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MULTILINEAR MOTIVIC POLYLOGARITHMS

SUNG MYUNG

Abstract. We explicitly describe a candidate for the regulator map

fromH1
M
(
SpecC,Z(n)

)
into R using analogues of polylogarithms. When

n = 2, the above procedure agrees with the one in the author’s paper

[14], which was shown to be compatible with Bloch’s dilogarithm.

1. Introduction

In [3] Beilinson constructed a regulator map from the motivic cohomol-
ogy Hp

M
(
X,Q(q)

)
, which is defined using the γ-filtration of K-theory, to

the Deligne-Beilinson cohomology group Hp
D
(
X,R(q)

)
for a scheme X over

Spec(C).
Bloch [4] introduced a single-valued analogue D2 of the dilogarithm func-

tion to describe the regulator map on K3(C) explicitly. Zagier [18] constructed
similar single-valued analogues of classical polylogarithm functions and conjec-
tured that the Borel regulator maps can be described with his polylogarithm
functions in a certain way. Goncharov, in [5] and [7], constructed a regulator
map for his motivic complex whose homology groups are conjectured to be
isomorphic to the consecutive quotients of the γ-filtration of K-theory after
tensoring with Q. His definition of a motivic complex is motivated by prop-
erties of polylogarithms, but its legitimacy as a motivic complex is mostly
conjectural. The formulas for these polylogarithms, which are single-valued
functions related to the classical higher logarithms Lin(z) =

∑∞
k=1 z

k/kn, are
given in [18] by Zagier. In [6], Goncharov constructed a regulator map for
Bloch’s higher Chow groups via his Chow polylogarithms, which resemble
our formulas in a sense. While this paper was being prepared for publica-
tion, another paper [8] of Goncharov, based on a similar philosophy, has been
published.

In a different approach, Hain and MacPherson [11] proposed their version
of higher logarithms as multi-valued functions on a certain complex manifold,
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motivated by classical properties and functional equations of the dilogarithm.
Their higher logarithms satisfy functional equations immediately once their
existence is established, but their relation to the regulator map has not been
given.

The main purpose of this paper is to give an explicit description of a candi-
date for the regulator map from H1

M
(
SpecC, Z(n)

)
into R based on analogues

of polylogarithms. The motivic cohomology we use throughout this paper is
the one defined via the motivic complex proposed by Goodwillie and Lichten-
baum as in [9]. We briefly recall the definition. For a ring R, let P(R, Gtm) be
the exact category each of whose objects (P, θ1, . . . , θt) consists of a finitely
generated projective R-module P and commuting automorphisms θ1, . . . , θt
of P . A morphism from (P, θ1, . . . , θt) to (P ′, θ′1, . . . , θ

′
t) in this category is a

homomorphism f : P → P ′ of R-modules such that fθi = θ′if for each i. Let
K0(R, Gtm) be the Grothendieck group of this category and let K0(R, G∧tm )
be the quotient of K0(R, Gtm) by the subgroup generated by those objects
(P, θ1, . . . , θt), where θi = 1 for some i.

For each d ≥ 0, let R∆d be the R-algebra

R∆d = R[T0, . . . , Td]/(T0 + · · ·+ Td − 1),

which is isomorphic to a polynomial ring with d indeterminates over R. We
denote by Ord the category of finite nonempty ordered sets and by [d], where
d is a nonnegative integer, the object {0 < 1 < · · · < d}. Given a map
ϕ : [d] → [e] in Ord, the map ϕ∗ : R∆e → R∆d is defined by ϕ∗(Tj) =∑
ϕ(i)=j Ti. The map ϕ∗ gives us a simplicial ring R∆•.
By applying the functor K0(−, G∧tm ), we get the simplicial abelian group

d 7→ K0(R∆d, G∧tm ).

The associated (normalized) chain complex via the Dold-Kan correspondence
between the simplicial abelian groups and the nonnegative chain complexes of
abelian groups, shifted cohomologically by −t, is called the motivic complex
of Goodwillie and Lichtenbaum of weight t.

For each (P, θ1, . . . , θt) in K0(R, G∧tm ) there exists a projective module Q
such that P ⊕ Q is free over R. Then (P ⊕ Q, θ1 ⊕ 1Q, . . . , θt ⊕ 1Q) repre-
sents the same element of K0(R, G∧tm ) as (P, θ1, . . . , θt). Thus K0(R∆d, G∧tm )
can be explicitly presented with generators and relations involving t-tuples
of commuting matrices (A1, . . . , At) =

(
A1(T1, . . . , Td), . . . , At(T1, . . . , Td)

)
in

GLn(R∆d), n ≥ 1.
Throughout this paper, for a regular local ring R the motivic cohomology

Hq
M
(
SpecR, Z(t)

)
will be the (2t− q)-th homology group of the Goodwillie-

Lichtenbaum complex of weight t. In particular,

Hq
M
(
SpecC, Z(t)

)
= π2t−qΩ−t|d 7→ K0(C∆d, G∧tm )|

= πt−q|d 7→ K0(C∆d, G∧tm )|.
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Walker showed in [17] that this cohomology group agrees with the definition
of motivic cohomology given by Voevodsky in [16] and thus various other
definitions of motivic cohomology for smooth schemes over a field.

