A PRODUCT CONSTRUCTION FOR HYPERBOLIC METRIC SPACES

THOMAS FOERTSCH AND VIKTOR SCHROEDER

Abstract

For hyperbolic metric spaces X_{1}, X_{2} we define and study a one parameter family of "hyperbolic products" $Y_{\Delta}, \Delta \geq 0$, of X_{1} and X_{2}. In particular, we investigate the relation between the boundaries at infinity of the factor spaces and the boundary at infinity of their hyperbolic products.

1. Introduction

A triple $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}$ of three real numbers is called a δ-triple for $\delta \geq 0$ if $a_{\mu} \geq \min \left\{a_{\mu+1}, a_{\mu+2}\right\}-\delta$ for $\mu=1,2,3$, where the indices are taken modulo 3. Thus $\left(a_{1}, a_{2}, a_{3}\right)$ is a δ-triple, if the two smallest of the three numbers differ by at most δ.

Let X be a metric space, and let $|x y|$ denote the distance between points. For $x, y, z \in X$ let

$$
(x \mid y)_{z}:=\frac{1}{2}(|z x|+|z y|-|x y|)
$$

The space X is called δ-hyperbolic (compare [G]) if for all $o, x, y, z \in X$

$$
\left((x \mid y)_{o},(y \mid z)_{o},(x \mid z)_{o}\right) \text { is a } \delta \text {-triple. }
$$

X is called hyperbolic if it is δ-hyperbolic for some $\delta \geq 0$.
Given two hyperbolic metric spaces, their metric product will typically fail to be hyperbolic itself. In [FS2] we introduced a hyperbolic product construction for proper, geodesic, hyperbolic metric spaces. Given two such spaces, their hyperbolic product was shown to be a proper, geodesic, hyperbolic metric space itself.

The purpose of this paper is to generalize this hyperbolic product construction to arbitrary hyperbolic metric spaces.

[^0]Let X_{1}, X_{2} be metric spaces and $Y:=X_{1} \times X_{2}$. On Y we will always consider the maximum metric, i.e.,

$$
\left|\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)\right|:=\max \left\{\left|x_{1} y_{1}\right|,\left|x_{2} y_{2}\right|\right\} \quad \text { for all } x_{\nu}, y_{\nu} \in X_{\nu}, \nu=1,2
$$

For $a, b, c \in \mathbb{R}$ and $c \geq 0$ we define

$$
a \doteq_{c} b \quad: \Longleftrightarrow|a-b| \leq c
$$

Given two pointed hyperbolic metric spaces $\left(X_{1}, o_{1}\right)$ and (X_{2}, o_{2}) and a number $\Delta \geq 0$, we write $o:=\left(o_{1}, o_{2}\right) \in Y$ and define

$$
Y_{\Delta, o}:=\left\{\left(x_{1}, x_{2}\right) \in Y| | o_{1} x_{1}\left|\doteq_{\Delta}\right| o_{2} x_{2} \mid\right\} .
$$

The space $Y_{\Delta, o} \subset Y$ is endowed with the restriction of the maximum metric on Y.

Theorem 1.1. If X_{1}, X_{2} are δ-hyperbolic, then $Y_{\Delta, o}$ is δ^{\prime}-hyperbolic for some $\delta^{\prime}=\delta^{\prime}(\delta, \Delta)$.

We also discuss a version of this result where the base point lies at infinity. For a hyperbolic metric space X one can define its boundary at infinity $\partial_{\infty} X$ (for details see Section 3). Let $\left(X_{\nu}, o_{\nu}\right), \nu=1,2$, be two pointed hyperbolic spaces with non-empty boundaries at infinity and fix $\xi_{\nu} \in \partial_{\infty} X_{\nu}, \nu=1,2$. Let b_{ν} be the Busemann function associated to o_{ν} and $\xi_{\nu}, \nu=1,2$ (for the definition of the Busemann function see Section 3). Let $\Delta \geq 0$. We write $\xi:=\left(\xi_{1}, \xi_{2}\right)$ and define

$$
Y_{\Delta, \xi, o}:=\left\{\left(x_{1}, x_{2}\right) \in Y \mid b_{1}\left(x_{1}\right) \doteq_{\Delta} b_{2}\left(x_{2}\right)\right\} .
$$

Theorem 1.2. If X_{1}, X_{2} are δ-hyperbolic metric spaces with non-empty boundaries at infinity, then $Y_{\Delta, \xi, o}$ is δ^{\prime}-hyperbolic for some $\delta^{\prime}=\delta^{\prime}(\delta, \Delta)$.

In order to investigate the boundaries of $Y_{\Delta, o}$ and $Y_{\Delta, \xi, o}$ we need more structure:

Let $k \geq 0$. A k-rough geodesic is a map $\gamma: I \rightarrow X$ from an interval $I \subset \mathbb{R}$ to a metric space X with

$$
|\gamma(s) \gamma(t)| \doteq_{k}|s-t| \quad \text { for all } s, t \in I
$$

The space X is called k-roughly geodesic, if for every pair $x, y \in X$ there exists a k-rough geodesic $\gamma:[0,|x y|] \rightarrow X$ with $\gamma(0)=x$ and $\gamma(|x y|)=y . \quad X$ is called roughly geodesic if X is k-roughly geodesic for some $k \geq 0$.

Theorem 1.3. If X_{1}, X_{2} are δ-hyperbolic and k-roughly geodesic, then there exists $\Delta_{0}=\Delta_{0}(\delta, k) \geq 0$ such that for all $\Delta \geq \Delta_{0}$ the space $Y_{\Delta, o}$ is k^{\prime}-roughly geodesic for some $k^{\prime}(\delta, k, \Delta)$.

TheOrem 1.4. Let X_{1}, X_{2} be δ-hyperbolic and k-roughly geodesic metric spaces with non-empty boundaries at infinity. Then there exists some $\Delta_{0}=$ $\Delta_{0}(\delta, k) \geq 0$ such that $Y_{\Delta, \xi, o}$ is roughly geodesic for all $\Delta \geq \Delta_{0}$.

Finally, we relate the topology of the boundary at infinity of our hyperbolic products to those of the boundary at infinity of its factors, by proving the following two theorems:

TheOrem 1.5. Let $X_{\nu}, \nu=1,2$, be δ-hyperbolic and k-roughly geodesic metric spaces. Then there exists $\Delta_{0}=\Delta_{0}(\delta, k) \geq 0$ such that for all $\Delta \geq \Delta_{0}$ there is a natural homeomorphism $\partial_{\infty} Y_{\Delta, o} \approx \partial_{\infty} X_{1} \times \partial_{\infty} X_{2}$.

TheOrem 1.6. Let $X_{\nu}, \nu=1,2$, be δ-hyperbolic and k-roughly geodesic metric spaces. Then there exists $\Delta_{0}=\Delta_{0}(\delta, k) \geq 0$ such that for all $\Delta \geq$ Δ_{0} there is a natural homeomorphism $\partial_{\infty} Y_{\Delta, \xi, o} \approx\left(\partial_{\infty} X_{1}, \xi_{1}\right) \wedge\left(\partial_{\infty} X_{2}, \xi_{2}\right)$. Here $\left(\partial_{\infty} X_{1}, \xi_{1}\right) \wedge\left(\partial_{\infty} X_{2}, \xi_{2}\right)$ is the coarse smashed product of the pointed topological spaces $\left(\partial_{\infty} X_{1}, \xi_{1}\right)$ and $\left(\partial_{\infty} X_{2}, \xi_{2}\right)$.

For the precise definition of the coarse smashed product of two pointed topological spaces, we refer the reader to Section 7.2.

Outline of the paper. In Sections 2 and 3 we start with some preliminaries and the notion of general hyperbolic metric spaces. In Section 4 we discuss hyperbolic products and prove Theorems 1.1 and 1.2. In Section 5 we introduce the notion of roughly geodesic metric spaces and in Section 6 we prove Theorems 1.3 and 1.4. In Section 7 we investigate the boundary structure and prove Theorems 1.5 and 1.6.

Acknowledgments. It is a pleasure to thank Mario Bonk and Sergei Buyalo for helpful discussions. In particular, we want to thank the referee for the many helpful comments and useful suggestions.

2. Preliminaries

For $a, b, c \in \mathbb{R}$ and $c \geq 0$ we define

$$
a \doteq_{c} b \quad: \Longleftrightarrow|a-b| \leq c
$$

If $\left\{a_{i}\right\}_{i},\left\{b_{i}\right\}_{i}$ are sequences, where $i \in \mathbb{N}$, then we define

$$
\left\{a_{i}\right\}_{i} \doteq_{c} a \quad: \Longleftrightarrow \limsup \left|a_{i}-a\right| \leq c
$$

and

$$
\left\{a_{i}\right\}_{i} \dot{=}_{c}\left\{b_{i}\right\}_{i}: \Longleftrightarrow \limsup \left|a_{i}-b_{i}\right| \leq c
$$

Let $\delta \geq 0$. A triple $\left(a_{1}, a_{2}, a_{3}\right) \in \mathbb{R}^{3}$ is called a δ-triple, if $a_{\mu} \geq \min \left\{a_{\mu+1}, a_{\mu+2}\right\}$ $-\delta$ for $\mu=1,2,3$, where the indices are taken modulo 3 .

