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A NECESSARY CONDITION FOR ESTIMATES FOR THE
∂b-COMPLEX

FABIO NICOLA

Abstract. A necessary condition is given for certain L2 estimates to

hold for the boundary Cauchy Riemann operator and the associated
Kohn Laplacian on abstract CR manifolds of arbitrary codimension. A

circle of ideas is presented related to a priori estimates for linear partial
differential operators.

1. Introduction and discussion of the results

Let M be an abstract CR manifold of CR-dimension n and codimension
k ≥ 1 (see, e.g., Shaw and Wang [30] and Section 3 below for terminology).
We are interested in intermediate estimates between the subelliptic estimates
and certain estimates which correspond to the local solvability in L2 of the
Kohn Laplacian. More precisely, we consider the following estimate:

(1.1) For a given x0 ∈M and every δ > 0 there exists an open neighborhood
Ωδ ⊂M of x0 such that ‖u‖0 ≤ δ‖�(q)

b u‖0, ∀u ∈ D(0,q)(Ωδ).

Here ‖ ·‖0 denotes the L2-norm, D(0,q)(Ωδ) is the space of smooth (0, q)-forms
with compact support in Ωδ and
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(q−1)

b ∂
(q−1)

b

∗
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(q)
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∗
∂

(q)

b

is the Kohn Laplacian acting on (0, q)-forms.
By a classical argument from Functional Analysis (see, e.g., Lemma 4.1 in

Hörmander [17]) it follows that the local solvability in L2 for �(q)
b is equivalent

to requiring that the estimate in (1.1) is just valid for some fixed δ, whereas the
hypoellipticity of �(q)

b with a loss of derivatives less than 2 implies (1.1). We
therefore give a necessary condition for (1.1) to hold, which reads as follows.
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Let x0 ∈ M and suppose that at some characteristic point ρ0 above x0 the
Levi form L(ρ0) has signature (q, n − q) or (n − q, q), q ∈ {0, . . . , n}. Then
(1.1) does not hold.

This is a weak analog of the well known result of Andreotti, Fredricks and
Nacinovich [1] concerning the local solvability of ∂b. However, it does not seem
to us that the method of proof in [1] can be applied in our context, since M is
not required to be embeddable here. The proof we present is instead based on
some localization techniques used in the study of hypoelliptic operators with
multiple characteristics (see [15], Chapter 22 of [18], and [3]).

A problem that remains open for us is whether, in the situation described
above, estimate (1.1) fails even for a fixed δ > 0 (this would imply non-
solvability in L2), and also whether a similar result still holds if one allows
a loss greater than 2 derivatives (i.e., if the L2-norm in the left hand side
of the estimate in (1.1) is replaced by a Sobolev norm ‖ · ‖s, with s < 0).
However, as the reader will notice, these possible improvements cannot be
obtained directly with our approach, which is based on the study of a class
of second order systems by looking just at the terms of order 2 and 1, and
which therefore does not detect L2-bounded perturbations (we observe that
(1.1) is in fact independent of such perturbations). On the other hand, it
is known that, in general, 0-order terms can be decisive. This interesting
phenomenon was first put in evidence by Stein in [31] for the Kohn Laplacian
on the Heisenberg group. More precisely, the Heisenberg group Hn = C

n×R is
a classical example of strictly pseudoconvex CR manifold of the hypersurface
type, where the vector bundle of vectors of type (1,0) is generated by

Zj =
∂

∂zj
+ izj

∂

∂t
, j = 1, . . . , n, (z, t) ∈ Hn.

It is well known that �(0)
b is neither locally solvable, nor hypoelliptic. The

result obtained by Stein states that instead, for every µ ∈ C \ {0}, �(0)
b +µ is

locally solvable, C∞-hypoelliptic and analytic hypoelliptic (in this connection
see also Folland and Stein [12], Nagel, Ricci and Stein [23], Peloso and Ricci
[26], [27] and Treves [32]).

As a consequence of the above condition for (1.1) to hold, we also obtain a
necessary condition for an estimate for the ∂b-complex, which is weaker than
any subelliptic or even semi-maximal estimate:

For a given x0 ∈ M and every δ > 0 there exists an open neighborhood
Ωδ ⊂M of x0 such that

(1.2) δ−1‖u‖20 ≤ ‖∂bu‖20 + ‖∂∗bu‖20, ∀u ∈ D(0,q)(Ωδ).

Precisely, we have the following result.
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Let x0 ∈ M and suppose that at some characteristic point ρ0 above x0 the
Levi form L(ρ0) has signature (q, n − q) or (n − q, q), q ∈ {0, . . . , n}. Then
(1.2) does not hold.

This result implies at once a necessary condition for any ε-subelliptic es-
timate to hold. Recall that for a given ε > 0 we say that an ε-subelliptic
estimate is satisfied at x0 ∈M in degree q ∈ {0, . . . , n} if there exists an open
neighborhood Ω ⊂M of x0 and a constant c > 0 such that

(Iε) c‖u‖2ε ≤ ‖∂bu‖20 + ‖∂∗bu‖20 + ‖u‖20, ∀u ∈ D(0,q)(Ω).

