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TRACIALLY QUASIDIAGONAL EXTENSIONS AND
TOPOLOGICAL STABLE RANK

HUAXIN LIN AND HIROYUKI OSAKA

Abstract. It is known that a unital simple C∗-algebra A with tracial

topological rank zero has real rank zero and topological stable rank one.
In this note we construct unital C∗-algebras with tracial topological

rank zero but topological stable rank two.

1. Introduction

The tracial topological rank of a unital C∗-algebra A, denoted by TR(A),
was introduced as a noncommutative analog of the covering dimension for
a topological space X ([Ln2] and [Ln3]; see also Definition 4.2 below). It
plays an important role in the classification of amenable C∗-algebras (see
[Ln3], [Ln5] and [Ln6]). As in the case of real rank (see [BP]), a unital
commutative C∗-algebra C(X) has tracial topological rank k if and only if
dimX = k. It was shown in [HLX1] that if dimX = k and TR(A) = m then
TR(C(X)⊗A) ≤ k+m. (For the case of real rank see [NOP, Corollary 1.10].)
At present, the most interesting cases are C∗-algebras with tracial topological
rank at most one. If A is a unital separable simple C∗-algebra with tracial
topological rank zero, it was shown in [Ln4] that A is quasidiagonal, has real
rank zero, topological stable rank one and weakly unperforated K0(A).

We are also interested in C∗-algebras that are not simple. Let

(∗) 0→ J → E → A→ 0

be a short exact sequence with TR(A) = 0 and TR(eJe) = 0 for every pro-
jection e ∈ A. In [HLX2] it was shown that TR(E) = 0 if and only if the
extension is tracially quasidiagonal. (For the definition of a tracially quasidi-
agonal extension see Definition 5.1.) Quasidiagonal extensions are tracially
quasidiagonal. A natural question is whether there exist any tracially quasidi-
agonal extensions which are not quasidiagonal. Very recently, the first author
showed that such extensions do indeed exist. The example given also shows
that there are C∗-algebras with TR(E) = 0 such that real rank of E is not
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zero. The specific extension (∗) given there has the property that both J and
A (are simple and) have topological stable rank one. Moreover, the index
map ∂0 : K0(A)→ K1(J) is not trivial. It is known that, in this case, E has
topological stable rank one if the index map ∂1 : K1(A)→ K0(J) is zero (see
[Ni, Lemma 3] and [LR, Proposition 4]). A natural question is whether there
is a tracially quasidiagonal extension with ∂1 6= 0. In this note we construct
a tracially quasidiagonal extension 0 → J → E → A → 0 of C∗-algebras
such that J is a simple AF-algebra, A is a simple AT-algebra with real rank
zero and ∂1 6= 0. That is, this extension is not a quasidiagonal extension.
Moreover, E is a quasidiagonal C∗-algebra which has tracial topological rank
zero and real rank zero, but topological stable rank two. To construct such
an example we use the K0-embedding property (see [BD]) and the generalized
inductive limits in the sense of [BE].

Acknowledgments. This note was written when the second author was
visiting University of Oregon at Eugene during a sabbatical leave. He would
like to thank the members of the mathematics department there for their
warm hospitality.

2. Preliminaries

Definition 2.1. Let A be a separable C∗-algebra. Then A is called qua-
sidiagonal (QD) if there exists a faithful representation π : A → B(H) and
an increasing sequence of finite rank of projections, P1 ≤ P2 ≤ P3 ≤ · · · ,
such that ‖Pnπ(a) − π(a)Pn‖ → 0 for all a ∈ A and Pn → 1H in the strong
operator topology as n→∞.

If A is a QD C∗-algebra, then there is an injective homomorphism which
maps A into

∏
nMk(n)/⊕Mk(n) for some increasing sequence {k(n)}.

Recently N. Brown and M. Dadarlat studied extensions of quasidiagonal
C∗-algebras. Suppose that

0 −→ J −→ E −→ A −→ 0

is a short exact sequence of separable C∗-algebras such that A and J are QD
C∗-algebras, and A is nuclear and satisfies the Universal Coefficient Theorem.
Brown and Dadalart [BD] showed that if the indexes ∂i : Ki(A)→ Ki(J) are
both zero then E is a QD C∗-algebra. Moreover, they proved that for QD
C∗-algebras J satisfying a certain property (namely, the K0-embedding) the
C∗-algebra E determined by the extension

0 −→ J −→ E −→ B −→ 0

with a QD C∗-algebra B is again QD if and only if E is stably finite. It follows
from a result of J. Spielberg (see [Sp, Lemma 1.14]) that this is the case when
∂1(K1(B)) ∩K0(J)+ = {0}. Spielberg [Sp, Lemma 1.14] also showed that all
AF-algebras satisfy the (K0-embedding) property.
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Let J be a stable (non-elementary) simple AF-algebra. Let ρ : K0(J) →
Aff(T (J)), where T (J) is the compact tracial space {τ : τ(p) = 1} for some
nonzero projection p ∈ J, be defined by ρ([q]) = τ(q) for q ∈ K0(J) and
τ ∈ T (J). Since we have K1(M(J)/J) ∼= K0(J), there exists a unitary u in
M(J)/J (or in Mk(M(J)/J)) such that [u] ∈ ker ρ. This unitary u together
with J give the essential extension

0 −→ J −→ E −→ C(T) −→ 0,

so that ∂1(K1(C(T))) is nonzero but generated by [u], [u] ∈ ker ρ. The impor-
tant fact that we are using is that ∂1(K1(C(T))) ∩K0(J)+ = {0}. Therefore,
by the above remarks, E is QD but the stable rank of A is not one (by [Ni,
Lemma 3]).

