ON SUMMING SEQUENCES IN \mathbb{R}^{d}

M. ANOUSSIS AND D. GATZOURAS

Abstract

We give a necessary and sufficient condition on a sequence of convex sets in \mathbb{R}^{d} for the corresponding sequence of measures to be a summing sequence.

1. Introduction

In this note we give a geometric characterization of summing sequences consisting of convex sets in \mathbb{R}^{d}.

Definition 1. A sequence of regular Borel probability measures $\left\{\mu_{n}\right\}$ on \mathbb{R}^{d} is a summing sequence if $\widehat{\mu}_{n}(\chi) \longrightarrow 0$ as $n \longrightarrow \infty$, for every character χ of \mathbb{R}^{d} not identically equal to one.

Throughout, we shall restrict attention to sequences of the form

$$
\begin{equation*}
\mu_{n}(B):=\frac{\left|B \cap G_{n}\right|}{\left|G_{n}\right|} \tag{1}
\end{equation*}
$$

where $\left\{G_{n}\right\}$ is a sequence of Borel sets in \mathbb{R}^{d} of positive and finite Lebesgue measure. Here, and throughout the paper, || denotes Lebesgue measure on \mathbb{R}^{d}.

In this sense, summing sequences were introduced by Blum and Eisenberg in [2] under the name "generalized summing sequences" and used to produce mean ergodic theorems in locally compact abelian groups. In case $\mu_{n}=n^{-1} \sum_{k=1}^{n} \delta_{x_{k}},\left\{\mu_{n}\right\}$ is a summing sequence means exactly that $\left\{x_{n}\right\}$ is (Hartman) uniformly distributed. Such sequences are studied extensively in [4] ([4, Ch. 4, Sect. 5])). Summing sequences also appear in [5], [6], [7], and [8]. The most well-known examples of sequences of sets producing summing sequences are Følner sequences [2, Corollary 2].

The inradius of a convex set in \mathbb{R}^{d} is the radius of the largest ball contained in it. For convex sets G_{n} in \mathbb{R}^{d}, Day [3] has shown that if the inradii $\varrho\left(G_{n}\right)$ of

[^0]the G_{n} tend to infinity, then the sequence $\left\{G_{n}\right\}$ is a F \varnothing lner sequence. In fact, it is not hard to see that a sequence of convex sets G_{n} is a Følner sequence iff $\varrho\left(G_{n}\right) \longrightarrow \infty$.

In this note we give a necessary and sufficient condition on a sequence of convex sets for the corresponding sequence of measures to be a summing sequence. We also present an example of a sequence of convex sets G_{n} in \mathbb{R}^{d} which produces a summing sequence, yet $\varrho\left(G_{n}\right) \longrightarrow 0$.

2. The main result

Definition 2. Let G be a Borel set in \mathbb{R}^{d} with $0<|G|<\infty$. For $\boldsymbol{u} \in \mathbb{S}^{d-1}$, the width of G in the direction \boldsymbol{u} is the number

$$
w_{G}(\boldsymbol{u}):=\sup _{\boldsymbol{x} \in G} \boldsymbol{x} \cdot \boldsymbol{u}-\inf _{\boldsymbol{x} \in G} \boldsymbol{x} \cdot \boldsymbol{u} .
$$

Theorem. Let $G_{n}, n \in \mathbb{N}$, be Borel sets in \mathbb{R}^{d} with $0<\left|G_{n}\right|<\infty$ for all n and $\left\{\mu_{n}\right\}$ be the sequence of measures defined by $\mu_{n}(B):=\left|B \cap G_{n}\right| /\left|G_{n}\right|$.
(1) If $\left\{\mu_{n}\right\}$ is a summing sequence, then

$$
w_{G_{n}}(\boldsymbol{u}) \longrightarrow \infty \quad \forall \boldsymbol{u} \in \mathbb{S}^{d-1}
$$

