in \mathcal{H}_{n}$ and we define the function $\Delta \mathbf{H}$ by $\Delta \mathbf{H}(0)=1$ and $\Delta \mathbf{H}(t)=$ $\mathbf{H}(t)-\mathbf{H}(t-1)$ for $t>0$, then the values of $\Delta \mathbf{H}$, i.e.,

$$
\Delta \mathbf{H}(0)=1, \Delta \mathbf{H}(1)=n, \Delta \mathbf{H}(2), \cdots
$$

form an O-sequence which is eventually 0 .
One can prove (see, e.g., [6]) that (III) is equivalent to saying that there is a homogeneous ideal $J \subset k\left[x_{1}, \ldots, x_{n}\right]$ satisfying
(1) $J \cap\left(x_{1}, \ldots, x_{n}\right)_{1}=(0)$;
(2) $\sqrt{J}=\left(x_{1}, \ldots, x_{n}\right)$;
(3) If $B=k\left[x_{1}, \ldots, x_{n}\right] / J=\oplus_{i=0}^{\infty} B_{i}$, then $\Delta \mathbf{H}(t)=\operatorname{dim}_{k} B_{t}$.

That is, $\Delta \mathbf{H}$ is the Hilbert function of some Artinian quotient of $k\left[x_{1}, \ldots\right.$, x_{n}]. In fact, in the terminology of [10] one has the following characterization of \mathcal{H}_{n} :

- $\mathbf{H} \in \mathcal{H}_{n}$ (for some n) if and only if $\mathbf{H}(1)=n+1$,
- \mathbf{H} is a 0-dimensional (condition (II) above), differentiable (III), Osequence (I).
We use (III) above to define the set of functions

$$
\begin{aligned}
& \mathcal{H}-\operatorname{Art}_{n}:=\{\mathbf{H}: \mathbb{N} \rightarrow \mathbb{N} \mid \mathbf{H} \text { is the Hilbert function of some Artinian } \\
&\text { graded quotient of } \left.k\left[x_{1}, \ldots, x_{n}\right] \text { and } \mathbf{H}(1)=n .\right\}
\end{aligned}
$$

In light of the above remarks, we can consider Δ as a function from \mathcal{H}_{n} to $\mathcal{H}-A r t_{n}$. Since "integration" of a function in $\mathcal{H}-A r t_{n}$ is a left inverse to Δ, we obtain that Δ is actually a $1-1$ function. It is well-known (see, e.g., [6] or [15]) that Δ is also a surjective function. Thus, we can often reduce questions about \mathcal{H}_{n} to analogous questions about $\mathcal{H}-\operatorname{Art}_{n}$.

Given $\mathbf{H} \in \mathcal{H}_{n}$, we define:

$$
\begin{aligned}
\widetilde{\alpha}(\mathbf{H}) & =\text { least integer } t \text { such that } \mathbf{H}(t)<\binom{t+n}{n} \\
\sigma(\mathbf{H}) & =\text { least integer } t \text { such that } \Delta \mathbf{H}(t+\ell)=0 \text { for all } \ell \geq 0
\end{aligned}
$$

Notice that if, as above, B is a graded Artinian quotient of $k\left[x_{1}, \ldots, x_{n}\right]$ and if $B_{t}=0$ for some t, then $B_{t+\ell}=0$ for all $\ell \geq 0$. It follows from this observation that we could have defined $\sigma(\mathbf{H})$ as the least integer t such that $\Delta \mathbf{H}(t)=0$. Clearly, $\widetilde{\alpha}(\mathbf{H}) \leq \sigma(\mathbf{H})$, and $\mathbf{H} \in \mathcal{H}_{n}$ is completely known once we know the first $\sigma(\mathbf{H})$ values of \mathbf{H}, i.e.,

$$
\mathbf{H}(0), \mathbf{H}(1)=n+1, \cdots, \mathbf{H}(\sigma(\mathbf{H})-1)
$$

We shall also need to consider degenerate sets of points in \mathbb{P}^{n} and their Hilbert functions. In order to do that in a systematic manner we define

$$
\mathcal{S}_{n}=\bigcup_{i \leq n} \mathcal{H}_{i}
$$

Thus, \mathcal{S}_{n} is the collection of Hilbert functions of all sets of points in \mathbb{P}^{n}.
Unfortunately, in the case $\mathbf{H} \in \mathcal{S}_{n}$ the above definition of $\widetilde{\alpha}(\mathbf{H})$ is not appropriate. In order to avoid the possibility of confusion we define, for $\mathbf{H} \in \mathcal{S}_{n}$,

$$
\alpha(\mathbf{H})= \begin{cases}1 & \text { if } \mathbf{H} \in \mathcal{H}_{i}, i<n \\ \widetilde{\alpha}(\mathbf{H}) & \text { if } \mathbf{H} \in \mathcal{H}_{n}\end{cases}
$$

Notice that the definition of $\sigma(\mathbf{H})$ does not depend on where we consider \mathbf{H}.
In [13], Gruson and Peskine studied the case of \mathcal{S}_{2} and observed that $\mathbf{H} \in \mathcal{S}_{2}$ could, in fact, be completely described by only $\alpha(\mathbf{H})$ numbers, which they called the numerical character of \mathbf{H}.

To understand the Gruson-Peskine result we use the fact that Δ gives an isomorphism between the sets \mathcal{H}_{n} and $\mathcal{H}-A r t_{n}$ and consider only $\Delta \mathbf{H} \in$ $\mathcal{H}-$ Art $_{2}$. Since $\Delta \mathbf{H}$ is the Hilbert function of some graded Artinian quotient of $k\left[x_{1}, x_{2}\right]$, it is easy to see that

$$
\Delta \mathbf{H}:=1 \begin{array}{lllllllll}
1 & 2 & 3 & \cdots & \alpha & h_{\alpha} & h_{\alpha+1} & \cdots & h_{\sigma-1}
\end{array} 0 \quad(\alpha \geq 2)
$$

where $\alpha \geq h_{\alpha} \geq h_{\alpha+1} \geq \ldots \geq h_{\sigma-1}>0$ is any non-increasing collection of non-zero integers and $\alpha=\alpha(\mathbf{H}), \sigma=\sigma(\mathbf{H})$.

Then the numerical character of \mathbf{H} is defined as the sequence $\left(b_{1}, \ldots, b_{\alpha}\right)$ with

$$
\alpha \leq b_{1} \leq b_{2} \cdots \leq b_{\alpha}
$$

such that, if there are u_{1} occurrences of b_{1} in the numerical character then $\Delta \mathbf{H}$ takes on the value $\alpha-u_{1}$ at b_{1} and stays at that value until we arrive at $b_{u_{1}+1}$; if there are u_{2} occurrences of $b_{u_{1}+1}$ in the numerical character then $\Delta \mathbf{H}$ takes on the value $\alpha-u_{1}-u_{2}$ at $b_{u_{2}+1}$ and stays at that value until we arrive at $b_{u_{1}+u_{2}+1}$; and so on. (For more details the reader is referred to [9].)

Example 1.1. We will consider the numerical characters of all possible Hilbert functions for sets of 6 nondegenerate points in \mathbb{P}^{2}.
(a) \mathbb{X} consists of 6 points not on a conic in \mathbb{P}^{2}. Then $\mathbf{H}=\mathbf{H}_{\mathbb{X}}$ is given by

$$
\mathbf{H}:=1366 \rightarrow \quad \text { and so } \Delta \mathbf{H}:=1230
$$

and the numerical character is $(3,3,3)$.
(b) \mathbb{X} consists of 6 points on an irreducible conic. Then

$$
\mathbf{H}:=\begin{array}{lllllll}
1 & 3 & 5 & 6 & 6
\end{array} \rightarrow \text { and so } \Delta \mathbf{H}:=\begin{array}{lllll}
1 & 2 & 2 & 1 & 0,
\end{array}
$$ and the numerical character is $(3,4)$.

(c) \mathbb{X} consists of 5 points on a line and one point off that line. Then

$$
\mathbf{H}:=\begin{array}{lllllllllll}
1 & 3 & 4 & 5 & 6 & 6
\end{array} \rightarrow \text { and so } \Delta \mathbf{H}:=\begin{array}{llllll}
1 & 2 & 1 & 1 & 1 & 0,
\end{array}
$$

and the numerical character is $(2,5)$.
(d) \mathbb{X} consists of 6 points on a line. Then

$$
\mathbf{H}:=1 \begin{array}{lllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 6 & \rightarrow \text { and so } \Delta \mathbf{H}:=1 & 1 & 1 & 1 & 1 & 1
\end{array} \rightarrow .
$$

Notice that in the last case we have $\mathbf{H} \in \mathcal{H}_{1}$. It follows that the numerical character of \mathbf{H} is (6).

It is easy to see that the set \mathcal{S}_{2} is in 1-1 correspondence with the set of numerical characters. Thus, the numerical character is an alternative to the Hilbert function for distinguishing sets of points in \mathbb{P}^{2}. In fact, Gruson-Peskine used the numerical character to characterize the Hilbert functions of points sets in \mathbb{P}^{2} which are general hyperplane sections of irreducible curves in \mathbb{P}^{3} (see also [9]).

We are now ready to define our new "character" (called "type vectors"), and we show that there is a $1-1$ correspondence between \mathcal{S}_{n} and " n-type vectors". When $n=2$ and $\mathbf{H} \in \mathcal{S}_{2}$ then the 2-type vector corresponding to \mathbf{H} is an $\alpha(\mathbf{H})$ tuple of non-negative integers (similar to, but not equal to, the numerical character) which characterizes \mathbf{H}. We will show in Proposition 3.2 how to pass back and forth between our 2-type vector and the numerical character of Gruson and Peskine.

REmARK 1.2. For $n \geq 2$ and $\mathbf{H} \in \mathcal{S}_{n}$ we also explain how the n-type vector associated to \mathbf{H} can describe certain features of the point sets that have Hilbert function \mathbf{H}.

There is an ambiguity in the above discussion relating to the set $\mathcal{H}_{0}=\mathcal{S}_{0}$. There is only one Hilbert function in this set, namely the constant function 1.

This function is precisely the Hilbert function of the ring $k\left[x_{0}\right]$. In this case we set $\alpha(\mathbf{H})=-1$ and $\sigma(\mathbf{H})=1$.

2. Type vectors

Definition 2.1.
(1) A 0 -type vector is defined to be $\mathcal{T}=1$. This vector is the only 0 -type vector. We define $\alpha(\mathcal{T})=-1$ and $\sigma(\mathcal{T})=1$.
(2) A 1-type vector is a vector of the form $\mathcal{T}=(d)$, where $d \geq 1$ is a positive integer. For such a vector we define $\alpha(\mathcal{T})=d=\sigma(\mathcal{T})$.
(3) A 2-type vector is a vector of the form

$$
\mathcal{T}=\left(\left(d_{1}\right),\left(d_{2}\right), \ldots,\left(d_{m}\right)\right)
$$

where $m \geq 1$, the $\left(d_{i}\right)$ are 1-type vectors, and $\sigma\left(d_{i}\right)=d_{i}<\alpha\left(d_{i+1}\right)=$ d_{i+1}. For such a vector \mathcal{T} we define $\alpha(\mathcal{T})=m$ and $\sigma(\mathcal{T})=\sigma\left(\left(d_{m}\right)\right)=$ d_{m}. Clearly, $\alpha(\mathcal{T}) \leq \sigma(\mathcal{T})$, with equality if and only if $\mathcal{T}=((1),(2)$, $\ldots,(m))$.
Remark. For simplicity of notation we usually write the 2-type vector $\left(\left(d_{1}\right), \ldots,\left(d_{m}\right)\right)$ as $\left(d_{1}, \ldots, d_{m}\right)$.
(4) A 3-type vector is an ordered collection of 2-type vectors $\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}$,

$$
\mathcal{T}=\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}\right)
$$

where $\sigma\left(\mathcal{T}_{i}\right)<\alpha\left(\mathcal{T}_{i+1}\right)$ for $i=1, \ldots, r-1$. For such a vector \mathcal{T} we define $\alpha(\mathcal{T})=r$ and $\sigma(\mathcal{T})=\sigma\left(\mathcal{T}_{r}\right)$.
(5) Let $n \geq 3$. An n-type vector is an ordered collection of $(n-1)$-type vectors, $\mathcal{T}_{1}, \ldots, \mathcal{T}_{s}$,

$$
\mathcal{T}=\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{s}\right)
$$

such that $\sigma\left(\mathcal{T}_{i}\right)<\alpha\left(\mathcal{T}_{i+1}\right)$ for $i=1, \ldots, s-1$. For such a vector \mathcal{T} we define $\alpha(\mathcal{T})=s$ and $\sigma(\mathcal{T})=\sigma\left(\mathcal{T}_{s}\right)$.