Our description relies on the construction of an analogue of the n-th poly-
logarithm as a certain alternating multilinear function from the set of n-tuples
of holomorphic functions on an open domain U ⊂ C

n−1 to the group of
closed (n − 1)-forms. We show that it gives rise to a homomorphism from
H1
M
(
X,Z(n)

)
into R. An argument using simultaneous triangularization of

n-tuples of commuting matrices to obtain n-tuples of local holomorphic func-
tions leads to the local construction of an (n−1)-form on an open set in Cn−1

whose complement is thin. Using the Analytic Desingularization Theorem
[1], we obtain an appropriate proper mapping such that the pullbacks of the
eigenvalues are well-defined globally. Using this mapping, the form is extended
smoothly to all of Cn−1. The homomorphism is obtained by integrating the
form over the standard (n − 1)-simplex in Cn−1. The classical monodromy
computation for the polylogarithm is replaced by finding a suitable proper
mapping.

2. Constructing closed forms

To define a homomorphism from H1
M
(
SpecC, Z(n)

)
, we will want to con-

struct a differential form with certain properties on Cs, where s = n − 1.
However, for technical reasons we allow s to be different from n − 1 in this
section. Let u(z1, . . . , zs) = u(x1 + iy1, . . . , xs + iys) be a smooth real-valued
function on a domain U ⊂ Cs(∼= R

2s). Then we have a 1-form

du =
s∑
i=1

(
∂u

∂xi
dxi +

∂u

∂yi
dyi

)
.

For a 1-form

ω =
s∑
i=1

(fidxi + gidyi)

we define its conjugate form as the 1-form

?ω =
s∑
i=1

(−gidxi + fidyi) .

In particular, for a smooth real-valued function u on U we have

?du =
s∑
i=1

(
− ∂u
∂yi

dxi +
∂u

∂xi
dyi

)
.
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This agrees with the notation of [2] when s = 1. We also notice that if u is
the real part of a holomorphic function f on U , then

?du =
s∑
i=1

(
Im
(
∂f

∂zi

)
dxi + Re

(
∂f

∂zi

)
dyi

)
.

Then ? is a C∞(U)-linear operator on the group A1(U,R) of smooth 1-forms
on U such that ?? = −1. We may also define a linear operator ? : Ap(U,R)→
Ap(U,R) such that

?(ω1 ∧ ω2 ∧ · · · ∧ ωp) = ?ω1 ∧ ?ω2 ∧ · · · ∧ ?ωp,

but we will not need it.

Remark 2.1. If ω1, ω2, . . . , ω2s are 1-forms on U ⊂ Cs, then

ω1 ∧ ω2 ∧ · · · ∧ ω2s = ?ω1 ∧ ?ω2 ∧ · · · ∧ ?ω2s.

Proof. Locally, we may write, for i = 1, 2, . . . , 2s,

ωi =
n−1∑
j=1

(aijdxj + bijdyj) ,

where aij and bij are smooth real-valued functions on a local neighborhood
in U . Then we are reduced to proving that the determinant of the matrix

a11 b11 a12 b12 . . . a1 s b1 s
a21 b21 a22 b22 . . . a2 s b2 s
. . . . . .
. . . . . .

a2s 1 b2s 1 a2s 2 b2s 2 . . . a2s s b2s s


is equal to the determinant of the matrix

−b11 a11 −b12 a12 . . . −b1 s a1 s

−b21 a21 −b22 a22 . . . −b2 s a2 s

. . . . . .

. . . . . .
−b2s 1 a2s 1 −b2s 2 a2s 2 . . . −b2s s a2s s

 .

But this can be shown with basic properties of determinants. �

The following lemma is straightforward.

Lemma 2.2. If u is pluriharmonic (i.e., locally the real part of a holomor-
phic function) on U ⊂ Cs, then

d ? du = 0.
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Proof. We just compute the differential d ? du:

d ? du =
∑
i,j

(
∂2u

∂yj∂yi
+

∂2u

∂xi∂xj

)
dxi ∧ dyj

+
∑
i 6=j

(
∂2u

∂xj∂yi
− ∂2u

∂xi∂yj

)
dxi ∧ dxj

+
∑
i 6=j

(
∂2u

∂yi∂xj
− ∂2u

∂yj∂xi

)
dyi ∧ dyj .

All terms on the right-hand side are zero, by the Cauchy-Riemann equations.
Actually, if v is the imaginary part of the holomorphic function, then we

have ?du = dv locally. Thus the lemma is nothing more than the usual
equality d2v = 0. �

Lemma 2.3. If ω1, ω2, . . . , ωn are smooth 1-forms on U ⊂ Cs, then the
n-form

ϕ (= ϕ(ω1, ω2, . . . , ωn)) :=
[(n−1)/2]∑
k=0

(−1)k
∑

A⊂{1,2,...,n}
|A|=n−(2k+1)

ϕA(ω1, ω2, . . . , ωn)

on U vanishes if s ≤ n − 1. Here, ϕA(ω1, ω2, . . . , ωn) denotes the n-form
ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕn, where

ϕi =

{
?ωi if i ∈ A,
ωi otherwise.