(2) Assume that G_{n} is convex for every $n \in \mathbb{N}$. Then if

$$
w_{G_{n}}(\boldsymbol{u}) \longrightarrow \infty \quad \forall \boldsymbol{u} \in \mathbb{S}^{d-1}
$$

the sequence $\left\{\mu_{n}\right\}$ is a summing sequence.
Proof. (1) Suppose that for some $\boldsymbol{u} \in \mathbb{S}^{d-1}, w_{G_{n}}(\boldsymbol{u})$ does not tend to ∞. By passing to a subsequence if necessary, we may then assume that

$$
B:=\sup _{n \in \mathbb{N}} w_{G_{n}}(\boldsymbol{u})<\infty .
$$

We shall show that, for some $\boldsymbol{\xi} \neq \mathbf{0}, \widehat{\mu}_{n}(\boldsymbol{\xi}) \nrightarrow 0$.
Let $\boldsymbol{c}_{n} \in \bar{G}_{n}$ be such that $\boldsymbol{c}_{n} \cdot \boldsymbol{u}=\inf _{\boldsymbol{x} \in G_{n}} \boldsymbol{x} \cdot \boldsymbol{u}$ (notice that the condition $\sup _{n \in \mathbb{N}} w_{G_{n}}(\boldsymbol{u})<\infty$ guarantees that $\left.\inf _{\boldsymbol{x} \in G_{n}} \boldsymbol{x} \cdot \boldsymbol{u}>-\infty\right)$. Then

$$
0 \leqslant \boldsymbol{u} \cdot\left(\boldsymbol{x}-\boldsymbol{c}_{n}\right) \leqslant \sup _{\boldsymbol{y} \in G_{n}} \boldsymbol{y} \cdot \boldsymbol{u}-\boldsymbol{c}_{n} \cdot \boldsymbol{u}=w_{G_{n}}(\boldsymbol{u})
$$

for all $\boldsymbol{x} \in G_{n}$. Choose $\delta>0$ so that $\left|e^{i s}-1\right| \leqslant \frac{1}{2}$, say, for $|s| \leqslant \delta$, and set $\xi:=\delta / B$ and $\boldsymbol{\xi}:=\xi \boldsymbol{u}$. Then it follows that

$$
\left|\left|G_{n}\right|^{-1} \int_{G_{n}} e^{i \boldsymbol{\xi} \cdot\left(\boldsymbol{x}-\boldsymbol{c}_{n}\right)} d \boldsymbol{x}-1\right| \leqslant\left|G_{n}\right|^{-1} \int_{G_{n}}\left|e^{i \boldsymbol{\xi} \cdot\left(\boldsymbol{x}-\boldsymbol{c}_{n}\right)}-1\right| d \boldsymbol{x} \leqslant \frac{1}{2}
$$

and hence

$$
\left|\widehat{\mu}_{n}(\boldsymbol{\xi})\right|=\left|G_{n}\right|^{-1}\left|\int_{G_{n}} e^{i \boldsymbol{\xi} \cdot \boldsymbol{x}} d \boldsymbol{x}\right|=\left|G_{n}\right|^{-1}\left|e^{-i \boldsymbol{\xi} \cdot \boldsymbol{c}_{n}} \int_{G_{n}} e^{i \boldsymbol{\xi} \cdot\left(\boldsymbol{x}-\boldsymbol{c}_{n}\right)} d \boldsymbol{x}\right| \geqslant \frac{1}{2}
$$

for all $n \in \mathbb{N}$.
(2) We shall need to consider both d-dimensional and $(d-1)$-dimensional Lebesgue measure in the following proof, so we switch to the notation $\left|\left.\right|_{m}\right.$ for m-dimensional Lebesgue measure.

Assume that the G_{n} are convex and

$$
w_{G_{n}}(\boldsymbol{u}) \longrightarrow \infty \quad \forall \boldsymbol{u} \in \mathbb{S}^{d-1}
$$