EXAMPLE 2.2. Clearly $\mathcal{T}_{1}=(1,2), \mathcal{T}_{2}=(1,3,4), \mathcal{T}_{3}=(1,2,3)$, and $\mathcal{T}_{4}=(2,3,4,5,6)$ are all 2-type vectors, but $\left(\mathcal{T}_{3}, \mathcal{T}_{2}\right)=((1,2,3),(1,3,4))$ is not a 3-type vector since $\sigma\left(\mathcal{T}_{3}\right)=3$ and $\alpha\left(\mathcal{T}_{2}\right)=3$. However, $\left(\mathcal{T}_{2}, \mathcal{T}_{4}\right)$ is a 3-type vector. Also,

$$
\left(\mathcal{T}_{1}, \mathcal{T}_{2}, \mathcal{T}_{4}\right)=((1,2),(1,3,4),(2,3,4,5,6))
$$

is a 3-type vector since $\sigma\left(\mathcal{T}_{1}\right)=2<\alpha\left(\mathcal{T}_{2}\right)=3$ and $\sigma\left(\mathcal{T}_{2}\right)=4<\alpha\left(\mathcal{T}_{4}\right)=5$. We will, from time to time, use the simplified notation

$$
((1,2),(1,3,4),(2,3,4,5,6))=(1,2 ; 1,3,4 ; 2,3,4,5,6)
$$

for 3-type vectors (see [12]).

Note also that $\left(\left(\mathcal{T}_{1}\right)\right)=((1,2))$ is a 3-type vector and that $(((1,2)))$ is a 4-type vector. A simple check shows that

$$
\begin{aligned}
& (((1,2),(1,3,4),(2,3,4,5,6)),((1,2),(1,2,4),(2,3,4,5,6) \\
& \quad(1,2,3,4,5,6,7),(2,4,6,7,8,9,10,12),(1,2,3,4,5,6,7,8,9,11,12,14,15) \\
& \quad(3,4,6,8,9,10,12,23,24,25,30,31,40,45,50,60)))
\end{aligned}
$$

is also a 4-type vector.
Before we begin the proof of our main theorem we recall a construction given in [10], which is crucial to our discussion of n-type vectors. Let $\mathbf{H}=$ $\left\{b_{i}\right\} \in \mathcal{H}_{n}$ (so that $\left.\mathbf{H}(1)=n+1\right)$ and write $\sigma=\sigma(\mathbf{H})$. Let $\mathbf{H}_{\mathbb{P}^{n-1}}(t)=\left\{d_{t}\right\}$, where $d_{t}=\binom{t+n-1}{n-1}$ and define $c_{i}=b_{i+1}-d_{i+1}$. Then we have:

$$
\left.\begin{array}{lcccccccc}
\mathbf{H}: & 1 & \binom{n+1}{1} & \cdot\binom{\alpha-1+n}{n} & b_{\alpha} & \cdot & b_{\sigma-2} & <b_{\sigma-1}= & b_{\sigma} \\
& (0) & (1) & \cdot & (\alpha-1) & (\alpha) & \cdot & (\sigma-2) & (\sigma-1)
\end{array} ⿻ \begin{array}{c}
(\sigma) \\
\mathbf{H}_{\mathbb{P}^{n-1}}
\end{array} \begin{array}{cccccccc}
\left(\begin{array}{c}
\alpha
\end{array}\right. \\
& 1 & \binom{n}{1} & \cdot & \binom{\alpha+n-2}{n-1} & \binom{\alpha+n-1}{n-1} & \cdot\binom{\sigma+n-3}{n-1} & \binom{\sigma+n-2}{n-1}
\end{array} \begin{array}{c}
\sigma+n-1 \\
n-1
\end{array}\right)
$$

Since the d_{i} 's are strictly increasing and the b_{i} 's are eventually constant, there is a unique integer h such that

$$
1=c_{0} \leq c_{1} \leq \cdots \leq c_{h-1}>c_{h}
$$

Theorem 2.3 ([10]). The sequences

$$
\boldsymbol{H}_{1}:=1 c_{1} \cdots c_{h-1} \rightarrow \text { and } \boldsymbol{H}_{1}^{\prime}=\left\{c_{i}^{\prime}\right\}
$$

where

$$
c_{i}^{\prime}=\left\{\begin{array}{cc}
\binom{i+n-1}{n-1} & \text { for } i \leq h \\
b_{i}-c_{h-1} & \text { for } i \geq h
\end{array}\right.
$$

are 0-dimensional differentiable O-sequences.
We associate to \mathbf{H} the (ordered) pair of Hilbert functions $\left(\mathbf{H}_{1}, \mathbf{H}_{1}^{\prime}\right)$.
Remark 2.4. (1) Notice that $c_{0}=1$ (since $\left.\mathbf{H}(1)=n+1\right)$ and so $h-1 \geq 0$, i.e., $h \geq 1$. Thus $c_{1}^{\prime}=n$, and this means that $\mathbf{H}_{1}^{\prime} \in \mathcal{H}_{n-1}$.
(2) By construction, $\sigma\left(\mathbf{H}_{1}\right) \leq h$ and (since $\left.\mathbf{H}_{1}^{\prime} \in \mathcal{H}_{n-1}\right)$ we have $\alpha\left(\mathbf{H}_{1}^{\prime}\right) \geq$ $h+1$. Thus, $\sigma\left(\mathbf{H}_{1}\right)<\alpha\left(\mathbf{H}_{1}^{\prime}\right)$.

The following key lemma will be used often in the sequel.
Lemma 2.5. Let $\boldsymbol{H} \in \mathcal{H}_{n}, \boldsymbol{H}_{1}$ and $\boldsymbol{H}_{1}^{\prime}$ be as above. Then $\sigma(\boldsymbol{H})=\sigma\left(\boldsymbol{H}_{1}^{\prime}\right)$.

Proof. Embedded in the proof that \mathbf{H}_{1}^{\prime} is an O-sequence is the fact that

$$
c_{h}^{\prime}=b_{h}-c_{h-1} \quad \text { and } \quad c_{h+1}^{\prime}=b_{h+1}-c_{h-1}
$$

Thus, if $b_{h}<b_{h+1}$ then $c_{h}^{\prime}<c_{h+1}^{\prime}$. It is easy to see that, in this case, the numbers b_{h} become constant exactly when the numbers c_{h}^{\prime} become constant; i.e., we have $\sigma(\mathbf{H})=\sigma\left(\mathbf{H}_{1}^{\prime}\right)$.

Suppose that $b_{h}=b_{h+1}$. Then $c_{h}^{\prime}=c_{h+1}^{\prime}$ and we obtain $\sigma\left(\mathbf{H}_{1}^{\prime}\right) \leq h+1$. Since we always have $c_{h-1}^{\prime}<c_{h}^{\prime}$, we also have $\sigma\left(\mathbf{H}_{1}^{\prime}\right) \geq h+1$. Thus the hypothesis $b_{h}=b_{h+1}$ gives $\sigma\left(\mathbf{H}_{1}^{\prime}\right)=h+1$, and it remains to show that this assumption also implies that $\sigma(\mathbf{H})=h+1$.

Now, $b_{h}=b_{h+1}$ certainly implies that $\sigma(\mathbf{H}) \leq h+1$, so it suffices to prove that $b_{h-1}<b_{h}$. But if $b_{h-1}=b_{h}$, then

$$
c_{h-2}=b_{h-1}-\binom{h+n-2}{n-1}>b_{h}-\binom{h+n-1}{n-1}=c_{h-1}
$$

and this contradicts the definition of h. Thus, we have again $\sigma(\mathbf{H})=h+1$, and the proof of the lemma is complete.

We are now ready to prove the main theorem of this paper.
Theorem 2.6. There is a 1-1 correspondence

$$
\mathcal{S}_{n} \leftrightarrow\{n \text {-type vectors }\}
$$

such that if $\boldsymbol{H} \in \mathcal{S}_{n}$ and $\boldsymbol{H} \leftrightarrow \mathcal{T}$, then $\alpha(\boldsymbol{H})=\alpha(\mathcal{T})$ and $\sigma(\boldsymbol{H})=\sigma(\mathcal{T})$.
Proof. We begin defining an assignment of an n-type vector to an element of \mathcal{S}_{n}.

Case $n=0$: When $n=0, \mathcal{H}_{0}=\mathcal{S}_{0}$ and the only element $\mathbf{H} \in \mathcal{H}_{0}$ is $\mathbf{H}:=1 \rightarrow$. We associate the only 0 -type vector, $\mathcal{T}=1$, to \mathbf{H}. By the definition, we then have $\alpha(\mathbf{H})=\alpha(\mathcal{T})$ and $\sigma(\mathbf{H})=\sigma(\mathcal{T})$.

Case $n=1$: Let $\mathbf{H} \in \mathcal{S}_{1}$ and consider $\mathbf{H}(1)$. If $\mathbf{H}(1)=1$ then $\mathbf{H} \in \mathcal{S}_{0}$ and, by induction, \mathbf{H} (considered as an element of \mathcal{S}_{0}) corresponds to the 0 -type vector 1 . We let \mathbf{H}, now considered as an element of \mathcal{S}_{2}, correspond to $\mathcal{T}=(1)$. Then, by definition, $\alpha(\mathbf{H})=1$ and $\alpha(\mathcal{T})=1$. Also, $\sigma(\mathbf{H})=1$ (this value has not changed) and, by definition, $\sigma(\mathcal{T})=1$. Thus we are done in this case.

We may therefore assume that $\mathbf{H} \in \mathcal{H}_{1}$, i.e., $\mathbf{H}(1)=2$ and so $\alpha=\alpha(\mathbf{H})>$ 1, i.e.,

$$
\mathbf{H}:=\begin{array}{llllll}
1 & 2 & \cdots & \alpha & \alpha & \cdots
\end{array}
$$

(0) (1) $\quad(\alpha-1) \quad(\alpha)$

We associate to \mathbf{H} the 1-type vector $(\alpha)=\mathcal{T}$. All conditions are clearly satisfied in this case since $\alpha(\mathbf{H})=\alpha=\sigma(\mathbf{H})$ and $\alpha(\mathcal{T})=\alpha=\sigma(\mathcal{T})$.

Case $n=2$: Now suppose that $\mathbf{H} \in \mathcal{S}_{2}$ and consider $\mathbf{H}(1)$. If $\mathbf{H}(1)<3$ then $\mathbf{H} \in \mathcal{S}_{1}$ and by induction, \mathbf{H} (considered as an element of \mathcal{S}_{1}) corresponds
to the 1-type vector $\mathcal{T}=(e)$ where \mathbf{H} (again considered as an element of $\left.\mathcal{S}_{1}\right)$ satisfies

$$
\alpha(\mathbf{H})=\alpha(\mathcal{T})=e=\sigma(\mathbf{H})=\sigma(\mathcal{T})
$$

Now, considering \mathbf{H} as an element of \mathcal{S}_{2}, we let $\mathbf{H} \leftrightarrow((e))=(\mathcal{T})=\mathcal{T}^{\prime}$. Then, by definition, $\alpha(\mathbf{H})=\alpha\left(\mathcal{T}^{\prime}\right)=1$ and $\sigma(\mathbf{H})=e$ with $e=\sigma(\mathcal{T})$. Thus, $\sigma(\mathbf{H})=\sigma\left(\mathcal{T}^{\prime}\right)$, and we are done in this case.

We may therefore assume that $\mathbf{H}(1)=3$, i.e., $\mathbf{H} \in \mathcal{H}_{2}$ and $\alpha=\alpha(\mathbf{H})>1$. Writing $\mathbf{H}(i)=b_{i}$, we have

$$
\mathbf{H}:=\begin{array}{ccccccccccc}
1 & 3 & \cdots & \binom{\alpha+1}{2} & b_{\alpha} & \cdots & b_{\sigma-2} & < & b_{\sigma-1} & = & b_{\sigma}
\end{array} \cdots
$$

where $\sigma=\sigma(\mathbf{H})$. Thus, $b_{\alpha}<\binom{\alpha+2}{2}$.
We now apply the above-mentioned construction in [10] to \mathbf{H}, this time letting $\left\{d_{i}\right\}=\mathbf{H}_{\mathbb{P}^{1}}(i)$, to obtain \mathbf{H}_{1} and \mathbf{H}_{1}^{\prime}, and we let $\mathbf{H} \rightarrow\left(\mathbf{H}_{1}, \mathbf{H}_{1}^{\prime}\right)$. There are two separate cases to consider: $\alpha(\mathbf{H})=2$ and $\alpha(\mathbf{H})>2$.