3. Construction

Definition 3.1. We now define a very special simple AF-algebra. Let
I0 be a unital separable simple AF C∗-algebra with K0(I0) = Q ⊕ Z and
K0(I0)+ = {(r,m) : r ∈ Q+\{0},m ∈ Z} ∪ {(0, 0)}. Let B = C(T). Write
Ki(B) = Z (i = 0, 1). Take u ∈M(A)/A such that [u] = (0, 1) in Q⊕Z. Let K
be the C∗-algebra of all compact operators on a separable infinite dimensional
Hilbert space. Set I = I0⊗K. As in Section 2, we obtain an essential extension

0 −→ I −→ E1
π−→B −→ 0,

such that ∂1([z]) = (0, 1) (in Q ⊕ Z), where z is the canonical generator for
B. As in Section 2, E1 is a QD C∗-algebra.

Let {eij} be the matrix unit for K, and set en =
∑n
i=1 eii, n = 1, 2, . . .

Here we identify e11 with 1I0 .

Definition 3.2. Let A be a C∗-algebra, G ⊂ A a finite subset of A and
ε > 0 a positive number. Recall that a positive linear map L : A→ B (where
B is a C∗-algebra) is said to be G-ε-multiplicative if

‖L(a)L(b)− L(ab)‖ < ε,

for all a, b ∈ G.

The following result is certainly known (cf. [Ln7, Proposition 2.3]).

Proposition 3.3. Let A = Mn. For any ε > 0 there is δ > 0 such that if
L : A→ B, where B is a unital C∗-algebra, is a G-δ-multiplicative contractive
completely positive linear map, where G contains the matrix unit {eij}ni,j=1,
then there is a homomorphism h : A→ B such that

‖L− h‖ < ε.

Definition 3.4. We denote by δn the value of δ corresponding to ε = 1/2n

in Proposition 3.3. We may assume that 0 < δn+1 < δn < 1.
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Definition 3.5. For any k ∈ N we let πk : Mk(E1)→Mk(B) denote the
quotient map induced by π.

Let {ξ1, ξ2, . . . } be a dense sequence of T, where each point is repeated
infinitely many times. Let {a1, a2, . . . } be a dense sequence in the unit ball
of E1. Let Gn = {0, a1, . . . , an}, n = 1, 2, . . . , and let F1 = G1. Write I =⋃∞
n=1 Sn, where the Sn are finite dimensional C∗-algebras and Sn ⊂ Sn+1. Let

S1 be a finite subset of S1 and let η1 > 0 be chosen according to Proposition
3.3 such that the following holds:

For any unital C∗-algebra B′ there is a homomorphism h̄1 : S1 → B′ such
that

‖L′|S1 − h̄1‖ < 1/2,

for any S1-η1-multiplicative contractive completely positive linear map L′ :
E → B′.

Let F1 = G1∪S1 . Since E1 is quasidiagonal, there is a (unital) contractive
completely positive linear map ψ1 : E1 →Mk(1), which is F1-1/2 · 1/2 · η1/22-
multiplicative with ‖ψ1(a)‖ ≥ (1/2)‖a‖ for all a ∈ F1. Let p1 = 1I0 ⊗ ek(1),
where ek(1) is a rank k(1) projection in K. So p1 ∈ I and ψ1 may be viewed as
a map from E1 to p1(C ·1I0 ⊗K)p1

∼= Mk(1). Put φ1(a) = π(a)(ξ1) · (1E1 −p1)
for a ∈ E1. Let C1 = φ1(E)⊕ p1(C · 1I0 ⊗K)p1 and C ′1 = p1(C · 1I0 ⊗K)p1.
Define L1 : E1 → E2 = M2(E1) by

L1(a) = diag(a, φ1(a), ψ1(a)),

for a ∈ E1. Note that L1(S1) is contained in S1⊕C ′1. Moreover, S2⊗M2 +C ′1
is contained in a finite dimensional C∗-subalgebra of M2(I). Let C ′′1 be the
finite dimensional C∗-subalgebra generated by S2 ⊗M2 + C ′1. Since S1 ⊂ S2,
we have L1(S1) ⊂ C ′′1 . Let S2 be a finite subset of C ′′1 and let 1 > η2 > 0 be
chosen according to Proposition 3.3 such that the following holds:

For any unital C∗-algebra B′ there exists a homomorphism h̄2 : C ′′1 → B′

such that
‖L′|C′′1 − h̄2‖ < 1/22,

for any S2-η2-multiplicative contractive completely positive linear map L′ :
E2 → B′.

Set I2 = M2(I). Let F2 be a finite subset of E2 containing L1(F1),
{(aij)3

i,j=1 : aij = 0, a1 or a2}, IC2 , the standard generators of C1, S2, and an-
other matrix unit {uij}2i,j=1, where u11 and u22 are identified with diag(1E1 , 0),
diag(0, 1E1). Since E1 (unital) is quasidiagonal, there is a F2-1/3 · 1/22 · η2 ·
δk(1)/22-multiplicative contractive completely positive linear map ψ2 : E2 →
Mk(2) such that (ψ2)|M2(C·1E) is a homomorphism and ‖ψ2(a)‖ ≥ (1−1/4)‖a‖
for all a ∈ F2, and such that there is homomorphism h2 : C1 → Mk(2) such
that

‖(ψ2)|C1 − h2‖ < 1/4.
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Note that such a map h2 exists by Proposition 3.3. We may assume that
k(2) > k(1) > 2.