We shall show that $\widehat{\mu}_{n}(\boldsymbol{\xi}) \longrightarrow 0$ for all $\boldsymbol{\xi} \in \mathbb{R}^{d} \backslash\{\mathbf{0}\}$.
Fix $\boldsymbol{\xi} \in \mathbb{R}^{d} \backslash\{\mathbf{0}\}$ and write $\boldsymbol{\xi}=\xi \boldsymbol{u}$ with $\xi>0$ and $\boldsymbol{u} \in \mathbb{S}^{d-1}$. Using coordinates with respect to an orthonormal basis of which \boldsymbol{u} is a member, one sees that

$$
\widehat{\mu}_{n}(\boldsymbol{\xi})=\left|G_{n}\right|_{d}^{-1} \int_{G_{n}} e^{i \boldsymbol{\xi} \cdot \boldsymbol{x}} d \boldsymbol{x}=\int_{\mathbb{R}} e^{i \xi x} f_{n}(x) d x=\widehat{f}_{n}(\xi)
$$

where f_{n} is the probability density function on \mathbb{R} given by

$$
f_{n}(x):=\frac{\left|G_{n} \cap\left(\boldsymbol{u}^{\perp}+x \boldsymbol{u}\right)\right|_{d-1}}{\left|G_{n}\right|_{d}}
$$

and where \boldsymbol{u}^{\perp} denotes the hyperplane perpendicular to \boldsymbol{u}. Thus it suffices to show that

$$
\widehat{f}_{n}(\xi) \longrightarrow 0 \quad \forall \boldsymbol{\xi} \in \mathbb{R} \backslash\{0\}
$$

Set $a_{n}=\inf _{\boldsymbol{x} \in G_{n}} \boldsymbol{x} \cdot \boldsymbol{u}$ and $b_{n}=\sup _{\boldsymbol{x} \in G_{n}} \boldsymbol{x} \cdot \boldsymbol{u}$, and note that a_{n} and b_{n} are finite since we are assuming that the G_{n} are convex and of positive and finite measure (and hence necessarily pre-compact). Furthermore, since G_{n} is convex, the function $f_{n}^{1 /(d-1)}$ is concave in $\left[a_{n}, b_{n}\right]$, by the Brunn-Minkowski inequality; hence f_{n} is continuous on $\left[a_{n}, b_{n}\right]$, and unimodal, i.e., there exists $c_{n} \in\left[a_{n}, b_{n}\right]$ such that f_{n} is non-decreasing on $\left[a_{n}, c_{n}\right]$ and non-increasing on $\left[c_{n}, b_{n}\right]$. Now

$$
\widehat{f}_{n}(\xi)=\int_{a_{n}}^{b_{n}} \cos (\xi x) f_{n}(x) d x+i \int_{a_{n}}^{b_{n}} \sin (\xi x) f_{n}(x) d x
$$

and, writing $G(x):=\xi^{-1} \sin (\xi x)$, integration by parts yields

$$
\begin{aligned}
\int_{a_{n}}^{b_{n}} \cos (\xi x) f_{n}(x) d x & =\int_{a_{n}}^{b_{n}} G^{\prime}(x) f_{n}(x) d x \\
& =G\left(b_{n}\right) f_{n}\left(b_{n}\right)-G\left(a_{n}\right) f_{n}\left(a_{n}\right)-\int_{a_{n}}^{b_{n}} G(x) d f_{n}(x)
\end{aligned}
$$

where the last integral is a Riemann-Stieltjes integral, and similarly for the other integral (see, e.g., [1, Theorem 18.4]). It follows that

$$
\left|\widehat{f}_{n}(\xi)\right| \leqslant \frac{8}{\xi} \max _{x \in\left[a_{n}, b_{n}\right]} f_{n}(x)=\frac{8}{\xi} f_{n}\left(c_{n}\right)
$$

Finally, the concavity of the function $x \longmapsto\left|G_{n} \cap\left(\boldsymbol{u}^{\perp}+x \boldsymbol{u}\right)\right|_{d-1}^{1 /(d-1)}, x \in$ $\left[a_{n}, b_{n}\right]$, also implies that

$$
\begin{aligned}
\frac{w_{G_{n}}(\boldsymbol{u})}{d} \max _{x}\left|G_{n} \cap\left(\boldsymbol{u}^{\perp}+x \boldsymbol{u}\right)\right|_{d-1} & \leqslant\left|G_{n}\right|_{d} \\
& \leqslant w_{G_{n}}(\boldsymbol{u}) \max _{x}\left|G_{n} \cap\left(\boldsymbol{u}^{\perp}+x \boldsymbol{u}\right)\right|_{d-1}
\end{aligned}
$$

whence

$$
\frac{1}{w_{G_{n}}(\boldsymbol{u})} \leqslant \max _{x} f_{n}(x) \leqslant \frac{d}{w_{G_{n}}(\boldsymbol{u})} \longrightarrow 0 \quad(n \longrightarrow \infty)
$$