Case $1(\alpha(\boldsymbol{H})=2)$: In this case we have $b_{2}<6$ and so $c_{1}=b_{2}-d_{2}=b_{2}-3<$ $6-3=3$. Since $c_{1}<3$ we have $\mathbf{H}_{1} \in \mathcal{S}_{1}$, and so by induction $\mathbf{H}_{1} \rightarrow\left(e_{1}\right)$, and since $\mathbf{H}_{1}^{\prime} \in \mathcal{S}_{1}$ (by Remark 2.4(1) above), we obtain $\mathbf{H}_{1}^{\prime} \rightarrow\left(e_{2}\right)$. By Remark 2.4(2) we have $e_{1}<e_{2}$. Thus $\mathcal{T}=\left(\left(e_{1}\right),\left(e_{2}\right)\right)$ is a 2-type vector.

In order to associate \mathcal{T} with \mathbf{H} we must ensure that $\alpha(\mathcal{T})=\alpha(\mathbf{H})$ (this is obvious by construction) and that $\sigma(\mathcal{T})=\sigma(\mathbf{H})$. To obtain the latter condition note that, by definition, $\sigma(\mathcal{T})=\sigma\left(\left(e_{2}\right)\right)=e_{2}=\sigma\left(\mathbf{H}_{1}^{\prime}\right)$. Thus, it suffices to show that $\sigma\left(\mathbf{H}_{1}^{\prime}\right)=\sigma(\mathbf{H})$, and this follows from Lemma 2.5.

Case 2 $(\alpha(\boldsymbol{H})>2)$: As in the previous case we let $\mathbf{H} \rightarrow\left(\mathbf{H}_{1}, \mathbf{H}_{1}^{\prime}\right)$. In this case, $c_{\alpha-2}=\binom{\alpha+1}{2}-\alpha=\binom{\alpha}{2}$ and, since $\alpha=\alpha(\mathbf{H})>2$, we have $c_{1}=\mathbf{H}_{1}(1)=3$. Thus, $\mathbf{H}_{1} \in \mathcal{H}_{2}$. Moreover,

$$
c_{\alpha-1}=b_{\alpha}-(\alpha+1)<\binom{\alpha+2}{2}-(\alpha+1)=\binom{\alpha+1}{2}
$$

and we conclude that $\alpha\left(\mathbf{H}_{1}\right)=\alpha(\mathbf{H})-1$. Hence, by induction on α, we have

$$
\mathbf{H}_{1} \rightarrow\left(\left(e_{1}\right), \ldots,\left(e_{\alpha\left(\mathbf{H}_{1}\right)}\right)\right),
$$

where the $\left(e_{i}\right)$ are 1-type vectors and $\sigma\left(\mathbf{H}_{1}\right)=\sigma\left(\left(e_{\alpha\left(\mathbf{H}_{1}\right)}\right)\right)=e_{\alpha\left(\mathbf{H}_{1}\right)}$.
We have already remarked that $\mathbf{H}_{1}^{\prime} \in \mathcal{H}_{1}$, so we have $\mathbf{H}_{1}^{\prime} \rightarrow(e)$. We now define the association

$$
\mathbf{H} \rightarrow\left(\left(e_{1}\right), \ldots,\left(e_{\alpha\left(\mathbf{H}_{1}\right)}\right),(e)\right),
$$

but to do that we must verify the following:
(1) $\mathcal{T}=\left(\left(e_{1}\right), \ldots,\left(e_{\alpha\left(\mathbf{H}_{1}\right)}\right),(e)\right)$ is a 2-type vector;
(2) $\alpha(\mathbf{H})=\alpha(\mathcal{T})$;
(3) $\sigma(\mathbf{H})=\sigma(\mathcal{T})$.

To prove (1) it suffices to prove that

$$
\sigma\left(\left(e_{1}\right), \ldots,\left(e_{\alpha\left(\mathbf{H}_{1}\right)}\right)\right)<\alpha((e))
$$

i.e., $e_{\alpha\left(\mathbf{H}_{1}\right)}=\sigma\left(\mathbf{H}_{1}\right)<\alpha\left(\mathbf{H}_{1}^{\prime}\right)$. But this is precisely the content of Remark 2.4(2). As for (2) and (3), we have $\alpha(\mathbf{H})=\alpha\left(\mathbf{H}_{1}\right)+1$ and so $\alpha(\mathbf{H})=$ $\alpha(\mathcal{T})$. Since $\sigma\left(\mathbf{H}_{1}^{\prime}\right)=\sigma(\mathbf{H})$ by Lemma 2.5, we also have $\sigma(\mathbf{H})=\sigma(\mathcal{T})$. This completes the proof for the case $n=2$.

Case $n \geq 3$: Let $\mathbf{H} \in \mathcal{S}_{n}(n \geq 3)$ and consider $\mathbf{H}(1)$. If $\mathbf{H}(1) \leq n$, then, by induction, we have an assignment $\mathbf{H} \rightarrow \mathcal{T}$, where \mathcal{T} is an $(n-1)$-type vector, with $\alpha(\mathbf{H})=\alpha(\mathcal{T})$ and $\sigma(\mathbf{H})=\sigma(\mathcal{T})$. In this case we assign $\mathbf{H} \rightarrow(\mathcal{T})=\mathcal{T}^{\prime}$. Since $\mathbf{H} \in \mathcal{S}_{n-1}$ also, we have $\alpha(\mathbf{H})=1$ and $\alpha\left(\mathcal{T}^{\prime}\right)=1$. By definition, $\sigma\left(\mathcal{T}^{\prime}\right)=\sigma(\mathcal{T})$, so using induction we obtain $\sigma\left(\mathcal{T}^{\prime}\right)=\sigma(\mathbf{H})$. Thus we are done in this case. Now assume that $\mathbf{H}(1)=n+1$, i.e., $\mathbf{H} \in \mathcal{H}_{n}$ and $\alpha=\alpha(\mathbf{H})>1$. We write $\mathbf{H}(i)=b_{i}$. We have

$$
\left.\mathbf{H}:=\begin{array}{cccccccccc}
1 & \binom{n+1}{1} & \cdots & \binom{\alpha-1+n}{n} & b_{\alpha} & \cdots & b_{\sigma-2} & < & b_{\sigma-1} & = \\
(0) & (1) & \cdots & (\alpha-1) & (\alpha) & \cdots & (\sigma-2) & b_{\sigma} & \cdots \\
(\sigma-1)
\end{array}\right) \quad(\sigma) \cdots .
$$

where $\sigma=\sigma(\mathbf{H})$. So $b_{\alpha}<\binom{\alpha+n}{n}$.
As in the case $n=2$, there are two cases to consider: $\alpha(\mathbf{H})=2$ and $\alpha(\mathbf{H})>2$.

Case $1(\alpha(\boldsymbol{H})=$ 2): We have

$$
c_{1}=b_{2}-\binom{n+1}{n-1}<\binom{n+2}{n}-\binom{n+1}{n-1}=n+1
$$

and there are three possibilities for c_{1}, namely $c_{1} \leq 0, c_{1}=1$, and $c_{1}>1$.
Case $c_{1} \leq 0$: Then $h=1$ and

$$
\mathbf{H}_{1}:=1 \quad \rightarrow \quad \text { and } \quad \mathbf{H}_{1}^{\prime}:=1 \quad n \quad c_{2}^{\prime} \quad \cdots
$$

By induction, we have $\mathbf{H}_{1} \rightarrow \mathcal{T}_{1}$, where \mathcal{T}_{1} is an $(n-1)$-type vector with $\sigma\left(\mathbf{H}_{1}\right)=1=\sigma\left(\mathcal{T}_{1}\right)$ and $\mathbf{H}_{1}^{\prime} \rightarrow \mathcal{T}_{2}$, where \mathcal{T}_{2} is an $(n-1)$-type vector with $\alpha\left(\mathbf{H}_{1}^{\prime}\right)=\alpha\left(\mathcal{T}_{2}\right)$. But $\mathbf{H}_{1}^{\prime}(1)=n$ and so $\alpha\left(\mathbf{H}_{1}^{\prime}\right) \geq 2$. Thus, $\sigma\left(\mathcal{T}_{1}\right)<\alpha\left(\mathcal{T}_{2}\right)$ and we associate

$$
\mathbf{H} \rightarrow\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)=\mathcal{T}
$$

Since $\alpha(\mathcal{T})=2$ we have $\alpha(\mathbf{H})=\alpha(\mathcal{T})$. It remains to show that $\sigma(\mathbf{H})=$ $\sigma(\mathcal{T})=\sigma\left(\mathcal{T}_{2}\right)$. This will follow if we can show that $\sigma(\mathbf{H})=\sigma\left(\mathbf{H}_{1}^{\prime}\right)$. But the latter relation follows from Lemma 2.5, and we thus have obtained the required result.

Case $c_{1}=1$: In this case we have $h \geq 2$ and

$$
\mathbf{H}_{1}:=1 \quad \rightarrow \quad \text { and } \quad \mathbf{H}_{1}^{\prime}:=1 \quad n \quad c_{2}^{\prime} \quad \cdots \quad c_{h}^{\prime} \quad c_{h+1}^{\prime} \quad \cdots
$$

By induction, we have $\mathbf{H}_{1} \rightarrow \mathcal{T}_{1}$ with $\sigma\left(\mathcal{T}_{1}\right)=1$ and $\mathbf{H}_{1}^{\prime} \rightarrow \mathcal{T}_{2}$ with $\alpha\left(\mathcal{T}_{2}\right) \geq$ $h+1$. Thus, $\sigma\left(\mathcal{T}_{1}\right)<\alpha\left(\mathcal{T}_{2}\right)$ and so

$$
\mathcal{T}=\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)
$$

is an n-type vector, which we associate to \mathbf{H}.
By construction, $\alpha(\mathbf{H})=\alpha(\mathcal{T})$, so it remains to show that $\sigma(\mathbf{H})=\sigma(\mathcal{T})$. But $\sigma(\mathcal{T})=\sigma\left(\mathcal{T}_{2}\right)$ (by definition) and $\sigma\left(\mathcal{T}_{2}\right)=\sigma\left(\mathbf{H}_{1}^{\prime}\right)$ (by induction). Lemma 2.5 now completes the proof in this case.

Case $n \geq c_{1}>1$: As above, we have $\mathbf{H} \rightarrow\left(\mathbf{H}_{1}, \mathbf{H}_{1}^{\prime}\right)$ with $\mathbf{H}_{1}(1)=c_{1}$. In this case we have $\mathbf{H}_{1} \rightarrow \mathcal{T}_{1}$ and $\mathbf{H}_{1}^{\prime} \rightarrow \mathcal{T}_{2}$ and (by Remark 2.4(2)) $\sigma\left(\mathbf{H}_{1}\right)<$ $\alpha\left(\mathbf{H}_{1}^{\prime}\right)$, so $\mathcal{T}=\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)$ is an n-type vector with $\alpha(\mathbf{H})=\alpha(\mathcal{T})=2$.

Hence from Lemma 2.5 we obtain $\sigma\left(\mathbf{H}_{1}^{\prime}\right)=\sigma(\mathbf{H})$, which completes the proof for the case $\alpha(\mathbf{H})=2$).