Let E3 = M2+1(E2) = M3!(E1) and I3 = M2+1(I2). Let p′2 = 1I0⊗ek(2) and
p2 = diag(p′2, p

′
2) ∈ I2. Define φ(2)

1 (a) = π2(a)(ξ1) · 1E2 for a ∈ E2, where the
image of φ(2)

1 is identified with M2(C·1E2). Define φ2(a) = π2(a)(ξ2)·(1E1−p′2)
for a ∈ E2, where the image of φ2 is identified with M2(C · (1E1 − p′2)).
Let Ψ2(a) = diag(ψ2(a), ψ2(a)) for a ∈ E2. We now view Ψ2 as a map
Ψ2 : E2 → p2(C · 1I0 ⊗ K)p2 ⊂ p2I2p2. In particular, Ψ2(1E2) = p2. Define
L2 : E2 → E3 by

L2(a) = diag(a, φ(2)
1 (a), φ2(a),Ψ2(a)).

It should be noted that the part diag(φ2(a),Ψ2(a)) is in E2 and L2 is unital.
Let

C2 = φ
(2)
1 (E1)⊕ φ2(E2)⊕ p2M2(C · 1I0 ⊗K)p2,

and C ′2 = p2(C · 1I0 ⊗ K)p2. Note that L2(C ′′1 ) is contained in C ′′1 ⊕ C ′2 and
S3⊗M3! +C ′2 is contained in a finite dimensional C∗-subalgebra of I3. Let C ′′2
be the finite dimensional C∗-subalgebra generated by S3 ⊗M3! + C ′2. Then,
since S2 ⊂ S3 and C ′1 ⊂ C ′2, we have L2(C ′′1 ) ⊂ C ′′2 .

Let S3 be a finite subset of C ′′2 and let η3 > 0 be chosen according to
Proposition 3.3 such that the following holds:

For any unital C∗-algebra B′ there exists a homomorphism h̄3 : C ′′2 → B′

such that
‖L′|C′′2 − h̄3‖ < 1/23,

for any S3-η3-multiplicative contractive completely positive linear map L′ :
E3 → B′.

Let E4 = M4(E3) and I4 = M4(I3). Let D2 be a finite subset of C2 con-
taining 1C2 and the standard generators of C2. Let F3 be a finite subset of
E3 containing L2(F2), {(aij)3×2

i,j=1 : aij = 0, a1, a2, or a3}, D2, S3 and another
matrix unit {uij}3i,j=1, where uii is identified with a diagonal element with
1E2 in the ith position and zero elsewhere.

Since E1 is quasidiagonal and E3 = M3!(E1), there is a F3-1/4 · 1/23 ·
η3 · δdimC2/2

3- multiplicative contractive completely positive linear map ψ3 :
E3 → Mk(3) (where k(3) > k(1) + k(2)) such that (ψ3)|M3·2(C·1E) is a homo-
morphism, and there is a homomorphism h3 : C2 →Mk(3) such that

‖ψ3|C2 − h3‖ < 1/23.

Define φ(3)
i (a) = π3!(a)(ξi) for a ∈ E3, where the image of φ(3)

i is identified
with M3!(C · 1E1), i = 1, 2. Let p′3 = 1I0 ⊗ ek(3) and p3 = diag(p′3, . . . , p

′
3),

where p′3 is repeated 3! times.
Thus, p3 ∈ I3. Let Ψ3(a) = diag(ψ3(a), . . . , ψ3(a)) for a ∈ E3, where ψ3(a)

is repeated 3! times. We view Ψ3 as a map Ψ3 : E3 → p3M3!(C · 1I0 ⊗K)p3.
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Define φ3(a) = π3!(a)(ξ3), where the image of φ3 is identified with M3!(C ·
(1E1 − p′3)). Define L3 : E3 → E4 by (for any a ∈ E3)

L3(a) = diag(a, φ(3)
1 (a), φ(3)

2 (a), φ3(a),Ψ3(a)).

Note that diag(φ3(a),Ψ3(a)) ∈ E3. Put

C3 = ⊕2
i=1φ

(3)
i (E3)⊕ φ3(E3)⊕ p3M3!(C · 1I0 ⊗K)p3,

C ′3 = p3M3!(C · 1I0 ⊗K)p3.

Let C ′′3 be the finite dimensional C∗-algebra generated by S4 ⊗M4! + C ′3.
Then, since L2(C ′′2 ) is contained in C ′′2 ⊕ C ′3, S3 ⊂ S4 and C ′2 ⊂ C ′3, we have
L2(C ′′2 ) ⊂ C ′′3 .

We continue the construction in this fashion. With Cn = ⊕n−1
i=1 φ

(n)
i (En)⊕

φn(En) ⊕ pnMn!(C · 1I0 ⊗ K)pn, let En+1 = Mn+1(En), In+1 = Mn+1(In)
and C ′n = pnMn!(C · 1I0 ⊗ K)pn, and let C ′′n be the finite dimensional C∗–
subalgebra generated by Sn+1 ⊗M(n+1)! +C ′n. Let Sn+1 be a finite set in C ′′n
and let 1 > ηn+1 > 0 be chosen according to Proposition 3.3 such that the
following holds:

For any unital C∗-algebra B′ there exists a homomorphism h̄n+1 : C ′′n → B′

such that ‖L′|C ′′n− h̄n+1‖ < 1/2n+1 for any Sn+1-ηn+1-multiplicative contrac-
tive completely positive map L′ : En+1 → B′.