The following is easily proved:

Lemma 2.1.
(1) If $\left(a_{1}, a_{2}, a_{3}\right)$ and $\left(b_{1}, b_{2}, b_{3}\right)$ are δ-triples, then

$$
\left(\min \left\{a_{1}, b_{1}\right\}, \min \left\{a_{2}, b_{2}\right\}, \min \left\{a_{3}, b_{3}\right\}\right)
$$

is a δ-triple.
(2) If $\left\{\left(a_{1 i}, a_{2 i}, a_{3 i}\right)\right\}_{i}$ are δ-triples for $i \in \mathbb{N}$, then

$$
\left(\inf a_{1 i}, \inf a_{2 i}, \inf a_{3 i}\right)
$$

and

$$
\left(\liminf a_{1 i}, \lim \inf a_{2 i}, \lim \inf a_{3 i}\right)
$$

are δ-triples.
We call the following result the Tetrahedron Lemma.
Lemma 2.2 (Tetrahedron Lemma). Let $d_{12}, d_{13}, d_{14}, d_{23}, d_{24}, d_{34}$ be six numbers, such that the four triples $A_{1}=\left(d_{23}, d_{24}, d_{34}\right), A_{2}=\left(d_{13}, d_{14}, d_{34}\right)$, $A_{3}=\left(d_{12}, d_{14}, d_{24}\right)$ and $A_{4}=\left(d_{12}, d_{13}, d_{23}\right)$ are δ-triples. Then

$$
B=\left(d_{12}+d_{34}, d_{13}+d_{24}, d_{14}+d_{23}\right)
$$

is a 2δ-triple.
Proof. Without loss of generality we can assume that d_{34} is maximal among the listed numbers. Then $d_{13} \doteq{ }_{\delta} d_{14}$ since A_{2} is a δ-triple, and $d_{23} \doteq{ }_{\delta} d_{24}$ since A_{1} is a δ-triple. Adding these approximate equalities we obtain that $d_{13}+d_{24} \dot{\doteq}_{2 \delta} d_{23}+d_{14}$. Since d_{34} is maximal, this means, if we assume that B is not a 2δ-triple, that $d_{12}<\min \left\{d_{13}, d_{14}, d_{23}, d_{24}\right\}-2 \delta$. But this contradicts the assumption that A_{3} and A_{4} are δ-triples. Thus B is a 2δ-triple.

3. Hyperbolic spaces

3.1. δ-hyperbolic spaces. Let X be a metric space. For $x, y, z \in X$ let

$$
(x \mid y)_{z}:=\frac{1}{2}(|z x|+|z y|-|x y|) .
$$

The space X is called δ-hyperbolic if for $o, x, y, z \in X$

$$
\begin{equation*}
\left((x \mid y)_{o},(y \mid z)_{o},(x \mid z)_{o}\right) \text { is a } \delta \text {-triple. } \tag{3.1}
\end{equation*}
$$

X is called hyperbolic, if it is δ-hyperbolic for some $\delta \geq 0$. The relation (3.1) is called the δ-inequality with respect to the point $o \in X$. This condition is equivalent to the inequality

$$
\begin{equation*}
|o x|+|y z| \leq \max \{|o y|+|x z|,|o z|+|x y|\}+2 \delta . \tag{3.2}
\end{equation*}
$$

The inequality (3.2) is called the 4-point inequality for the points $o, x, y, z \in$ X. If X satisfies the δ-inequality for one individual base point $o \in X$, then it satisfies the 2δ-inequality for any other base point $o^{\prime} \in X$ (see, for example,
[G]). Thus, to check hyperbolicity, one only has to check this inequality at a single point.

Let X be a hyperbolic space and $o \in X$ be a base point. A sequence $\left\{x_{i}\right\}$ of points $x_{i} \in X$ converges to infinity, if

$$
\lim _{i, j \rightarrow \infty}\left(x_{i} \mid x_{j}\right)_{o}=\infty
$$

Two sequences $\left\{x_{i}\right\},\left\{x_{i}^{\prime}\right\}$ that converge to infinity are equivalent if

$$
\lim _{i \rightarrow \infty}\left(x_{i} \mid x_{i}^{\prime}\right)_{o}=\infty
$$

Using the δ-inequality, one easily sees that this defines an equivalence relation for sequences in X converging to infinity. The boundary at infinity $\partial_{\infty} X$ of X is defined as the set of equivalence classes of sequences converging to infinity.

For points $\xi, \xi^{\prime} \in \partial_{\infty} X$ we define their Gromov product by

$$
\left(\xi \mid \xi^{\prime}\right)_{o}=\inf \liminf _{i \rightarrow \infty}\left(x_{i} \mid x_{i}^{\prime}\right)_{o},
$$

where the infimum is taken over all sequences $\left\{x_{i}\right\} \in \xi,\left\{x_{i}^{\prime}\right\} \in \xi^{\prime}$. Note that $\left(\xi \mid \xi^{\prime}\right)_{o}$ takes values in $[0, \infty]$ and that $\left(\xi \mid \xi^{\prime}\right)_{o}=\infty$ if and only if $\xi=\xi^{\prime}$. In a similar way we define for $\xi \in \partial_{\infty} X, x \in X$

$$
(\xi \mid x)_{o}=\inf \liminf _{i \rightarrow \infty}\left(x_{i} \mid x\right)_{o} .
$$

From Lemma 2.1(2) we obtain:
Lemma 3.1. Let X be δ-hyperbolic.
(1) If $\bar{x}, \bar{y}, \bar{z} \in \bar{X}:=X \cup \partial_{\infty} X$, then $\left((\bar{x} \mid \bar{y})_{o},(\bar{y} \mid \bar{z})_{o},(\bar{x} \mid \bar{z})_{o}\right)$ is a δ-triple.
(2) If $\left\{x_{i}\right\} \in \xi$ and $\left\{y_{i}\right\} \in \eta$, then

$$
(x \mid \xi)_{o} \doteq_{\delta}\left\{\left(x \mid x_{i}\right)_{o}\right\}_{i} \quad \text { and } \quad(\xi \mid \eta)_{o} \doteq_{2 \delta}\left\{\left(x_{i} \mid y_{i}\right)_{o}\right\}_{i} \text {. }
$$

We define for points $\bar{x}, \bar{y} \in \bar{X}$

$$
\sigma_{\xi, o}(\bar{x}, \bar{y}):=(\bar{x} \mid \xi)_{o}+(\bar{y} \mid \xi)_{o} .
$$

The following result is obvious.
Lemma 3.2 .
(1) $\left\{x_{i}\right\} \in \xi$ iff $\sigma_{\xi, o}\left(x_{i}, x_{j}\right) \rightarrow \infty$.
(2) $\left\{x_{i}\right\} \in \eta \in \partial_{\infty} X \backslash\{\xi\}$ iff $\left(x_{i} \mid x_{j}\right)_{o} \rightarrow \infty$ and $\sigma_{\xi, o}\left(x_{i}, x_{j}\right)$ is bounded.

We define the Busemann function of $\xi \in \partial_{\infty} X$ by

$$
b_{\xi}(x, y)=\inf \liminf _{i \rightarrow \infty}\left(\left|x z_{i}\right|-\left|y z_{i}\right|\right),
$$

where the infimum is taken over all sequences $\left\{z_{i}\right\} \in \xi$. We state some properties of this function.

Lemma 3.3.

(1) If $\left\{z_{i}\right\} \in \xi$, then $b_{\xi}(x, y) \doteq_{2 \delta}\left\{\left(\left|x z_{i}\right|-\left|y z_{i}\right|\right)\right\}_{i}$.
(2) Let $\left\{x_{i}\right\} \in \eta \in \partial_{\infty} X, o \in X$. If $\eta \neq \xi$, then $b_{\xi}\left(x_{i}, o\right) \rightarrow \infty$.

Proof. (1) Note that for sequences $\left\{z_{i}\right\},\left\{z_{i}^{\prime}\right\} \in \xi$

$$
\left\{\left(\left|x z_{i}\right|-\left|y z_{i}\right|\right)-\left(\left|x z_{i}^{\prime}\right|-\left|y z_{i}^{\prime}\right|\right)\right\}_{i}=2\left\{\left(\left(y \mid z_{i}\right)_{x}-\left(y \mid z_{i}^{\prime}\right)_{x}\right)\right\}_{i} \dot{=}_{2 \delta} 0
$$

since $\left(y \mid z_{i}\right)_{x},\left(y \mid z_{i}^{\prime}\right)_{x},\left(z_{i} \mid z_{i}^{\prime}\right)_{x}$ is a δ-triple and $\left(z_{i} \mid z_{i}^{\prime}\right)_{x} \rightarrow \infty$. This implies that

$$
b_{\xi}(x, y) \doteq_{2 \delta}\left\{\left(\left|x z_{i}\right|-\left|y z_{i}\right|\right)\right\}_{i}
$$

for any sequence $\left\{z_{i}\right\} \in \xi$.
(2) Let $\left\{z_{i}\right\} \in \xi$ and $\left\{x_{i}\right\} \in \eta$. If $\eta \neq \xi$, then the numbers $2\left(x_{i} \mid z_{j}\right)_{o}$ are bounded by some number D, which implies $\left|z_{j} x_{i}\right|-\left|o z_{j}\right| \geq\left|o x_{i}\right|-D$. Since $b_{\xi}\left(x_{i}, o\right) \doteq{ }_{2 \delta}\left\{\left|x_{i} z_{j}\right|-\left|o z_{j}\right|\right\}_{j}$ and $\left|x_{i} o\right| \rightarrow \infty$, this yields the result.

For $o \in X, \xi \in \partial_{\infty} X$ and $x, y \in X$ we define

$$
(x \mid y)_{\xi, o}:=\frac{1}{2}\left(b_{\xi}(x, o)+b_{\xi}(y, o)-|x y|\right) .
$$

We extend $(x \mid y)_{\xi, o}$ to points $\bar{x}, \bar{y} \in \bar{X} \backslash\{\xi\}$ by setting

$$
(\bar{x} \mid \bar{y})_{\xi, o}:=\inf \liminf _{i \rightarrow \infty}\left(x_{i} \mid y_{i}\right)_{\xi, o}
$$

where the infimum is taken over all sequences $\left\{x_{i}\right\} \in \bar{x}$ and $\left\{y_{i}\right\} \in \bar{y}$. In the case that $\bar{x} \in X,\left\{x_{i}\right\} \in \bar{x}$ means any sequence $\left\{x_{i}\right\}$ converging to \bar{x}.