Case 2 $(\alpha(\boldsymbol{H})>2)$: We form \mathbf{H}_{1} and \mathbf{H}_{1}^{\prime} in the usual way from \mathbf{H}. But now observe that

$$
c_{\alpha-2}=b_{\alpha-1}-d_{\alpha-1}=\binom{\alpha-1+n}{\alpha-1}-\binom{\alpha-2+n}{\alpha-1}=\binom{\alpha-2+n}{\alpha-2}
$$

Since $\alpha>2$, we have $\alpha-2 \geq 1$ and $c_{1}=n+1$ and so $\mathbf{H}_{1} \in \mathcal{H}_{n}$. Also,

$$
c_{\alpha-1}=b_{\alpha}-d_{\alpha}<\binom{\alpha+n}{\alpha}-\binom{\alpha-1+n}{\alpha}=\binom{\alpha-1+n}{\alpha-1}
$$

Thus, $\alpha\left(\mathbf{H}_{1}\right)=\alpha(\mathbf{H})-1$ Hence by induction on α we obtain

$$
\mathbf{H}_{1} \rightarrow\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{\alpha\left(\mathbf{H}_{1}\right)}\right)
$$

where the \mathcal{T}_{i} are $(n-1)$-type vectors and $\sigma\left(\mathbf{H}_{1}\right)=\sigma\left(\mathcal{T}_{\alpha\left(\mathbf{H}_{1}\right)}\right)$.
Since $\mathbf{H}_{1}^{\prime} \in \mathcal{H}_{n-1}$, we have, by induction, $\mathbf{H}_{1}^{\prime} \rightarrow \mathcal{T}^{\prime}$, where \mathcal{T}^{\prime} is an $(n-1)$ type vector with $\alpha\left(\mathbf{H}_{1}^{\prime}\right)=\alpha\left(\mathcal{T}^{\prime}\right)$ and $\sigma\left(\mathbf{H}_{1}^{\prime}\right)=\sigma\left(\mathcal{T}^{\prime}\right)$.

Consider

$$
\mathcal{T}=\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{\alpha\left(\mathbf{H}_{1}\right)}, \mathcal{T}^{\prime}\right)
$$

By Remark 2.4(2), this is an n-type vector. By construction, $\alpha(\mathbf{H})=\alpha(\mathcal{T})$ and $\sigma(\mathcal{T})=\sigma\left(\mathcal{T}^{\prime}\right)=\sigma\left(\mathbf{H}_{1}^{\prime}\right)$. But, by Lemma 2.5, $\sigma\left(\mathbf{H}_{1}^{\prime}\right)=\sigma(\mathbf{H})$ and so $\mathbf{H} \rightarrow \mathcal{T}$ is an appropriate correspondence.

Now that we have defined how to associate to a Hilbert function in \mathcal{S}_{n} an n-type vector, we next show that this correspondence is a 1-1 correspondence. We begin by first defining an assignment in the opposite direction. In order to simplify our discussion, let us denote the assignments defined above by the letters χ_{n}, i.e.,

$$
\chi_{n}: \mathcal{S}_{n} \longrightarrow\{n \text {-type vectors }\}
$$

We now define (inductively) assignments

$$
\rho_{n}:\{n \text {-type vectors }\} \longrightarrow \mathcal{S}_{n},
$$

such that $\alpha(\mathcal{T})=\alpha\left(\rho_{n}(\mathcal{T})\right)$ and $\sigma(\mathcal{T})=\sigma\left(\rho_{n}(\mathcal{T})\right)$.
Case $n=0$: Since there is only one element in either of the sets involved, the assignment is obvious.

Case $n=1$: Let $\mathcal{T}=(a)$ be a 1-type vector with $a \geq 1$. We define $\rho_{1}(\mathcal{T})=\mathbf{H}$ by setting

$$
\mathbf{H}:=\begin{array}{ccccc}
1 & 2 & \cdots & a & a \\
(0) & (1) & \cdots & (a-1) & (a)
\end{array} \rightarrow
$$

Clearly ρ_{1} and χ_{1} are inverses of each other, thus proving the 1-1 correspondence of the theorem for $n=1$. It is also obvious that $\alpha(\mathcal{T})=\alpha\left(\rho_{1}(\mathcal{T})\right)$ and $\sigma(\mathcal{T})=\sigma\left(\rho_{1}(\mathcal{T})\right)$.

Case $n \geq 2$: Let $\mathcal{T}=\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}\right)$ be an n-type vector. Then the vectors \mathcal{T}_{i} are $(n-1)$-type vectors and, by induction, we have $\rho_{n-1}\left(\mathcal{T}_{i}\right)=\widetilde{\mathbf{H}}_{i} \in \mathcal{S}_{n-1}$ and ρ_{n-1} is a 1-1 correspondence between the set of $(n-1)$-type vectors and \mathcal{S}_{n-1}, which respects both α and σ. We define $\rho_{n}(\mathcal{T})=\mathbf{H}$, where

$$
\mathbf{H}(t)=\widetilde{\mathbf{H}}_{r}(t)+\widetilde{\mathbf{H}}_{r-1}(t-1)+\cdots+\widetilde{\mathbf{H}}_{1}(t-(r-1))
$$

(with $\widetilde{\mathbf{H}}_{i}(j)=0$ if $j<0$). We need to verify that this definition actually gives an element of \mathcal{S}_{n}, which respects α and σ.

Let \mathcal{T} be an n-type vector and suppose first that $\alpha(\mathcal{T})=1$. Then $\mathcal{T}=\left(\mathcal{T}_{1}\right)$ where \mathcal{T}_{1} is an $(n-1)$-type vector. By induction, we have $\rho_{n-1}\left(\mathcal{T}_{1}\right)=\widetilde{\mathbf{H}}_{1} \in$ \mathcal{S}_{n-1}. Then we also have $\rho_{n}(\mathcal{T})=\widetilde{\mathbf{H}}_{1}$, and obviously $\widetilde{\mathbf{H}}_{1}$ is a 0 -dimensional differentiable O-sequence with $\widetilde{\mathbf{H}}_{1}(1) \leq n$ (and hence $\widetilde{\mathbf{H}}_{1}(1) \leq n+1$). Thus, $\widetilde{\mathbf{H}}_{1}$, considered as an element of \mathcal{S}_{n}, satisfies $\alpha\left(\widetilde{\mathbf{H}}_{1}\right)=\alpha(\mathcal{T})=1$. We have $\sigma\left(\widetilde{\mathbf{H}}_{1}\right)=\sigma\left(\mathcal{T}_{1}\right)$, by induction, and since $\sigma(\mathcal{T})=\sigma\left(\mathcal{T}_{1}\right)$ by definition, we obtain $\sigma(\mathcal{T})=\sigma\left(\widetilde{\mathbf{H}}_{1}\right)$, and we are done.

Now assume that $\alpha(\mathcal{T})=u>1$, i.e., $\mathcal{T}=\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{u}\right)$. As above, we consider two cases, $u=2$ and $u>2$. We will leave the simple argument in case $u=2$ to the reader and concentrate on the case $u>2$.

Let $\mathbf{H}_{1}(t)=\widetilde{\mathbf{H}}_{1}(t-(u-2))+\cdots+\widetilde{\mathbf{H}}_{u-1}(t)=\left[\rho_{n}\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{u-1}\right)\right](t)$ and let $\mathbf{H}_{1}^{\prime}(t)=\widetilde{\mathbf{H}}_{u}(t)=\left[\rho_{n-1}\left(\mathcal{T}_{u}\right)\right](t)$. Then \mathbf{H}_{1} and \mathbf{H}_{1}^{\prime} are both 0-dimensional differentiable O-sequences in \mathcal{S}_{n}, as can be seen by induction on u in the case of \mathbf{H}_{1} and by induction on n in the case of \mathbf{H}_{1}^{\prime}. We want to prove that the same is true for

$$
\left[\rho_{n}(\mathcal{T})\right](t)=\mathbf{H}(t)=\mathbf{H}_{1}(t-1)+\mathbf{H}_{1}^{\prime}(t)
$$

We have, by induction, $\alpha\left(\mathbf{H}_{1}\right)=u-1, \sigma\left(\mathbf{H}_{1}\right)=\sigma\left(\rho_{n-1}\left(\mathcal{T}_{u-1}\right)\right), \alpha\left(\mathbf{H}_{1}^{\prime}\right)=$ $\alpha\left(\rho_{n-1}\left(\mathcal{T}_{u}\right)\right)$ and $\sigma\left(\mathbf{H}_{1}^{\prime}\right)=\sigma\left(\rho_{n-1}\left(\mathcal{T}_{u}\right)\right)$.

Let $\alpha=\alpha\left(\mathbf{H}_{1}\right)$. Then $\mathbf{H}_{1}(t-1)$ is generic for $t-1<\alpha$ (i.e., for every $t \leq \alpha)$. Since $\alpha \leq \sigma\left(\mathbf{H}_{1}\right)<\alpha\left(\mathbf{H}_{1}^{\prime}\right)$, it follows that $\mathbf{H}_{1}^{\prime}(t)$ is generic for $t \leq \alpha$, and hence $\mathbf{H}(t)$ is generic for $t \leq \alpha$. Thus, \mathbf{H} is a differentiable Osequence for $t \leq \alpha$. Since $\left[\rho_{n}(\mathcal{T})\right](t)=\mathbf{H}(t)$ is generic for $t \leq \alpha$, we have $\alpha(\mathbf{H}) \geq \alpha+1$. If $\alpha(\mathbf{H})>\alpha+1$, then \mathbf{H} is also generic for $t=\alpha+1$. It follows that $\mathbf{H}_{1}^{\prime}(t)$ and $\mathbf{H}_{1}(t-1)$ are generic for $t \leq \alpha+1$, which implies that
$\alpha\left(\mathbf{H}_{1}\right) \geq \alpha+1$, a contradiction. Hence $\alpha(\mathbf{H})=\alpha\left(\mathbf{H}_{1}\right)+1=\alpha+1$ and so $\alpha(\mathbf{H})-1=\alpha\left(\mathbf{H}_{1}\right) \leq \sigma\left(\mathbf{H}_{1}\right)$. In particular, $\alpha(\mathbf{H})=\alpha(\mathcal{T})$.

By the definition of \mathbf{H} and by induction on u we also have $\sigma\left(\mathbf{H}_{1}\right)<\alpha\left(\mathbf{H}_{1}^{\prime}\right)$ (and, in general, $\alpha\left(\mathbf{H}_{1}^{\prime}\right) \leq \sigma\left(\mathbf{H}_{1}^{\prime}\right)$. Thus, $\Delta \mathbf{H}_{1}^{\prime}(t)=0$ implies that $t \geq \sigma\left(\mathbf{H}_{1}^{\prime}\right)$ and so $t>\sigma\left(\mathbf{H}_{1}\right)$, i.e., $t-1 \geq \sigma\left(\mathbf{H}_{1}\right)$. Since $\Delta \mathbf{H}(t)=\Delta \mathbf{H}_{1}(t-1)+\Delta \mathbf{H}_{1}^{\prime}(t)$, this shows that $\Delta \mathbf{H}_{1}^{\prime}(t)=0$ and thus $\Delta \mathbf{H}(t)=0$. Since the reverse implication is obvious, we find that $\sigma(\mathbf{H})=\sigma\left(\mathbf{H}_{1}^{\prime}\right)$. Thus it only remains to show that $\rho_{n}(\mathcal{T})$ behaves like an O-sequence in degrees $\geq \alpha$.

We first consider the case when $\alpha(\mathbf{H})-1=\sigma\left(\mathbf{H}_{1}\right)$. Then the Hilbert functions \mathbf{H}_{1} and \mathbf{H}_{1}^{\prime} are, respectively,
$\mathbf{H}_{1}: 1\binom{n+1}{1} \quad\binom{n+2}{2} \cdots\binom{n+\alpha-1}{\alpha-1} \quad \rightarrow$
$\mathbf{H}_{1}^{\prime}: 1 \quad\binom{n}{1} \quad\binom{n+1}{2} \ldots\binom{n+\alpha-2}{\alpha-1} \quad\binom{n+\alpha-1}{\alpha} \ldots$
(0)
(1)
(2)
$(\alpha-1)$
(α)

Now $\Delta \mathbf{H}(t)=\Delta \mathbf{H}_{1}(t-1)+\Delta \mathbf{H}_{1}^{\prime}(t)$, so if $t-1 \geq \alpha$ then $\Delta \mathbf{H}_{1}(t-1)=0$ and so $\Delta \mathbf{H}(t)=\Delta \mathbf{H}_{1}^{\prime}(t)$. Thus, for $t \geq \alpha+1, \mathbf{H}$ behaves like a differentiable O-sequence. Hence, it only remains to verify that

$$
\Delta \mathbf{H}(\alpha+1) \leq(\Delta \mathbf{H}(\alpha))^{<\alpha>}
$$

But $\Delta \mathbf{H}(\alpha+1)=\Delta \mathbf{H}_{1}^{\prime}(\alpha+1)$, and this is always

$$
\leq\binom{(\alpha+1)+(n-2)}{\alpha+1}=\binom{\alpha+n-1}{\alpha+1}
$$

since $\Delta \mathbf{H}_{1}^{\prime}(1)=n-1$. Now,

$$
\begin{aligned}
\Delta \mathbf{H}(\alpha) & =\Delta \mathbf{H}_{1}(\alpha-1)+\Delta \mathbf{H}_{1}^{\prime}(\alpha) \\
& =\binom{(\alpha-1)+(n-1)}{\alpha-1}+\binom{\alpha+n-2}{\alpha} \\
& =\binom{\alpha+n-2}{\alpha-1}+\binom{\alpha+n-2}{\alpha} \\
& =\binom{\alpha+n-1}{\alpha}
\end{aligned}
$$

and thus $(\Delta \mathbf{H}(\alpha))^{<\alpha>}=\binom{\alpha+n}{\alpha+1}$. Since $\binom{\alpha+n-1}{\alpha+1}<\binom{\alpha+n}{\alpha+1}$, this completes the proof of the claim that, in the case $\alpha(\mathbf{H})-1=\sigma\left(\mathbf{H}_{1}\right), \Delta \mathbf{H}$ is a differentiable O-sequence.

