Illinois Journal of Mathematics Volume 49, Number 3, Fall 2005, Pages 905–910 S 0019-2082

ON SUMMING SEQUENCES IN \mathbb{R}^d

M. ANOUSSIS AND D. GATZOURAS

ABSTRACT. We give a necessary and sufficient condition on a sequence of convex sets in \mathbb{R}^d for the corresponding sequence of measures to be a summing sequence.

1. Introduction

In this note we give a geometric characterization of summing sequences consisting of convex sets in \mathbb{R}^d .

DEFINITION 1. A sequence of regular Borel probability measures $\{\mu_n\}$ on \mathbb{R}^d is a summing sequence if $\hat{\mu}_n(\chi) \longrightarrow 0$ as $n \longrightarrow \infty$, for every character χ of \mathbb{R}^d not identically equal to one.

Throughout, we shall restrict attention to sequences of the form

(1)
$$\mu_n(B) := \frac{|B \cap G_n|}{|G_n|}$$

where $\{G_n\}$ is a sequence of Borel sets in \mathbb{R}^d of positive and finite Lebesgue measure. Here, and throughout the paper, | | denotes Lebesgue measure on \mathbb{R}^d .

In this sense, summing sequences were introduced by Blum and Eisenberg in [2] under the name "generalized summing sequences" and used to produce mean ergodic theorems in locally compact abelian groups. In case $\mu_n = n^{-1} \sum_{k=1}^n \delta_{x_k}, \{\mu_n\}$ is a summing sequence means exactly that $\{x_n\}$ is (Hartman) uniformly distributed. Such sequences are studied extensively in [4] ([4, Ch. 4, Sect. 5])). Summing sequences also appear in [5], [6], [7], and [8]. The most well-known examples of sequences of sets producing summing sequences are Følner sequences [2, Corollary 2].

The inradius of a convex set in \mathbb{R}^d is the radius of the largest ball contained in it. For convex sets G_n in \mathbb{R}^d , Day [3] has shown that if the inradii $\varrho(G_n)$ of

©2005 University of Illinois

Received January 31, 2005; received in final form April 18, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 43A07. Secondary 28D99, 52A05.

Research of the second named author supported in part by the European Network PHD, FP6 Marie Curie Actions, RTN, Contract MCRN-511953.

the G_n tend to infinity, then the sequence $\{G_n\}$ is a Følner sequence. In fact, it is not hard to see that a sequence of convex sets G_n is a Følner sequence iff $\rho(G_n) \longrightarrow \infty$.

In this note we give a necessary and sufficient condition on a sequence of convex sets for the corresponding sequence of measures to be a summing sequence. We also present an example of a sequence of convex sets G_n in \mathbb{R}^d which produces a summing sequence, yet $\varrho(G_n) \longrightarrow 0$.

2. The main result

DEFINITION 2. Let G be a Borel set in \mathbb{R}^d with $0 < |G| < \infty$. For $u \in \mathbb{S}^{d-1}$, the width of G in the direction u is the number

$$w_G(oldsymbol{u}) := \sup_{oldsymbol{x} \in G} oldsymbol{x} \cdot oldsymbol{u} - \inf_{oldsymbol{x} \in G} oldsymbol{x} \cdot oldsymbol{u}.$$

THEOREM. Let G_n , $n \in \mathbb{N}$, be Borel sets in \mathbb{R}^d with $0 < |G_n| < \infty$ for all n and $\{\mu_n\}$ be the sequence of measures defined by $\mu_n(B) := |B \cap G_n| / |G_n|$.

(1) If $\{\mu_n\}$ is a summing sequence, then

 $w_{G_n}(\boldsymbol{u}) \longrightarrow \infty \quad \forall \, \boldsymbol{u} \in \mathbb{S}^{d-1}.$

(2) Assume that G_n is convex for every $n \in \mathbb{N}$. Then if

 $w_{G_n}(\boldsymbol{u}) \longrightarrow \infty \quad \forall \, \boldsymbol{u} \in \mathbb{S}^{d-1}$

the sequence $\{\mu_n\}$ is a summing sequence.

Proof. (1) Suppose that for some $\boldsymbol{u} \in \mathbb{S}^{d-1}$, $w_{G_n}(\boldsymbol{u})$ does not tend to ∞ . By passing to a subsequence if necessary, we may then assume that

$$B:=\sup_{n\in\mathbb{N}}w_{G_n}(\boldsymbol{u})<\infty.$$

We shall show that, for some $\boldsymbol{\xi} \neq \mathbf{0}$, $\widehat{\mu}_n(\boldsymbol{\xi}) \not\rightarrow 0$.