Proof. It is sufficient for us to prove that the above n-form ϕ vanishes
in the group An(U,R) ⊗ C. Observe first that dz1, dz̄1, . . . , dzs, dz̄s form a
C∞(U) ⊗ C-basis of the module A1(U,R) ⊗ C, where dzj = dxj + idyj and
dz̄j = dxj − idyj for each j = 1, . . . , s. We then have ?dzj = idzj and
?dz̄j = −idz̄j for any j = 1, 2, . . . , s. Now, by linearity, we need to prove the
vanishing of the above n-form only when ω1, . . . , ωn are n distinct elements
from the basis. Under this assumption, for j = 1, . . . , n, we have ?ωj = λjωj ,
where λj is either i or −i. Then∑
A⊂{1,2,...,n}
|A|=n−(2k+1)

ϕA(ω1, ω2, . . . , ωn) = Sn−(2k+1)(λ1, λ2, . . . , λn)ω1 ∧ω2 ∧ · · · ∧ωn,

where Sn−(2k+1)(X1, X2, . . . , Xn) is the elementary symmetric polynomial of
degree n− (2k + 1) in X1, X2, . . . , Xn. Hence we need only to show that

Sn−1(λ1, λ2, . . . , λn)− Sn−3(λ1, λ2, . . . , λn) + · · · = 0.
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We obtain this equality by expanding and dividing by 2i the equality

(λ1 + i)(λ2 + i) · · · (λn + i)− (λ1 − i)(λ2 − i) · · · (λn − i) = 0.

Both terms on the left-hand side vanish because at least one of the λj ’s is i
(respectively, −i) since ω1, . . . , ωn are n distinct elements from the basis and
so one of them is dz̄j (respectively, dzj) for some j. �

Now, given functions u1, . . . , un which are locally the real parts of holo-
morphic functions on U ⊂ Cs, we want to construct an (n − 1)-form ωP (u1,
u2, . . . , un) such that its differential is equal to the n-form given in Lemma
2.3 when ωi = dui for each i = 1, . . . , n.

Definition 2.4. Given pluriharmonic functions u1, . . . , un on U ⊂ C
s,

we define wP (u1, . . . , un) to be the (n− 1)-form

[(n−1)/2]∑
k=0

(−1)kwk(u1, . . . , un).

Here wk(u1, . . . , un) denotes the (n− 1)-form

1
α!(n− α)!

∑
σ∈Sn

sgn(σ)uσ(1) ∧ ϕσ(2) ∧ · · · ∧ ϕσ(n),

where α = n− (2k + 1) and

ϕi =

{
?dui if i ≤ α,
dui otherwise.

The following proposition states the desired properties of wP (u1, . . . , un).
Note that the form wk(u1, . . . , un) in Definition 2.4 is chosen so that the as-
signment (u1, . . . , un) 7→ wk(u1, . . . , un) is alternating, i.e., wk(uσ(1), . . . , uσ(n))
= sgn(σ)wk(u1, . . . , un), whenever σ is a permutation in Sn.

Lemma 2.5. The form wP (u1, . . . , un) defined in Definition 2.4 is a closed
(n − 1)-form if s ≤ n − 1, and wP (uσ(1), . . . , uσ(n)) = sgn(σ)wP (u1, . . . , un),
whenever σ is a permutation of the set {1, 2, . . . , n}.

Proof. By Lemma 2.2,

dwk(u1, . . . , un) =
1

α!(n− α)!

∑
σ∈Sn

sgn(σ)ϕσ(1) ∧ ϕσ(2) ∧ · · · ∧ ϕσ(n),

which, in turn, is equal to ∑
A⊂{1,2,...,n}
|A|=n−(2k+1)

ϕA(ω1, ω2, . . . , ωn).
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By Lemma 2.3, dwP (u1, . . . , un) = 0. Thus wP (u1, . . . , un) is a closed (n−1)-
form whenever s ≤ n− 1.

The second statement is clear from our construction. �

In particular, we will pay attention to the case where f1, . . . , fn are holo-
morphic functions on U ⊂ Cs and u1(z) = log |f1(z)|, . . . , un(z) = log |fn(z)|.
We record the following straightforward computation as a lemma.

Lemma 2.6. Suppose that f1, . . . , fn are non-vanishing holomorphic func-
tions on U ⊂ Cs, and let

u1(z) = log |f1(z)|, . . . , un(z) = log |fn(z)|.
Then we have, for each j = 1, . . . , n,

duj =
s∑

k=1

(
Re
(

1
fj

∂fj
∂zk

)
dxk − Im

(
1
fj

∂fj
∂zk

)
dyk

)
,

?duj =
s∑

k=1

(
Im
(

1
fj

∂fj
∂zk

)
dxk + Re

(
1
fj

∂fj
∂zk

)
dyk

)
.

Proof. See the computation before Remark 2.1. �

Example 2.7. For n = 2 and s = 1, wP (u1, u2) is the 1-form

u1 ∧ ?du2 − ?du1 ∧ u2 = log |f1(z)|
(

Im
(
f ′2(z)
f2(z)

)
dx+ Re

(
f ′2(z)
f2(z)

)
dy

)
− log |f2(z)|

(
Im
(
f ′1(z)
f1(z)

)
dx+ Re

(
f ′1(z)
f1(z)

)
dy

)
.