Now assume $\alpha(\mathbf{H}) \leq \sigma\left(\mathbf{H}_{1}\right)$ and consider those t for which $\alpha+1=\alpha(\mathbf{H}) \leq$ $t \leq \sigma\left(\mathbf{H}_{1}\right)$. We first consider the passage from α to $\alpha+1$. We have

$$
\Delta \mathbf{H}(\alpha)=\Delta \mathbf{H}_{1}(\alpha-1)+\Delta \mathbf{H}_{1}^{\prime}(\alpha)
$$

Since $\alpha<\sigma\left(\mathbf{H}_{1}\right)<\alpha\left(\mathbf{H}_{1}^{\prime}\right), \Delta \mathbf{H}_{1}^{\prime}(1)=n-1$ and $\Delta \mathbf{H}_{1}(1)=n$, we have

$$
\Delta \mathbf{H}(\alpha)=\binom{(\alpha-1)+(n-1)}{\alpha-1}+\binom{\alpha+n-2}{\alpha}=\binom{\alpha+n-1}{\alpha}
$$

Therefore

$$
(\Delta \mathbf{H}(\alpha))^{<\alpha>}=\binom{\alpha+n}{\alpha+1}
$$

Since $\Delta \mathbf{H}(\alpha+1)=\Delta \mathbf{H}_{1}(\alpha)+\Delta \mathbf{H}_{1}^{\prime}(\alpha+1)$, which is

$$
\leq\binom{\alpha+n-1}{\alpha}+\binom{(\alpha+1)+(n-2)}{\alpha+1}=\binom{\alpha+n}{\alpha+1}=(\Delta \mathbf{H}(\alpha))^{<\alpha>}
$$

we obtain that $\Delta \mathbf{H}$ behaves like an O-sequence when passing from α to $\alpha+1$.
Now consider any t in the range $\alpha+1 \leq t \leq \sigma\left(\mathbf{H}_{1}\right)<\alpha\left(\mathbf{H}_{1}^{\prime}\right)$ and the passage from $\Delta \mathbf{H}(t)$ to $\Delta \mathbf{H}(t+1)$. Since in this range, $\Delta \mathbf{H}_{1}^{\prime}(t)=\binom{t+n-2}{t}$, we have

$$
\Delta \mathbf{H}(t)=\Delta \mathbf{H}_{1}(t-1)+\binom{t+n-2}{t}
$$

Since $\Delta \mathbf{H}_{1}(t-1)<\binom{t+n-2}{t-1}$, the $(t-1)$-binomial expansion of $\Delta \mathbf{H}_{1}(t-1)$ is

$$
\left(\Delta \mathbf{H}_{1}(t-1)\right)_{(t-1)}=\binom{m_{t-1}}{t-1}+\cdots+\binom{m_{j}}{j}
$$

where $t+n-2>m_{t-1}>\cdots>m_{j} \geq j \geq 1$. Thus,

$$
\Delta \mathbf{H}(t)=\binom{t+n-2}{t}+\binom{m_{t-1}}{t-1}+\cdots+\binom{m_{j}}{j}
$$

and since $t+n-2>m_{t-1}$, this is the t-binomial expansion of $\Delta \mathbf{H}(t)$. Hence,

$$
\begin{aligned}
(\Delta \mathbf{H}(t))^{<t>} & =\binom{t+n-1}{t+1}+\binom{m_{t-1}+1}{t}+\cdots+\binom{m_{j}+1}{j+1} \\
& =\left(\Delta \mathbf{H}_{1}^{\prime}(t)\right)^{<t>}+\left(\Delta \mathbf{H}_{1}(t-1)\right)^{<t-1>}
\end{aligned}
$$

Since, by induction, $\Delta \mathbf{H}_{1}^{\prime}(t+1) \leq\left(\Delta \mathbf{H}_{1}^{\prime}(t)\right)^{<t>}$ and $\Delta \mathbf{H}_{1}(t) \leq\left(\Delta \mathbf{H}_{1}(t-\right.$ $1)^{<t-1>}$, we are done in this case as well.

It only remains to consider the case when $t \geq \sigma\left(\mathbf{H}_{1}\right)+1$. But in this case, $\Delta \mathbf{H}(t)=\Delta \mathbf{H}_{1}^{\prime}(t)$, and the result easily follows.

This completes the proof of the existence of assignments ρ_{n} that respect both α and σ. We now show that ρ_{n} is injective for each n. We have already seen that this is true for $n=0$ and $n=1$. For the general case, we need the following lemma.

LEMMA 2.7. Let $\mathcal{T}=\left(\widetilde{\mathcal{T}}_{1}, \ldots, \mathcal{T}_{u}\right)$ be an n-type vector, where $u \geq 2$. Let $\sigma=\sigma\left(\mathcal{T}_{1}\right)$ and $\rho_{n-1}\left(\mathcal{T}_{i}\right)=\widetilde{\boldsymbol{H}}_{i}$. Then

$$
\widetilde{\boldsymbol{H}}_{i}(\sigma+(i-2))=\binom{n+(\sigma+(i-2))-1}{n-1} \text { for } i=2, \ldots, u
$$

In other words, $\widetilde{\boldsymbol{H}}_{i}(t)$ is maximal (i.e., generic) in $k\left[x_{1}, \ldots, x_{n}\right]$ for $t \leq \sigma+$ $(i-2)$ and $i=2, \ldots, u$.

Proof. Since $\sigma=\sigma\left(\mathcal{T}_{1}\right) \leq \alpha\left(\mathcal{T}_{i}\right)-(i-1)$ for $i=2, \ldots, u$, we have $\sigma+$ $(i-2)<\alpha\left(\mathcal{T}_{i}\right)$, for i in this range. The conclusion is immediate from this observation.

We now return to the proof of Theorem 2.6. Let $n \geq 2$ and let $\mathcal{T}=$ $\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{u}\right)$ and $\mathcal{T}^{\prime}=\left(\mathcal{T}_{1}^{\prime}, \ldots, \mathcal{T}_{v}^{\prime}\right)$ be two n-type vectors such that $\rho_{n}(\mathcal{T})=$ $\rho_{n}\left(\mathcal{T}^{\prime}\right)$. Since, by construction, $\rho_{n}(\mathcal{T})$ is generic up to $u-1$ and $\rho_{n}\left(\mathcal{T}^{\prime}\right)$ is generic up to $v-1$, we obtain $u=v$.

Suppose first that $u=1$, i.e., $\mathcal{T}=\left(\mathcal{T}_{1}\right)$ and $\mathcal{T}^{\prime}=\left(\mathcal{T}_{1}^{\prime}\right)$, where \mathcal{T}_{1} and \mathcal{T}_{1}^{\prime} are both $(n-1)$-type vectors. By construction, $\rho_{n}(\mathcal{T})=\rho_{n-1}\left(\mathcal{T}_{1}\right)$ and $\rho_{n}\left(\mathcal{T}^{\prime}\right)=\rho_{n-1}\left(\mathcal{T}_{1}^{\prime}\right)$. So, by induction on n we get $\mathcal{T}_{1}=\mathcal{T}_{1}^{\prime}$ and so $\mathcal{T}=\mathcal{T}^{\prime}$.

Now suppose that $u>1$. If $\mathcal{T}_{1}=\mathcal{T}_{1}^{\prime}$ then, by construction, $\rho_{n}\left(\mathcal{T}_{2}, \ldots, \mathcal{T}_{u}\right)=$ $\rho_{n}\left(\mathcal{T}_{2}^{\prime}, \ldots, \mathcal{T}_{u}^{\prime}\right)$. By induction on u we get $\mathcal{T}_{i}=\mathcal{T}_{i}^{\prime}$ for $i=2, \ldots, u$ and so $\mathcal{T}=\mathcal{T}^{\prime}$ in this case. If $\mathcal{T}_{1} \neq \mathcal{T}_{1}^{\prime}$ then, by induction on $u, \rho_{n}\left(\mathcal{T}_{1}\right)(t) \neq \rho_{n}\left(\mathcal{T}_{1}^{\prime}\right)(t)$ for some t. Let s be the least such integer t. We can assume, without loss of generality, that $\sigma\left(\mathcal{T}_{1}\right) \leq \sigma\left(\mathcal{T}_{1}^{\prime}\right)$. Then clearly $s \leq \sigma=\sigma\left(\mathcal{T}_{1}\right)$.

Write $\widetilde{\mathbf{H}}_{i}=\rho_{n-1}\left(\mathcal{T}_{i}\right)$ and $\widetilde{\mathbf{H}}_{i}^{\prime}=\rho_{n-1}\left(\mathcal{T}_{i}^{\prime}\right)$. If $s<\sigma$, we have, by Lemma 2.7,

$$
\widetilde{\mathbf{H}}_{i}(s+(i-1))=\widetilde{\mathbf{H}}_{i}^{\prime}(s+(i-1))=\binom{n+(s+(i-1))-1}{n-1}
$$

for $i=2, \ldots, u$. But then

$$
\begin{aligned}
\mathbf{H}(s+(u-1)) & =\widetilde{\mathbf{H}}_{1}(s)+\left[\widetilde{\mathbf{H}}_{2}(s+1)+\cdots+\widetilde{\mathbf{H}}_{u}(s+(u-1))\right] \\
& \neq \widetilde{\mathbf{H}}_{1}^{\prime}(s)+\left[\widetilde{\mathbf{H}}_{2}^{\prime}(s+1)+\cdots+\widetilde{\mathbf{H}}_{u}^{\prime}(s+(u-1))\right] \\
& =\rho_{n}\left(\mathcal{T}^{\prime}\right)(s+(u-1)),
\end{aligned}
$$

which contradicts the relation $\rho_{n}(\mathcal{T})=\rho_{n}\left(\mathcal{T}^{\prime}\right)$.
Now suppose that $s=\sigma\left(\mathcal{T}_{1}\right)$. This forces $\sigma\left(\mathcal{T}_{1}\right)<\sigma\left(\mathcal{T}_{2}\right)$ and hence $\widetilde{\mathbf{H}}_{1}(s)<$ $\widetilde{\mathbf{H}}_{1}^{\prime}(s)$. Since $s<\sigma\left(\mathcal{T}_{1}^{\prime}\right)$ we have, by Lemma 2.7,

$$
\widetilde{\mathbf{H}}_{i}^{\prime}(s+(i-1))=\binom{n+(s+(i-1))-1}{n-1}
$$

and clearly

$$
\widetilde{\mathbf{H}}_{i}(s+(i-1)) \leq\binom{ n+(s+(i-1))-1}{n-1}
$$

Since $\rho_{n}(\mathcal{T})(s+(u-1))=\rho_{n}\left(\mathcal{T}^{\prime}\right)(s+(u-1))$ we must have $\widetilde{\mathbf{H}}_{1}(s) \geq \widetilde{\mathbf{H}}_{1}^{\prime}(s)$, which is a contradiction. Therefore $\mathcal{T}_{1}=\mathcal{T}_{1}^{\prime}$, and so $\mathcal{T}=\mathcal{T}^{\prime}$ as we wanted to show.