Lemma 3.4.
(1) If $x, y, z \in X$, then $\left((x \mid y)_{\xi, o},(y \mid z)_{\xi, o},(z \mid x)_{\xi, o}\right)$ is a 3δ-triple.
(2) If $x, y \in X$, then

$$
(x \mid y)_{\xi, o}+\sigma_{\xi, o}(x, y) \doteq_{4 \delta}(x \mid y)_{o} .
$$

(3) If $\bar{x}, \bar{y} \in \bar{X} \backslash\{\xi\}$, then

$$
(\bar{x} \mid \bar{y})_{\xi, o}+\sigma_{\xi, o}(\bar{x}, \bar{y}) \doteq_{8 \delta}(\bar{x} \mid \bar{y})_{o}
$$

Proof. We only prove (2) and leave (1) and (3) to the reader. Let $\left\{z_{i}\right\} \in \xi$ be given. Then

$$
\begin{aligned}
(x \mid y)_{\xi, o} & =\frac{1}{2}\left(b_{\xi}(x, o)+b_{\xi}(y, o)-|x y|\right) \\
& \doteq{ }_{2 \delta} \frac{1}{2}\left\{\left(\left|x z_{i}\right|-\left|o z_{i}\right|+\left|y z_{i}\right|-\left|o z_{i}\right|-|x y|\right)\right\}_{i} \\
& =\left\{(x \mid y)_{o}-\left(x \mid z_{i}\right)_{o}-\left(y \mid z_{i}\right)_{o}\right\}_{i} \\
& \doteq{ }_{2 \delta}(x \mid y)_{o}-(x \mid \xi)_{o}-(y \mid \xi)_{o}
\end{aligned}
$$

3.2. A criterion for hyperbolicity. At the end of this section we give a criterion for hyperbolicity. Let therefore X be an arbitrary metric space. We define a map $A: X^{4} \rightarrow \mathbb{R}$, where $A=A(x, y, z, t)$ is given by

$$
\begin{aligned}
A=\max \left\{(x \mid y)_{u}+(z \mid t)_{u}-(x \mid z)_{u}-(y \mid t)_{u}\right. & \\
& \left.(x \mid y)_{u}+(z \mid t)_{u}-(x \mid t)_{u}-(y \mid z)_{u}\right\}
\end{aligned}
$$

where $u \in X$ is arbitrary. An easy calculation shows that A is independent of u. By specializing $u=t$ we see that $A=(x \mid y)_{t}-\min \left\{(x \mid z)_{t},(y \mid z)_{t}\right\}$. Thus it follows that X is δ-hyperbolic iff $A \geq-\delta$ for all $x, y, z, t \in X$.

REmARK 3.5. One can write $A(x, y, z, t)$ in an even more complicated manner as the maximum of the two numbers

$$
\left[(x \mid y)_{u}-|u v|\right]+\left[(z \mid t)_{u}-|u v|\right]-\left[(x \mid z)_{u}-|u v|\right]-\left[(y \mid t)_{u}-|u v|\right]
$$

and

$$
\left.\left[(x \mid y)_{u}-|u v|\right]+\left[(z \mid t)_{u}-|u v|\right]-\left[(x \mid t)_{u}-|u v|\right]-\left[(y \mid z)_{u}\right\}-|u v|\right]
$$

where $u, v \in X$ are arbitrary. This follows from a trivial computation and will be useful later on.

4. Products

Let X_{1}, X_{2} be metric spaces. Let $Y=X_{1} \times X_{2}$. On Y we will always consider the maximum metric, i.e., for $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ let

$$
|x y|=\max \left\{\left|x_{1} y_{1}\right|,\left|x_{2} y_{2}\right|\right\} .
$$

For a point $o=\left(o_{1}, o_{2}\right) \in Y$ one easily checks that

$$
\begin{equation*}
(x \mid y)_{o} \geq \min \left\{\left(x_{1} \mid y_{1}\right)_{o_{1}},\left(x_{2} \mid y_{2}\right)_{o_{2}}\right\} \tag{4.1}
\end{equation*}
$$

We define

$$
Y_{\Delta, o}:=\left\{\left(x_{1}, x_{2}\right) \in Y| | o_{1} x_{1}\left|\doteq_{\Delta}\right| o_{2} x_{2} \mid\right\} .
$$

It is easy to check that for points $x, y \in Y_{\Delta, o}$ we have

$$
\begin{equation*}
(x \mid y)_{o} \doteq \doteq_{\Delta} \min \left\{\left(x_{1} \mid y_{1}\right)_{o_{1}},\left(x_{2} \mid y_{2}\right)_{o_{2}}\right\} \tag{4.2}
\end{equation*}
$$

For later reference we restate equations (4.1) and (4.2) in the following lemma.

Lemma 4.1. If $x, y \in Y_{\Delta, o}$ then

$$
0 \leq(x \mid y)_{o}-\min \left\{\left(x_{1} \mid y_{1}\right)_{o_{1}},\left(x_{2} \mid y_{2}\right)_{o_{2}}\right\} \leq \Delta
$$

Theorem 1.1. If X_{1}, X_{2} are δ-hyperbolic, then $Y_{\Delta, o}$ is $(\Delta+\delta)$-hyperbolic.

Proof. Let $\delta \geq 0$ and $o_{\nu} \in X_{\nu}$ be such that X_{ν} satisfies the δ-inequality with respect to o_{ν}. Then Lemma 2.1(1) and Lemma 4.1 give (omitting base points)

$$
\begin{aligned}
(x \mid z) & \geq \min \left\{\left(x_{1} \mid z_{1}\right),\left(x_{2} \mid z_{2}\right)\right\} \geq \min \left\{\left(x_{1} \mid y_{1}\right),\left(y_{1} \mid z_{1}\right),\left(x_{2}, y_{2}\right),\left(y_{2} \mid z_{2}\right)\right\}-\delta \\
& \geq \min \{(x \mid y),(y \mid z)\}-\Delta-\delta
\end{aligned}
$$

Consider $\xi_{\nu} \in \partial_{\infty} X_{\nu}$ and let $b_{\nu}(x):=b_{\xi_{\nu}}\left(x, o_{\nu}\right), \nu=1,2$. We define

$$
Y_{\Delta, \xi, o}:=\left\{\left(x_{1}, x_{2}\right) \in Y \mid b_{1}\left(x_{1}\right) \doteq \doteq_{\Delta} b_{2}\left(x_{2}\right)\right\} .
$$

We will show that $Y_{\Delta, \xi, o}$ is hyperbolic. To prove this we need the following lemma.

Lemma 4.2. Let X_{ν} be δ-hyperbolic spaces for $\nu=1,2$. For $i \in \mathbb{N}$ let $\left\{u_{1 i}\right\} \in \xi_{1},\left\{u_{2 i}\right\} \in \xi_{2}$ and $u_{i}=\left(u_{1 i}, u_{2 i}\right) \in X_{1} \times X_{2}$. Then, for $x, y \in Y_{\Delta, \xi, o}$, we have

$$
\left\{\left|u_{i} x\right|-\left|u_{i} o\right|\right\}_{i} \doteq_{\Delta+2 \delta} b_{\nu}\left(x_{\nu}\right), \quad \nu=1,2,
$$

and

$$
\left\{(x \mid y)_{u_{i}}-\left|u_{i} o\right|\right\}_{i} \doteq \Delta+2 \delta \min \left\{\left(x_{1} \mid y_{1}\right)_{\xi_{1}, o_{1}},\left(x_{2} \mid y_{2}\right)_{\xi_{2}, o_{2}}\right\}
$$

Proof. We have by Lemma $3.3\left\{\left|u_{\nu i} x_{\nu}\right|-\left|u_{\nu i} o_{\nu}\right|\right\}_{i} \dot{=}_{2 \delta} b_{\nu}\left(x_{\nu}\right)$ for $\nu=1,2$ and $b_{1}\left(x_{1}\right) \doteq \Delta b_{2}\left(x_{2}\right)$.

Now the first inequality follows from the general fact that if $r_{\nu}-s_{\nu} \doteq{ }_{\delta}$ b_{ν} and $b_{1} \doteq_{\Delta} b_{2}$ for some real numbers $r_{\nu}, s_{\nu}, b_{\nu}$, then $\max \left\{r_{1}, r_{2}\right\} \doteq \doteq_{\delta+\Delta}$ $\max \left\{s_{1}, s_{2}\right\}+b_{\nu}$. To prove this we may assume $s_{1} \leq s_{2}$. Then $\max \left\{r_{1}, r_{2}\right\} \geq$ $r_{2} \geq s_{2}+b_{2}-\delta \geq \max \left\{s_{1}, s_{2}\right\}+b_{\nu}-\Delta-\delta$. Moreover, $r_{1} \leq s_{1}+b_{1}+\delta$, $r_{2} \leq s_{2}+b_{2}+\delta$, and hence $\max \left\{r_{1}, r_{2}\right\} \leq \max \left\{s_{1}, s_{2}\right\}+b_{\nu}+\Delta+\delta$.

To obtain the second inequality we compute

$$
\begin{aligned}
\left\{(x \mid y)_{u_{i}}-\left|u_{i} o\right|\right\}_{i} & =\frac{1}{2}\left\{\left|u_{i} x\right|-\left|u_{i} o\right|+\left|u_{i} y\right|-\left|u_{i} o\right|-|x y|\right\}_{i} \\
& \doteq \Delta+2 \delta \min _{\nu \in\{1,2\}} \frac{1}{2}\left\{b_{\nu}\left(x_{\nu}\right)+b_{\nu}\left(y_{\nu}\right)-\left|x_{\nu} y_{\nu}\right|\right\} \\
& =\min \left\{\left(x_{1} \mid y_{1}\right)_{\xi_{1}, o_{1}},\left(x_{2} \mid y_{2}\right)_{\xi_{2}, o_{2}}\right\} .
\end{aligned}
$$

Theorem 1.2. If X_{1}, X_{2} are δ-hyperbolic, then $Y_{\Delta, \xi, o}$ is $(4 \Delta+14 \delta)$ hyperbolic.

Proof. Consider on $X_{1} \times X_{2}$ the function A from Section 3.2. We have to show that $A_{\mid Y_{\Delta, \xi, o}^{4}} \geq-(4 \Delta+14 \delta)$.

Choose $\left\{u_{1 i}\right\}_{i} \in \xi_{1}$ and $\left\{u_{2 i}\right\}_{i} \in \xi_{2}$ and let $u_{i}=\left(u_{1 i}, u_{2 i}\right) \in X_{1} \times X_{2}$. (Note that u_{i} is not necessarily in $Y_{\Delta, \xi, o}$.) We use for A the complicated expression from Remark 3.5 with $u=u_{i}$ and $v=\left(o_{1}, o_{2}\right)$. The typical terms in this expression are then of the form $\left[(x \mid y)_{u_{i}}-\left|u_{i} o\right|\right]$.