It is known that (Iε) cannot hold with ε > 1/2, and that Kohn’s condition
Y (q) is equivalent to (I1/2) (see, e.g., Shaw and Wang [30]; we reobtain this
fact in Theorem 3.8 below). However, in general Y (q) is not necessary for
(Iε) to hold with ε < 1/2. For example, Catlin [5] (see also Diaz [11] and
Derridj [8]) proved necessary and sufficient conditions for the (closely related)
subellipticity for the ∂-Neumann problem, when the boundary of the domain
is pseudoconvex. Roughly speaking, the main result of [5] states that some
subelliptic estimate holds in degree q at the point x0 if and only if the bound-
ary is not too holomorphically flat at x0 in degree q (in the sense of D’Angelo,
see [7] and the references therein).

Now, since any estimate (Iε), ε > 0, implies (1.2), we obtain the following
necessary condition, which is very rough if compared with the now mentioned
one, but which applies to abstract CR manifolds of arbitrary codimension:

If (Iε) holds at x0 ∈ M and in degree q ∈ {0, . . . , n} for some ε > 0 and
the Levi form is non-degenerate at some characteristic point ρ0 above x0 then
Y (q) holds true at ρ0.

The analogous result for subelliptic estimates for the ∂-Neumann problem
was already proved by Derridj in [8] by different techniques. Notice that this
necessary condition cannot be obtained from Catlin’s result, for if M ⊂ Cn+1

is the boundary of a bounded pseudoconvex domain of Cn+1 and the Levi form
is non-degenerate at x0 ∈M , then the condition Z(q) is automatically satisfied
for any q ∈ {1, . . . , n} (in comparing this with the ∂-Neumann problem we
have of course to use the one-sided version Z(q) rather than Y (q)).

More generally, as a consequence of the result above we see that the condi-
tion Y (q) must still be satisfied at any characteristic point at which the Levi
form is non-degenerate if an estimate like

(1.3) c
∑

0≤j≤(nq)

(
‖Zjuj‖20 + ‖Zjuj‖20

)
≤ ‖∂bu‖20 + ‖∂∗bu‖20 + ‖u‖20, ∀u ∈ D(0,q)(Ω)

is satisfied, for complex non-vanishing vector fields Zj in a neighborhood Ω of
x0. It is worth mentioning that, in particular, the so-called maximal estimates,
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as well as the semi-maximal ones considered by Derridj [9] and by Derridj and
Tartakoff [10] imply (1.3).

Results in the spirit of the ones described now will be first proved in Section
2 for a class of systems of linear PDO’s considered by Boutet de Monvel and
Treves [4], Popivanov [29] (whose principal symbol is a scalar multiple of the
identity matrix) and then applied to the analysis of the Kohn Laplacian and
the ∂b-complex in Section 3.

2. A class of systems with double characteristics

In this section we prove some results for a class of systems considered in [4],
[29] that contains, as main example, the Kohn Laplacian associated with a CR
structure. In the next section we will interpret these results in the particular
case of the Kohn Laplacian in terms of known geometric invariants.

Since one of these auxiliary results may be of some interest in its own
right, we describe it now briefly in the context of the general theory of local
solvability of linear PDO’s. (For simplicity we consider scalar operators.)

Precisely, let X be an open subset of Rn and P = P ∗ ∈ OPS2(X)
be a classical formally self-adjoint and properly supported pseudodifferen-
tial operator in X. Hence the symbol p of P has an asymptotic expansion
p(x, ξ) ∼

∑
j≥0 p2−j(x, ξ), where the functions p2−j(x, ξ) are positively homo-

geneous of degree 2− j with respect to ξ.
We are concerned with the following estimate:

For every x0 ∈ X and every δ > 0 there exists an open neighborhood
Ωδ ⊂ X of x0 such that

(2.1) ‖u‖20 ≤ δ(Pu, u), ∀u ∈ C∞0 (Ωδ),

where (·, ·) denotes the inner product in L2(Rn).

Estimate (2.1) is of interest both in regularity theory and in local solvability
theory. Indeed, it is sufficient for the local solvability of P in L2 near any point
x0 ∈ X, as follows from the Cauchy-Schwarz inequality and the Hahn-Banach
theorem. On the other hand, it is necessary for any subelliptic estimate of
the type

c‖u‖2ε ≤ (Pu, u) + ‖u‖20, ∀u ∈ C∞0 (Ω),
for some c > 0, ε > 0, with Ω an open neighborhood of x0, which corresponds
to a loss of 2− 2ε derivatives.

When P = L∗L, for a first order principal type operator L, many results
are known. In particular, when L is a differential operator, we know that
estimate (2.1) is equivalent to Nirenberg-Treves’ condition (P ), which remains
sufficient if L is pseudodifferential of principal type (Beals and Fefferman
[2], Hörmander [16]). However, if the condition (Ψ) is only assumed for a
pseudodifferential operator L, then estimate (2.1) may fail, even for a fixed
δ, as shown by Lerner’s counterexample in [19]. At present, necessary and
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sufficient conditions are not known, even in this special situation where P has
the form L∗L; we refer to the paper by Lerner [20] for a survey of the main
results in this connection.

Returning to the general case, let Σ = {(x, ξ) ∈ T ∗X \ 0 : p2(x, ξ) = 0}
be the characteristic set of P . Let ps1 := p1 + i

2 〈∂ξ, ∂x〉p2 be the subprinci-
pal symbol of P , and denote by Fρ the fundamental matrix (or symplectic
Hessian) associated with p2, defined by

(2.2) σ(v, Fρw) =
1
2
〈Hess p2(ρ) v, w〉, ∀v, w ∈ TρT ∗X,

where σ =
∑n
j=1 dξj ∧ dxj is the canonical symplectic 2-form on T ∗X. The

definitions of ps1 and of Fρ in (2.2) have an invariant meaning at points where
p2 vanishes to second order; see Section 21.5 of [18]. Moreover, if p2 is non-
negative, then the spectrum of Fρ consists of the eigenvalue 0 and the eigen-
values ±iµj , with µj > 0. One then sets Tr+ Fρ =

∑
j µj .