Let $c_n \in \overline{G}_n$ be such that $c_n \cdot u = \inf_{x \in G_n} x \cdot u$ (notice that the condition $\sup_{n \in \mathbb{N}} w_{G_n}(u) < \infty$ guarantees that $\inf_{x \in G_n} x \cdot u > -\infty$). Then

$$0 \leqslant oldsymbol{u} \cdot (oldsymbol{x} - oldsymbol{c}_n) \leqslant \sup_{oldsymbol{y} \in G_n} oldsymbol{y} \cdot oldsymbol{u} - oldsymbol{c}_n \cdot oldsymbol{u} = w_{G_n}(oldsymbol{u})$$

for all $\boldsymbol{x} \in G_n$. Choose $\delta > 0$ so that $|e^{is} - 1| \leq \frac{1}{2}$, say, for $|s| \leq \delta$, and set $\xi := \delta/B$ and $\boldsymbol{\xi} := \xi \boldsymbol{u}$. Then it follows that

$$\left| |G_n|^{-1} \int_{G_n} e^{i\boldsymbol{\xi} \cdot (\boldsymbol{x} - \boldsymbol{c}_n)} d\boldsymbol{x} - 1 \right| \leq |G_n|^{-1} \int_{G_n} \left| e^{i\boldsymbol{\xi} \cdot (\boldsymbol{x} - \boldsymbol{c}_n)} - 1 \right| d\boldsymbol{x} \leq \frac{1}{2},$$

and hence

$$\left|\widehat{\mu}_{n}(\boldsymbol{\xi})\right| = \left|G_{n}\right|^{-1} \left|\int_{G_{n}} e^{i\boldsymbol{\xi}\cdot\boldsymbol{x}} d\boldsymbol{x}\right| = \left|G_{n}\right|^{-1} \left|e^{-i\boldsymbol{\xi}\cdot\boldsymbol{c}_{n}} \int_{G_{n}} e^{i\boldsymbol{\xi}\cdot(\boldsymbol{x}-\boldsymbol{c}_{n})} d\boldsymbol{x}\right| \ge \frac{1}{2}$$

for all $n \in \mathbb{N}$.

906

(2) We shall need to consider both *d*-dimensional and (d-1)-dimensional Lebesgue measure in the following proof, so we switch to the notation $| |_m$ for *m*-dimensional Lebesgue measure.

Assume that the G_n are convex and

$$w_{G_n}(\boldsymbol{u}) \longrightarrow \infty \quad \forall \, \boldsymbol{u} \in \mathbb{S}^{d-1}.$$

We shall show that $\widehat{\mu}_n(\boldsymbol{\xi}) \longrightarrow 0$ for all $\boldsymbol{\xi} \in \mathbb{R}^d \setminus \{\mathbf{0}\}$.

Fix $\boldsymbol{\xi} \in \mathbb{R}^d \setminus \{\mathbf{0}\}$ and write $\boldsymbol{\xi} = \boldsymbol{\xi} \boldsymbol{u}$ with $\boldsymbol{\xi} > 0$ and $\boldsymbol{u} \in \mathbb{S}^{d-1}$. Using coordinates with respect to an orthonormal basis of which \boldsymbol{u} is a member, one sees that

$$\widehat{\mu}_n(\boldsymbol{\xi}) = |G_n|_d^{-1} \int_{G_n} e^{i\boldsymbol{\xi}\cdot\boldsymbol{x}} d\boldsymbol{x} = \int_{\mathbb{R}} e^{i\boldsymbol{\xi}x} f_n(x) dx = \widehat{f}_n(\boldsymbol{\xi}),$$

where f_n is the probability density function on \mathbb{R} given by

$$f_n(x) := \frac{\left|G_n \cap (\boldsymbol{u}^{\perp} + x\boldsymbol{u})\right|_{d-1}}{|G_n|_d},$$

and where u^{\perp} denotes the hyperplane perpendicular to u. Thus it suffices to show that

$$\widehat{f}_n(\xi) \longrightarrow 0 \qquad \forall \, \boldsymbol{\xi} \in \mathbb{R} \smallsetminus \{0\} \,.$$