By Lemma 4.2 we have that $x, y \in Y_{\Delta, \xi, o}$ implies

$$
\left\{\left[(x \mid y)_{u_{i}}-\left|u_{i} o\right|\right]\right\}_{i} \doteq{ }_{\Delta+2 \delta} \min \left\{\left(x_{1} \mid y_{1}\right)_{\xi_{1}, o_{1}},\left(x_{2} \mid y_{2}\right)_{\xi_{2}, o_{2}}\right\}
$$

Let now $y^{1}, y^{2}, y^{3}, y^{4} \in Y_{\Delta, \xi, o}$, where $y^{j}=\left(y_{1}^{j}, y_{2}^{j}\right), j=1,2,3,4$, and consider the expression $A=A\left(y^{1}, y^{2}, y^{3}, y^{4}\right)$. Then

$$
A=\max \left\{d_{12}+d_{34}-d_{13}-d_{24}, d_{12}+d_{34}-d_{14}-d_{23}\right\}
$$

where, by Lemma $4.2, d_{j k} \doteq_{\Delta+2 \delta} \min \left\{d_{j k}^{1}, d_{j k}^{2}\right\}$ with $d_{j k}^{\nu}=\left(y_{\nu}^{j} \mid y_{\nu}^{k}\right)_{\xi_{\nu}, o_{\nu}}$. By Lemma $3.4(1)$, for every $\nu \in\{1,2\}$ the six numbers $d_{j k}^{\nu}$ satisfy the conditions of the Tetrahedron Lemma 2.2 with constant 3δ. Thus, by Lemma 2.1(1), the six numbers $\min \left\{d_{j k}^{1}, d_{j k}^{2}\right\}$ also satisfy the assumptions of the Tetrahedron Lemma with constant 3δ. Thus the six numbers $d_{j k}$ satisfy the assumptions of the Tetrahedron Lemma with constant $3 \delta+2(\Delta+2 \delta)=2 \Delta+7 \delta$. The Tetrahedron Lemma then shows that $\left(d_{12}+d_{34}, d_{13}+d_{24}, d_{14}+d_{23}\right)$ is a $4 \Delta+14 \delta$ triple which implies $A \geq-(4 \Delta+14 \delta)$.

5. Roughly geodesic spaces

Let $k \geq 0$. A k-rough geodesic is a map $\gamma: I \rightarrow X$ from an interval $I \subset \mathbb{R}$ to a metric space X with

$$
|\gamma(s) \gamma(t)| \doteq_{k}|s-t| \quad \text { for all } s, t \in I
$$

The space X is called k-roughly geodesic if for every pair $x, y \in X$ there exists a k-rough geodesic $\gamma:[0,|x y|] \rightarrow X$ with $\gamma(0)=x$ and $\gamma(|x y|)=y . \quad X$ is called roughly geodesic if X is k-roughly geodesic for some $k \geq 0$. Parts of the results of this section are contained in [BoS]; compare also [V].

In this section we consider a fixed δ-hyperbolic and k-roughly geodesic space X with a base point $o \in X$.

To avoid notational complications, we will use in this section the following convention: We write $a \doteq b$ if $a \doteq_{c} b$ and the constant c depends only on δ and k. We will also say that $\gamma: I \rightarrow X$ from an interval $I \subset \mathbb{R}$ is a rough geodesic when $|\gamma(s) \gamma(t)| \doteq|s-t|$ (where we already used the first part of the convention).

LEMMA 5.1. Let X be a δ-hyperbolic, k-roughly geodesic metric space, $\xi \in \partial_{\infty} X$ and $b: X \rightarrow \mathbb{R}$ be the Busemann function $b(x)=b_{\xi}(x, o)$. Then there exists a $k^{\prime}=k^{\prime}(\delta, k)$ such that
(1) for every $x \in X$ there exists a k^{\prime}-rough geodesic $\gamma_{\xi, x}:(-\infty, b(x)] \rightarrow X$ with $\left\{\gamma_{\xi, x}(-i)\right\}_{i} \in \xi, \gamma_{\xi, x}(b(x))=x$ and $b\left(\gamma_{\xi, x}(t)\right) \doteq t$, and
(2) for every $\eta \in \partial_{\infty} X \backslash\{\xi\}$ there exists a k^{\prime}-rough geodesic $\gamma_{\xi, \eta}: \mathbb{R} \rightarrow X$ with $\left\{\gamma_{\xi, \eta}(-i)\right\}_{i} \in \xi,\left\{\gamma_{\xi, \eta}(i)\right\}_{i} \in \eta$ such that $b\left(\gamma_{\xi, \eta}(t)\right) \doteq t$.

Proof. (1) By [BoS, Proposition 5.2(2)] we find a k^{\prime}-rough geodesic α : $[0, \infty) \rightarrow X$ from x to ξ. By Lemma 3.3(1) we have

$$
b_{\xi}(\alpha(t), x) \doteq_{2 \delta}\{|\alpha(t) \alpha(i)|-|x \alpha(i)|\}_{i} \doteq_{2 k^{\prime}}\{i-t-i\}_{i}=-t .
$$

Setting $\gamma(t)=\alpha(b(x)-t)$ we obtain a k^{\prime}-rough geodesic $\gamma:(-\infty, b(x)] \rightarrow X$, and then $b_{\xi}(\gamma(t), x)=b_{\xi}(\alpha(b(x)-t), x) \doteq t-b(x)$. Using again Lemma 3.3(1), we get $b_{\xi}(\gamma(t), x)+b_{\xi}(x, o) \doteq b_{\xi}(\gamma(t), o)=b(\gamma(t))$, and hence $b(\gamma(t)) \doteq t$.
(2) By [BoS, Proposition 5.2(3)] we find a k^{\prime}-rough geodesic $\alpha: \mathbb{R} \rightarrow X$ from ξ to η, that is, $\{\alpha(-i)\}_{i} \in \xi,\{\alpha(i)\}_{i} \in \eta$. By Lemma 3.3(1) we get $b_{\xi}(\alpha(t), \alpha(0)) \doteq\{|\alpha(t) \alpha(-i)|-|\alpha(0) \alpha(-i)|\}_{i} \doteq\{t+i-i\}_{i}=t$, and hence $b(\alpha(t)) \doteq b_{\xi}(\alpha(t), \alpha(0))+b_{\xi}(\alpha(0), o) \doteq t+b(\alpha(0))$. The desired rough geodesic γ is now given by $\gamma(t)=\alpha(t-b(\alpha(0)))$.

Lemma 5.2.

(1) Let $y, x_{1}, x_{2} \in X$, let $\gamma_{i}:\left[0, r_{i}\right] \rightarrow X, i=1,2$, be k-rough geodesics from y to $x_{i}, r_{i}=\left|y x_{i}\right|$. Then $\left|\gamma_{1}(t) \gamma_{2}(t)\right| \doteq 0$ for $t \leq\left(x_{1} \mid x_{2}\right)_{y}$.
(2) Let $x_{1}, x_{2} \in X, \xi \in \partial_{\infty} X$, let $\gamma_{i}=\gamma_{\xi, x_{i}}:\left(-\infty, b\left(x_{i}\right)\right] \rightarrow X$ be $k^{\prime}-$ rough geodesics given by Lemma 5.1(1). Then $\left|\gamma_{1}(t) \gamma_{2}(t)\right| \doteq 0$ for $t \leq\left(x_{1} \mid x_{2}\right)_{\xi, o}$.

Proof. (1) Let $0 \leq t \leq\left(x_{1} \mid x_{2}\right)_{y}$ and set $x_{i}^{\prime}=\gamma_{i}(t)$. Then

$$
2\left(x_{i} \mid x_{i}^{\prime}\right)_{y}=\left|x_{i} y\right|+\left|x_{i}^{\prime} y\right|-\left|x_{i} x_{i}^{\prime}\right| \geq r_{i}+(t-k)-\left(r_{i}-t+k\right)=2 t-2 k
$$

which implies

$$
\left(x_{1}^{\prime} \mid x_{2}^{\prime}\right)_{y} \geq \min \left\{\left(x_{1}^{\prime} \mid x_{1}\right)_{y},\left(x_{1} \mid x_{2}\right)_{y},\left(x_{2} x_{2}^{\prime}\right)_{y}\right\}-2 \delta \geq t-k-2 \delta .
$$

Since

$$
2\left(x_{1}^{\prime} \mid x_{2}^{\prime}\right)_{y}=\left|x_{1}^{\prime} y\right|+\left|x_{2}^{\prime} y\right|-\left|x_{1}^{\prime} x_{2}^{\prime}\right| \leq 2 t+2 k-\left|x_{1}^{\prime} x_{2}^{\prime}\right|,
$$

we get $\left|x_{1}^{\prime} x_{2}^{\prime}\right| \leq 4 k+4 \delta$.
(2) Let $t \leq\left(x_{1} \mid x_{2}\right)_{\xi, o}$ and set $x_{i}^{\prime}=\gamma_{i}(t)$. By Lemma 5.1(1) we have $b\left(x_{i}^{\prime}\right) \doteq t$. Hence

$$
2\left(x_{i} \mid x_{i}^{\prime}\right)_{\xi, o}=b\left(x_{i}\right)+b\left(x_{i}^{\prime}\right)-\left|x_{i} x_{i}^{\prime}\right| \doteq b\left(x_{i}\right)+t-\left(b\left(x_{i}\right)-t\right)=2 t .
$$

By Lemma 3.4(1) we obtain

$$
\left(x_{1} \mid x_{2}^{\prime}\right)_{\xi, o} \geq \min \left\{\left(x_{1}^{\prime} \mid x_{1}\right)_{\xi, o},\left(x_{1} \mid x_{2}\right)_{\xi, o},\left(x_{2} \mid x_{2}^{\prime}\right)_{\xi, o}\right\}-6 \delta \geq t-c(\delta, k) .
$$

Since

$$
2\left(x_{1}^{\prime} \mid x_{2}^{\prime}\right)_{\xi, o}=b\left(x_{1}^{\prime}\right)+b\left(x_{2}^{\prime}\right)-\left|x_{1}^{\prime} x_{2}^{\prime}\right| \doteq 2 t-\left|x_{1}^{\prime} x_{2}^{\prime}\right|
$$

the lemma follows.
Lemma 5.3. Let X and ξ be as in Lemma 5.1 and $o, x, y \in X$. Then:

$$
\left|\gamma_{x}(t) \gamma_{y}(s)\right| \doteq \begin{cases}s+t-2(x \mid y)_{o} & \text { if } s, t \geq(x \mid y)_{o} \tag{1}\\ |s-t| & \text { otherwise }\end{cases}
$$

$$
\left|\gamma_{\xi, x}(t) \gamma_{\xi, y}(s)\right| \doteq \begin{cases}s+t-2(x \mid y)_{\xi, o} & \text { if } s, t \geq(x \mid y)_{\xi, o} \tag{2}\\ |s-t| & \text { otherwise }\end{cases}
$$

Proof. (1) For every $x \in X$ let $\gamma_{x}:[0,|o x|] \rightarrow X$ be a k-rough geodesic from o to x. Set $x^{\prime}=\gamma_{x}\left((x \mid y)_{o}\right)$ and $y^{\prime}=\gamma_{y}\left((x \mid y)_{o}\right)$.