Let Dn be a finite subset of Cn containing 1Cn and the standard gen-
erators of Cn, and let Fn+1 be a finite subset of En+1 containing Ln(Fn),
Sn+1, {(aij)(n+1)!

i,j=1 : aij = 0, a1, . . . , oran}, Dn and a matrix unit {uij}1+n
i,j=1,

where uii is identified with diag(0, . . . , 0, 1En , 0, . . . , 0) (with 1En in the ith
position). Since E1 is quasidiagonal and En+1 = M(n+1)!(E1), there is a Fn+1-
1/(n+ 2) · 1/2n+1 · ηn+1 · δdimCn/2

n+1-multiplicative contractive completely
positive linear map ψn+1 : En+1 →Mk(n+1) such that (ψn)|M(n+1)!(C · 1E1) is
a homomorphism, and there is a homomorphism, hn+1 : Cn →Mk(n+1) such
that

‖(ψn+1)|Cn − hn+1‖ < 1/2n+1.

Define φ
(n+1)
i (a) = π(n+1)!(a)(ξi) for a ∈ En+1 and identify the image of

φ
(n+1)
i with M(n+1)!(C · 1E1), i = 1, 2, . . . , n. Let p′n+1 = 1I0 ⊗ ek(n+1) and
pn+1 = diag(p′n+1, . . . , p

′
n+1), where pn+1 is repeated (n + 1)! times. Put

Ψn+1(a) = diag(ψn+1(a), . . . , ψn+1(a)), where ψn+1(a) is repeated (n + 1)!
times. Thus the image of Ψn+1 can be identified with pn+1M(n+1)!(C · 1I0 ⊗
K)pn+1. Note that Ψn+1(1En+1) = pn+1. Define φn+1(a) = π(n+1)!(a)(ξi),
with its image identified with M(n+1)!(C · (1E1 − p′n+1)). Note that the unit
of M(n+1)!(C · (1E1 − p′n+1)) is 1En+1 − pn+1. Define

Ln+1(a) = diag(a, φ(n+1)
1 (a), φ(n+1)

2 (a), . . . , φ(n+1)
n (a), φn+1(a),Ψn+1(a)),
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where a ∈ En+1. Let

C(n+1) = ⊕ni=1φ
(n+1)
i (En+1)⊕ φn+1(En+1)

⊕ pn+1M(n+1)!(C · 1I0 ⊗K)pn+1

and

C ′n+1 = pn+1M(n+1)!(C · 1I0 ⊗K)pn+1.

Let C ′′n+1 be the finite dimensional C∗-algebra generated by Sn+2⊗M(n+2)! +
C ′n+1. Then, since Ln+1(C ′′n) is contained in C ′′n ⊕ C ′n+1, Sn+1 ⊂ Sn+2, and
C ′n ⊂ C ′n+1, we have Ln+1(C ′′n) ⊂ C ′′n+1. Let Sn+2 be a finite set in C ′′n+1

and let 1 > ηn+2 > 0 be chosen according to Proposition 3.3 such that the
following holds:

For any unital C∗-algebra B′ there exists a homomorphism h̄n+2 : C ′′n+1 →
B′ such that ‖L′|C ′′n+1 − h̄n+2‖ < 1/2n+2 for any Sn+2-ηn+2-multiplicative
contractive completely positive map L′ : En+2 → B′.

It is easy to verify that (En, Ln) forms a general inductive limit in the
sense of [BE]. Denote by E the C∗-algebra defined by this inductive limit.
We will write Ln,n+k : En → En+k for the decomposition Ln+k−1 ◦ · · · ◦ Ln
and Ln,∞ : En → E for the map induced by the inductive limit. We will also
use the fact that ‖Ln(a)‖ = ‖a‖ = ‖Ln,∞(a)‖ for all a ∈ En, n = 1, 2, . . . .

Let I1 = I, In+1 = M(1+n)!(I). Then In ∼= I0 ⊗K and In is an ideal of En.
Set J0 =

⋃∞
n=1 Ln,∞(In) and J = J̄0.

Proposition 3.6. J is an ideal of E.

Proof. Let a ∈ E and b ∈ J. We want to show that ab, ba ∈ J. For any
ε > 0, there are a′ ∈

⋃∞
n=1 Ln,∞(En) and b′ ∈ J0 such that ‖a − a′‖ < ε

and ‖b − b′‖ < ε. It suffices to show that a′b′, b′a′ ∈ J. To simplify notation,
without loss of generality, we may assume that a ∈

⋃∞
n=1 Ln,∞(En) and b ∈ J0.

Therefore, there is an integer n > 0 such that a = Ln,∞(a1) and b = Ln,∞(b1),
where a1 ∈ En and b1 ∈ In. Moreover, there is an integer N > n such that

‖LN,N+k ◦ Ln,N (a1)LN,N+k ◦ Ln,N (b1)

− LN,N+k(Ln,N (a1)Ln,N (b1))‖ < ε

for all k > 0. By the definition, Ln,N (b1) ∈ IN . Therefore LN,N+k(Ln,N (a1)
Ln,N (b1)) ∈ IN + k. This implies that

dist(ab, J) < ε

for all ε > 0. Hence ab ∈ J. Similarly ba ∈ J. �

Definition 3.7. Let B1 = C(T) and Bn+1 = M(n+1)!(C(T)), n = 1, 2, . . .
Define hn : Bn → Bn+1 by hn(b) = diag(b, b(ξ1), . . . , b(ξn)), n = 1, 2, . . . Let
B∞ = limn(Bn, hn). ThenB∞ is a unital simple C∗-algebra with TR(B∞) = 0



928 HUAXIN LIN AND HIROYUKI OSAKA

(see Definition 4.2), K1(B∞) = Z and K0(B∞) = Z ⊕ Q with K0(B∞)+ =
{(n, r) : n > 0, r ∈ Q+ \ {0}} ∪ {0}.