If we integrate this form over a singular 1-simplex (i.e., a path) γ in C − 0,
then we get∫ 1

0

log |f1(γ(t))|
(

Im
(
f ′2(γ(t))
f2(γ(t))

)
Re(γ′(t))dt

+Re
(
f ′2(γ(t))
f2(γ(t))

)
Im(γ′(t))dt

)
−
∫ 1

0

log |f2(γ(t))|
(

Im
(
f ′1(γ(t))
f1(γ(t))

)
Re(γ′(t))dt

+Re
(
f ′1(γ(t))
f1(γ(t))

)
Im(γ′(t))dt

)
=
∫ 1

0

log |f1(γ(t))|Im
(
f ′2(γ(t))
f2(γ(t))

γ′(t)
)
dt

−
∫ 1

0

log |f2(γ(t))|Im
(
f ′1(γ(t))
f1(γ(t))

γ′(t)
)
dt.
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In particular, with the path γ(t) = t the integral is equal to∫ 1

0

log |f1(t)|Im
(
f ′2(t))
f2(t)

)
dt−

∫ 1

0

log |f2(t)|Im
(
f ′1(t))
f1(t)

)
dt.

This is a bilinear form of dilogarithm considered in [14].

3. Constructing a homomorphism from H1
M
(
SpecC, Z(n)

)
into R

Recall that

Hq
M
(
SpecC, Z(n)

)
= πn−q|d 7→ K0(C∆d, G∧nm )|,

where the group K0(C∆s, G∧nm ) is generated by n-tuples (A1, . . . , An) =(
A1(T1, . . . , Ts), . . . , An(T1, . . . , Ts)

)
of commuting invertible r × r matrices

for various r ≥ 0. This motivic complex is discussed in the introduction of
this paper.

For each x ∈ Cs, we denote by Ox the local ring of germs of holomorphic
functions at x.

Lemma 3.1 (Simultaneous triangularization). For commuting matrices
A1, . . . , An in GLr(C[T1, . . . , Ts]), let x ∈ C

s be such that, for each i =
1, . . . , n, the characteristic polynomial PAi of Ai is factored as

PAi(λ) = (λ− ai,1)(λ− ai,2) · · · (λ− ai,r)

for some analytic functions ai,1, ai,2, . . . , ai,r on an open neighborhood U ⊂ Cs
of x. Then there exists S ∈ GLn(K) such that S−1AiS is an upper triangular
matrix in GLr(K) for every index i, where K is the fraction field of Ox.

Proof. The existence of S can be proved by induction on the size r of the
matrices. If r = 1, there is nothing to prove. We may assume that at least one
of A1, . . . , An, say A1, is not a diagonal matrix. Take an eigenvalue, say a ∈ K,
of A1. Then the eigenspace E = {v ∈ Kr | A1v = av} is neither 0, norKr. We
also have AiE ⊂ E for every i since a (Aiv) = Ai (av) = AiA1v = A1 (Aiv).
Choose a basis v1, v2, . . . , vs of E and extend it to a basis v1, v2, . . . , vr of Kr.
Let P ∈ GLr(K) be the matrix whose column vectors are these basis vectors
v1, v2, . . . , vr. Then each P−1A1P is of the form(

Ai,11 Ai,12

0 Ai,22

)
,

where the block matrices Ai,11 and Ai,22 are s × s and (r − s) × (r − s)-
matrices, respectively. By the induction hypothesis, we have S1 ∈ GLs(K)
and S2 ∈ GLr−s(K) such that S−1

1 Ai,11S1 and S−1
2 Ai,22S2 are upper trian-

gular matrices for every i = 1, . . . , n. Then(
S−1

1 0
0 S−1

2

)
P−1AiP

(
S1 0
0 S2

)
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is upper triangular for every i = 1, . . . , n. Therefore we have obtained a
matrix S ∈ GLr(K) such that S−1AiS is upper triangular in GLr(K) for
every i = 1, . . . , n. �

Corollary 3.2. With the same assumptions as in Lemma 3.1, let
(ai,1, ai,2, . . . , ai,r) be the ordered r-tuple of diagonal entries of S−1AiS for
each i = 1, . . . , n Then the set of n-tuples

{(a1,1, a2,1, . . . , an,1) , . . . , (a1,r, a2,r, . . . , an,r)}

of elements of Ox is determined only by (A1, . . . , An) and x ∈ Cs and is
independent of the choice of S.

