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CHARACTERIZATION OF BANACH FUNCTION SPACES
THAT PRESERVE THE BURKHOLDER

SQUARE-FUNCTION INEQUALITY

MASATO KIKUCHI

Dedicated to Professor Tamotsu Tsuchikura on his eightieth birthday

Abstract. Let (X, ‖ · ‖X) be a Banach function space over a non-
atomic probability space. We give a necessary and sufficient condition
on X for the inequalities c‖f∞‖X ≤ ‖S(f)‖X ≤ C‖f∞‖X to hold for

all uniformly integrable martingales f = (fn)n≥0, where f∞ = limn fn

a.s. and S(f) =
{
f 2
0 +

∑∞
n=1(fn − fn−1)2

}1/2
.

1. Introduction

In 1966 Burkholder [4] proved that if 1 < p < ∞, then there are positive
constants cp and Cp such that

(1) cp ‖f∞‖p ≤ ‖S(f)‖p ≤ Cp ‖f∞‖p
for all uniformly integrable martingales f = (fn)n≥0, where f∞ = limn fn

almost surely (a.s.) and S(f) =
{
f 2

0 +
∑∞
n=1(fn − fn−1)2

}1/2. Recall that
(1) holds neither for p = 1 nor for p = ∞. Here we consider this inequality
for Banach function spaces (see Definition 1 below). Our main result is that
if such a space X satisfies the inequality

c ‖f∞‖X ≤ ‖S(f)‖X ≤ C ‖f∞‖X
for all uniformly integrable martingales f = (fn), then X is rearrangement-
invariant and its norm is equivalent to a rearrangement-invariant norm for
which the Boyd indices satisfy 0 < αX ≤ βX < 1.

Both the Doob maximal inequality and the Burkholder-Davis-Gundy in-
equality, in which the maximal function of f replaces the limit function f∞,
have already been studied for rearrangement-invariant spaces (see Antipa [1]
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and the closely related and independent work of Johnson and Schechtman [7],
Kikuchi [8], and Novikov [13]). This work shows that the converse of our main
result is true (see Proposition 3).

2. Notation and terminology

Let (Ω, Σ, P) be a nonatomic probability space∗.

2.1. Banach function spaces. If X and Y are Banach spaces of random
variables, we write X ↪→ Y to mean that X is continuously embedded in Y ,
i.e., that X ⊂ Y and ‖x‖Y ≤ c ‖x‖X for all x ∈ X with some constant c > 0.

Definition 1. A real Banach space (X, ‖ · ‖X) of (equivalence classes
of) random variables on Ω is called a Banach function space if it satisfies the
following conditions:

(B1) L∞ ↪→ X ↪→ L1 ;
(B2) if x ∈ X and |y| ≤ |x| a.s., then y ∈ X and ‖y‖X ≤ ‖x‖X ;
(B3) if xn ∈ X, 0 ≤ xn ↑ x a.s. and supn ‖xn‖X < ∞, then x ∈ X and

‖x‖X = supn ‖xn‖X .
We adopt the convention that ‖x‖X =∞ unless x ∈ X.

Let x and y be random variables. We write x ' d y if they are equimeasur-
able, or in other words, they are identically distributed.

Definition 2. (i) A Banach function space X is said to be rearrange-
ment-invariant (or simply r.i.) if it satisfies the following condition:

(R1) if x ∈ X and x ' d y, then y ∈ X.
(ii) The norm of a Banach function space X is said to be rearrangement-in-
variant (or simply r.i.) if it satisfies the following condition:

(R2) if x, y ∈ X and x ' d y, then ‖x‖X = ‖y‖X .

Note that if the norm of a Banach function space X is r.i., then the space
X is r.i. To see this, suppose that x ' d y and x ∈ X. Then, for all integers
n ≥ 1, we have |x| ∧n ' d |y| ∧n and hence

∥∥|y| ∧n∥∥
X

=
∥∥|x| ∧n∥∥

X
≤ ‖x‖X

by (R2) and (B2). This, together with (B3), implies that y ∈ X. As for the
converse, the norm of an r.i. space† X is not always r.i. (see [11, p. 114] or [5,
p. 99]). There is, however, an r.i. norm ||| · |||X on X such that ‖ · ‖X ≈ ||| · |||X
(see [11, p. 138] or [5, p. 106]). Here we write ‖ · ‖X ≈ ||| · |||X if these norms
are equivalent.