Proposition 3.8. Let π∞ : E → E/J be the quotient map. Then π∞(E)
∼= B∞.

Proof. We first show that, for each n, Ln,∞(En) ∩ J = Ln,∞(In). Let
a ∈ En \ In. Then, by the construction, for all m > 0,

dist(Ln,m(a), In+m) ≥ ‖πn!(a)‖,

where πn! : En → En/In is the quotient map. This implies that

dist(Ln,∞(a), J) ≥ ‖πn!(a)‖.

Therefore Ln,∞(En) ∩ J = Ln,∞(In).
Now we have

Ln,∞(En)/J ∼= Bn.

From the construction there is an isomorphism from Ln(En)/In+1 to Ln,∞
(En)/J. Denote by jn : Ln,∞(En)/J → Ln+1,∞(En+1)/J the map induced
by Ln and by γn the isomorphism from Ln,∞(En)/J onto Bn. We obtain the
following intertwining:

Ln,∞(En)/J
jn−−−−→ Ln+1,∞(En+1)/Jyγn yγn+1

Bn
hn,∞−−−−→ Bn+1

This implies that B∞ ∼= E/J. �

4. Tracial topological rank of E

Through the rest of paper, we will write fδ1δ2 (where 0 < δ2 < δ1 < 1) for
the following non-negative continuous function on [0,∞):

fδ1δ2 (t) =


1, t ≥ δ1,
(t− δ2)/(δ1 − δ2), δ2 < t < δ1,

0, t ≤ δ2.

Definition 4.1. Let a and b be two positive elements in a C∗-algebra A.
We write [a] ≤ [b] if there exists x ∈ A such that a = x∗x and xx∗ ∈ bAb, and
[a] = [b] if a = x∗x and b = xx∗. For more information on this relation, see
[Cu1], [Cu2] and [HLX1].

Definition 4.2 ([Ln4] and [HLX1]). Recall that a unital C∗-algebra A is
said to have tracial topological rank zero if the following holds: For any ε > 0,
any finite subset F ⊂ A containing a nonzero element a ∈ A+, and any real
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numbers 0 < σ4 < σ3 < σ2 < σ1 < 1, there is a projection p ∈ A and a finite
dimensional C∗-subalgebra B of A with 1B = p such that

(1) ‖xp− px‖ < ε for all x ∈ F,
(2) pxp ∈ε B for all x ∈ F, and
(3) [fσ1

σ2
((1− p)a(1− p))] ≤ [fσ3

σ4
(pap)].

If A has tracial topological rank zero, we will write TR(A) = 0. If A is
non-unital, we say that A has tracial topological rank zero if TR(Ã) = 0.

We will show that the C∗-algebra E constructed in the previous section
has tracial topological rank zero. The proof is similar to that in [Ln7]. We
will use the following two lemmas:

Lemma 4.3 ([HLX1, Lemm 1.8]). Let 0 < σ4 < σ3 < 1. There is δ =
δ(σ3, σ4) > 0 such that for any C∗-algebra A, any a, b ∈ A+ with ‖a‖ ≤ 1,
‖b‖ ≤ 1, and any σ1, σ2 with σ3 < σ2 < σ1 < 1, ‖a− b‖ < δ implies

[fσ1
σ2

(a)] ≤ [fσ3
σ4

(b)].

Lemma 4.4 ([Ln7, Lemma 3.4]). Let 0 < σ4 < σ3 < 1. There is δ1 =
δ(σ3, σ4) > 0 such that for any C∗-algebra A, any a, b ∈ A+ and x ∈ A with
‖x‖ ≤ 1, ‖a‖ ≤ 1, ‖b‖ ≤ 1 and any σ1, σ2 with σ3 < σ2 < σ1 < 1, then
‖x∗x− a‖ < δ1 and ‖xx∗ − b‖ < δ1 imply

[fσ1
σ2

(a)] ≤ [fσ3
σ4

(b)].

Lemma 4.5. TR(E) = 0.

Proof. By Definition 1.11 (see also Proposition 1.17) in [HLX1], it suffices
to show the following:

For any ε > 0, any 0 < σ2 < σ1 < 1, any finite subset F of E and a
nonzero element a ∈ E+, there is a projection p ∈ E and a finite dimensional
C∗-subalgebra C ⊂ E with 1C = p such that

(1) ‖xp− px‖ < ε for all x ∈ F,
(2) dist(x,C) < ε for all x ∈ F, and
(3) [fσ1

σ2
((1− p)a(1− p))] ≤ [fσ3

σ4
(pap)] for some 0 < σ4 < σ3 < σ2.

Without loss generality, we may assume that ‖a‖ = 1. Fix 0 < d2 < d1 <
min{1/8, σ2}. Let δ(d1, d2) > 0 be as in Lemma 4.4. There is an integer n
such that 1/n < ε/4, and a finite subset S ⊂ En such that F∪{a} ⊂ Ln,∞(S).
Suppose that Ln,∞(b) = a, where 0 ≤ b ≤ 1 is in En and ‖b‖ = 1. We may
assume that Ln,∞(S′) ⊂ Ll,∞(Fl), where S′ = {cd : c, d ∈ S} and Fl is as in
Definition 3.5.