As a consequence of Melin [22], if the lower bound (2.1) holds true, then
the following conditions must be satisfied:

(2.3)

{
p2(x, ξ) ≥ 0, ∀(x, ξ) ∈ T ∗X \ 0;
ps1(ρ) + Tr+ Fρ ≥ 0, ∀ρ ∈ Σ.

Indeed, the conditions (2.3) are equivalent to the so-called Melin inequality:

For every δ > 0 and any compact K ⊂ X there exists Cδ,K > 0 such that

(2.4) (Pu, u) ≥ −δ‖u‖21/2 − Cδ,K‖u‖
2
0, ∀u ∈ C∞0 (K).

This inequality is clearly weaker than (2.1). However, it follows from the
results in Popivanov [28] and Nicola [24] that in presence of a good geometry
of Σ the conditions (2.3) are in fact sufficient for (2.1) to hold, provided the
symplectic form σ is degenerate when restricted to Σ.

More precisely, suppose that the characteristic set Σ is a smooth connected
manifold with constant symplectic rank (i.e., Σ 3 ρ 7→ dim(TρΣ ∩ TρΣσ) is
constant), that the canonical one form

∑n
j=1 ξjdxj does not vanish identi-

cally on TρΣ for every ρ ∈ Σ and finally that P is transversally elliptic (i.e.,
KerFρ = TρΣ, for every ρ ∈ Σ). Then, if σ|Σ is degenerate, the conditions
(2.3) are sufficient for (2.1) to hold, at least up to a similarity by Fourier inte-
gral operators (see also [25] for other related situations where the symplectic
form is allowed to degenerate).

Hence, assuming (2.3), the main obstruction to the validity of (2.1) is
represented by the points ρ ∈ Σ at which the characteristic set is symplectic
(i.e., TρΣ ∩ TρΣσ = {0}); this is already clear from the paper by Hörmander
[14] (see also Lewy [21]).

We then present a necessary condition for (2.1) to hold, which concerns
just those points (more generally, for an operator P which is not transversally
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elliptic, the points ρ ∈ Σ at which Fρ is not semi-simple), namely

(2.5) ∀ρ ∈ Σ, KerFρ ∩ ImFρ = {0} =⇒ ps1(ρ) + Tr+ Fρ > 0.

We observe that in (2.5) no assumption on the characteristic set Σ or on the
vanishing order of p2 at Σ is made.

It is worth mentioning that, when P = L∗L for a first order pseudodiffer-
ential operator L with principal symbol σ1(L), (2.5) yields exactly the well-
known Hörmander condition, that is, dσ1(L) 6= 0 and {Reσ1(L), Imσ1(L)} ≥
0, where σ1(L) = 0 (see Theorem 2.3 below). This is essentially a weak ver-
sion of the already mentioned condition (Ψ). It was introduced in [14] and
allowed a geometric explanation of the nonsolvability of Lewy’s operator.

We can now establish our results. We begin with a necessary condition
for an estimate like (2.1) when the inner product on the right hand side is
replaced by ‖Pu‖2. (Since we are only dealing here with the space L2(Rn;CN ),
we denote the corresponding norm by ‖ · ‖, instead of ‖ · ‖0, and the inner
product by (·, ·).)

Theorem 2.1. Let P = P ∗ ∈ OPS2(X;CN ) be a N × N formally
self-adjoint system of classical properly supported pseudodifferential opera-
tors in X, and assume that its principal symbol has the form p2(x, ξ)I (I :=
IdMatN×N (C)). Let

Σ = {(x, ξ) ∈ T ∗X \ 0 : p2(x, ξ) = 0}

be the characteristic set of P , ps1 its subprincipal symbol and Fρ, ρ ∈ Σ, the
fundamental matrix associated with p2. Let x0 ∈ X and suppose that there
exist an open neighborhood Ω ⊂ X of x0 and a constant C > 0 such that

(2.6) (Pu, u) ≥ −C‖u‖2, ∀u ∈ C∞0 (Ω;CN ),

and that for every δ > 0 there exists an open neighborhood Ωδ ⊂ X of x0 such
that

‖u‖ ≤ δ‖Pu‖, ∀u ∈ C∞0 (Ωδ;CN ).

If for some ρ0 = (x0, ξ0) ∈ Σ above x0 we have

(2.7) KerFρ0 ∩ ImFρ0 = {0},

then
ps1(ρ0) + Tr+ Fρ0I is invertible.

Proof. The proof is by contradiction. We begin by observing that from (2.6)
and Melin’s result [22] (see also Popivanov [29]) it follows that p2(x, ξ) ≥ 0
for every (x, ξ) ∈ T ∗X \ 0, with x ∈ Ω, and that ps1(ρ0) + Tr+ Fρ0I ≥ 0, as
Hermitian matrix. Hence we may suppose

(2.8) Ker
(
ps1(ρ0) + Tr+ Fρ0I

)
6= {0}.
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For simplicity we consider the case of an operator with scalar-valued symbol
(N = 1), and we describe the changes needed to treat the general case at the
end of the proof.

We can assume |ξ0| = 1 and also that the symbol p of P is compactly
supported with respect to x.