Now let I = (0, 1] and let µ be Lebesgue measure on the σ-algebra M
of Lebesgue measurable subsets of I. The nonincreasing rearrangement of a
∗ In essence, we may assume that Ω is the unit interval (0, 1] with Lebesgue measure on

the σ-algebra of Lebesgue measurable sets.
† By an r.i. space X, we mean a rearrangement-invariant Banach function space X.
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random variable x on Ω, which is denoted by x∗, is the function on I defined
as

x∗(t) = inf
{
λ > 0

∣∣ P(|x| > λ) ≤ t
}

(t ∈ I),

where we follow the convention that inf ∅ = ∞. Note that x∗ and |x| are
equimeasurable, i.e.,

µ(x∗ > λ) = P

(
|x| > λ

)
for all λ > 0.

The nonincreasing rearrangement ϕ∗ of a measurable function ϕ : I → R is
defined in the same way. If ϕ and ψ are measurable functions on I, then

(2)
∫
I

∣∣ϕ(s)ψ(s)
∣∣ ds ≤ ∫

I

ϕ∗(s)ψ∗(s) ds.

This is called the Hardy-Littlewood inequality (see, e.g., [2, p. 44]). In partic-
ular,

(3)
∫
E

∣∣ϕ(s)| ds ≤
∫ µ(E)

0

ϕ∗(s) ds (E ∈M).

Following [2], we write ϕ ≺ ψ to mean that∫ t

0

ϕ∗(s) ds ≤
∫ t

0

ψ∗(s) ds for all t ∈ I.

It is then clear that ϕ ≺ ψ if and only if ϕ∗ ≺ ψ∗. Moreover, if x and y are
random variables on Ω, then we write x ≺ y to mean that x∗ ≺ y∗.

Note that if (X, ‖ · ‖X) is endowed with an r.i. norm, then (R2) can be
replaced by the following condition (cf. [2, p. 90]):

(R2′) if x ∈ X and y ≺ x, then y ∈ X and ‖y‖X ≤ ‖x‖X .

We now recall the Luxemburg representation theorem. If (X, ‖ · ‖X) is an
r.i. space over Ω endowed with an r.i. norm, then there exists an r.i. space
(X̂, ‖ · ‖X̂) over I endowed with an r.i. norm such that

(L1) x ∈ X if and only if x∗ ∈ X̂;

(L2) ‖x‖X = ‖x∗‖X̂ for all x ∈ X.

See [2, pp. 62–64] for a proof. Such a space (X̂, ‖ · ‖X̂) is unique; we call
(X̂, ‖ · ‖X̂) the Luxemburg representation of X.

In order to state our results, we need the notion of the Boyd indices. For
each s ∈ (0, ∞), the dilation operator Ds, acting on the space of measurable
functions on I, is defined by

(Ds ϕ)(t) =

{
ϕ(st), if st ∈ I,

0, otherwise,
(t ∈ I).
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If (Y, ‖ · ‖Y ) is an r.i. space over I, then each Ds is a bounded linear operator
from Y into Y , and ‖Ds‖B(Y ) ≤ 1∨s−1, where ‖ · ‖B(Y ) denotes the operator
norm. The lower and upper Boyd indices are defined by

αY = sup
0<s<1

log ‖Ds−1‖B(Y )

log s
= lim
s→0+

log ‖Ds−1‖B(Y )

log s
and

βY = inf
1<s<∞

log ‖Ds−1‖B(Y )

log s
= lim
s→∞

log ‖Ds−1‖B(Y )

log s
,

respectively. If (X, ‖ · ‖X) is an r.i. space over Ω endowed with an r.i. norm,
then the Boyd indices of (X, ‖ · ‖X) are defined by αX = αX̂ and βX = βX̂ ,

where X̂ is the Luxemburg representation of X. Moreover, if (X, ‖ · ‖X) is an
arbitrary r.i. space and if ||| · |||X is an r.i. norm on X such that ‖ · ‖X ≈ ||| · |||X ,
then the Boyd indices of (X, ‖ · ‖X) are defined to be those of (X, ||| · |||X).
In any case, we have 0 ≤ αX ≤ βX ≤ 1 (see [3] or [2, p. 149]).