Choose a large integer l > (n+1)2 such that max{1/2l−2, 1/l} < δ(d1, d2)/2
and ‖ψl(Ln,l−1(b))‖ ≥ (1/2)‖b‖. (Note that 1/l < ε/16.) For s ∈ S write (in
El)

Ln,l(s) = diag(s, L(s)), with Ln,l(1En) = diag(1En , L(1En)),
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where L(s) ∈ Cl. (See the construction of E.) Since Ll,∞ is Fl-1/(l + 1)2l ·
δdimCl/2

l-multiplicative, by Proposition 3.3 there is a homomorphism h :
Cl → E such that

‖Ll,∞|Cl − h‖ < 1/2l−1.

Let p′ = diag(0, L(1En)). Then p′ ∈ Cl. Hence there is a projection p ∈ h(Cl)
such that ‖Ll,∞(p′) − p‖ < min{1/2l−1, ε/2}. Since Ll,∞ is Fl-1/(l + 1)2l ·
δdimCl/2

l-multiplicative, we have
(1) ‖px− xp‖ < ε for x ∈ F, and
(2) pxp ∈ε h(Cl) for x ∈ F.

To show (3) we consider two cases:

Case (i): b ∈ (In)+. We may assume that

‖elb− b‖ < min{δ(d1, d2)/4, ε/4}.

Let b1 = elbel and b′1 = Ln,l−1(b1). Thus, ψ(b′1) 6= 0. We have

Ln,l(b1) = diag(b1,Φn(b1), ψl(b′1), . . . , ψl(b′1)),

where Φn : In → Il is a contractive completely positive linear map and Φn(In)
is contained in Cl and ψl is repeated l times. Note that ‖ψ(b′1)‖ > 1/4. So,
diag(ψl(b′1), . . . , ψl(b′1)) has an eigenvalue λ with λ ≥ 1/4 and its rank in C ′l
(see the construction of E) is at least l. We have

[b1] ≤ [el] and (1/4)[el] ≤ [diag(ψl(b′1), . . . , ψl(b′1))],

where ψl(b′1) is repeated l times.
Put c = diag(0,Φn(b1), ψl(b′1), . . . , ψl(b′1)) and b′ = diag(b1, 0, . . . , 0). Since

{uij}li=1 ⊂ Fl, there is x ∈ Fl such that

x∗x = b′ and xx∗ ∈ C ′,

where C ′ = elC
′
lel. Moreover, c contains an eigenvalue λ with λ ≥ 1/4 and

the corresponding spectral projection e larger than a projection in C ′l with
rank l. Therefore, there exists v ∈ Cl such that

v∗v = el and vv∗ ≤ e.

Note that f1/4
1/8 (c) ≥ e. This implies that there is z ∈ Cl such that

z∗z = xx∗ and zz∗f
1/4
1/8 (c) = zz∗.

Let y = Ll,∞(x) and b′′ = pLl,∞(b′)p. Since Ll,∞ is Fl-1/(l+1)·2l·δdimCl/2
l-

multiplicative and ‖Ll,∞|Cl − h‖ < 1/2l−1, we have

‖y∗y − b′′‖ < 1/2l−2 and ‖yy∗ − h(xx∗)‖ < 1/2l−2.

We also have

‖b′′ − (1− p)a(1− p)‖ < 1/2l−2 and ‖h(c)− pap‖ < 1/2l−2.
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Moreover,

h(z∗z) = h(xx∗) and h(zz∗)h(f1/4
1/8 (c)) = h(zz∗).

Therefore, by Lemma 4.4,

[fσ1
σ2

((1− p)a(1− p))] ≤ [fd1
d2

(h(xx∗))].

We also have that [fd1
d2

(h(xx∗))] = [fd1
d2

(h(zz∗))]. Therefore

[fd1
d2

(h(zz∗))] ≤ [h(zz∗)] ≤ [h(f1/4
1/8 (c))].

It then follows from the proof of Lemma 4.4 that there are 0 < σ4 < σ3 < d2

such that
[h(f1/4

1/8 (c))] ≤ [fσ3
σ4

(pap)],

because ‖h(c)− pap‖ < 1/2l−2. Hence

[fσ1
σ2

((1− p)a(1− p))] ≤ [fσ3
σ4

(pap)].

Case (ii): b ∈ (En)+\In. This part of the proof is just a slight modification
of the proof in Case (i). Take 0 < σ10 < σ9 < · · · < σ4 < σ3 < d2. We note
that φ(n+1)

i ◦ Ln(a) has the form

diag(πn!(a)(ξi), φ
(n)
1 (a), . . . , φ(n)

n−1(a), πn!(a)(ξn))

for 0 < i < n and a ∈ En. Since {ξn} is dense in T, without loss of generality
we may assume that πn!(b)(ξm) 6= 0 and n < m < m! < l. By the construction
we may write

Ln,l(b) = diag(b, L′(b), πn!(b)(ξm), . . . , πn!(b)(ξm), L′′(b)),

where πn!(b)(ξm) is repeated m! times and L′(b), L′′(b) ∈ Cl. Note that

diag(0, L′(b), πn!(b)(ξm), . . . , πn!(b)(ξm), L′′(b))

≥ diag(0, 0, . . . , 0, πn!(b)(ξm), . . . , πn!(b)(ξm), 0).