We assume first $s, t \geq(x \mid y)_{o}$.
Since by Lemma 5.2(1) $\left|x^{\prime} y^{\prime}\right| \doteq 0$, we have

$$
\begin{aligned}
\left|\gamma_{x}(t) \gamma_{y}(s)\right| & \leq\left|\gamma_{x}(t) x^{\prime}\right|+\left|x^{\prime} y^{\prime}\right|+\left|y^{\prime} \gamma_{y}(s)\right| \\
& \doteq\left(t-(x \mid y)_{o}\right)+0+\left(s-(x \mid y)_{o}\right) \\
& =s+t-2(x \mid y)_{o}
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\gamma_{x}(t) \gamma_{y}(s)\right| & \geq|x y|-\left|x \gamma_{x}(t)\right|-\left|y \gamma_{y}(s)\right| \\
& \doteq|x y|-(|o x|-t)-(|o y|-s) \\
& =s+t-2(x \mid y)_{o} .
\end{aligned}
$$

To consider the second case, let without loss of generality $t \leq(x \mid y)_{o}, t \leq s$. Then by Lemma 5.2(1)

$$
\begin{aligned}
\left|\gamma_{x}(t) \gamma_{y}(s)\right| & \leq\left|\gamma_{x}(t) \gamma_{y}(t)\right|+\left|\gamma_{y}(t) \gamma_{y}(s)\right| \\
& \doteq 0+|t-s| \\
& =|t-s|
\end{aligned}
$$

and

$$
\begin{aligned}
\left|\gamma_{x}(t) \gamma_{y}(s)\right| & \geq\left|o \gamma_{y}(s)\right|-\left|o \gamma_{x}(t)\right| \\
& \doteq|t-s|
\end{aligned}
$$

(2) We may assume that $t \leq s$. Set $t_{0}=(x \mid y)_{\xi, o}$.

Case 1: $\quad t \geq t_{0}$. Set $x^{\prime}=\gamma_{\xi, x}\left(t_{0}\right), y^{\prime}=\gamma_{\xi, y}\left(t_{0}\right)$. By Lemma 5.2(2) we have $\left|x^{\prime} y^{\prime}\right| \doteq 0$. Hence

$$
\begin{aligned}
\left|\gamma_{\xi, x}(t) \gamma_{\xi, y}(s)\right| & \leq\left|\gamma_{\xi, x}(t) x^{\prime}\right|+\left|x^{\prime} y^{\prime}\right|+\left|y^{\prime} \gamma_{\xi, y}(s)\right| \\
& \doteq t-t_{0}+0+s-t_{0}=s+t-2 t_{0}
\end{aligned}
$$

Moreover,

$$
\begin{aligned}
\left|\gamma_{\xi, x}(t) \gamma_{\xi, y}(s)\right| & \geq|x y|-\left|x \gamma_{\xi, x}(t)\right|-\left|y \gamma_{\xi, y}(s)\right| \\
& \geq|x y|-(b(x)-t+k)-(b(y)-s+k) \\
& =s+t-2 t_{0}-2 k
\end{aligned}
$$

Case 2: $\quad t \leq t_{0}$. As $\left|\gamma_{\xi, x}(t) \gamma_{\xi, y}(t)\right| \doteq 0$ by Lemma $5.2(2)$, we obtain

$$
\left|\gamma_{\xi, x}(t) \gamma_{\xi, y}(s)\right| \doteq\left|\gamma_{\xi, y}(t) \gamma_{\xi, y}(s)\right| \doteq|t-s|
$$

Let $x, y \in X$ and assume that a is a number with $a \geq|x y|$. Then we define $\gamma_{x, y}^{a}:[0, a] \rightarrow X$ by

$$
\gamma_{x, y}^{a}(t)= \begin{cases}\gamma_{x}(|o x|-t) & \text { for } 0 \leq t \leq \min \left\{|o x|, \frac{1}{2}(|o x|-|o y|+a)\right\} \\ o & \text { for }|o x| \leq t \leq a-|o y| \\ \gamma_{y}(|o y|-a+t) & \text { for } \max \left\{a-|o y|, \frac{1}{2}(|o x|-|o y|+a)\right\} \leq t \leq a\end{cases}
$$

Thus, if $a=|o x|+|o y|$, then $\gamma_{x, y}^{a}$ is just the concatenation of γ_{x}^{-1} and γ_{y}. If $a>|o x|+|o y|$, then $\gamma_{x, y}^{a}$ is the concatenation of γ_{x}^{-1}, a constant curve at o and γ_{y}. If $|x y| \leq a<|o x|+|o y|$, then $\gamma_{x, y}^{a}$ is the concatenation of the inverse of $\left.\gamma_{x}\right|_{[\tau,|o x|]}$ and $\left.\gamma_{y}\right|_{[\tau,|o y|]}$, where $\tau=\frac{1}{2}(|o x|-|o y|+a)$. Note that for $a \leq|o x|+|o y|$ the curve $\gamma_{x, y}^{a}$ has two definitions at the parameter value τ. However, we have

$$
\sigma:=|o x|-\tau=\frac{1}{2}(|o x|+|o y|-a)=|o y|-a+\tau
$$

and in the case $|x y| \leq a \leq|x o|+|y o|$ also $0 \leq \sigma \leq(x \mid y)_{o}$. Hence, by Lemma $5.1(1)$, we have $\left|\gamma_{x}(\sigma) \gamma_{y}(\sigma)\right| \doteq 0$, which says that $\gamma_{x, y}^{a}$ is well defined up to a uniformly bounded error. This is enough for our considerations.

Lemma 5.4. Let $x, y \in X$ and $|x y| \leq a$. Then:
(1) There exists a constant c depending only on δ and k such that

$$
\left|\gamma_{x, y}^{a}(t) \gamma_{x, y}^{a}(s)\right| \leq|s-t|+c \text { for all } 0 \leq s, t \leq a
$$

(2) If $a \doteq|x y|$, then $\left|\gamma_{x, y}^{a}(t) \gamma_{x, y}^{a}(s)\right| \doteq|s-t|$ for all $0 \leq s, t \leq a$.
(3) $\left|\gamma_{x, y}^{a}(t) o\right| \doteq \max \{|o x|-t, 0,|o y|-a+t\}$ for all $0 \leq t \leq a$.

Proof. (1) follows from the fact that $\gamma_{x, y}^{a}$ is, up to a uniformly bounded error, the concatenation of rough geodesics and constant curves. (2) follows from (1) and $\left|\gamma_{x, y}^{a}(a) \gamma_{x, y}^{a}(0)\right| \doteq a$. (3) follows from the definition of $\gamma_{x, y}^{a}$, $\left|\gamma_{x}(t) o\right| \doteq t$ and $\left|\gamma_{y}(t) o\right| \stackrel{ }{\doteq} t$.

The above results have straightforward generalizations to the case where we fix a "base point" at infinity. We only replace the distance to o by the Busemann function b.

For $x, y \in X$ and $a \geq|x y|$ we define $\gamma_{\xi, x, y}^{a}:[0, a] \rightarrow X$ by

$$
\gamma_{\xi, x, y}^{a}(t)= \begin{cases}\gamma_{\xi, x}(b(x)-t) & \text { for } 0 \leq t \leq \frac{1}{2}(b(x)-b(y)+a) \\ \gamma_{\xi, y}(b(y)-a+t) & \text { for } \frac{1}{2}(b(x)-b(y)+a) \leq t \leq a\end{cases}
$$

Lemma 5.5. Let X and ξ be as in Lemma 5.1, $x, y \in X$ and $a \geq|x y|$. Then:
(1) There exists a constant c depending only on δ and k such that

$$
\left|\gamma_{\xi, x, y}^{a}(t) \gamma_{\xi, x, y}^{a}(s)\right| \leq|s-t|+c \text { for all } 0 \leq s, t \leq a .
$$

(2) If $a \doteq|x y|$, then $\left|\gamma_{\xi, x, y}^{a}(t) \gamma_{\xi, x, y}^{a}(s)\right| \doteq|s-t|$ for all $0 \leq s, t \leq a$.
(3) $b\left(\gamma_{\xi, x, y}^{a}(t)\right) \doteq \max \{b(x)-t, b(y)-a+t\}$ for all $0 \leq t \leq a$.

6. Hyperbolic products of roughly geodesic spaces

In this section we show that hyperbolic products of roughly geodesic spaces are roughly geodesic. We assume that X_{1}, X_{2} are metric spaces which are δ hyperbolic and k-roughly geodesic. Let $o_{\nu} \in X_{\nu}, \nu=1,2$, be base points.

LEmma 6.1. If $x \in Y_{\Delta, o}$, then there exists $x^{\prime} \in Y_{k, o}$ with $\left|x x^{\prime}\right| \leq \Delta+k$.
Proof. We assume without loss of generality that $a_{1}:=\left|x_{1} o_{1}\right| \geq\left|x_{2} o_{2}\right|=$: a_{2}. By assumption $a_{1}-a_{2} \leq \Delta$. Let $\gamma_{1}:\left[0, a_{1}\right] \rightarrow X_{1}$ be a k-rough geodesic with $\gamma_{1}(0)=o$ and $\gamma_{1}\left(a_{1}\right)=x_{1}$, and define $x_{1}^{\prime}:=\gamma_{1}\left(a_{2}\right)$. By construction $x^{\prime}=\left(x_{1}^{\prime}, x_{2}\right)$ satisfies the required properties.