Set $a_n = \inf_{\boldsymbol{x} \in G_n} \boldsymbol{x} \cdot \boldsymbol{u}$ and $b_n = \sup_{\boldsymbol{x} \in G_n} \boldsymbol{x} \cdot \boldsymbol{u}$, and note that a_n and b_n are finite since we are assuming that the G_n are convex and of positive and finite measure (and hence necessarily pre-compact). Furthermore, since G_n is convex, the function $f_n^{1/(d-1)}$ is concave in $[a_n, b_n]$, by the Brunn–Minkowski inequality; hence f_n is continuous on $[a_n, b_n]$, and unimodal, i.e., there exists $c_n \in [a_n, b_n]$ such that f_n is non-decreasing on $[a_n, c_n]$ and non-increasing on $[c_n, b_n]$. Now

$$\widehat{f}_n(\xi) = \int_{a_n}^{b_n} \cos(\xi x) f_n(x) \, dx + i \int_{a_n}^{b_n} \sin(\xi x) f_n(x) \, dx$$

and, writing $G(x) := \xi^{-1} \sin(\xi x)$, integration by parts yields

$$\int_{a_n}^{b_n} \cos(\xi x) f_n(x) \, dx = \int_{a_n}^{b_n} G'(x) f_n(x) \, dx$$
$$= G(b_n) f_n(b_n) - G(a_n) f_n(a_n) - \int_{a_n}^{b_n} G(x) \, df_n(x),$$

where the last integral is a Riemann–Stieltjes integral, and similarly for the other integral (see, e.g., [1, Theorem 18.4]). It follows that

$$\left|\widehat{f_n}(\xi)\right| \leqslant \frac{8}{\xi} \max_{x \in [a_n, b_n]} f_n(x) = \frac{8}{\xi} f_n(c_n).$$

Finally, the concavity of the function $x \mapsto |G_n \cap (\mathbf{u}^{\perp} + x\mathbf{u})|_{d-1}^{1/(d-1)}, x \in [a_n, b_n]$, also implies that

$$\frac{w_{G_n}(\boldsymbol{u})}{d} \max_{\boldsymbol{x}} |G_n \cap (\boldsymbol{u}^{\perp} + \boldsymbol{x}\boldsymbol{u})|_{d-1} \leq |G_n|_d \leq w_{G_n}(\boldsymbol{u}) \max_{\boldsymbol{x}} |G_n \cap (\boldsymbol{u}^{\perp} + \boldsymbol{x}\boldsymbol{u})|_{d-1},$$

whence

$$\frac{1}{w_{G_n}(\boldsymbol{u})} \leqslant \max_x f_n(x) \leqslant \frac{d}{w_{G_n}(\boldsymbol{u})} \longrightarrow 0 \qquad (n \longrightarrow \infty).$$

We conclude that

$$\widehat{f}_n(\xi) \longrightarrow 0 \qquad \forall \, \boldsymbol{\xi} \in \mathbb{R} \smallsetminus \{0\} \,.$$

The second assertion of the theorem is not valid if we do not assume that the sets G_n are convex. This may be easily seen by considering, for example, the sets $G_n := [-n, n]^d \setminus [-n+1, n-1]^d$ in \mathbb{R}^d .

3. An example

The following is an example of a sequence $\{G_n\}$ of convex sets in \mathbb{R}^d , for which the corresponding measures (1) form a summing sequence in \mathbb{R}^d , yet $\varrho(G_n) \longrightarrow 0$.

EXAMPLE. Consider the ellipsoids $G_n := \{ \boldsymbol{x} \in \mathbb{R}^d : \boldsymbol{x}' Q_n \boldsymbol{x} \leq 1 \}$ in \mathbb{R}^d determined by

$$Q_n := \begin{pmatrix} \boldsymbol{u}_1(n) & \dots & \boldsymbol{u}_d(n) \end{pmatrix} \begin{pmatrix} a_1(n)^{-2} & & \\ & \ddots & \\ & & a_d(n)^{-2} \end{pmatrix} \begin{pmatrix} \boldsymbol{u}_1(n)' \\ \vdots \\ \boldsymbol{u}_d(n)' \end{pmatrix},$$

where $a_1(n) > \ldots > a_d(n) > 0$ are positive numbers and $u_1(n), \ldots, u_d(n)$ are unit column-vectors in \mathbb{R}^d forming an orthonormal basis and where $u_1(n)', \ldots$ $\ldots, u_d(n)'$ denote the corresponding row-vectors. Choose $a_1(n), \ldots, a_d(n)$ and

$$u_1(n) := (u_{11}(n), \dots, u_{d1}(n))'$$

so that

(2)
$$u_{i1}(n) > 0$$
 for all i

(3)
$$\frac{u_{i1}(n)}{u_{k1}(n)} \longrightarrow 0 \quad \text{for all} \quad 1 \le k < i \le d,$$

