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ON SUMMING SEQUENCES IN R
d

M. ANOUSSIS AND D. GATZOURAS

Abstract. We give a necessary and sufficient condition on a sequence

of convex sets in Rd for the corresponding sequence of measures to be a
summing sequence.

1. Introduction

In this note we give a geometric characterization of summing sequences
consisting of convex sets in Rd.

Definition 1. A sequence of regular Borel probability measures {µn} on
R
d is a summing sequence if µ̂n(χ) −→ 0 as n −→ ∞, for every character χ

of Rd not identically equal to one.

Throughout, we shall restrict attention to sequences of the form

(1) µn(B) :=
|B ∩Gn|
|Gn|

,

where {Gn} is a sequence of Borel sets in Rd of positive and finite Lebesgue
measure. Here, and throughout the paper, | | denotes Lebesgue measure on
R
d.
In this sense, summing sequences were introduced by Blum and Eisen-

berg in [2] under the name “generalized summing sequences” and used to
produce mean ergodic theorems in locally compact abelian groups. In case
µn = n−1

∑n
k=1 δxk , {µn} is a summing sequence means exactly that {xn} is

(Hartman) uniformly distributed. Such sequences are studied extensively in
[4] ([4, Ch. 4, Sect. 5])). Summing sequences also appear in [5], [6], [7], and
[8]. The most well-known examples of sequences of sets producing summing
sequences are Følner sequences [2, Corollary 2].

The inradius of a convex set in Rd is the radius of the largest ball contained
in it. For convex sets Gn in Rd, Day [3] has shown that if the inradii %(Gn) of
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the Gn tend to infinity, then the sequence {Gn} is a Følner sequence. In fact,
it is not hard to see that a sequence of convex sets Gn is a Følner sequence
iff %(Gn) −→∞.

In this note we give a necessary and sufficient condition on a sequence
of convex sets for the corresponding sequence of measures to be a summing
sequence. We also present an example of a sequence of convex sets Gn in Rd

which produces a summing sequence, yet %(Gn) −→ 0.

2. The main result

Definition 2. Let G be a Borel set in R
d with 0 < |G| < ∞. For

u ∈ Sd−1, the width of G in the direction u is the number

wG(u) := sup
x∈G

x · u− inf
x∈G

x · u.

Theorem. Let Gn, n ∈ N, be Borel sets in Rd with 0 < |Gn| <∞ for all
n and {µn} be the sequence of measures defined by µn(B) := |B ∩Gn| / |Gn|.

(1) If {µn} is a summing sequence, then

wGn(u) −→∞ ∀u ∈ Sd−1.

(2) Assume that Gn is convex for every n ∈ N. Then if

wGn(u) −→∞ ∀u ∈ Sd−1

the sequence {µn} is a summing sequence.

Proof. (1) Suppose that for some u ∈ Sd−1, wGn(u) does not tend to ∞.
By passing to a subsequence if necessary, we may then assume that

B := sup
n∈N

wGn(u) <∞.

We shall show that, for some ξ 6= 0, µ̂n(ξ) 9 0.
Let cn ∈ Ḡn be such that cn ·u = infx∈Gn x ·u (notice that the condition

supn∈N wGn(u) <∞ guarantees that inf
x∈Gn

x · u > −∞). Then

0 6 u · (x− cn) 6 sup
y∈Gn

y · u− cn · u = wGn(u)

for all x ∈ Gn. Choose δ > 0 so that
∣∣eis − 1

∣∣ 6 1
2 , say, for |s| 6 δ, and set

ξ := δ/B and ξ := ξu. Then it follows that∣∣∣∣|Gn|−1
∫
Gn

eiξ·(x−cn) dx− 1
∣∣∣∣ 6 |Gn|−1

∫
Gn

∣∣∣eiξ·(x−cn) − 1
∣∣∣ dx 6 1

2 ,

and hence

|µ̂n(ξ)| = |Gn|−1

∣∣∣∣∫
Gn

eiξ·x dx

∣∣∣∣ = |Gn|−1

∣∣∣∣e−iξ·cn ∫
Gn

eiξ·(x−cn) dx

∣∣∣∣ > 1
2

for all n ∈ N.
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(2) We shall need to consider both d-dimensional and (d− 1)-dimensional
Lebesgue measure in the following proof, so we switch to the notation | |m for
m-dimensional Lebesgue measure.

Assume that the Gn are convex and

wGn(u) −→∞ ∀u ∈ Sd−1.

We shall show that µ̂n(ξ) −→ 0 for all ξ ∈ Rd r {0}.
Fix ξ ∈ Rd r {0} and write ξ = ξu with ξ > 0 and u ∈ Sd−1. Using

coordinates with respect to an orthonormal basis of which u is a member, one
sees that

µ̂n(ξ) = |Gn|−1
d

∫
Gn

eiξ·x dx =
∫
R

eiξxfn(x) dx = f̂n(ξ),

where fn is the probability density function on R given by

fn(x) :=

∣∣Gn ∩ (u⊥ + xu)
∣∣
d−1

|Gn|d
,

and where u⊥ denotes the hyperplane perpendicular to u. Thus it suffices to
show that

f̂n(ξ) −→ 0 ∀ ξ ∈ Rr {0} .