The proof will be complete if we can show that, for each n, the composition $\rho_{n} \chi_{n}$ is the identity map. We have already shown this for the cases $n=0$ and $n=1$. Now suppose that $n \geq 2$, let $\mathbf{H} \in \mathcal{S}_{n}$, and consider $\mathbf{H}(1)$. If
$\mathbf{H}(1)<n+1$ then $\mathbf{H} \in \mathcal{S}_{n-1}$ and by induction $\rho_{n-1} \chi_{n-1}(\mathbf{H})=\mathbf{H}$. If $\chi_{n-1}(\mathbf{H})=\mathcal{T}$, where \mathcal{T} is an $(n-1)$-type vector, then $\chi_{n}(\mathbf{H})=(\mathcal{T})$ and $\rho_{n}((\mathcal{T}))=\rho_{n-1}(\mathcal{T})=\mathbf{H}$, and we are done.

Suppose now that $\mathbf{H}(1)=n+1$ and, as above, let $\mathbf{H} \rightarrow\left(\mathbf{H}_{1}, \mathbf{H}_{1}^{\prime}\right)$. If $\alpha(\mathbf{H})=2$ then, as we have shown above, \mathbf{H}_{1} and \mathbf{H}_{1}^{\prime} are both in \mathcal{S}_{n-1} and

$$
\chi_{n}(\mathbf{H})=\left(\chi_{n-1}\left(\mathbf{H}_{1}\right), \chi_{n-1}\left(\mathbf{H}_{1}^{\prime}\right)\right)=\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)
$$

where the \mathcal{T}_{i} are $(n-1)$-type vectors. By definition,

$$
\begin{aligned}
\rho_{n}\left(\mathcal{T}_{1}, \mathcal{T}_{2}\right)(t) & =\rho_{n-1}\left(\mathcal{T}_{2}\right)(t)+\rho_{n-1}\left(\mathcal{T}_{1}\right)(t-1) \\
& =\mathbf{H}_{1}^{\prime}(t)+\mathbf{H}_{1}(t-1)
\end{aligned}
$$

by induction on n. Now, it is immediate from the definitions of \mathbf{H}_{1} and \mathbf{H}_{1}^{\prime} that this is the description of $\mathbf{H}(t)$. Thus, we are done in this case as well.

The case $\alpha>2$ is handled similarly, where now $\mathbf{H} \rightarrow\left(\mathbf{H}_{1}, \mathbf{H}_{1}^{\prime}\right)$ with $\mathbf{H}_{1} \in$ \mathcal{S}_{n} and $\mathbf{H}_{1}^{\prime} \in \mathcal{S}_{n-1}$. This time, however, $\alpha\left(\mathbf{H}_{1}\right)<\alpha(\mathbf{H})$ and we must also use induction on α. This completes the proof of the main theorem.

3. Some applications

In this section we give a few applications to illustrate the idea of the "type vector" of a Hilbert function $\mathbf{H} \in \mathcal{S}_{n}$.

The numerical character. As mentioned in the introduction, Gruson and Peskine [13] introduced, for $\mathbf{H} \in \mathcal{S}_{2}$, an $\alpha(\mathbf{H})$-tuple of non-negative integers called the numerical character of \mathbf{H}. (See [9] for a thorough discussion.)

Recall that a set of points $\mathbb{X} \in \mathbb{P}^{n}$ is said to have the uniform position property (UPP for short) if, whenever \mathbb{X}_{1} and \mathbb{X}_{2} are subsets of \mathbb{X} with the same cardinality, then $\mathbf{H}_{\mathbb{X}_{1}}=\mathbf{H}_{\mathbb{X}_{2}}$. There has been a great deal of work done in an attempt to characterize the Hilbert functions of points in \mathbb{P}^{n} with UPP - we will not go into the reasons as to why this is an interesting question, but refer the reader instead to some of the works which consider this problem ([1], [2], [3], [5], and [16]). Combining the work of [13] and [16] we now state the solution to this problem for points in \mathbb{P}^{2} given in these papers.

Theorem 3.1. Let $\boldsymbol{H} \in \mathcal{S}_{2}$ and let $\left(p_{1}, \ldots, p_{\alpha(\boldsymbol{H})}\right)$ be the numerical character of \boldsymbol{H}. Then \boldsymbol{H} is the Hilbert function of a set of points in \mathbb{P}^{2} with UPP if and only if

$$
p_{i+1} \leq p_{i}+1 \quad \text { for } i=1, \ldots, \alpha(\boldsymbol{H})-1
$$

We now exhibit the relationship between the numerical character and the 2-type vector for a Hilbert function $\mathbf{H} \in \mathcal{S}_{2}$. Consider $\mathbf{H}(1)$. If $\mathbf{H}(1)=2$ then $\alpha(\mathbf{H})=1$ and the numerical character is (p) and the 2-type vector of \mathbf{H} is $((e))=(e)$, where $e \geq 1$. In this case $p=\sigma(\mathbf{H})=e$ and both the numerical character and the 2-type vector of \mathbf{H} agree.

Now suppose that $\mathbf{H}(1)=3$, i.e., that $\alpha(\mathbf{H})>1$.

Proposition 3.2. If $\left(p_{1}, p_{2}, \ldots, p_{\alpha-1}, p_{\alpha}\right)$ is the numerical character of $\boldsymbol{H} \in \mathcal{S}_{2}$, then

$$
\left(e_{1}, \ldots, e_{\alpha}\right)=\left(p_{1}-(\alpha-1), p_{2}-(\alpha-2), \ldots, p_{\alpha-1}-1, p_{\alpha}\right)
$$

is the 2-type vector associated to \boldsymbol{H}.
Proof. We leave this simple exercise to the reader.
It follows from this result that

$$
p_{i+1} \leq p_{i}+1 \Leftrightarrow e_{i+1} \leq e_{i}+2
$$

Thus, the result of Gruson-Peskine and Maggioni-Ragusa can be stated very simply in terms of 2 -type vectors:

Corollary 3.3. Let $\boldsymbol{H} \in \mathcal{H}_{2}$ and let $\mathcal{T}=\left(e_{1}, \ldots, e_{\alpha(\boldsymbol{H})}\right)$ be the 2-type vector associated to \boldsymbol{H}. The following are equivalent:
(1) \boldsymbol{H} is the Hilbert function of a set of points in \mathbb{P}^{2} with UPP.
(2) $e_{i+1}-e_{i} \leq 2 \quad$ for $i=1, \ldots, \alpha(\boldsymbol{H})-1$.

There exists a somewhat more precise result which, in the case of \mathcal{H}_{2}, is due to E.D. Davis [4] (see also [1] for a generalization). The result of Davis can be rephrased in terms of 2-type vectors as follows. Let $\mathbf{H} \in \mathcal{S}_{2}$ and let $\mathcal{T}=\left(e_{1}, \ldots, e_{r}\right)$ be the 2 -type vector associated to \mathbf{H}. Choose i so that $1<i<r$ and let $\mathcal{T}_{1}=\left(e_{1}, \ldots, e_{i}\right)$ and $\mathcal{T}_{2}=\left(e_{i+1}, \ldots, e_{r}\right)$. Then \mathcal{T}_{1} and \mathcal{T}_{2} are also 2-type vectors, and so we let $\mathcal{T}_{1} \leftrightarrow \mathbf{H}_{1}$ and $\mathcal{T}_{2} \leftrightarrow \mathbf{H}_{2}$.

Theorem 3.4 ([4]). Suppose that $e_{i+1}-e_{i}>2$ and let \mathbb{X} be any set of points in \mathbb{P}^{2} with Hilbert function \boldsymbol{H}. Then $\mathbb{X}=\mathbb{X}_{1} \cup \mathbb{X}_{2}$ (where the union is disjoint) and $\boldsymbol{H}_{\mathbb{X}_{1}}=\boldsymbol{H}_{1}$ and $\boldsymbol{H}_{\mathbb{X}_{2}}=\boldsymbol{H}_{2}$.

In particular, in the above notation we have:
Corollary 3.5. Suppose that $e_{i+1}-e_{i}>2$ for $i=1, \ldots, r-1$. Then, if \mathbb{X} is any set of points in \mathbb{P}^{2} with Hilbert function \boldsymbol{H}, we can find a set of lines $\mathbb{L}_{1}, \ldots, \mathbb{L}_{r}$ in \mathbb{P}^{2} and subsets \mathbb{X}_{i} of \mathbb{X} with the property that
(i) $\mathbb{X}_{i} \subset \mathbb{L}_{i}$ and $\mathbb{X}_{i} \cap \mathbb{X}_{j}=\varnothing$ if $i \neq j$;
(ii) $\left|\mathbb{X}_{i}\right|=e_{i}$;
(iii) $\cup_{i=1}^{r} \mathbb{X}_{i}=\mathbb{X}$.

Thus the 2-type vectors of Corollary 3.5 correspond to Hilbert functions of very special point sets in \mathbb{P}^{2}.

Another special class of Hilbert functions in \mathcal{S}_{2} are the Hilbert functions of complete intersections. A Hilbert function $\mathbf{H} \in \mathcal{S}_{2}$ is a complete intersection Hilbert function if $\Delta \mathbf{H}$ satisfies

$$
\Delta \mathbf{H}(\sigma-(i+1))=\Delta \mathbf{H}(i) \quad \text { for } \quad 0 \leq i \leq \sigma=\sigma(\mathbf{H})
$$

(i.e., if $\Delta \mathbf{H}$ is symmetric). It is a simple matter to verify that, if \mathbf{H} has numerical character $\left(p_{1}, \ldots, p_{r}\right)$ and associated 2-type vector $\left(e_{1}, \ldots, e_{r}\right)$, then the following result holds.

Proposition 3.6. The following are equivalent:
(1) \boldsymbol{H} is a complete intersection Hilbert function;
(2) $p_{i+1}=p_{i}+1$ for all $i=1, \ldots, r-1$;
(3) $e_{i+1}-e_{i}=2$ for all $i=1, \ldots, r-1$.

Since, for a set \mathbb{X} of points in $\mathbb{P}^{2}, A=k\left[x_{0}, x_{1}, x_{2}\right] / I_{\mathbb{X}}$ is a Gorenstein ring if and only if $I_{\mathbb{X}}$ is a complete intersection ideal in $R=k\left[x_{0}, x_{1}, x_{2}\right]$, we obtain that $\mathbf{H}(A,-)$ is a complete intersection Hilbert function. Thus, using Proposition 3.6 we see that the 2-type vectors can be used to describe all possible Hilbert functions of Gorenstein sets of points in \mathbb{P}^{2}.

Extremal subsets. Let $\mathbf{H} \in S_{n}$ and let \mathbb{X} be a set of points in \mathbb{P}^{n} with Hilbert function \mathbf{H}. We consider all the subsets of \mathbb{X} which lie on a hyperplane of \mathbb{P}^{n}. (To avoid trivialities, we will assume that not all of \mathbb{X} is in a hyperplane of \mathbb{P}^{n}, i.e., $\left.\mathbf{H}(1)=n+1\right)$.

We can then partially order the Hilbert functions of the subsets of \mathbb{X} that arise in this way as follows. Suppose that \mathbb{X}_{1} and \mathbb{X}_{2} are two subsets of \mathbb{X} which lie in hyperplanes of \mathbb{P}^{n}. Then we define

$$
\mathbf{H}_{\mathbb{X}_{1}} \leq \mathbf{H}_{\mathbb{X}_{2}}:=\mathbf{H}_{\mathbb{X}_{1}}(i) \leq \mathbf{H}_{\mathbb{X}_{2}}(i) \quad \text { for every } \quad i
$$

Clearly, if $\mathbb{X}_{1} \subseteq \mathbb{X}_{2}$ then $\mathbf{H}_{\mathbb{X}_{1}} \leq \mathbf{H}_{\mathbb{X}_{2}}$. We do this for every set \mathbb{X} in \mathbb{P}^{n} with Hilbert function \mathbf{H} and thus obtain a finite, partially ordered set of Hilbert functions in \mathcal{H}_{n-1}, which we will call $\operatorname{LinSub}(\mathbf{H})$.

Now suppose that $\chi_{n}(\mathbf{H})=\mathcal{T}=\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}\right)$. Then we have the following interesting result.

Theorem 3.7. LinSub (\boldsymbol{H}) contains a maximal element, namely $\rho_{n-1}\left(\mathcal{T}_{r}\right)$.
Proof. We have stated more than what we will prove in this section. The proof given below will show that $\rho_{n-1}\left(\mathcal{T}_{r}\right)$ is an upper bound for the elements of $\operatorname{LinSub}(\mathbf{H})$. The proof will be completed in the next section (more precisely, in Remark $4.3(1)$) when we construct, for any Hilbert function $\mathbf{H} \in \mathcal{S}_{n}$, a set of points with Hilbert function \mathbf{H} having a subset on a hyperplane with Hilbert function $\rho_{n-1}\left(\mathcal{T}_{r}\right)$.