LEMMA 6.2. There exists $k^{\prime}=k^{\prime}(\delta, k) \geq 0$ with the following property: If $x, y \in Y_{k, o}$, then there exists a k^{\prime}-rough geodesic $\gamma: I \rightarrow X_{1} \times X_{2}$ from x to y such that $\gamma(t) \in Y_{k^{\prime}, o}$ for all $t \in I$.

Proof. Let $a:=\max \left\{\left|x_{1} y_{1}\right|,\left|x_{2} y_{2}\right|\right\}$ and consider

$$
\begin{array}{rlllll}
\gamma_{1} & := & \gamma_{x_{1}, y_{1}}^{a}: & {[0, a]} & \longrightarrow & X_{1} \\
\gamma_{2} & := & \gamma_{x_{2}, y_{2}}^{a}: & {[0, a]} & \longrightarrow & X_{2}, \\
\gamma & := & \left(\gamma_{1}, \gamma_{2}\right): & {[0, a]} & \longrightarrow & X_{1} \times X_{2}
\end{array}
$$

It follows from Lemma $5.4(1),(2)$ that γ is a rough geodesic with a constant that depends only on δ and k. From Lemma 5.4(3) we obtain that $\left|\gamma_{1}(t) o_{1}\right| \doteq_{k^{\prime}}$ $\left|\gamma_{2}(t) o_{2}\right|$ for a constant k^{\prime} depending only on δ and k.

Theorem 1.3. If X_{1}, X_{2} are δ-hyperbolic and k-roughly geodesic, then there exists $\Delta_{0} \geq 0$ such that for all $\Delta \geq \Delta_{0}$ the space $Y_{\Delta, o}$ is roughly geodesic.

Proof. Let k^{\prime} be the constant from Lemma 6.2. We claim that $\Delta_{0}:=$ $\max \left\{k, k^{\prime}\right\}$ satisfies the required properties. Let $\Delta \geq \Delta_{0}$ and let $x, y \in Y_{\Delta, o}$. Let $x^{\prime}, y^{\prime} \in Y_{k, o}$ be points according to Lemma 6.1 with $\left|x x^{\prime}\right| \leq \Delta+k$ and $\left|y y^{\prime}\right| \leq \Delta+k$. Let $a^{\prime}=\left|x^{\prime} y^{\prime}\right|$ and $a=|x y|$. Then $a \dot{\doteq}_{2 \Delta+2 k} a^{\prime}$. Let $\bar{a}=$ $\min \left\{a, a^{\prime}\right\}$. By Lemma 6.2 there exists a k^{\prime}-rough geodesic $\gamma^{\prime}:\left[0, a^{\prime}\right] \rightarrow Y_{k^{\prime}, o}$ from x^{\prime} to y^{\prime}. Let $\gamma:[0, a] \rightarrow Y_{\Delta, o}$ be defined by

$$
\gamma(t)= \begin{cases}x & \text { for } t=0 \\ \gamma^{\prime}(t) & \text { for } 0<t<\bar{a} \\ y & \text { for } \bar{a} \leq t \leq a\end{cases}
$$

Since $\left|x x^{\prime}\right| \leq \Delta+k,\left|y y^{\prime}\right| \leq \Delta+k$ and $a \doteq a^{\prime}$, the curve γ is a \bar{k}-rough geodesic, where \bar{k} depends only on δ, k and Δ.

In essentially the same way one shows:

THEOREM 1.4. Let X_{1}, X_{2} be δ-hyperbolic and k-roughly geodesic. Let $\xi_{\nu} \in \partial_{\infty} X_{\nu}$. Then there exists $\Delta_{0} \geq 0$ such that $Y_{\Delta, \xi, o}$ is roughly geodesic for all $\Delta \geq \Delta_{0}$.

7. The boundary of hyperbolic products

In this section we study the boundary of hyperbolic products. We start from spaces $X_{\nu}, \nu=1,2$, which are hyperbolic and roughly geodesic.
7.1. The boundary of $Y_{\Delta, o}$. We consider the product $Y_{\Delta, o}$.

TheOrem 1.5. Let $X_{\nu}, \nu=1,2$, be δ-hyperbolic and k-roughly geodesic metric spaces. Then there exists $\Delta_{0}=\Delta_{0}(\delta, k) \geq 0$ such that for all $\Delta \geq \Delta_{0}$ the space $\partial_{\infty} Y_{\Delta, o}$ is naturally homeomorphic to $\partial_{\infty} X_{1} \times \partial_{\infty} X_{2}$.

Proof. Let $\Delta_{0}=2 k^{\prime}(\delta, k)$, where k^{\prime} is the constant from Lemma 5.1(1). Then for $\Delta \geq \Delta_{0}$ the space $Y_{\Delta, o}$ is hyperbolic by Theorem 1.1.

We first show that by setting

$$
\begin{aligned}
\psi: \partial_{\infty} Y_{\Delta, o} & \rightarrow \partial_{\infty} X_{1} \times \partial_{\infty} X_{2} \\
{\left[\left\{z_{i}\right\}\right] } & \mapsto\left(\left[\left\{z_{1 i}\right\}\right],\left[\left\{z_{2 i}\right\}\right]\right)
\end{aligned}
$$

we obtain a well defined map. Let $\left\{z_{i}\right\}$ be a sequence converging to infinity. Then $\left(z_{i} \mid z_{j}\right)_{o} \rightarrow \infty$. Since by Lemma $4.1\left(z_{i} \mid z_{j}\right)_{o} \doteq \min \left\{\left(z_{1 i} \mid z_{1 j}\right)_{o_{1}}\right.$, $\left.\left(z_{2 i} \mid z_{2 j}\right)_{o_{2}}\right\}$, where \doteq means $\doteq_{c(\delta, k, \Delta)}$, we see that $\left\{z_{\nu i}\right\}$ is also converging to infinity for $\nu=1,2$. If $\left\{z_{i}^{\prime}\right\}$ is equivalent to $\left\{z_{i}\right\}$, then $\left(z_{i} \mid z_{i}^{\prime}\right)_{o} \rightarrow \infty$, which implies $\left(z_{\nu i} \mid z_{\nu i^{\prime}}\right)_{o} \rightarrow \infty$ for $\nu=1,2$. Thus ψ is well defined.

It follows easily from Lemma 4.1 that for $\eta, \eta^{\prime} \in \partial_{\infty} Y_{\Delta, o}$ with $\psi(\eta)=$ $\left(\eta_{1}, \eta_{2}\right)$ and $\psi\left(\eta^{\prime}\right)=\left(\eta_{1}^{\prime}, \eta_{2}^{\prime}\right)$ we have

$$
\left(\eta \mid \eta^{\prime}\right)_{o} \doteq \min \left\{\left(\eta_{1} \mid \eta_{1}^{\prime}\right)_{o_{1}},\left(\eta_{2} \mid \eta_{2}^{\prime}\right)_{o_{2}}\right\}
$$

This implies the continuity and injectivity of ψ, and it will also show the continuity of ψ^{-1} once we have proved the bijectivity of the map. That the map ψ is also surjective can be seen as follows: Let $\eta_{\nu} \in \partial_{\infty} X_{\nu}$ and let $\gamma_{\nu}:[0, \infty) \rightarrow X_{\nu}$ be rough geodesics with $\gamma_{\nu}(0)=o_{\nu}$ and $\gamma_{\nu}(i) \rightarrow \eta_{\nu}$. Then $\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right) \in Y_{\Delta, o}$ for Δ large enough, since $\left|o_{\nu} \gamma_{\nu}(t)\right| \doteq t$. It follows that $\psi(\gamma(\infty))=\left(\eta_{1}, \eta_{2}\right)$.
7.2. Coarse smashed product. Let $\left(Z_{\nu}, \xi_{\nu}\right)$ be pointed topological spaces, $\nu=1,2$. We call the subset $\left(Z_{1} \times\left\{\xi_{2}\right\}\right) \cup\left(\left\{\xi_{1}\right\} \times Z_{2}\right)$ the cross at $\left(\xi_{1}, \xi_{2}\right) \in Z_{1} \times Z_{2}$. The smashed product $\left(Z_{1}, \xi_{1}\right) \wedge\left(Z_{2}, \xi_{2}\right)$ is the space $Z_{1} \times Z_{2}$, where we identify (smash) the cross at $\left(\xi_{1}, \xi_{2}\right)$ to one point. Formally we define an equivalence relation \sim on $Z_{1} \times Z_{2}$ by letting

$$
\left(\eta_{1}, \eta_{2}\right) \sim\left(\eta_{1}^{\prime}, \eta_{2}^{\prime}\right)
$$

if and only if

$$
\left\{\eta_{1}=\eta_{1}^{\prime} \wedge \eta_{2}=\eta_{2}^{\prime}\right\} \vee\left[\left\{\eta_{1}=\xi_{1} \vee \eta_{2}=\xi_{2}\right\} \wedge\left\{\eta_{1}^{\prime}=\xi_{1} \vee \eta_{2}^{\prime}=\xi_{2}\right\}\right]
$$

The coarse smashed product topology is defined as follows: A basis of the open sets are the sets $U_{1} \times U_{2}$, where $U_{\nu} \subset X_{\nu} \backslash\left\{\xi_{\nu}\right\}, \nu=1,2$, are open, and the sets $\left(W_{1} \times Z_{2}\right) \cup\left(Z_{1} \times W_{2}\right)$, where $W_{\nu} \subset Z_{\nu}$ are open neighborhoods of ξ_{ν}.

Thus a sequence $\left[\left(\eta_{1 i}, \eta_{2 i}\right)\right] \in\left(Z_{1}, \xi_{1}\right) \wedge\left(Z_{2}, \xi_{2}\right)$ converges to $\left[\left(\xi_{1}, \xi_{2}\right)\right]$, iff for all open neighborhoods $W_{\nu} \subset Z_{\nu}$ of ξ_{ν} there exists $i_{0}=i_{0}\left(W_{1}, W_{2}\right) \in \mathbb{N}$ such that for all $i \geq i_{0}$ one has $\eta_{1 i} \in W_{1}$ or $\eta_{2 i} \in W_{2}$.