We conclude that

$$
\widehat{f}_{n}(\xi) \longrightarrow 0 \quad \forall \boldsymbol{\xi} \in \mathbb{R} \backslash\{0\}
$$

The second assertion of the theorem is not valid if we do not assume that the sets G_{n} are convex. This may be easily seen by considering, for example, the sets $G_{n}:=[-n, n]^{d} \backslash[-n+1, n-1]^{d}$ in \mathbb{R}^{d}.

3. An example

The following is an example of a sequence $\left\{G_{n}\right\}$ of convex sets in \mathbb{R}^{d}, for which the corresponding measures (1) form a summing sequence in \mathbb{R}^{d}, yet $\varrho\left(G_{n}\right) \longrightarrow 0$.

Example. Consider the ellipsoids $G_{n}:=\left\{\boldsymbol{x} \in \mathbb{R}^{d}: \boldsymbol{x}^{\prime} Q_{n} \boldsymbol{x} \leqslant 1\right\}$ in \mathbb{R}^{d} determined by

$$
Q_{n}:=\left(\begin{array}{lll}
\boldsymbol{u}_{1}(n) & \ldots & \boldsymbol{u}_{d}(n)
\end{array}\right)\left(\begin{array}{ccc}
a_{1}(n)^{-2} & & \\
& \ddots & \\
& & a_{d}(n)^{-2}
\end{array}\right)\left(\begin{array}{c}
\boldsymbol{u}_{1}(n)^{\prime} \\
\vdots \\
\boldsymbol{u}_{d}(n)^{\prime}
\end{array}\right)
$$

where $a_{1}(n)>\ldots>a_{d}(n)>0$ are positive numbers and $\boldsymbol{u}_{1}(n), \ldots, \boldsymbol{u}_{d}(n)$ are unit column-vectors in \mathbb{R}^{d} forming an orthonormal basis and where $\boldsymbol{u}_{1}(n)^{\prime}, \ldots$ $\ldots, \boldsymbol{u}_{d}(n)^{\prime}$ denote the corresponding row-vectors. Choose $a_{1}(n), \ldots, a_{d}(n)$ and

$$
\boldsymbol{u}_{1}(n):=\left(u_{11}(n), \ldots, u_{d 1}(n)\right)^{\prime}
$$

so that

$$
\begin{gather*}
u_{i 1}(n)>0 \text { for all } i, \tag{2}\\
\frac{u_{i 1}(n)}{u_{k 1}(n)} \longrightarrow 0 \text { for all } 1 \leqslant k<i \leqslant d, \tag{3}\\
a_{1}(n) \cdot \min _{1 \leqslant i \leqslant d} u_{i 1}(n) \longrightarrow \infty \tag{4}
\end{gather*}
$$

and

$$
\begin{equation*}
a_{1}(n) \cdots a_{d}(n) \longrightarrow 0, \tag{5}
\end{equation*}
$$

as $n \longrightarrow \infty$. Let also μ_{n} be the measures (1) corresponding to these G_{n}. If $\boldsymbol{u} \in \mathbb{S}^{d-1}$ is a fixed unit vector,
(6)
$w_{G_{n}}(\boldsymbol{u}) \geqslant\left|a_{1}(n)\left(\boldsymbol{u} \cdot \boldsymbol{u}_{1}(n)\right)-a_{1}(n)\left(\boldsymbol{u} \cdot\left(-\boldsymbol{u}_{1}(n)\right)\right)\right|=2 a_{1}(n)\left|\boldsymbol{u} \cdot \boldsymbol{u}_{1}(n)\right|$,
since the vectors $\pm a_{1}(n) \boldsymbol{u}_{1}(n)$ belong to G_{n}. Writing $\boldsymbol{u}=\left(u_{1}, \ldots, u_{d}\right)^{\prime}$, and denoting by k the least i for which $u_{i} \neq 0$, one has that