Let $\rho_{n-1}\left(\mathcal{T}_{r}\right)=\mathbf{H}_{r}$, let \mathbb{Z} be any set of points in \mathbb{P}^{n} with Hilbert function \mathbf{H}, and consider \mathbb{L} a hyperplane of \mathbb{P}^{n}. We will show that

$$
\Delta \mathbf{H}(\mathbb{Z} \cap \mathbb{L}, j) \leq \Delta \mathbf{H}_{r}(j) \quad \text { for every } \quad j
$$

This will be enough to prove that \mathbf{H}_{r} is an upper bound for the elements of $\operatorname{LinSub}(\mathbf{H})$.

Now $\mathbf{H}_{r}(j)$ is generic in \mathbb{P}^{n-1} for $0 \leq j<\alpha\left(\mathbf{H}_{r}\right)$, so we obviously have

$$
\Delta \mathbf{H}(\mathbb{Z} \cap \mathbb{L}, j) \leq \Delta \mathbf{H}_{r}(j) \quad \text { for } \quad 0 \leq j<\alpha\left(\mathbf{H}_{r}\right)
$$

The result for $j \geq \alpha\left(\mathbf{H}_{r}\right)$ will follow easily from the following claim:

$$
\Delta \mathbf{H}_{r}(j)=\Delta \mathbf{H}(j) \quad \text { for all } j \geq \alpha\left(\mathbf{H}_{r}\right)
$$

To prove this claim, let $\widetilde{\mathcal{T}}=\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{r-1}\right)$ and $\rho_{n}(\widetilde{\mathcal{T}})=\mathbf{H}_{1}$. Then, as we have seen,

$$
\mathbf{H}(j)=\mathbf{H}_{r}(j)+\mathbf{H}_{1}(j-1) \quad \text { for all } \quad j .
$$

By definition, $\sigma\left(\mathbf{H}_{1}\right)<\alpha\left(\mathbf{H}_{r}\right)$. Let s be the (eventually) constant value of \mathbf{H}_{1}, i.e., $\mathbf{H}_{1}(t)=s$ for all $t \geq \sigma\left(\mathbf{H}_{1}\right)-1$. Then, for all $j \geq \alpha\left(\mathbf{H}_{r}\right)-1$ we have

$$
\mathbf{H}(j)=\mathbf{H}_{r}(j)+s
$$

and so

$$
\Delta \mathbf{H}(j)=\Delta \mathbf{H}_{r}(j)
$$

for all $j \geq \alpha\left(\mathbf{H}_{r}\right)$, as we wanted to prove.
Since $\mathbb{Z} \cap \mathbb{L} \subseteq \mathbb{Z}$, we have $\Delta \mathbf{H}(\mathbb{Z} \cap \mathbb{L}, j) \leq \Delta \mathbf{H}(j)$ for all j. Combining this with the observations made above completes the proof.

There is one final observation we would like to make about sets of points $\mathbb{X} \subset \mathbb{P}^{n}$ which have Hilbert function \mathbf{H}, where $\mathbf{H}=\rho_{n}(\mathcal{T})$, with $\mathcal{T}=$ $\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}\right)$, an n-type vector. Theorem 3.7 tells us that any subset of such a set \mathbb{X}, which lies on a hyperplane, must have a Hilbert function which is $\leq \rho_{n-1}\left(\mathcal{T}_{r}\right)$. The following proposition deals with the situation in which a set \mathbb{X} with Hilbert function \mathbf{H} actually has a (hyperplane) subset \mathbb{U} for which $\mathbf{H}_{\mathbb{U}}=\rho_{n-1}\left(\mathcal{T}_{r}\right)$.

Proposition 3.8. Let $\mathbb{X}, \boldsymbol{H}$ and \mathcal{T} be as above and let $\mathbb{U} \subset \mathbb{X}$ be such that the Hilbert function of $\mathbb{U}, \boldsymbol{H}_{\mathbb{U}}$, satisfies $\boldsymbol{H}_{\mathbb{U}}=\rho_{n-1}\left(\mathcal{T}_{r}\right)$. Then, setting $\mathcal{T}^{\prime}=\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{r-1}\right)$ and $\mathbb{X}^{\prime}=\mathbb{X}-\mathbb{U}$, we have $\boldsymbol{H}_{\mathbb{X}^{\prime}}=\rho_{n}\left(\mathcal{T}^{\prime}\right)$.

Proof. Let L be the linear form in $R=k\left[x_{0}, \ldots, x_{n}\right]$ which describes the hyperplane containing the points of \mathbb{U}. We have the exact sequence

$$
\begin{equation*}
0 \rightarrow I_{\mathbb{X}}(-1) \xrightarrow{\times L} I_{\mathbb{X}} \rightarrow\left(I_{\mathbb{X}}+(L)\right) /(L) \rightarrow 0 \tag{3.1}
\end{equation*}
$$

since \mathbb{X}^{\prime} is precisely the set of points of \mathbb{X} that do not lie on the hyperplane defined by L. Let $I_{\mathbb{U}}$ be the ideal (in R) of the set of points \mathbb{U}. Then $J=$ $I_{\mathbb{X}}+(L) \subseteq I_{\mathbb{U}}$. Thus,

$$
\begin{equation*}
\mathbf{H}_{R / J}(t)=\mathbf{H}\left(R /\left(I_{\mathbb{X}}+(L)\right), t\right) \geq \mathbf{H}_{R / I_{\mathbb{U}}}(t)=\mathbf{H}_{\mathbb{U}}(t) \tag{3.2}
\end{equation*}
$$

From (3.1) we obtain

$$
\begin{equation*}
\mathbf{H}_{\mathbb{X}}(t)=\mathbf{H}_{\mathbb{X}^{\prime}}(t-1)+\mathbf{H}_{R / J}(t) \tag{3.3}
\end{equation*}
$$

From our earlier discussion of n-type vectors we also have

$$
\begin{equation*}
\mathbf{H}_{\mathbb{X}}(t)=\mathbf{H}_{\mathcal{T}^{\prime}}(t-1)+\mathbf{H}_{\mathbb{U}}(t) . \tag{3.4}
\end{equation*}
$$

Let β be the smallest integer such that

$$
\mathbf{H}_{\mathbb{X}}(\beta)-\binom{n+\beta-1}{\beta}>\mathbf{H}_{\mathbb{X}}(\beta+1)-\binom{n+\beta}{\beta+1}
$$

and let $c_{\beta-1}=\mathbf{H}_{\mathbb{X}}(\beta)-\binom{n+\beta-1}{\beta}$. Then the Hilbert function of \mathbb{U} is

$$
\mathbf{H}_{\mathbb{U}}(t)=\mathbf{H}_{\mathcal{T}_{r}}(t)=\left\{\begin{array}{cl}
\binom{n+t-1}{t} & \text { for } t \leq \beta \\
\mathbf{H}_{\mathbb{X}}(t)-c_{\beta-1} & \text { for } t \geq \beta
\end{array}\right.
$$

Hence

$$
\begin{equation*}
\mathbf{H}_{\mathbb{U}}(t)=\mathbf{H}_{\mathcal{T}_{r}}(t)=\mathbf{H}_{R / J}(t)=\binom{n+t-1}{t} \tag{3.5}
\end{equation*}
$$

for $t \leq \beta$. Moreover,

$$
\begin{equation*}
\Delta \mathbf{H}_{\mathbb{U}}(t)=\Delta \mathbf{H}_{\mathcal{T}_{r}}(t)=\Delta \mathbf{H}_{R / J}(t) \tag{3.6}
\end{equation*}
$$

for such t. Since $\sigma\left(\mathbf{H}_{\mathcal{T}^{\prime}}\right) \leq \beta$, we see that

$$
\begin{equation*}
\Delta \mathbf{H}_{\mathcal{T}^{\prime}}(t)=0 \tag{3.7}
\end{equation*}
$$

for every $t \geq \beta$. From (3.3) and (3.4) we have

$$
\begin{align*}
\Delta \mathbf{H}_{\mathbb{X}}(t) & =\Delta \mathbf{H}_{\mathcal{T}^{\prime}}(t-1)+\Delta \mathbf{H}_{\mathbb{U}}(t) \tag{3.8}\\
& =\Delta \mathbf{H}_{\mathbb{X}^{\prime}}(t-1)+\Delta \mathbf{H}_{R / J}(t) . \tag{3.9}
\end{align*}
$$

Since $\Delta \mathbf{H}_{\mathcal{T}^{\prime}}(t-1)=0$ and $\Delta \mathbf{H}_{\mathbb{X}^{\prime}}(t-1) \geq 0$ for $t-1 \geq \beta$, we have

$$
\begin{equation*}
\Delta \mathbf{H}_{\mathbb{U}}(t) \geq \Delta \mathbf{H}_{R / J}(t) \tag{3.10}
\end{equation*}
$$

for every $t \geq \beta+1$. From (3.6) and (3.10), we obtain

$$
\begin{equation*}
\Delta \mathbf{H}_{\mathbb{U}}(t) \geq \Delta \mathbf{H}_{R / J}(t) \tag{3.11}
\end{equation*}
$$

for every $t \geq 0$. Hence we have

$$
\begin{equation*}
\mathbf{H}_{\mathbb{U}}(t) \geq \mathbf{H}_{R / J}(t) \tag{3.12}
\end{equation*}
$$

for such t. It follows from (3.2) and (3.12) that

$$
\begin{equation*}
\mathbf{H}_{\mathbb{U}}(t)=\mathbf{H}_{R / J}(t) \tag{3.13}
\end{equation*}
$$

for every $t \geq 0$. Therefore, we obtain from (3.3), (3.4), and (3.13) that

$$
\mathbf{H}_{\mathbb{X}^{\prime}}(t)=\mathbf{H}_{\mathcal{T}^{\prime}}(t)
$$

for every $t \geq 0$ and we are done.
Notice that, as a bonus, we obtain that $I_{\mathbb{X}}+(L)=I_{\mathbb{U}}$ in this case.

4. k-configurations in \mathbb{P}^{n}

Let $\mathbf{H} \in \mathcal{S}_{n}$. Then \mathbf{H} can, in general, be the Hilbert function of many different sets of points in \mathbb{P}^{n}. For example, if

$$
\mathbf{H}:=1 \begin{array}{lllll}
1 & 5 & 6 & \rightarrow & \mathcal{S}_{2},
\end{array}
$$

then \mathbf{H} is the Hilbert function of the complete intersection of a conic and a cubic. However, \mathbf{H} is also the Hilbert function of the set

which (by Bezout) cannot be the complete intersection of a conic and a cubic.
We will show how to associate, to any Hilbert function $\mathbf{H} \in \mathcal{S}_{n}$, a special point set in \mathbb{P}^{n} which, naturally, has Hilbert function \mathbf{H} and is "extremal" with respect to Theorem 3.7.

These types of point sets have been studied in \mathbb{P}^{2} and \mathbb{P}^{3} by Geramita, Harima, and Shin [7], Geramita, Pucci, and Shin [11], Geramita and Shin [12], Harima [14], and Shin [17]. In this section we will define the point sets in question and give a few of their elementary properties. A deeper study will be carried out in a subsequent paper [7].

Our assignment of a point set to a Hilbert function $\mathbf{H} \in \mathcal{S}_{n}$ will be done inductively.

DEfinition 4.1 (k-configuration in \mathbb{P}^{n}).