Consider now a real-valued function χ ∈ C∞0 (Ωδ), with χ = 1 in a neigh-
borhood of x0. We have

(2.9) ‖χu‖ ≤ δ‖Pχu‖, ∀u ∈ S(Rn).

We will test (2.9) on wave packets which are localized in a small conic neigh-
borhood of (x0, ξ0) of the type

(2.10) ut(x) = eit
2xξ0

(
v1(t(x− x0)) + t−1v2(t(x− x0))

)
, t ≥ 1,

where v1, v2 ∈ S(Rn) will be chosen later on.
Now, by dominated convergence we have

(2.11) ‖χut‖ = t−n/2 (‖v1‖+ o(1)) , as t→ +∞.

Moreover, we have

(2.12) Pχut(x) = eit
2xξ0φt(t(x− x0)),

where, upon setting p′ for the symbol of Pχ,

(2.13) φt(y) = (2π)−n
∫
eiyηp′(x0 + y/t, t2ξ0 + tη)

(
v̂1(η) + t−1v̂2(η)

)
dη.

In an open neighborhood Ω′ ⊂ Ω of x0 we have p − p′ ∈ S−∞(Ω′ × Rn), so
that a Taylor expansion at (x0, t

2ξ0) gives

(2.14) p′(x0 + y/t, t2ξ0 + tη) =
2∑
r=0

t2−rp(2+r)(ρ0; y, η) + gt(y, η),

where

p(h)(ρ0; y, η) :=
∑

|α|+|β|+2j=h

1
α!

1
β!
∂αx ∂

β
ξ p2−j(ρ0)yαηβ , h = 2, 3, 4,

and

(2.15) |gt(y, η)| ≤ Ct−1〈y〉5〈η〉11, ∀(y, η) ∈ R2n,∀t ≥ 1.
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Let us verify (2.15). We have

|gt(y, η)|

≤ C1 sup
|α|+|β|+2j=5

sup
τ∈[0,1]

t|β|−|α||y||α||η||β|
∣∣∣(∂αx ∂βξ p′2−j) (x0 + τy/t, t2ξ0 + τtη)

∣∣∣
+ |(p′ − p′2 − p′1 − p′0)(x0 + y/t, t2ξ0 + tη)|)

≤ C2t
−1 sup
|α|+|β|+2j=5

sup
τ∈[0,1]

|y||α||η||β|
(

1
t2

+
∣∣∣ξ0 + τ

η

t

∣∣∣)2−j−|β|

︸ ︷︷ ︸
Aαβ(t,y,η)

+C ′2t
−1〈η〉.

We see that for |η| < t/2 we have

|Aαβ(t, y, η)| ≤ C3|y||α||η||β|.

For |η| ≥ t/2 we consider two cases: if 2− j − |β| ≥ 0, then

|Aαβ(t, y, η)| ≤ C4|y||α|〈η〉2−j ,

whereas if 2− j − |β| < 0, then

|Aαβ(t, y, η)| ≤ C5|y||α||η||β|t−4+2j+2|β| ≤ C6|y||α||η|2|β|−|α|+1.

Hence (2.15) is verified.
Now,

(2.16) ‖Pχut‖ = t−n/2‖φt‖,

and by (2.13), (2.14), (2.15) and similar estimates for ∂βη gt(y, η) we can write

(2.17) φt(y) = t2p(2)(ρ0; y,D)v1 + t
(
p(2)(ρ0; y,D)v2 + p(3)(ρ0; y,D)v1

)
+ p(4)(ρ0; y,D)v1 + p(3)(ρ0; y,D)v2 + rt(y),

where |rt(y)| ≤ CN t−1〈y〉−N , for every y ∈ Rn, t ≥ 1, N ∈ Z+.
We are now going to choose v1 and v2 in such a way that the first two

terms in (2.17) vanish.
We begin by observing that

p(2)(ρ0; y,D) = Qwρ0
(y,D) + ps1(ρ0),

where

Qρ0(y, η) = σ

([
y
η

]
, Fρ

[
y
η

])
denotes the Hessian of p2/2 at ρ0, and Qwρ0

(y,D) its Weyl quantization. Now,
by Hörmander’s theorem on the symplectic classification of semidefinite qua-
dratic forms (Theorem 21.5.3 of [18]), there exists a linear symplectic map
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χ : R2n
y,η → R

2n
z,ζ such that

(2.18)
(
Qρ0 ◦ χ−1

)
(z, ζ) =

ν∑
j=1

µj(ρ0)(z2
j + ζ2

j ) +
ν+l∑

j=ν+1

ζ2
j ,

with l = dim (KerFρ0 ∩ ImFρ0), µj(ρ0) > 0 and
∑ν
j=1 µj(ρ0) = Tr+ Fρ0 . By

the hypothesis (2.7) we have l = 0 (hence the second sum in (2.18) does not
appear) and therefore by (2.8)

Ker
( (
Qρ0 ◦ χ−1

)w
(z,D)+ps1(ρ0)

)
∩S(Rn) = span

{
e−
∑ν
j=1 z

2
j /2
}
⊗S(Rn−ν)

is non-empty. Now, it follows from the Segal Theorem (Theorem 18.5.9 of
[18]) that there exists a metaplectic transformation Uρ0 in L2(Rνz) (which is
therefore, in particular, a unitary transformation in L2(Rν) and an automor-
phism of S(Rν) and of S ′(Rν)) such that Qwρ0

= U∗ρ0
(Qρ0 ◦ χ−1)wUρ0 . We

observe that, since χ is linear (and not merely affine), the transformation Uρ0

preserves the parity of functions in L2(Rν) (i.e., it commutes with the invo-
lution L2(Rν) 3 f(y) 7→ f(−y) ∈ L2(Rν)), as follows by an inspection of the
explit expression of Uρ0 (see, e.g., the proof of Theorem 18.5.9 of [18]).