Since {uij} ⊂ Fl, there is zk ∈ Fl such that

z∗kzk = diag(b, 0, 0, . . . , 0) and zkz
∗
k = diag(0, . . . , 0, b, 0),

where b is in the (k + 1)st position. We note that there is c ∈Ml!/n!(C · 1En)
such that

c∗c = diag(0, 1En , 0, . . . , 0)

and

cc∗ ≤ diag(0, . . . , 0, πn!(b)(ξm), . . . , πn!(b)(ξm), 0).

Indeed, since πn!(b)(ξm) 6= 0, πn!(b)(ξm) is unitarily equivalent to diag(α1,
. . . , αn!) for some α1, . . . , αn! ∈ C with α1 6= 0. Since tπn!(b)(ξm) is repeated
m! times and m > n, we have

[diag(0, 1En , 0, . . . , 0)] ≤ [diag(0, . . . , 0, πn!(b)(ξm), . . . , πn!(b)(ξm), 0)].
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Note also diag(0, b, 0, . . . , 0) ≤ diag(0, 1En , 0, ṡ, 0) and (Ll,∞)|Ml!(C·1E1 ) is a
homomorphism. Therefore we have

[fσ1
σ2

((1− p)a(1− p))] ≤ [fd1
d2

(Ll,∞(z∗1z1))]

= [fd1
d2

(Ll,∞(z1z
∗
1))]

≤ [fσ3
σ4

(Ll,∞(c∗c)]

≤ [fσ3
σ4

(Ll,∞(cc∗))]

≤ [fσ5
σ6

(Ll,∞(diag(0, πn!(b)(ξm), . . . , πn!(b)(ξm), 0))]

≤ [fσ7
σ8

(diag(0, L′(b), πn!(b)(ξm), . . . , πn!(b)(ξm), L′′(b))]

≤ [fσ9
σ10

(pap)].

and hence

[fσ1
σ2

((1− p)a(1− p))] ≤ [fσ9
σ10

(pap)].

This shows that TR(E) = 0. �

Corollary 4.6. J is an AF algebra.

Proof. Given a finite subset F ⊂ J, we may assume that there is a finite
subset G ⊂ In such that Ln,∞(G) = F. Furthermore, we may assume that
G ⊂ Sk(n) ⊗Mn! with k(n) > n. Since C ′′l ⊕ C ′l+1 ⊂ C ′′l+1 for 1 ≤ l and

Ln,k(n)(Sk(n) ⊗Mn!) ⊂ Sk(n) ⊗Mn! ⊕ C ′n ⊕ C ′n+1 ⊕ · · · ⊕ C ′k(n)−1,

it follows that Ln,k(n)(Sk(n)⊗Mn!) ⊂ C ′′k(n). By the choice of Sk(n) and ηk(n),

we see that there is a homomorphism h̄k(n) : C ′′k(n) → E such that

‖Lk(n),∞|C′′
k(n)
− h̄k(n)‖ < 1/2k(n).

Let B0 = h̄k(n)(C ′′k(n)). Then B0 is a finite dimensional C∗-algebra and for
any x ∈ G we have

‖Ln,∞(x)− h̄k(n)(Ln,k(n)(x))‖
≤ ‖Ln,∞(x)− Lk(n),∞(Ln,k(n)(x))‖

+ ‖Lk(n),∞(Ln,k(n)(x))− h̄k(n)(Ln,k(n)(x))‖

< 1/2k(n).

This implies that

dist(F, B0) < 1/2k(n).

From this one sees that J is an AF-algebra. �
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5. Tracially quasidiagonal extensions

Definition 5.1. Let

0 −→ I −→ E −→ A −→ 0,

be a short exact sequence of C∗-algebras. In [HLX2], we say that (E, I) is
tracially quasidiagonal if, for any ε > 0, any nonzero a ∈ E+, any finite subset
F ⊂ E and any 0 < σ4 < σ3 < σ2 < σ1 < 1, there exists a C∗-subalgebra
D ⊂ E with 1D = p such that

(1) ‖px− xp‖ < ε for all x ∈ F,
(2) pxp ∈ε D for all x ∈ F,
(3) D ∩ I = pIp and (D,D ∩ I) is quasidiagonal, and
(4) [fσ3

σ4
((1− p)a(1− p))] ≤ [fσ1

σ2
(pap)].

In [HLX2] we showed that if TR(I) = 0 = TR(A) then TR(E) = 0 if (E, I)
is tracially quasidiagonal. Moreover, if TR(eIe) = 0 for every projection e ∈
E, then TR(E) = 0 also implies that the extension is tracially quasidiagonal.

It is clear that if (E, I) is quasidiagonal, then (E, I) is tracially quasidiag-
onal. (Take p = 1.) On the other hand, Corollary 5.5 below says that there
are tracially quasidiagonal extensions that are not quasidiagonal.

Theorem 5.2. The extension

0 −→ J −→ E −→ B∞ −→ 0,

is tracially quasidiagonal.

Proof. Since TR(B∞) = TR(E) = TR(J) = 0, and TR(eJe) = 0 for every
projection e ∈ E by Lemma 4.5 and Corollary 4.6, it follows from [HLX2]
that the extension is tracially quasidiagonal. �

Lemma 5.3. Let An be a sequence of unital C∗-algebras and A = limn→∞
(An, ϕn,m) be a generalized inductive limit in the sense of [BE]. Suppose that
each ϕn,m : An → Am is unital with ‖ϕn(a)‖ = ‖ϕn,m(a)‖ for a ∈ An and
m > n. Let u ∈ A be a unitary. Then for any ε > 0 there is n > 0 and a
unitary v ∈ An such that

‖ϕn(v)− u‖ < ε,

where ϕn is an induced map by the inductive limit from An into A.