S_{0} : The only element in S_{0} is $\mathbf{H}:=1 \rightarrow$, which is the Hilbert function of \mathbb{P}^{0}, which is a single point. This is the only k-configuration in \mathbb{P}^{0}.
S_{1} : Let $\mathbf{H} \in S_{1}$. Then $\chi_{1}(\mathbf{H})=T=(e)$, where $e \geq 1$. We associate to \mathbf{H} any set of e distinct points in \mathbb{P}^{1}. Clearly, any set of e distinct points in \mathbb{P}^{1} has Hilbert function \mathbf{H}. A set of e distinct points in \mathbb{P}^{1} will be called a k-configuration in \mathbb{P}^{1} of type $T=(e)$.
S_{2} : Let $\mathbf{H} \in S_{2}$ and let $T=\left(\left(e_{1}\right), \ldots,\left(e_{r}\right)\right)=\chi_{2}(\mathbf{H})$, where $T_{i}=\left(e_{i}\right)$ is a 1 -type vector. Choose r distinct sets \mathbb{P}^{1}, in \mathbb{P}^{2}, i.e., lines in \mathbb{P}^{2}, and label these $\mathbb{L}_{1}, \ldots, \mathbb{L}_{r}$. By induction we choose, on \mathbb{L}_{i}, a k-configuration \mathbb{X}_{i} in \mathbb{P}^{1} of type $T_{i}=\left(e_{i}\right)$ such that no point of \mathbb{L}_{i} contains a point of \mathbb{X}_{j} for $j<i$. The set $\mathbb{X}=\bigcup \mathbb{X}_{i}$ is called a k-configuration in \mathbb{P}^{2} of type T.
$S_{n}, n>2$: Now suppose that we have defined a k-configuration of type $\widetilde{T} \in \mathbb{P}^{n-1}$, where \widetilde{T} is an $(n-1)$-type vector associated to $G \in S_{n-1}$. Let $\mathbf{H} \in S_{n}$ and suppose that $\chi_{n}(\mathbf{H})=T=\left(T_{1}, \ldots, T_{r}\right)$, where the T_{i} are $(n-1)$-type vectors. Then $\rho_{n-1}\left(T_{i}\right)=\mathbf{H}_{i}$ and $\mathbf{H}_{i} \in S_{n-1}$. Consider distinct hyperplanes $\mathbb{H}_{1}, \ldots, \mathbb{H}_{r}$ in \mathbb{P}^{n}, and let \mathbb{X}_{i} be a k configuration in \mathbb{H}_{i} of type T_{i} such that \mathbb{H}_{i} does not contain any point of \mathbb{X}_{j} for any $j<i$. The set $\mathbb{X}=\bigcup \mathbb{X}_{i}$ is called a k-configuration in \mathbb{P}^{n} of type T.

We claim that the set of points so chosen has Hilbert function \mathbf{H}. To prove this claim, we proceed by induction on r.

The case $r=1$ is obvious. Suppose $r \geq 2$. We will have shown, by induction, that $\mathbf{H}_{i}=\rho_{1}\left(\mathcal{T}_{i}\right)$ is the Hilbert function of \mathbb{X}_{i} and that $\widetilde{\mathbf{H}}(t):=$ $\mathbf{H}_{1}(t-(r-2))+\cdots+\mathbf{H}_{r-2}(t-1)+\mathbf{H}_{r-1}(t)$ is the Hilbert function of $\mathbb{X}_{1} \cup \cdots \cup \mathbb{X}_{r-1}$. By Corollary 2.8 of [10] (which is applicable here since $\sigma(\widetilde{\mathbf{H}})<\alpha\left(\mathbf{H}_{r}\right)$ and the line containing \mathbb{X}_{r} contains no point of $\left.\mathbb{X}_{1} \cup \cdots \cup \mathbb{X}_{r-1}\right)$ we obtain

$$
\mathbf{H}_{\mathbb{X}}(t)=\widetilde{\mathbf{H}}(t-1)+\mathbf{H}_{r}(t) .
$$

As we have seen, this is the description of the Hilbert function associated to \mathcal{T}, i.e. \mathbf{H}. This completes the proof of the claim.

Notation and Terminology: If $\mathbf{H} \in \mathcal{S}_{n}$ and $\chi_{n}(\mathbf{H})=\mathcal{T}$, where \mathcal{T} is an n-type vector, and \mathbb{X} is a k-configuration associated to \mathbf{H} (or \mathcal{T}), then we say that \mathbb{X} is a k-configuration in \mathbb{P}^{n} of type \mathcal{T}.

If we write $\mathcal{T}=\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}\right)$ and let \mathbb{X} be a k-configuration in \mathbb{P}^{n} of type \mathcal{T} then, by definition,

$$
\mathbb{X}=\mathbb{X}_{1} \cup \ldots \cup \mathbb{X}_{r} \quad \text { with a disjoint union, }
$$

where \mathbb{X}_{i} is a k-configuration of type \mathcal{T}_{i} and $\mathbb{X}_{i} \subseteq \mathbb{L}_{i}$, where $\mathbb{L}_{i} \simeq \mathbb{P}^{n-1}$ is a linear subspace of \mathbb{P}^{n}. We will call the \mathbb{X}_{i} the (first) sub- k-configurations of \mathbb{X}.

Now $\mathcal{T}_{i}=\left(\mathcal{T}_{i 1}, \ldots, \mathcal{T}_{i r_{i}}\right)$ where the $\mathcal{T}_{i j}$ are $(n-2)$-type vectors. Thus

$$
\mathbb{X}_{i}=\mathbb{X}_{i, 1} \cup \ldots \cup \mathbb{X}_{i, r_{i}}
$$

where the $\mathbb{X}_{i, j}$ are in linear subspaces $\mathbb{L}_{i, j}$ of \mathbb{L}_{i} and $\mathbb{X}_{i, j}$ is a k-configuration of type $\mathcal{T}_{i, j}$ in $\mathbb{P}^{n-2} \simeq \mathbb{L}_{i, j}$. The spaces $\mathbb{X}_{i, j}, 1 \leq i \leq r, 1 \leq j \leq r_{i}$ are called the (second) sub- k-configurations of \mathbb{X}. The description of the remainder of this hierarchical decomposition of \mathbb{X} should now be clear.

Example 4.2. Let \mathbf{H} be the Hilbert function

Then $\mathbf{H} \leftrightarrow \mathcal{T}=((1,2),(3,7,9))$.
A k-configuration in \mathbb{P}^{3} of type \mathcal{T} is a set of points $\mathbb{X}=\mathbb{X}_{1} \cup \mathbb{X}_{2}$ where $\mathbb{X}_{1} \subseteq \mathbb{L}_{1}$ and $\mathbb{X}_{2} \subseteq \mathbb{L}_{2}$ (where \mathbb{L}_{1} and \mathbb{L}_{2} are two distinct linear subspaces of \mathbb{P}^{3}) and no point of $\mathbb{X}_{1} \cup \mathbb{X}_{2}$ is in $\mathbb{L}_{1} \cap \mathbb{L}_{2}$. Moreover, \mathbb{X}_{1} is a k-configuration in $\mathbb{L}_{1} \simeq \mathbb{P}^{2}$ of type $(1,2)$, \mathbb{X}_{2} a k-configuration in $\mathbb{L}_{2} \simeq \mathbb{P}^{2}$ of type $(3,7,9)$, and \mathbb{X}_{1} and \mathbb{X}_{2} are the first sub- k-configurations of \mathbb{X}. Now \mathbb{X}_{1} consists of 3 points on two distinct lines in $\mathbb{L}_{1} \simeq \mathbb{P}^{2}, \mathbb{L}_{1,1}$ and $\mathbb{L}_{1,2}$, with one point in $\mathbb{L}_{1,1}$ (say, $\mathbb{X}_{1,1}$) and 2 points on $\mathbb{L}_{1,2}$ (say, $\mathbb{X}_{1,2}$) of \mathbb{X}. Similarly $\mathbb{X}_{2}=$ $\mathbb{X}_{2,1} \cup \mathbb{X}_{2,2} \cup \mathbb{X}_{2,3}$ where $\mathbb{X}_{2,1}$ contains 3 points, $\mathbb{X}_{2,2}$ contains 7 points and $\mathbb{X}_{2,3}$ contains 9 points, on three separate lines $\mathbb{L}_{2,1}, \mathbb{L}_{2,2}$, and $\mathbb{L}_{2,3}$ in $\mathbb{L}_{2} \simeq \mathbb{P}^{2}$.

The sets $\mathbb{X}_{1,1}, \mathbb{X}_{1,2}, \mathbb{X}_{2,1}, \mathbb{X}_{2,2}, \mathbb{X}_{2,3}$ are the (second) sub-k-configurations of \mathbb{X}.

Remark 4.3.

(1) Notice that if $\mathbf{H} \leftrightarrow \mathcal{T}=\left(\mathcal{T}_{1}, \ldots, \mathcal{T}_{r}\right)$ and if \mathbb{X} is a k-configuration of type \mathcal{T}, then the first sub- k-configuration \mathbb{X}_{r} has Hilbert function $\rho_{n-1}\left(\mathcal{T}_{r}\right)$. This remark, then, completes the proof of Theorem 3.7.
(2) Corollary 3.5 shows that, for some Hilbert functions $\mathbf{H} \in \mathcal{S}_{2}$, the only possible point sets with Hilbert function \mathbf{H} are k-configurations in \mathbb{P}^{2}.

References

[1] A. Bigatti, A.V. Geramita, and J. Migliore, Geometric consequences of extremal behavior in a theorem of Macaulay, Trans. Amer. Math. Soc. 346 (1994), 203-235.
[2] L. Chiantini, C. Ciliberto, and V. Di Gennaro, The genus of projective curves, Duke Math. J. 70 (1993), 229-245.
[3] C. Ciliberto, Hilbert functions of finite sets of points and the genus of a curve in projective space, in: Space curves, Proceedings, Rocca di Papa, 1985, Lecture Notes in Math., vol. 1266, Springer-Verlag, Berlin, 1985, pp. 24-73.
[4] E.D. Davis, Complete intersection of codimension 2 in P^{r} : The Bezout-Jacobi-Serre theorem revisited, Rend. Sem. Mat. Univ. Politec. Torino 43 (1985), 333-353.
[5] D. Eisenbud and J. Harris, Curves in projective space, Séminaire de Mathématiques Supérieures, vol. 85, Université de Montréal, Montreal, 1982.
[6] A.V. Geramita, D. Gregory, and L. Roberts, Monomial ideals and points in projective space, J. Pure Appl. Algebra 40 (1986), 33-62.
[7] A.V. Geramita, T. Harima, and Y.S. Shin, Extremal point sets and Gorenstein ideals, Adv. in Math. 152 (2000), 78-119.
[8] , Decompositions of the Hilbert function of a set of points in P^{n}, Canad. J. Math., to appear.
[9] A.V. Geramita and J.C. Migliore, Hyperplane sections of a smooth curve in P^{3}, Comm. in Algebra 17 (1989), 3129-3164.
[10] A.V. Geramita, P. Maroscia, and L. Roberts, The Hilbert function of a reduced Kalgebra, J. London Math. Soc. 28 (1983), 443-452.
[11] A.V. Geramita, M. Pucci, Y.S. Shin, Smooth points of Gor (T), J. Pure Appl. Algebra 122 (1997), 209-241.
[12] A.V. Geramita and Y.S. Shin, k-configurations in P^{3} all have extremal resolutions, J. Algebra 213 (1999), 351-368.
[13] L. Gruson and C. Peskine, Genre des courbes de l'éspace projectif, Algebraic Geometry, Lecture Notes in Math, vol. 687, Springer-Verlag, 1978.
[14] T. Harima, Some examples of unimodal Gorenstein sequences, J. Pure Appl. Algebra 103 (1995), 313-324.
[15] R. Hartshorne, Connectedness of the Hilbert scheme, Publ. Math. IHES 29 (1966), 261-304.
[16] R. Maggioni and A. Ragusa, The Hilbert function of generic plane sections of curves in P^{3}, Inv. Math. 91 (1988), 253-258.
[17] Y.S. Shin, The construction of some Gorenstein ideals of codimension 4, J. Pure Appl. Alg. 127 (1998), 289-307.
[18] R. Stanley, Hilbert functions of graded algebras, Adv. in Math. 28 (1978), 57-83.
A.V. Geramita, Department of Mathematics, Queen's University, Kingston, Ontario, Canada, K7L 3N6

E-mail address: tony@mast.queensu.ca
Dipartimento di Matematica, Universitá di Genova, Genova, Italy
E-mail address: geramita@dima.unige.it
T. Harima, Department of Management and Information Science, Shikoku University, Tokushima 771-11, Japan

E-mail address: harima@keiei.shikoku-u.ac.jp
Y.S. Shin, Department of Mathematics, Sung Shin Women's University, 249-1, Dong Sun Dong 3Ka, Sung Buk Ku, Seoul, 136-742, Korea

E-mail address: ysshin@cc.sungshin.ac.kr; ysshin@mast.queensu.ca

[^0]: Received June 3, 1999; received in final form January 26, 2000.
 2000 Mathematics Subject Classification. Primary 14A05. Secondary 13A02, 14M05, 14 N 20.

 The third author was supported by a grant from Sungshin Women's University in 1998.