We therefore define the operators

p̃(h)(ρ0; z,D) := Uρ0p
(h)(ρ0; y,D)U∗ρ0

, h = 2, 3,

on S(Rn), so that in particular

p̃(2)(ρ0; z,D) =
ν∑
j=1

µj(ρ0)(z2
j +D2

j ) + ps1(ρ0).

Consider now any even function ṽ1 ∈ S(Rn)∩Ker p̃(2)(ρ0; y,D), ṽ1 6≡ 0. Then
in (2.10) we choose v1 := U∗ṽ1, so that

(2.19) p(2)(ρ0; y,D)v1 = U∗ρ0
p̃(2)(ρ0; z,D)ṽ1 = 0.

It remains to choose v2. To this end, we first show that

(2.20)
(
p(3)(ρ0; y,D)w,w

)
≥ 0, ∀w ∈ S(Rn) ∩Ker p(2)(ρ0; y,D).

Indeed, upon setting wt := eit
2xξ0w(t(x− x0)), it follows as above from (2.6)

that

t−n‖w‖2 ≤ (χPχwt, wt)(2.21)

= t2−n
(
p(2)(ρ0; y,D)w,w

)
+ t1−n

(
p(3)(ρ0; y,D)w,w

)
+ o(t1−n), as t→ +∞.

Since p(2)(ρ0; y,D)w = 0, we deduce at once (2.20) from (2.21) after dividing
by t1−n and letting t → +∞. (Similarly, from the fact that P is formally
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self-adjoint one also sees that the operator p(3)(ρ0; y,D) is symmetric when
restricted to the vector space S(Rn) ∩Ker p(2)(ρ0; y,D).)

Write z = (z′, z′′) ∈ Rν × Rn−ν and set h0(z′) := π−ν/4e−|z
′|2/2. We now

claim that, with our choice of ṽ1, we have

(2.22)
(
p̃(3)(ρ0; z,D)ṽ1, h0k

)
= 0, ∀k ∈ S(Rn−νz′′ ).

Indeed, since ṽ1, h0k ∈ S(Rn) ∩Ker p̃(2)(ρ0; z,D), from (2.20) it follows that

0 ≤
(
p̃(3)(ρ0; z,D)(ṽ1 + λh0k), ṽ1 + λh0k

)
, ∀λ ∈ R.

Then it suffices to expand this inner product and, after dividing by λ, let
λ→ 0, taking into account that (p̃(3)(ρ0; z,D)ṽ1, ṽ1) = 0, since ṽ1 is an even
function, whereas p̃(3)(ρ0; z,D)ṽ1 is odd (for p(3)(ρ0; y,D) changes the parity).

By the arbitrariness of k in (2.22) we deduce that

(2.23)
(
p̃(3)(ρ0; z,D)ṽ1, h0

)
L2(Rν

z′ )
= 0, ∀z′′ ∈ Rn−ν .

As a consequence, by performing a partial Fourier expansion of the function
p̃(3)(ρ0; z,D)ṽ1 ∈ S(Rnz ) with respect to the Hilbert basis of Hermite functions
in L2(Rνz′), we see that the equation

p̃(2)(ρ0; z,D)ṽ2 = −p̃(3)(ρ0; z,D)ṽ1

has a solution ṽ2 ∈ S(Rn). We can now choose v2 := U∗ṽ2 in (2.10), so that

(2.24) p(2)(ρ0; y,D)v2 + p(3)(ρ0; y,D)v1 = 0.

From (2.9), (2.11), (2.16), (2.17), (2.19) and (2.24), upon letting t → +∞ it
follows by dominated convergence that

(2.25) ‖v1‖ ≤ δ‖p(4)(ρ0; y,D)v1 + p(3)(ρ0; y,D)v2‖.

On the other hand, if δ is small enough, it is clear that (2.25) fails.
This concludes the proof in the scalar case. For general N ≥ 1, the proof is

the same (with the obvious changes of notation) by choosing ṽ1 ∈ S(Rn;CN )∩
Ker p̃2(ρ0; y,D) \ {0} even and v2 ∈ S(Rn;CN ) which solves (2.24). �

In the next corollary we prove the necessary condition mentioned above
for (2.1) to hold. We present the result for the class of systems considered in
Theorem 2.1.

Corollary 2.2. Let P = P ∗ ∈ OPS2(X;CN ) be a N ×N formally self-
adjoint system of classical properly supported pseudodifferential operators in
X, and assume that its principal symbol has the form p2(x, ξ)I. Let us suppose
that for a given x0 ∈ X and every δ > 0 there exists an open neighborhood Ωδ
of x0 such that

(2.26) ‖u‖2 ≤ δ(Pu, u), ∀u ∈ C∞0 (Ωδ;CN ).
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Then for every ρ0 = (x0, ξ0) ∈ Σ above x0 we have

(2.27) ps1(ρ0) + Tr+ Fρ0I ≥ 0,

and

(2.28) KerFρ0 ∩ ImFρ0 = {0} =⇒ ps1(ρ0) + Tr+ Fρ0I is invertible.