If the spaces Z_{ν} are second countable for $\nu=1,2$, then so is $\left(Z_{1}, \xi_{1}\right) \wedge$ $\left(Z_{2}, \xi_{2}\right)$.

REmark 7.1. Note that in the literature the smashed product of two pointed topological spaces $\left(Z_{1}, \xi_{1}\right)$ and $\left(Z_{2}, \xi_{2}\right)$ is defined as the set $Z_{1} \times Z_{2} / \sim$ endowed with the quotient topology. In general, the coarse smashed product is coarser than the smashed product. However, in the case when Z_{1} and Z_{2} are compact, the two topologies are equivalent. Since in [FS2] we considered proper geodesic spaces and the boundaries at infinity of such spaces are compact, the smashed product topology we considered in Theorem 2 of [FS2] agrees with the coarse smashed product topology as introduced above.
7.3. Boundary of $Y_{\Delta, \xi, o}$. We assume that the spaces X_{ν} are hyperbolic, roughly geodesic spaces and that $\xi_{\nu} \in \partial_{\infty} Y_{\Delta, \xi, o}$. By Theorem $1.2 Y_{\Delta, \xi, o}$ is $\delta^{\prime}-$ hyperbolic for some $\delta^{\prime}(\delta, \Delta)$. Let $k^{\prime}(\delta, k)$ and $c^{\prime}(\delta, k)$ be the numbers given by Lemma 5.1 such that $b\left(\gamma_{\xi, x}(t)\right) \doteq{ }_{c^{\prime}} t$ and $b\left(\gamma_{\xi, \eta}(t)\right) \doteq_{c^{\prime}} t$. Let $\Delta_{0}(\delta, k)=2 c^{\prime}$ and let $\Delta \geq \Delta_{0}$.

We use in this section the convention that \doteq means \doteq_{c}, where c depends only on δ and k and Δ. Let $\gamma_{\nu}:[0, \infty) \rightarrow X_{\nu}$ be rough geodesics from o_{ν} with $\left\{\gamma_{\nu}(i)\right\}_{i} \in \xi_{\nu}$. Then $b_{\nu}\left(\gamma_{\nu}(t)\right) \doteq-t$ and hence $\gamma(t)=\left(\gamma_{1}(t), \gamma_{2}(t)\right) \in Y_{\Delta, \xi, o}$ for Δ large enough. Clearly, $\gamma(i)$ converges to infinity and we define $\xi:=[\{\gamma(i)\}]$.

Lemma 7.2. If $x, y \in Y_{\Delta, \xi, o}$, then:
(1) $(x \mid y)_{\xi, o} \doteq \min \left\{\left(x_{1} \mid y_{1}\right)_{\xi_{1}, o_{1}},\left(x_{2} \mid y_{2}\right)_{\xi_{2}, o_{2}}\right\}$.
(2) $(x \mid \xi)_{o} \doteq \max \left\{\left(x_{1} \mid \xi_{1}\right)_{o_{1}},\left(x_{2} \mid \xi_{2}\right)_{o_{2}}\right\}$.

Proof. (1) Let $\left\{u_{i}\right\} \in \xi$. Then we have

$$
\begin{aligned}
(x \mid y)_{\xi, o} & \doteq \frac{1}{2}\left\{\left|x u_{i}\right|-\left|o u_{i}\right|+\left|y u_{i}\right|-\left|o u_{i}\right|-|x y|\right\}_{i} \\
& =\left\{(x \mid y)_{u_{i}}-\left|u_{i} o\right|\right\}_{i} \\
& \doteq \min \left\{\left(x_{1} \mid y_{1}\right)_{\xi_{1}, o_{1}},\left(x_{2} \mid y_{2}\right)_{\xi_{2}, o_{2}}\right\},
\end{aligned}
$$

where the last step follows from Lemma 4.2.
(2) Set $u_{i}=\gamma(i), u_{\nu i}=\gamma_{\nu}(i)$. We first show that

$$
\begin{align*}
& \left\{\left|o u_{i}\right|\right\}_{i} \doteq\left\{\left|o_{\nu} u_{\nu i}\right|\right\}_{i}, \tag{7.1}\\
& \left\{\left|x u_{i}\right|\right\}_{i} \doteq\left\{\left|x_{\nu} u_{\nu i}\right|\right\}_{i} . \tag{7.2}
\end{align*}
$$

As γ_{ν} is a k^{\prime}-geodesic, we have $\left|o_{\nu} u_{\nu i}\right| \doteq i$, which implies (7.1). By Lemma 3.3(1) we have

$$
\left\{\left|o_{1} u_{1 i}\right|-\left|x_{1} u_{1 i}\right|\right\}_{i} \doteq_{2 \delta}-b_{1}\left(x_{1}\right) \doteq_{\Delta}-b_{2}\left(x_{2}\right) \doteq_{2 \delta}\left\{\left|o_{2} u_{2 i}\right|-\left|x_{2} u_{2 i}\right|\right\}_{i}
$$

This and (7.1) imply (7.2).
By Lemma 3.1(2) we have

$$
2(x \mid \xi) \doteq_{2 \delta^{\prime}}\left\{2\left(x \mid u_{i}\right)_{o}\right\}_{i}=\left\{\max \left\{\left|o_{1} x_{1}\right|,\left|o_{2} x_{2}\right|\right\}+\left|o u_{i}\right|-\left|x u_{i}\right|\right\}_{i} .
$$

Now (7.1) and (7.2) imply the assertion.
THEOREM 1.6. The boundary $\partial_{\infty} Y_{\Delta, \xi, o}$ is naturally homeomorphic to the coarse smashed product $\left(\partial_{\infty} X_{1}, \xi_{1}\right) \wedge\left(\partial_{\infty} X_{2}, \xi_{2}\right)$.

Proof. The proof uses the following formulae from Lemmata 7.2 and 3.4:

$$
\begin{align*}
(x \mid y)_{o} & \doteq(x \mid y)_{\xi, o}+(x \mid \xi)_{o}+(y \mid \xi)_{o} \quad \text { for all } x, y \in Y_{\Delta, \xi, o} \tag{7.3}\\
(x \mid y)_{\xi, o} & \doteq \min \left\{\left(x_{1} \mid y_{1}\right)_{\xi_{1}, o_{1}},\left(x_{2} \mid y_{2}\right)_{\xi_{2}, o_{2}}\right\} \quad \text { for all } x, y \in Y_{\Delta, \xi, o} \tag{7.4}\\
(x \mid \xi)_{o} & \doteq \max \left\{\left(x_{1} \mid \xi_{1}\right)_{o_{1}},\left(x_{2} \mid \xi_{2}\right)_{o_{2}}\right\} \quad \text { for all } x \in Y_{\Delta, \xi, o} \tag{7.5}
\end{align*}
$$

We have
x_{i} converges to a point in $\partial_{\infty} Y_{\Delta, \xi, o} \backslash\{\xi\}$
$\Longleftrightarrow\left(x_{i} \mid x_{j}\right)_{o} \rightarrow \infty$ and $\left(x_{i} \mid \xi\right)_{o}$ bounded
$\Longleftrightarrow{ }_{(7.3)}\left(x_{i} \mid x_{j}\right)_{\xi, o} \rightarrow \infty$ and $\left(x_{i} \mid \xi\right)_{o}$ bounded
$\Longleftrightarrow{ }_{(7.4),(7.5)}\left(x_{\nu i} \mid x_{\nu j}\right)_{\xi_{\nu}, o_{\nu}} \rightarrow \infty$ and $\left(x_{\nu i} \mid \xi_{\nu}\right)_{o_{\nu}}$ bounded for $\nu=1,2$
$\Longleftrightarrow x_{\nu i}$ converges to a point in $\partial_{\infty} X_{\nu} \backslash\left\{\xi_{\nu}\right\}$ for $\nu=1,2$.
This calculation shows that the map

$$
\psi: \partial_{\infty} Y_{\Delta, \xi, o} \backslash\{\xi\} \rightarrow\left(\partial_{\infty} X_{1} \backslash\left\{\xi_{1}\right\}\right) \times\left(\partial_{\infty} X_{2} \backslash\left\{\xi_{2}\right\}\right)
$$

given by $\psi(\eta)=\left(\left[\left\{x_{1 i}\right\}\right],\left[\left\{x_{2 i}\right\}\right]\right)$, where $\left\{x_{i}\right\}$ is a sequence in $Y_{\Delta, \xi, o}$ with $\left[\left\{x_{i}\right\}\right]=\eta$, is well defined.