Proof. By definition there is a sequence {ϕnk(ak)}, where ak ∈ Ank that
converges to u. Therefore, we may assume that

‖ϕnk(ak)− u‖ < 1/2k+2.

and

‖ϕnk(a∗k)ϕnk(ak)− 1‖ < 1/2k+2, ‖ϕnk(ak)ϕnk(a∗k)− 1‖ < 1/2k+2.
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From the definition of a generalized inductive limit it follows that there is
mk > nk such that for any x, y ∈ Ank

‖ϕmk(ϕnk,mk(x) + ϕnk,mk(y))− (ϕnk(x) + ϕnk(y))‖ < 1/2k+2,

‖ϕmk(ϕnk,mk(x)∗)− ϕnk(x)∗‖ < 1/2k+2,

‖ϕmk(ϕnk,mk(x)ϕnk,mk(y))− ϕnk(x)ϕnk(y)‖ < 1/2k+2.

Set bk = ϕnk,mk(ak) ∈ Amk . Since

‖φnk(a∗kak)− 1‖ = ‖φnk(a∗kak)− φmk(φnk,mk(a∗k)φnk,mk(ak))

+ φmk(φnk,mk(a∗k)φnk,mk(ak))− 1‖
≤ ‖φnk(a∗kak)− φmk(φnk,mk(a∗k)φnk,mk(ak))‖

+ ‖φmk(φnk,mk(a∗k)φnk,mk(ak))− 1‖

≤ 1/2k+2 + ‖φmk(φnk,mk(a∗k)φnk,mk(ak))

− φnk(a∗k)φnk(ak)‖+ ‖φnk(a∗k)φnk(ak)− 1‖

≤ 3/2k+2,

we have

‖ϕmk(b∗kbk − 1)‖ ≤ ‖ϕmk(b∗kbk − 1)− (ϕnk(a∗kak)− 1)‖
+ ‖ϕnk(a∗kak)− 1‖

< 1/2k+2 + 3/2k+2 = 1/2k,

‖ϕmk(bkb∗k − 1)‖ < 1/2k

and

‖ϕk(bk)− u‖ = ‖ϕmk(ϕnk,mk(ak))− u‖
≤ ‖ϕmk(ϕnk,mk(ak))− ϕnk(ak)‖+ ‖ϕnk(ak)− u‖

< 1/2k+1.

Hence bk is an invertible element in Amk . Set v = bk|bk|−1. Then v is a
unitary, and the distance between v and bk is small (depending on k). Hence,
taking a sufficient large k, we have a unitary v ∈ Amk such that

‖ϕmk(v)− u‖ < ε. �

Theorem 5.4. A C∗-algebra E has topological stable rank two.

Proof. Take a unitary u ∈ B∞ such that 0 6= [u]1 ∈ K1(B∞). Suppose
that u can be lifted to a unitary ũ in E. We will get a contradiction.

Since a system (En, Ln,m) is a generalized inductive limit, by Lemma 5.3
there exists n ∈ N and a unitary v ∈ En such that

‖Ln,∞(v)− ũ‖ < 1.
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From the commutative diagram

En
Ln,∞−−−−→ Eyπn!

yπ∞
Bn

hn,∞−−−−→ B∞

we conclude that wn = πn!(v) is a unitary in Bn and hn,∞(wn) = π∞ ◦
Ln,∞(v). Set w = hn,∞(wn). Then w ∈ B∞ is a unitary, and

‖w − u‖ = ‖π∞ ◦ Ln,∞(v)− π∞(ũ)‖
≤ ‖Ln,∞(v)− ũ‖ < 1.

Hence, [w]1 = [u]1 in K1(B∞). Therefore, [wn]1 6= 0 in K1(Bn), because the
induced map (hn,∞)∗ : K1(Bn)→ K1(B∞) is an identity (see Definition 3.7).

On the other hand, from the construction we have 0 6= ∂1([wn]1) ∈ K0(In).
But this gives a contradiction, for

∂1([wn]1) = ∂1 ◦ π∗([v]1) = 0.

So by [Ni, Lemma 3] or [LR, Proposition 4] E has topological stable rank more
than one. Hence by [Rf, Corollary 4.2] we conclude that E has topological
stable rank two. �

Corollary 5.5. The extension

0 −→ J −→ E −→ B∞ −→ 0

is not quasidiagonal.

Proof. From the previous theorem it follows that the index map ∂1 :
K1(B∞) → K0(J) is non-zero. Hence, by [BrD, Theorem 8] the extension
is not quasidiagonal. �

Remark 5.6. (1) The C∗-algebra E is QD in [HLX3, Theorem 4.6].
(2) A C∗-algebra E in (1) is not an AH-algebra, that is, it can not be

written as the inductive limit of direct sums of homogeneous C∗-algebras.
Indeed, since J and B∞ have real rank zero (see [G, Theorem 9]), if E is an
AH-algebra, the extension has to be quasidiagonal by [BrD, Proposition 11].
This is a contradiction to Corollary 5.5.

(3) In [Ln7] the first author constructed an example of a unital C∗-algebra
A which has tracial topological rank zero, but real rank greater than zero.
This also gives an extension 0 → J → A → B → 0 with a non-zero index
map ∂0 : K0(B) → K1(I). In the present note we have constructed another
tracially quasidiagonal extension in Corollary 5.5 with a non-zero index map
∂1 : K1(B) → K0(I). This implies that a more complicated index is needed
to characterize tracially quasidiagonal extensions.
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