Proof. As we observed in the proof of Theorem 2.1, (2.27) follows at once
from the results in [22], [29]. As regards (2.28), it suffices to apply the Cauchy-
Schwarz inequality in (2.26) and Theorem 2.1. �

Let us show that from Corollary 2.2 we can easily deduce the following
well-known result of Hörmander [14].

Theorem 2.3. Let L ∈ OPS1(X) be a classical and properly supported
pseudodifferential operator, with principal symbol l1. Let us suppose that for
any given x0 ∈ X and every δ there exists a neighborhood Ωδ ⊂ X of x0 such
that

(2.29) ‖u‖2 ≤ δ‖Lu‖2, ∀u ∈ C∞0 (Ωδ).

Then

(2.30) dl1 6= 0 and {Re l1, Im l1} ≥ 0 where l1 = 0.

Proof. It suffices to apply Corollary 2.2 to the operator P = L∗L (N = 1).
We have p2 = |l1|2, Σ = {(x, ξ) ∈ T ∗X \ 0 : l1(x, ξ) = 0}. Moreover,

Fρw =
1
2
(
σ(w,Hl1)Hl1

+ σ(w,Hl1
)Hl1

)
, w ∈ TρT ∗X, ρ ∈ Σ,

where Hl1 (resp. Hl1
) denotes the Hamilton field associated with l1 (resp. l1).

Hence it is easily seen that we have

KerFρ ∩ ImFρ = {0} ⇐⇒ dl1(ρ) = 0 or {Re l1, Im l1}(ρ) 6= 0,

and {
ps1(ρ) = {Re l1, Im l1}(ρ),
Tr+ Fρ = |{Re l1, Im l1}(ρ)|.

Therefore it follows from (2.5) that (2.29) implies (2.30). �

Remark 2.4. Actually, the second condition in (2.30) is still necessary for
(2.29) to hold with a fixed constant δ and, in fact, even for the local solvability
of L∗ with a loss of more than 1 derivative. (Moreover, this condition has been
refined to the so-called condition (Ψ); see Hörmander [18], Section 26.4, and
Lerner [20].) Instead, the first condition in (2.30) is no longer necessary for
such weaker estimates. More generally, (2.28) is not necessary for (2.26) to
hold with a fixed constant δ > 0, even for transversally elliptic operators.
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Indeed, consider for example the operator P = P ∗ in R2 given by

P = D2
1 + x2

1D
2
2 −D2 + 1.

We have P = MM∗+ 1, where M = D1 + ix1D2 is the Mizohata operator, so
that (Pu, u) ≥ ‖u‖2 for every u ∈ S(Rn). However, for every ρ = (x, ξ) ∈ Σ =
{x1 = ξ1 = 0, ξ2 6= 0} we have KerFρ∩ImFρ = {0}, whereas ps1(ρ)+Tr+ Fρ =
−ξ2 + |ξ2| vanishes when ξ2 > 0.

We also observe that P is locally solvable with a loss of 2 derivatives,
whereas the operator P − 1 = MM∗ it not locally solvable, for otherwise
M would be (which is not true, see, e.g., [18]). Hence the local solvability
depends here on the terms of order 0, as in Stein’s example [31] discussed in
the introduction.

3. Estimates for the ∂b-complex

We briefly recall the definition of the ∂b-complex on a CR manifold M (for
details see, e.g., Chen and Shaw [6] and Shaw and Wang [30]).

A CR manifold M of CR-dimension n and real codimension k is a real
smooth manifold of dimension 2n + k together with a subbundle T 1,0(M) ⊂
CTM satisfying the following properties:

(a) rankC T 1,0(M) = n.
(b) T 1,0(M)∩T 0,1(M) = 0 (the zero section), where T 0,1(M) = T 1,0(M).
(c) (Integrability condition) For any given X1, X2 ∈ Γ(U, T 1,0(M)), we

have [X1, X2] ∈ Γ(U, T 1,0(M)), for every open U ⊂M .
We define the characteristic bundle N∗(M) ⊂ T ∗M as the space of the real

covectors which are conormal to T 1,0M ⊕ T 0,1M .
We fix a Hermitian metric on CTM so that T 0,1(M) is orthogonal to

T 1,0(M) and we denote by T ∗0,1(M) ⊂ CT ∗M the complex vector bundle
whose sections are forms which annihilate T 0,1(M)⊥. We set Λ0,q(M) =
ΛqT ∗0,1(M) and we denote by Eq(M) (resp. E0,q(M)) the space of smooth
sections of ΛqCT ∗M (resp. Λ0,q(M)). Let πq : Eq(M)→ E0,q(M) be the pro-

jection and define ∂
(q)

b := πq+1 ◦ d : E0,q(M)→ E0,q+1(M). We also consider

its adjoint ∂
(q)∗
b : E0,q+1(M)→ E0,q(M).

We observe that the estimate (Iε) in the introduction can be written as

(3.1) c‖u‖2ε ≤ (�(q)
b u, u) + ‖u‖20, ∀u ∈ D(0,q)(Ω),

where
�(q)
b := ∂

(q−1)

b ∂
(q−1)

b

∗
+ ∂

(q)

b

∗
∂

(q)

b : E0,q(M)→ E0,q(M)

(for q = 0, �(0)
b = ∂

(0)

b

∗
∂

(0)

b ) is the Kohn Laplacian associated with the ∂b-
complex acting to (0, q)-forms.