The formulae (7.3)-(7.5) have extensions to the ideal boundary: If $\eta, \eta^{\prime} \in$ $\partial_{\infty} Y_{\Delta, \xi, o} \backslash\{\xi\}, \psi(\eta)=\left(\eta_{1}, \eta_{2}\right)$ and $\psi\left(\eta^{\prime}\right)=\left(\eta_{1}^{\prime}, \eta_{2}^{\prime}\right)$, then

$$
\begin{align*}
\left(\eta \mid \eta^{\prime}\right)_{o} & \doteq\left(\eta \mid \eta^{\prime}\right)_{\xi, o}+(\eta \mid \xi)_{o}+\left(\eta^{\prime} \mid \xi\right)_{o} \tag{7.6}\\
\left(\eta \mid \eta^{\prime}\right)_{\xi, o} & \doteq \min \left\{\left(\eta_{1} \mid \eta_{1}^{\prime}\right)_{\xi_{1}, o_{1}},\left(\eta_{2} \mid \eta_{2}^{\prime}\right)_{\xi_{2}, o_{2}}\right\} \tag{7.7}\\
(\eta \mid \xi)_{o} & \doteq \max \left\{\left(\eta_{1} \mid \xi_{1}\right)_{o_{1}},\left(\eta_{2} \mid \xi_{2}\right)_{o_{2}}\right\} \tag{7.8}
\end{align*}
$$

Let $\eta_{i}, \eta \in \partial_{\infty} Y_{\Delta, \xi, o} \backslash\{\xi\}, i \in \mathbb{N}$. Then

$$
\begin{aligned}
\eta_{i} \rightarrow \eta & \Longleftrightarrow\left(\eta_{i} \mid \eta\right)_{o} \rightarrow \infty \text { and }\left(\eta_{i} \mid \xi\right)_{o} \text { bounded } \\
& \Longleftrightarrow{ }_{(7.6)}\left(\eta_{i} \mid \eta\right)_{\xi, o} \rightarrow \infty \text { and }\left(\eta_{i} \mid \xi\right)_{o} \text { bounded } \\
& \Longleftrightarrow{ }_{(7.7),(7.8)}\left(\eta_{\nu i} \mid \eta_{\nu}\right)_{\xi_{\nu}, o_{\nu}} \rightarrow \infty \text { and }\left(\eta_{\nu i} \mid \xi_{\nu}\right)_{o_{\nu}} \text { bounded for } \nu=1,2 \\
& \Longleftrightarrow{ }_{(7.6 \nu)}\left(\eta_{\nu i} \mid \eta_{\nu}\right)_{o_{\nu}} \rightarrow \infty \text { and }\left(\eta_{\nu i} \mid \xi_{\nu}\right)_{o_{\nu}} \text { bounded for } \nu=1,2 \\
& \Longleftrightarrow \eta_{\nu i} \rightarrow \eta_{\nu} \text { for } \nu=1,2,
\end{aligned}
$$

where (7.6ν) is the formula (7.6) applied to the factors. This computation shows in particular the continuity of ψ. It will also show the continuity of ψ^{-1} after we have proved the bijectivity. If $\eta, \eta^{\prime} \in \partial_{\infty} Y_{\Delta, \xi, o} \backslash\{\xi\}$, then $\psi(\eta)=\psi\left(\eta^{\prime}\right)$ implies by (7.7) that $\left(\eta \mid \eta^{\prime}\right)_{\xi, o}=\infty$, and hence $\eta=\eta^{\prime}$. Thus ψ is injective.

We next show that the map is also surjective. Let $\eta_{\nu} \in \partial_{\infty} X_{\nu} \backslash \xi_{\nu}$ be given. Due to Lemma 5.1 there are rough geodesics $\gamma_{\xi_{\nu}, \eta_{\nu}}: \mathbb{R} \rightarrow X_{\nu}$ with $\left\{\gamma_{\xi_{\nu}, \eta_{\nu}}(-i)\right\}_{i} \in \xi_{\nu},\left\{\gamma_{\xi_{\nu}, \eta_{\nu}}(i)\right\}_{i} \in \eta_{\nu}$ and $b\left(\gamma_{\xi_{\nu}, \eta_{\nu}}(t)\right) \doteq_{c^{\prime}} t, \nu=1,2$. By our choice of Δ_{0} we obtain $\left(\gamma_{\xi_{1}, \eta_{1}}(t), \gamma_{\xi_{2}, \eta_{2}}(t)\right) \in Y_{\Delta, \xi, o}$, from which the surjectivity of ψ immediately follows.

Finally we show that ψ can be extended continuously to a homeomorphism

$$
\bar{\psi}: \partial_{\infty} Y_{\Delta, \xi, o} \rightarrow\left(\partial_{\infty} X_{1}, \xi_{1}\right) \wedge\left(\partial_{\infty} X_{2}, \xi_{2}\right)
$$

by defining $\bar{\psi}(\xi)=\left[\left(\xi_{1}, \xi_{2}\right)\right]$. Observe

$$
\begin{aligned}
\eta_{i} \rightarrow \xi & \Longleftrightarrow\left(\eta_{i} \mid \xi\right)_{o} \rightarrow \infty \\
& \Longleftrightarrow(7.8) \max \left\{\left(\eta_{1 i} \mid \xi_{1}\right)_{o_{1}},\left(\eta_{2 i} \mid \xi_{2}\right)_{o_{2}}\right\} \rightarrow \infty \\
& \Longleftrightarrow \forall D \geq 0 \quad \exists i_{0} \in \mathbb{N} \text { such that } \forall i \geq i_{0} \\
& \left(\eta_{1 i} \mid \xi_{1}\right)_{o_{1}} \geq D \text { or }\left(\eta_{2 i} \mid \xi_{2}\right)_{o_{2}} \geq D \\
& \Longleftrightarrow\left[\left(\eta_{1 i}, \eta_{2 i}\right)\right] \rightarrow\left[\left(\xi_{1}, \xi_{2}\right)\right],
\end{aligned}
$$

where in the last line the convergence is in $\left(\partial_{\infty} X_{1}, \xi_{1}\right) \wedge\left(\partial_{\infty} X_{2}, \xi_{2}\right)$.

8. Maximum metric versus Euclidean metric

We finally point out that when starting off with two proper geodesic metric spaces one has to consider the length metric d induced by the maximum metric d_{m} on $Y_{0, o}$ or $Y_{0, \xi, o}$, in order to obtain a proper geodesic space again. In this case, we might as well endow Y_{0} with the length metric induced by the Euclidean product metric d_{e} instead of the maximum metric d_{m}. Since both are geodesic spaces which are bilipschitz related, one of them is Gromov hyperbolic if and only if the other one is (see, e.g., Theorem 1.9 in Chapter III. 1 of $[\mathrm{BrH}]$).

In fact, when starting off with two Riemannian manifolds and fixing points at infinity, the construction using the Euclidean product metric has the advantage that it once again yields a Riemannian manifold (compare [FS1]).

However, we emphasize that in neither of the Theorems 1.1-1.6 we can replace the maximum metric by the Euclidean metric, as the following example shows.

Example 8.1. Consider two copies of the real hyperbolic space \mathbb{H}^{2}. Fix points $o_{1}=o_{2} \in \mathbb{H}^{2}$ and $\xi_{1}=\xi_{2} \in \partial_{\infty} \mathbb{H}^{2}$. Now consider sequences of points $\left\{x^{i}=\left(x_{1}^{i}, x_{2}^{i}\right)\right\},\left\{y^{i}=\left(y_{1}^{i}, y_{2}^{i}\right)\right\},\left\{z^{i}=\left(z_{1}^{i}, z_{2}^{i}\right)\right\}$ and $\left\{w^{i}=\left(w_{1}^{i}, w_{2}^{i}\right)\right\}$ such that $x_{1}^{i}=x_{2}^{i}, y_{1}^{i}=y_{2}^{i}, z_{1}^{i}=z_{2}^{i}, b_{\nu}\left(z_{\nu}^{i}\right)=b_{\nu}\left(y_{\nu}^{i}\right),\left|x_{\nu}^{i} y_{\nu}^{i}\right|=\left|x_{\nu}^{i} z_{\nu}^{i}\right|=\frac{1}{2}\left|y_{\nu}^{i} z_{\nu}^{i}\right|$, $w_{1}^{i}=y_{1}^{i}$ and $w_{2}^{i}=z_{2}^{i}$ for all $i \in \mathbb{N}, \nu=1,2$, as well as $\left|y_{\nu}^{i} z_{\nu}^{i}\right| \xrightarrow{i \rightarrow \infty} \infty, \nu=1,2$.

We claim that $\left(Y_{0, \xi, o}, d_{e}\right)$ is not hyperbolic. Suppose to the contrary that $\left(Y_{0, \xi, o}, d_{e}\right)$ is hyperbolic. Then there exists a $\delta \geq 0$ such that for all $i \in \mathbb{N}$

$$
\begin{aligned}
& d_{e}\left(y^{i}, z^{i}\right)+d_{e}\left(x^{i}, w^{i}\right) \\
& \quad \leq \max \left\{d_{e}\left(x^{i}, y^{i}\right)+d_{e}\left(z^{i}, w^{i}\right), d_{e}\left(y^{i}, w^{i}\right)+d_{e}\left(x^{i}, z^{i}\right)\right\}+2 \delta \\
& \Longleftrightarrow d_{e}\left(y^{i}, z^{i}\right) \leq \max \left\{d_{e}\left(z^{i}, w^{i}\right), d_{e}\left(y^{i}, w^{i}\right)\right\}+2 \delta \\
& \Longleftrightarrow \sqrt{2}\left|y_{1}^{i} z_{1}^{i}\right| \leq\left|y_{1}^{i} z_{1}^{i}\right|+2 \delta,
\end{aligned}
$$

which contradicts our choices of sequences.

References

[BoS] M. Bonk and O. Schramm, Embeddings of Gromov hyperbolic spaces, Geom. Funct. Anal. 10 (2000), 266-306. MR 1771428 (2001g:53077)
[BrH$]$ M. R. Bridson and A. Haefliger, Metric spaces of non-positive curvature, Grundlehren der Mathematischen Wissenschaften, vol. 319, Springer-Verlag, Berlin, 1999. MR 1744486 (2000k:53038)
[FS1] T. Foertsch and V. Schroeder, Hyperbolic rank of products, Proc. Amer. Math. Soc. 133 (2005), 557-563. MR 2093080 (2005g:53047)
[FS2] , Products of hyperbolic metric spaces, Geom. Dedicata 102 (2003), 197-212. MR 2026845 (2004m:53072)
[G] M. Gromov, Hyperbolic groups, Essays in group theory, Math. Sci. Res. Inst. Publ., vol. 8, Springer, New York, 1987, pp. 75-263. MR 919829 (89e:20070)
[V] J. Väisälä, Gromov hyperbolic spaces, Expo. Math. 23 (2005), 187-231. MR 2164775
Thomas Foertsch, Institut für Mathematik, Universität Bonn, Beringstrasse 1, D-53115 Bonn, Germany

E-mail address: foertsch@math.uni-bonn.de
Viktor Schroeder, Institut für Mathematik, Universität Zürich, Winterthurer Strasse 190, CH-8057 Zürich, Switzerland

E-mail address: vschroed@math.unizh.ch

[^0]: Received June 3, 2004, 2005; received in final form June 23, 2005.
 2000 Mathematics Subject Classification. 53C23.
 The first author is supported by the Deutsche Forschungsgemeinschaft (FO 353/1-1). The second author is supported by Swiss National Science Foundation.