Proof. Let K be the quotient field of Ox. Let i ∈ {1, . . . , n} be any index.
Then, by the theory of Jordan canonical forms, there exists P ∈ GLr(K)
be such that P−1AiP is a block-diagonal matrix Ai,1 ⊕ Ai,2 ⊕ · · · ⊕ Ai,l in
GLr(K), where each block matrix Ai,k has a unique eigenvalue λi ∈ Ox
and the eigenvalues of any two diagonal blocks Ai,k and Ai,k′ are different
whenever k 6= k′. Now let B denote any of the matrices Ai′ , i′ 6= i. Write

P−1BP =


B11 B12 · · · B1l

B21 B22 · · · B2l

. .
Bl1 Bl2 · · · Bll

 ,

where Bkk is a matrix of the same size as Ai,k, for each k = 1, . . . , l.
We may regard M = Kr as a left K[X]-module by declaring Xv = Aiv for

every v ∈ Kr. Then M is isomorphic to M1 ⊕ · · · ⊕Ml as a K[X]-module,
where X acts on each Mk via Ai,k and Ann(Mk) = (X − λk)ek for a positive
integer ek. Since Ai,kBkm = BkmAi,m, the K-linear map Bkm : Mm → Mk

can be considered as a K[X]-linear map. But Ann(Mm) = (X − λm)em ,
Ann(Mk) = (X − λk)ek , and these two ideals are relatively prime in the ring
K[X] if k 6= m. Therefore, any element in the image of map Bkm is killed by
the whole ring K[X]. Hence Bkm = 0 whenever k 6= m, and for each k the
restriction of the linear automorphism B : M →M to Mk is just Bkk.

Therefore the eigenvalues of Bkk are exactly those of B = Ai′ that corre-
spond to λi. Since the modules Mk = {v ∈M | (Ai−λiI)νv = 0 for some ν >
0}, k = 1, . . . , l, do not depend on the choice of P , the proof is complete. �

Let SA be the set of points in Cs which are roots of an irreducible factor of
the discriminant of one of the characteristic polynomials PA1(λ), . . . , PAn(λ)
of the matrices A1, . . . , An. The set SA is a proper closed algebraic subset
of the affine space Cs. Note that SA is the zero set of a single polynomial
f ∈ C[z1, . . . , zs]. We also set UA = C

s − SA so that UA is an open domain
in Cs.
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Now, let ui,j(z1, . . . , zn) = log | ai,j(z1, . . . , zn)| for i = 1, . . . , n and j =
1, . . . , r on each open neighborhood U of x ∈ UA. We then define the (n− 1)-
form ωP (A1, . . . , An) on UA as follows.

Definition 3.3. For the n-tuple of commuting r×r matrices (A1, . . . , An),
the closed (n− 1)-form ωP (A1, . . . , An) on UA is defined as the sum

r∑
j=1

ωP (u1,j , u2,j , . . . , un,j),

where ui,j , for i = 1, . . . , n and j = 1, . . . , r, are as above.

Using Lemma 2.6 as an intermediate definition, we see that the coefficients
of the possible exterior product of dxj or dyj which appear in ωP (A1, . . . , An)
are well-defined and smooth on Cs except on the set SA. Since being closed is
a local property for a differential form, we see that ωP (A1, . . . , An) is a closed
(n − 1)-form on UA ⊂ Cs. Our next task is to extend ωP (A1, . . . , An) to a
smooth form on Cs. We will need several known results to do that.

Lemma 3.4 (Push-forward of holomorphic forms for proper mappings).
Suppose that ψ : W → V is a proper, surjective holomorphic mapping, where
both V and W are irreducible analytic varieties of the same dimension. Then
there exists the push-forward mapping ψ∗ : Ωq(W ) → Ωq(V ), which com-
mutes with the differential d, where Ωq is the sheaf of holomorphic q-forms.
Whenever U is a small open set in V such that the inverse image ψ−1(U) =
U1 ∪ · · · ∪Um decomposes into m disjoint open sets Uν and ψ : Uν → U is an
isomorphism with inverse sν , we have ψ∗(f) = s∗1(f) + · · ·+ s∗m(f).

Proof. See [10] for a proof. Note that f∗ is not necessarily an algebra
homomorphism between the exterior algebras of holomorphic forms. �

Corollary 3.5 (Push-forward of real analytic forms for proper mappings).
With the same assumption as in Lemma 3.4, there exists a real analytic form
ψ∗(f) for any real analytic q-form f on W such that, whenever U is a small
open set in V such that the inverse image ψ−1(U) = U1∪· · ·∪Um decomposes
into m disjoint open sets Uν and ψ : Uν → U is an isomorphism with inverse
sν , we have ψ∗(f) = s∗1(f) + · · ·+ s∗m(f).

Proof. Let ψ̂ : Ŵ → V̂ be the complexification (cf. [13]) of ψ. Then the
complexification f̂ is a holomorphic form on an open set of Ŵ containing W .
Note that we have the following commutative diagram.

W
ψ //

��

V

��
Ŵ

ψ̂ // V̂
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Now let W̄ and V̄ be copies of W and V , respectively. We may choose the
map W → Ŵ = W × W̄ given by z 7→ (z, z̄) as a complexification of W ,
and similarly for V . Then ψ̂(z1, z2) = (ψ(z1), ψ(z2)) and it is clear that
ψ̂ : Ŵ → V̂ is a proper surjective holomorphic mapping. By Lemma 3.4, we
have a push-forward ψ̂∗(f̂), which is holomorphic on V̂ . Its restriction to V
gives a real analytic q-form which is an integer multiple of ψ∗(f). �

Lemma 3.6 (Analytic desingularization theorem). Let V be biholomor-
phic to Cs and let f be a nonzero holomorphic function on V . Then we can
construct an iterated analytic monoidal transform W of V such that the hy-
persurface defined by the pullback of f in W has a normal crossing at every
point Q of W .