We now consider a local basis L1, . . . , Ln of sections of T 0,1(M) and real
vector fields T1, . . . , Tk such that L1, . . . , Ln, L1, . . . , Ln, T1, . . . , Tk is a local
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orthonormal basis of CTM . Let ω1, . . . , ωn, ω1, . . . , ωn, τ1, . . . , τk, be the dual
basis to L1, . . . , Ln, L1, . . . , Ln, T1, . . . , Tk, and let u =

∑
I φIω

I be a (0, q)-
form, with I = (i1, . . . , iq), 1 ≤ i1 < . . . < iq ≤ n, and ωI = ωi1 ∧ . . . ∧ ωiq .
We now see that, with respect to such a basis, the Kohn Laplacian takes a
relatively simple form.

First we introduce the following notation: given two multi-indices K and L
such that |K| = |L| = q and |{K∩L}| = q−1, we set ε(K,L) = (−1)m, where
m is the number of elements in K ∩L between the unique element k ∈ K \L
and the unique element l ∈ L \K.

All summations below are performed on strictly increasing multi-indices.

Proposition 3.1. Given a (0, q)-form u =
∑
K

φKω
K , we have

(3.2) �(q)
b

(∑
K

φKω
K

)
=
∑
L

(∑
K

�LKφK

)
ωL + E(L,L, 1)u.

Here E(L,L, 1) denotes a sum of terms in which Lj, Lj, j = 1, . . . , n, and the
constant function 1 are multiplied by smooth matrices, and

�LK = −δLK
n∑
k=1

LjLj +MLK ,

with

MLK =


∑
k∈K

[Lk, Lk] if K = L,

ε(K,L)[Lk, Ll] if |{K ∩ L}| = q − 1,
0 otherwise.

Proof. The computations are the same as those in the proof of Proposition
2.1 of Peloso and Ricci [27]. Hence we refer the reader directly to that paper.

�

As a consequence we see that the system �(q)
b has a principal symbol which

is a scalar multiple of the N × N identity matrix, with N =
(
n
q

)
, i.e., of the

form p2I. Indeed, if we set vj := σ1(Lj) for the principal symbols of the vector
fields Lj , j = 1, . . . , n, we have p2 =

∑n
j=1 |vj |2. Hence its characteristic set

is given by
Σ = {ρ ∈ T ∗M \ 0 : vj(ρ) = 0, j = 1, . . . , n},

which is exactly N∗(M) with the 0-section removed.
We now recall the definition of the Levi form and that of the conditions

Z(q) and Y (q) at a given point ρ ∈ N∗(M) \ 0. By definition, the Levi form
L(ρ) at ρ ∈ N∗(M) is the Hermitian matrix whose entries are

L(ρ)jk := σ1([Lj , Lk])(ρ) = i〈ρ, [Lj , Lk]〉 = i{vj , vk}(ρ),
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j, k = 1, . . . , n, ρ ∈ N∗(M). We observe that changing an orthornormal basis
Lj , j = 1, . . . , n, results in unitary intertwinings of L(ρ).

For ρ ∈ Σ, let n+(ρ) (resp. n−(ρ)) be the number of strictly positive (resp.
strictly negative) eigenvalues of L(ρ).

Definition 3.2. We say that condition Z(q), q ∈ {0, . . . , n}, holds at a
given ρ ∈ N∗(M) \ 0 if

Z(q) n+(ρ) > n− q or n−(ρ) > q.

We say that condition Y (q) holds at ρ if both Z(q) and Z(n − q) hold at ρ
(equivalently, if Z(q) holds at ρ = (x, ξ) and at −ρ := (x,−ξ)).

Remark 3.3. If L(ρ) is non-degenerate, then condition Z(q) at ρ is equiv-
alent to (n+(ρ), n−(ρ)) 6= (n− q, q).

We can now state the main result of this section.

Theorem 3.4. Let x0 ∈M and suppose that at some characteristic point
ρ0 ∈ N∗(M) \ 0 above x0 the Levi form L(ρ0) has signature (q, n − q) or
(n− q, q), q ∈ {0, . . . , n}. Then (1.1) does not hold.

Corollary 3.5. Under the assumptions of Theorem 3.4, (1.2) does not
hold.

Corollary 3.5 is an immediate consequence of Theorem 3.4 and the Cauchy-
Schwarz inequality. Theorem 3.4 will follow from Theorem 2.1 applied to
P = �(q)

b and the following two propositions, which express the hypotheses of
Theorem 2.1 in terms of the spectrum of the Levi form. In what follows, we
denote by ps1 and Fρ the subprincipal symbol and the fundamental matrix of
the system �(q)

b .

Proposition 3.6. For any ρ ∈ Σ we have

(3.3) KerFρ ∩ ImFρ = {0} ⇐⇒ L(ρ) is non-degenerate.

Proof. The equivalence (3.3) easily follows from the fact that the map

KerL(ρ) 3 α 7→ u =
n∑
j=1

αjHvj + αjHvj ∈ KerFρ ∩ ImFρ

is an isomorphism of vector spaces on R, as one easily sees using the explicit
expression

Fρw =
1
2

n∑
j=1

σ(w,Hvj )Hvj + σ(w,Hvj )Hvj , w ∈ TρT ∗M, ρ ∈ Σ,

and the fact that the Hamilton fields Hvj , Hvj are linearly independent in
view of the condition (b) at the beginning of this section. �
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Proposition 3.7. For any ρ ∈ Σ the spectrum of Melin’s invariant ps1(ρ)+
Tr+ FρI for the system �(q)

b acting on (0, q)-forms is given by

(3.4) Spec
(
ps1(ρ) + Tr+ FρI

)
=

1
2

∑
j∈K

(|λj(ρ)|+ λj(ρ)) +
∑
j 6∈K

(|λj(ρ)| − λj(ρ))

 ; |K| = q

 ,

where λj(ρ), j = 1, . . . , n, are the eigenvalues of L(ρ), counted with multiplic-
ity. In particular,

(3.5) ps1(ρ) + Tr+ FρI is invertible⇐⇒ Z(q) holds at ρ.