(4)
$$a_1(n) \cdot \min_{1 \le i \le d} u_{i1}(n) \longrightarrow \infty,$$

- and
- (5) $a_1(n) \cdots a_d(n) \longrightarrow 0,$

908

as $n \to \infty$. Let also μ_n be the measures (1) corresponding to these G_n . If $\boldsymbol{u} \in \mathbb{S}^{d-1}$ is a fixed unit vector, (6)

$$w_{G_n}(\boldsymbol{u}) \ge |a_1(n)(\boldsymbol{u} \cdot \boldsymbol{u}_1(n)) - a_1(n)(\boldsymbol{u} \cdot (-\boldsymbol{u}_1(n)))| = 2 a_1(n) |\boldsymbol{u} \cdot \boldsymbol{u}_1(n)|,$$

since the vectors $\pm a_1(n)\boldsymbol{u}_1(n)$ belong to G_n . Writing $\boldsymbol{u} = (u_1, \ldots, u_d)'$, and denoting by k the least i for which $u_i \neq 0$, one has that

$$\boldsymbol{u} \cdot \boldsymbol{u}_1(n) = \sum_{i=k}^d u_i u_{i1}(n) = u_k \, u_{k1}(n) \left(1 + \sum_{i=k+1}^d \frac{u_i}{u_k} \frac{u_{i1}(n)}{u_{k1}(n)} \right),$$

whence $w_{G_n}(\boldsymbol{u}) \longrightarrow \infty$ by (3), (4) and (6). Thus the measures μ_n corresponding to these G_n form a summing sequence in \mathbb{R}^d . On the other hand

$$\varrho(G_n) = a_d(n) \longrightarrow 0$$

by (5).

It remains to show that there exist numbers $a_1, \ldots, a_d(n)$ and $u_{11}(n), \ldots$ $\ldots, u_{d1}(n)$ satisfying (2)–(5). For an example let c_d be any positive number satisfying $c_d < (d-1)^{-1}$, and set

$$u_{i1}(n) := \sqrt{\frac{c_d}{n^{i-1}}} \quad \text{for} \quad 1 < i \leqslant d$$

and

$$u_{11}(n) := \sqrt{1 - \frac{c_d}{n} - \dots - \frac{c_d}{n^{d-1}}};$$

then choose $a_1(n), \ldots, a_d(n)$ accordingly.

Notice that in the above example

$$|G_n| = \gamma_d \, a_1(n) \cdots a_d(n) \longrightarrow 0,$$

where γ_d denotes the *d*-dimensional measure of the unit ball in \mathbb{R}^d . However, it is not hard to see that if we assume that $G_n \subseteq G_{n+1}$, then the condition $|G_n| \longrightarrow |G|$ is necessary for the corresponding sequence of measures (1) to be a summing sequence, in any locally compact abelian group.

References

- P. Billingsley, Probability and measure, Wiley Series in Probability and Mathematical Statistics, John Wiley & Sons Inc., New York, 1995. MR 1324786 (95k:60001)
- [2] J. Blum and B. Eisenberg, Generalized summing sequences and the mean ergodic theorem, Proc. Amer. Math. Soc. 42 (1974), 423–429. MR 0330412 (48 #8749)
- [3] M. Day, Ergodic theorems for Abelian semigroups, Trans. Amer. Math. Soc. 51 (1942), 399–412. MR 0006614 (4,14b)
- [4] L. Kuipers and H. Niederreiter, Uniform distribution of sequences, Wiley-Interscience [John Wiley & Sons], New York, 1974. MR 0419394 (54 #7415)
- [5] A. T.-M. Lau and V. Losert, Ergodic sequences in the Fourier-Stieltjes algebra and measure algebra of a locally compact group, Trans. Amer. Math. Soc. 351 (1999), 417– 428. MR 1487622 (99e:43001)

- W. Maxones and H. Rindler, Einige Resultate über unitär gleichverteilte Massfolgen, Anz. Österreich. Akad. Wiss. Math.-Naturwiss. Kl. (1977), 11–13. MR 0486304 (58 #6063)
- [7] H. Rindler, Gleichverteilte Folgen in lokalkompakten Gruppen, Monatsh. Math. 82 (1976), 207–235. MR 0427535 (55 #567)
- [8] A. Tempelman, Ergodic theorems for group actions, Mathematics and its Applications, vol. 78, Kluwer Academic Publishers Group, Dordrecht, 1992. MR 1172319 (94f:22007)

M. Anoussis, Department of Mathematics, University of the Aegean, $832\ 00$ Karlovasi, Samos, Greece

E-mail address: mano@aegean.gr

D. GATZOURAS, LABORATORY OF MATHEMATICS AND STATISTICS, AGRICULTURAL UNIVERSITY OF ATHENS, IERA ODOS 75, 11855 Athens, Greece

 $E\text{-}mail\ address: \verb"gatzoura@aua.gr"$