Proof. See the appendix of [1] for a proof of the theorem. Actually, this
result should be regarded as a step toward resolution of singularities problem
in characteristic 0 (cf. [12]). That the hypersurface f = 0 has a normal
crossing at a point Q means that, for some basis y1, . . . , ys of the maximal
ideal mQ of the local ring of Q, we have f = δyb11 · · · ybss , where b1, . . . , bs are
nonnegative integers and δ is a unit in the local ring of Q. �

Proposition 3.7. The closed (n−1)-form ωP (A1, . . . , An) on UA in Def-
inition 3.3 can be extended to a closed smooth (n− 1)-form on all of Cs.

Proof. Let P be any point in SA = {z | f(z) = 0}. Let V be a con-
nected open neighborhood of P and let γ be a closed path with endpoint
P0 in V − SA. With the same notation as in Corollary 3.2, let us con-
sider the analytic continuation ai,j

γ of the holomorphic functions ai,j ∈ OP0

along the path γ, for i = 1, . . . , n, j = 1, . . . , r and k = 1, . . . , l. First
of all, ai,jγ is a root of the characteristic polynomial PAi of Ai, so there
exists an index j′ such that ai,j

γk = ai,j′ . Furthermore, via the opera-
tion ai,j 7→ ai,j

γ , the group G = π1(V − SA, P0) acts on the finite set of
n-tuples {(a1,1, a2,1, . . . , an,1) , . . . , (a1,r, a2,r, . . . , an,r)}, with the notation of
Corollary 3.2. In particular, there exists a positive integer m such that for
every g ∈ G, gm fixes the whole set of n-tuples. For example, we may take
m = r!. Now, by Lemma 3.6, there exists a proper surjective holomorphic
mapping ψ′ : W → V such that the hypersurface f has a normal crossing at
every point of W . Let Q be a preimage of P under ψ′. Changing the basis
for the maximal ideal mQ of the local ring of Q, we may assume that there
exists a polydisk U ' {(z1, . . . , zs) | |z1| < r1, . . . , |zs| < rs} ⊂ W containing
Q such that ψ′(V − SA) ∩ U is a punctured polydisk U ′ ' {(z1, . . . , zs) |
|z1| < r1, . . . , |ze| < re, 0 < |ze+1| < re+1, . . . 0 < |zs| < rs}. We have a
finite surjective mapping ψ′′ : U → U which sends U ′ onto U ′ such that
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π1(ψ′′)(π1(U ′)) ⊆ π1(U ′)m. For example, we may take

ψ′′(z1, . . . , zs) =
(
z1, . . . , ze,

ze+1
m

re+1
m−1

, . . . ,
zs
m

rsm−1

)
.

Now, by shrinking V if necessary, we may assume that W −U is a thin subset
of W . By Riemann’s extension theorem, we may extend ψ′ ◦ ψ′′ to a proper
holomorphic mapping ψ : W → V . By our choice of m, ai,j ◦ ψ has an
analytic continuation to all of U for every i = 1, . . . , n and every j = 1, . . . , r.
Furthermore, ai,j is bounded on U since it is a root of a monic polynomial
PAi whose coefficients are bounded on U . Therefore, by Riemann’s extension
theorem, ai,j ◦ψ extends to a holomorphic function on W . We define a smooth
form ω′ on W by

ω′ =
r∑
j=1

ωP (u1,j , u2,j , . . . , un,j),

where ui,j is the pluriharmonic function ui,j = log |ai,j | for i = 1, . . . , n and
j = 1, . . . , r. The form ωP (u1,j , u2,j , . . . , un,j) was introduced in Definition
2.4. In particular, ω′ is real analytic. By Corollary 3.5, we have a smooth
closed (n−1)-form ψ∗(ω′) which is m′ωP (A1, . . . , An) for some positive integer
m′. Thus we have extended ωP (A1, . . . , An) to V . The extension is unique
since two real analytic functions on a connected open set which agree on an
open subset are identical. Since P was an arbitrary point of SA, the proof is
complete. �

Proposition 3.8.

(i) (Skew-Symmetry) For n commuting matrices A1, A2, . . . , An in
GLr(C[T1, . . . , Ts]) and a permutation σ ∈ Sn, we have

ωP (Aσ(1), Aσ(1), . . . , Aσ(n)) = sgn(σ)ωP (A1, A2, . . . , An).

(ii) (Bilinearity) For commuting matrices A,B,A2, A3, . . . , An in
GLr(C[T1, . . . , Ts]), we have

ωP (AB,A2, A3, . . . , An) = ωP (A,A2, A3, . . . , An)

+ ωP (B,A2, A3, . . . , An).

Proof. Part (i) follows directly from Lemma 2.5 and (ii) is basically a con-
sequence of the fact that log |fg| = log |f |+ log |g|. �
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Theorem 3.9 (Polylogarithm). The map Pn from H1
M
(
SpecC, Z(n)

)
into R defined by

Pn(A1, . . . , An) =
∫

∆n−1
ωP (A1, . . . , An)

is a well-defined homomorphism.