Proof. We have to compute Melin’s invariant ps1(ρ) + Tr+ FρI from the
expression in (3.2).

Now, the non-zero spectrum of Fρ coincides with that of the restriction
Fρ|ImFρ : ImFρ → ImFρ, which, in the basis given by the Hvj , Hvj , j =
1, . . . , n, is expressed by the block matrix

− i
2

(
L(ρ) 0

0 −L(ρ)

)
.

Hence

Tr+ Fρ =
1
2

n∑
j=1

|λj(ρ)|.

The subprincipal symbol of the term −
∑n
j=1 LjLj ⊗ I in (3.2), evaluated at

ρ ∈ Σ, is given by

− i
2

n∑
j=1

{vj , vj}(ρ)I = −1
2

TrL(ρ)I = −1
2

n∑
j=1

λj(ρ)I.

Finally, the principal symbol of the first order system (MLK) in (3.2) evaluated
at ρ = (x, ξ) ∈ Σ is the endomorphism L(q)(ρ) : ΛqT ∗0,1x (M) → ΛqT ∗0,1x (M),
given by

L(q)(ρ)(α) =
n∑

j,k=1

L(ρ)kjωj ∧ (ωkcα).

We recall that, for any given (0, q)-form α =
∑
|J|=q αJω

J the (0, q− 1)-form
ωkcα is defined by

ωkcα =
∑
|J|=q

∑
|L|=q−1

εJkLαJω
L,

where εJkL = 0 if J 6= {k}∪L as sets, and it equals the parity of the permutation
that rearranges (k, I) in increasing order if J = {k} ∪L (of course, if q = 0 it
is understood that ωkcα = 0).
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Altogether, we have obtained

ps1(ρ) + Tr+ Fρ I = L(q)(ρ) +
1
2

 n∑
j=1

|λj(ρ)| − λj(ρ)

 I.

It is clear that (3.5) is therefore proved once we show that the eigenvalues of
L(q)(ρ) consist exactly of the sums λj1(ρ)+ . . .+λjq (ρ), 1 ≤ j1 < . . . < jq ≤ n,
the corresponding eigenvectors being ω′j1 ∧ . . . ∧ ω

′
jq , where ω′j , j = 1, . . . , n,

are the eigenvectors of L(1)(ρ), that is, just the transpose of L(ρ). On the
other hand, this is easily seen by the property L(q1+q2)(α1∧α2) = L(q1)(α1)∧
α2 +α1∧L(q2)(α1), for any (0, q1)-form α1 and (0, q2)-form α2. (To verify this
it is useful to recall the formula ωkc(α1∧α2) = (ωkcα1)∧α2 +(−1)q1α1c(ωk∧
α2).) �

Proof of Theorem 3.4. The theorem is an immediate consequence of The-
orem 2.1, (3.3), (3.5) and Remark 3.3. �

As regards the subelliptic estimates (Iε) for the ∂b we recalled in the intro-
duction we have therefore the following result.

Theorem 3.8.

(i) If (Iε) holds, then ε ≤ 1/2.
(ii) (I1/2) holds at x0 in degree q if and only if there exists an open neigh-

borhood U ⊂ M of x0 such that Y (q) holds at every characteristic
point (x, ξ) ∈ N∗(M), with x ∈ U , ξ 6= 0.

(iii) If (Iε) holds at x0 in degree q and the Levi form L(ρ0) is non-degenerate
at some characteristic point ρ0 ∈ N∗(M) \ 0 above x0, then the con-
dition Y (q) holds true at ρ0.

Proof. The points (i) and (ii) are well-known. They are also a consequence
of the results by Melin [22] once one characterizes the invertibility of Melin’s
invariant for the �(q)

b , as it is done in (3.5) (see also Grigis [13] for the case of
codimension 1). The point (iii) is a consequence of Corollary 3.5 and Remark
3.3, since the estimate (Iε) implies of course (1.2). �

Similarly we deduce the following result.

Theorem 3.9. Let us suppose that estimate (1.3) holds in an open neigh-
borhood Ω of x0 ∈ M in degree q, and that the Levi form L(ρ0) is non-
degenerate at some characteristic point ρ0 ∈ N∗(M) \ 0 above x0. Then the
condition Y (q) holds true at ρ0.

Proof. Indeed, if X is a non-vanishing real vector field, then for every δ > 0
we have ‖v‖0 ≤ δ‖Xv‖0 if v ∈ C∞0 (Ωδ) for a sufficiently small neighborhood
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Ωδ of x0. (We may see this by straightening X or also from [14].) On the
other hand, if Z = X + iY is a complex vector field, with X and Y real, then

‖Zv‖20 + ‖Zv‖20 ≥ (2− δ′)
(
‖Xv‖20 + ‖Y v‖20

)
− Cδ′‖v‖20,

for every v ∈ C∞0 (Ω) and δ′ > 0. Hence we see that (1.3) implies (1.2), and
therefore it suffices to apply Theorem 3.4 and Remark 3.3. �
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