Set an = infx∈Gn x · u and bn = supx∈Gn x · u, and note that an and bn
are finite since we are assuming that the Gn are convex and of positive and
finite measure (and hence necessarily pre-compact). Furthermore, since Gn is
convex, the function f

1/(d−1)
n is concave in [an, bn], by the Brunn–Minkowski

inequality; hence fn is continuous on [an, bn], and unimodal, i.e., there exists
cn ∈ [an, bn] such that fn is non-decreasing on [an, cn] and non-increasing on
[cn, bn]. Now

f̂n(ξ) =
∫ bn

an

cos(ξx)fn(x) dx+ i

∫ bn

an

sin(ξx)fn(x) dx

and, writing G(x) := ξ−1 sin(ξx), integration by parts yields∫ bn

an

cos(ξx)fn(x) dx =
∫ bn

an

G′(x)fn(x) dx

= G(bn)fn(bn)−G(an)fn(an)−
∫ bn

an

G(x) dfn(x),

where the last integral is a Riemann–Stieltjes integral, and similarly for the
other integral (see, e.g., [1, Theorem 18.4]). It follows that∣∣∣f̂n(ξ)

∣∣∣ 6 8
ξ

max
x∈[an,bn]

fn(x) =
8
ξ
fn(cn).
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Finally, the concavity of the function x 7−→
∣∣Gn ∩ (u⊥ + xu)

∣∣1/(d−1)

d−1
, x ∈

[an, bn], also implies that

wGn(u)
d

max
x

∣∣Gn ∩ (u⊥ + xu)
∣∣
d−1
6 |Gn|d
6 wGn(u) max

x

∣∣Gn ∩ (u⊥ + xu)
∣∣
d−1

,

whence
1

wGn(u)
6 max

x
fn(x) 6

d

wGn(u)
−→ 0 (n −→∞).

We conclude that
f̂n(ξ) −→ 0 ∀ ξ ∈ Rr {0} . �

The second assertion of the theorem is not valid if we do not assume that
the sets Gn are convex. This may be easily seen by considering, for example,
the sets Gn := [−n, n]d r [−n+ 1, n− 1]d in Rd.

3. An example

The following is an example of a sequence {Gn} of convex sets in Rd, for
which the corresponding measures (1) form a summing sequence in Rd, yet
%(Gn) −→ 0.

Example. Consider the ellipsoids Gn :=
{
x ∈ Rd : x′Qnx 6 1

}
in R

d

determined by

Qn :=
(
u1(n) . . . ud(n)

)a1(n)−2

. . .
ad(n)−2


u1(n)′

...
ud(n)′

 ,

where a1(n) > . . . > ad(n) > 0 are positive numbers and u1(n), . . . ,ud(n) are
unit column-vectors in Rd forming an orthonormal basis and where u1(n)′, . . .
. . . ,ud(n)′ denote the corresponding row-vectors. Choose a1(n), . . . , ad(n)
and

u1(n) := (u11(n), . . . , ud1(n))′

so that

(2) ui1(n) > 0 for all i,

(3)
ui1(n)
uk1(n)

−→ 0 for all 1 6 k < i 6 d,

(4) a1(n) · min
16i6d

ui1(n) −→∞,

and

(5) a1(n) · · · ad(n) −→ 0,
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as n −→ ∞. Let also µn be the measures (1) corresponding to these Gn. If
u ∈ Sd−1 is a fixed unit vector,
(6)
wGn(u) > |a1(n)(u · u1(n))− a1(n)(u · (−u1(n)))| = 2 a1(n) |u · u1(n)| ,

since the vectors ±a1(n)u1(n) belong to Gn. Writing u = (u1, . . . , ud)′, and
denoting by k the least i for which ui 6= 0, one has that

u · u1(n) =
d∑
i=k

uiui1(n) = uk uk1(n)

(
1 +

d∑
i=k+1

ui
uk

ui1(n)
uk1(n)

)
,

whence wGn(u) −→∞ by (3), (4) and (6). Thus the measures µn correspond-
ing to these Gn form a summing sequence in Rd. On the other hand

%(Gn) = ad(n) −→ 0,

by (5).
It remains to show that there exist numbers a1, . . . , ad(n) and u11(n), . . .

. . . , ud1(n) satisfying (2)–(5). For an example let cd be any positive number
satisfying cd < (d− 1)−1, and set

ui1(n) :=
√

cd
ni−1

for 1 < i 6 d

and

u11(n) :=
√

1− cd
n
− · · · − cd

nd−1
;

then choose a1(n), . . . , ad(n) accordingly.

Notice that in the above example

|Gn| = γd a1(n) · · · ad(n) −→ 0,

where γd denotes the d-dimensional measure of the unit ball in Rd. However,
it is not hard to see that if we assume that Gn ⊆ Gn+1, then the condition
|Gn| −→ |G| is necessary for the corresponding sequence of measures (1) to
be a summing sequence, in any locally compact abelian group.
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