Proof. Note that the elements of the form (A1, . . . , An) generate
K0(C∆n−1, G∧nm ) and the map Pn extends Z-linearly to a homomorphism
from K0(C∆n−1, G∧nm ) to R since

ωP ((A1, . . . , An) + (A′1, . . . , A
′
n)) = ωP ((A1 ⊕A′1, . . . , An ⊕A′n)

= ωP ((A1, . . . , An) + ωP ((A′1, . . . , A
′
n)

by the way we constructed ωP in Definition 3.3.
We now prove that the map Pn is a homomorphism from

K0(C∆n−1, G∧nm )/∂K0(C∆n, G∧nm ) to R. To prove the vanishing of Pn on
the boundary elements in ∂K0(C∆n, G∧nm ), we need to prove that∫

∆n−1
ωP (∂(B1, . . . , Bn)) = 0

for each (B1, . . . , Bn) ∈ K0(C∆n, G∧nm ).
Let φ : Rn → C

n be defined by (x1, . . . , xn) 7→ (x1, 0, x2, 0, . . . , xn, 0), i.e,
φ is the inclusion of Rn as the real part of Cn. Then we have∫

∆n−1
ωP (∂(B1, . . . , Bn)) =

∫
∂∆n

φ∗ωP (B1, . . . , Bn)

=
∫

∆n

φ∗dωP (B1, . . . , Bn).

The first equality follows from the definition of the boundary map ∂ on the
motivic complex, and the second equality follows from Stokes’ theorem. We
will show this integral is 0. Note that dωP (B1, . . . , Bn) is locally equal to

r∑
j=1

ϕ(du1,j , du2,j , . . . , dun,j)

=
r∑
j=1

[(n−1)/2]∑
k=0

(−1)k
∑

B⊂{1,2,...,n}
|B|=n−(2k+1)

ϕB(du1,j , du2,j , . . . , dun,j),

where the notations are as in Lemma 2.3 and Definition 3.3, except that we
are using (B1, . . . , Bn) instead of (A1, . . . , An).

Letting ui = log |fi| for each i, by Lemma 2.6, φ∗dϕ(du1, du2, . . . , dun) is
equal to the following sum of n× n determinants:
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Re
(
∂f1
∂z1

/f1

)
dx1 . . . Re

(
∂f1
∂zn

/f1

)
dxn

Im
(
∂f2
∂z1

/f2

)
dx1 . . . Im

(
∂f2
∂zn

/f2

)
dxn

Im
(
∂f3
∂z1

/f3

)
dx1 . . . Im

(
∂f3
∂zn

/f3

)
dxn

. . . . .

. . . . .

. . . . .

Im
(
∂fn
∂z1

/fn
)
dx1 . . . Im

(
∂fn
∂zn

/fn
)
dxn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Im
(
∂f1
∂z1

/f1

)
dx1 . . . Im

(
∂f1
∂zn

/f1

)
dxn

Re
(
∂f2
∂z1

/f2

)
dx1 . . . Re

(
∂f2
∂zn

/f2

)
dxn

Im
(
∂f3
∂z1

/f3

)
dx1 . . . Im

(
∂f3
∂zn

/f3

)
dxn

. . . . .

. . . . .

. . . . .

Im
(
∂fn
∂z1

/fn
)
dx1 . . . Im

(
∂fn
∂zn

/fn
)
dxn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ . . . +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Im
(
∂f1
∂z1

/f1

)
dx1 . . . Im

(
∂f1
∂zn

/f1

)
dxn

Im
(
∂f2
∂z1

/f2

)
dx1 . . . Im

(
∂f2
∂zn

/f2

)
dxn

Im
(
∂f3
∂z1

/f3

)
dx1 . . . Im

(
∂f3
∂zn

/f3

)
dxn

. . . . .

. . . . .

. . . . .

Re
(
∂fn
∂z1

/fn
)
dx1 . . . Re

(
∂fn
∂zn

/fn
)
dxn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Re
(
∂f1
∂z1

/f1

)
dx1 . . . Re

(
∂f1
∂zn

/f1

)
dxn

Re
(
∂f2
∂z1

/f2

)
dx1 . . . Re

(
∂f2
∂zn

/f2

)
dxn

Re
(
∂f3
∂z1

/f3

)
dx1 . . . Re

(
∂f3
∂zn

/f3

)
dxn

Im
(
∂f4
∂z1

/f4

)
dx1 . . . Im

(
∂f4
∂zn

/f4

)
dxn

. . . . .

. . . . .

Im
(
∂fn
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/fn
)
dx1 . . . Im

(
∂fn
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/fn
)
dxn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Re
(
∂f1
∂z1

/f1

)
dx1 . . . Re

(
∂f1
∂zn

/f1

)
dxn

Re
(
∂f2
∂z1

/f2

)
dx1 . . . Re

(
∂f2
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/f2

)
dxn

Im
(
∂f3
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/f3

)
dx1 . . . Im

(
∂f3
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/f3

)
dxn

Re
(
∂f4
∂z1

/f4

)
dx1 . . . Re

(
∂f4
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/f4

)
dxn

. . . . .

. . . . .