$$
\boldsymbol{u} \cdot \boldsymbol{u}_{1}(n)=\sum_{i=k}^{d} u_{i} u_{i 1}(n)=u_{k} u_{k 1}(n)\left(1+\sum_{i=k+1}^{d} \frac{u_{i}}{u_{k}} \frac{u_{i 1}(n)}{u_{k 1}(n)}\right)
$$

whence $w_{G_{n}}(\boldsymbol{u}) \longrightarrow \infty$ by (3), (4) and (6). Thus the measures μ_{n} corresponding to these G_{n} form a summing sequence in \mathbb{R}^{d}. On the other hand

$$
\varrho\left(G_{n}\right)=a_{d}(n) \longrightarrow 0,
$$

by (5).
It remains to show that there exist numbers $a_{1}, \ldots, a_{d}(n)$ and $u_{11}(n), \ldots$ $\ldots, u_{d 1}(n)$ satisfying (2)-(5). For an example let c_{d} be any positive number satisfying $c_{d}<(d-1)^{-1}$, and set

$$
u_{i 1}(n):=\sqrt{\frac{c_{d}}{n^{i-1}}} \quad \text { for } \quad 1<i \leqslant d
$$

and

$$
u_{11}(n):=\sqrt{1-\frac{c_{d}}{n}-\cdots-\frac{c_{d}}{n^{d-1}}}
$$

then choose $a_{1}(n), \ldots, a_{d}(n)$ accordingly.
Notice that in the above example

$$
\left|G_{n}\right|=\gamma_{d} a_{1}(n) \cdots a_{d}(n) \longrightarrow 0
$$

where γ_{d} denotes the d-dimensional measure of the unit ball in \mathbb{R}^{d}. However, it is not hard to see that if we assume that $G_{n} \subseteq G_{n+1}$, then the condition $\left|G_{n}\right| \longrightarrow|G|$ is necessary for the corresponding sequence of measures (1) to be a summing sequence, in any locally compact abelian group.

References

[1] P. Billingsley, Probability and measure, Wiley Series in Probability and Mathematical Statistics, John Wiley \& Sons Inc., New York, 1995. MR 1324786 (95k:60001)
[2] J. Blum and B. Eisenberg, Generalized summing sequences and the mean ergodic theorem, Proc. Amer. Math. Soc. 42 (1974), 423-429. MR 0330412 (48 \#8749)
[3] M. Day, Ergodic theorems for Abelian semigroups, Trans. Amer. Math. Soc. 51 (1942), 399-412. MR 0006614 (4,14b)
[4] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience [John Wiley \& Sons], New York, 1974. MR 0419394 (54 \#7415)
[5] A. T.-M. Lau and V. Losert, Ergodic sequences in the Fourier-Stieltjes algebra and measure algebra of a locally compact group, Trans. Amer. Math. Soc. 351 (1999), 417428. MR 1487622 (99e:43001)
[6] W. Maxones and H. Rindler, Einige Resultate über unitär gleichverteilte Massfolgen, Anz. Österreich. Akad. Wiss. Math.-Naturwiss. Kl. (1977), 11-13. MR 0486304 (58 \#6063)
[7] H. Rindler, Gleichverteilte Folgen in lokalkompakten Gruppen, Monatsh. Math. 82 (1976), 207-235. MR 0427535 (55 \#567)
[8] A. Tempelman, Ergodic theorems for group actions, Mathematics and its Applications, vol. 78, Kluwer Academic Publishers Group, Dordrecht, 1992. MR 1172319 (94f:22007)
M. Anoussis, Department of Mathematics, University of the Aegean, 83200 Karlovasi, Samos, Greece

E-mail address: mano@aegean.gr
D. Gatzouras, Laboratory of Mathematics and Statistics, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece

E-mail address: gatzoura@aua.gr

[^0]: Received January 31, 2005; received in final form April 18, 2005.
 2000 Mathematics Subject Classification. Primary 43A07. Secondary 28D99, 52A05.
 Research of the second named author supported in part by the European Network PHD, FP6 Marie Curie Actions, RTN, Contract MCRN-511953.