Im
(
∂fn
∂z1

/fn
)
dx1 . . . Im

(
∂fn
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/fn
)
dxn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− . . . +

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Re
(
∂f1
∂z1

/f1

)
dx1 . . . Re

(
∂f1
∂zn

/f1

)
dxn

. . . . .

. . . . .

Re
(
∂f5
∂z1

/f5

)
dx1 . . . Re

(
∂f5
∂zn

/f5

)
dxn

Im
(
∂f6
∂z1

/f6

)
dx1 . . . Im

(
∂f6
∂zn

/f6

)
dxn

. . . . .

. . . . .

Im
(
∂fn
∂z1

/fn
)
dx1 . . . Im

(
∂fn
∂zn

/fn
)
dxn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

+ . . .

But this is equal to ±ReJ(f1, . . . , fn) if n is odd, and ±ImJ(f1, . . . , fn) if n
is even, where

J(f1, . . . , fn) =

∣∣∣∣∣∣∣∣∣∣∣

∂f1
∂z1

/f1 . . . ∂f1
∂zn

/f1
∂f2
∂z1

/f2 . . . ∂f2
∂zn

/f2

. . . . .

. . . . .
∂fn
∂z1

/fn . . . ∂fn
∂zn

/fn

∣∣∣∣∣∣∣∣∣∣∣
dx1dx2 . . . dxn.
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We remark that if f1, . . . , fn are analytic on U ⊂ Cn, then J(f1, . . . , fn) is
the pullback of the volume form dw1

w1
∧ · · · ∧ dwn

wn
on (C∗)n under the map

R
n ∩ U ↪→ U → (C∗)n, where the first map is the inclusion of Rn ∩ U as the

real part of Cn and the second map is defined by (f1, . . . , fn).
Let us define

J(B1, . . . , Bn) :=
r∑
j=1

J(f1,j , f2,j , . . . , fn,j) on Cn − SB ,

where f1,j , f2,j , . . . , fn,j are locally n-tuples of eigenvalues of (B1, . . . , Bn) as
in Corollary 3.2. Then φ∗dωP (B1, . . . , Bn) = ±Im (inJ(B1, . . . , Bn)) on Cn−
SB . Hence the vanishing of the map Pn on a boundary element ∂(B1, . . . , Bn)
will follow if we have J(B1, . . . , Bn) = 0, since then φ∗dωP (B1, . . . , Bn) = 0.

Now let the symmetric group Sn operate on K0(C∆n, G∧nm ) by permuting
the indeterminates T1, . . . Tn. For a transposition σ ∈ Sn we have a decom-
position K0(C∆n, G∧nm ) ⊗ Q = V + ⊕ V −, where V + = {v | σ(v) = v} and
V − = {v | σ(v) = −v}. For example, when n = 2, the decomposition is given
by the formula

(B1(T1, T2),B2(T1, T2))

=
1
2

((B1(T1, T2), B2(T1, T2)) + (B1(T2, T1), B2(T2, T1)))

+
1
2

((B1(T1, T2), B2(T1, T2))− (B1(T2, T1), B2(T2, T1))) .

But J(B1, . . . , Bn) = 0 for any (B1, . . . , Bn) ∈ V − since

J (σ(B1, . . . , Bn)) = J(B1, . . . , Bn) = 0 for every σ ∈ Sn.
Therefore it only remains to prove the vanishing of the map on the set of
elements v ∈ K0(C∆n, G∧nm ), satisfying v = σ(v) for any transposition σ ∈
Sn. If v =

∑
k(B1k, . . . , Bnk) is in this set, then we have

∂v = ∂0v

=
∑
k

(B1k(1− T1 − · · · − Tn−1, T1, . . . , Tn−1),

. . . , Bnk(1− T1 − · · · − Tn−1, T1, . . . , Tn−1))

when n is even, and

∂v = ∂0v − ∂1v

=
∑
k

(B1k(1− T1 − · · · − Tn−1, T1, . . . , Tn−1),

. . . , Bnk(1− T1 − · · · − Tn−1, T1, . . . , Tn−1))

−
∑
k

(B1k(0, T1, . . . , Tn−1), . . . , Bnk(0, T1, . . . , Tn−1))
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when n is odd. In either case, the vanishing of Pn follows directly from
the symmetry since if we interchange the two variables Ti and Tj , then the
orientation of the integral

∫
∆n−1 ωP (v) changes, but the form ωP (v) remains

the same, so that∫
∆n−1

ωP

(∑
k

(B1k, . . . , Bnk)

)
=
∫

∆n−1
ωP

(
σ

(∑
k

(B1k, . . . , Bnk)

))

= −
∫

∆n−1
ωP

(∑
k

(B1k, . . . , Bnk)

)
.

In particular, if n = 2, we have

ωP (∂B)(T ) =
∑
k

ωP (B1k(1− T, T ), B2k(1− T, T ))

=
∑
k

ωP (B1k(T, 1− T ), B2k(T, 1− T ))

= ωP (∂B)(1− T )

whenever B =
∑
k(B1k, B2k) is in V + ⊂ K0(C∆2, G∧2

m )⊗Q. Hence we have∫ 1

0
ωP (∂B)(T ) =

∫ 0

1
ωP (∂B)(T ), and so

∫ 1

0
ωP (∂B)(T ) = 0. �
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