2.2. Martingales. By a filtration we mean a nondecreasing sequence F =
(Fn)n≥0 of sub-σ-algebras of Σ. Given a filtration F = (Fn), we denote by
MF , the collection of all uniformly integrable martingales with respect to
F . As is well known, every f ∈ MF converges almost surely (a.s.) to some
f∞ ∈ L1(Ω) and fn = E[ f∞ | Fn ] (n = 1, 2, . . .) (see, e.g., [6, p. 26]).

In what follows, we will consider martingales with respect to various fil-
trations, and accordingly we let M =

⋃
FMF , where the union is over all

filtrations F . We will use the following notation for f = (fn)n≥0 ∈M:

• ∆0f := f0 ; ∆nf := fn − fn−1 (n = 1, 2, . . .),

• Sn(f) :=
{ n∑
j=0

(∆jf)2
}1/2

(n = 0, 1, 2, . . .),

• S(f) := lim
n→∞

Sn(f),

• Mn(f) := max
0≤j≤n

|fj | (n = 0, 1, 2, . . .),

• M(f) := lim
n→∞

Mn(f),

• f∞ := lim
n→∞

fn a.s.

3. Main results

Given a Banach function space (X, ‖ · ‖X) over Ω, we let

M(X) =
{
f = (fn) ∈M

∣∣ f∞ ∈ X};(4)

H(X) =
{
f = (fn) ∈M

∣∣ S(f) ∈ X
}
.(5)

Our main result is as follows:
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Theorem 1. Let (X, ‖ · ‖X) be a Banach function space over Ω. Then
the following are equivalent :

(i) there are constants c and C, depending only on X, such that

(4) c ‖f∞‖X ≤ ‖S(f)‖X ≤ C ‖f∞‖X (f ∈M);

(ii) M(X) = H(X);
(iii) X is rearrangement-invariant and can be renormed with an equivalent

rearrangement-invariant norm for which the Boyd indices satisfy 0 <
αX ≤ βX < 1.

Note that except for possible changes in the constants, inequality (4) holds
for a norm if and only if it holds for every equivalent norm.

Recall the convention that ‖x‖X = ∞ unless x ∈ X. This shows that (i)
implies (ii). That (ii) implies (iii) follows from Propositions 1 and 2 below,
and that (iii) implies (i) is just the assertion of Proposition 3 below.

Proposition 1. Let (X, ‖ · ‖X) be a Banach function space over Ω. If
M(X) ⊂ H(X), then:

(i) X is rearrangement-invariant ;
(ii) βX < 1.

Proposition 2. Let (X, ‖ · ‖X) be a rearrangement-invariant space over
Ω. If βX < 1 and if H(X) ⊂M(X), then αX > 0.

Proposition 3. Let (X, ‖ · ‖X) be as in Proposition 2. If 0 < αX ≤
βX < 1, then there are constants c and C, depending only on X, such that
(4) holds.

Proposition 3 follows from the results of Antipa [1]; however, we will give
an alternative proof of Proposition 3 via Shimogaki’s Theorem.

In order to prove Propositions 1 and 2, we need the following lemmas.

Lemma 1. Let (X, ‖ · ‖X) be a Banach function space. Then X is rear-
rangement-invariant if and only if it satisfies the following condition:
(R1′) if x, y ≥ 0 a.s., {x > 0} ∩ {y > 0} = ∅, x ' d y, and x ∈ X, then

y ∈ X.

Proof. It suffices to show that (R1′) implies (R1). Suppose that x ' d y and
x ∈ X. To prove that y ∈ X, we may assume y /∈ L∞ (cf. (B1)). Choose λ > 0
so large that P(|x| > λ) < 1/3. Clearly x′ := |x|1{|x|>λ} and y′ := |y|1{|y|>λ}
are equimeasurable and x′ ∈ X. Since the set {x′ = 0, y′ = 0} contains no
atom and P(x′ = 0, y′ = 0) > 1/3, there is a random variable z ≥ 0 such that
{z > 0} ⊂ {x′ = 0, y′ = 0} and z ' d x

′ (cf. [5, p. 44]). Then condition (R1′)
yields that z ∈ X, since {z > 0} ∩ {x′ > 0} = ∅ and x′ ∈ X. Now the same
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reasoning shows that y′ ∈ X. Therefore |y| ≤ y′ + λ ∈ X, and thus y ∈ X as
desired. �

Lemma 2 ([2, p. 46]). Suppose that x ∈ L1(Ω) is nonnegative. Then there
is a family {A(t) | t ∈ I } of measurable subsets of Ω satisfying the following
conditions:

(i) A(s) ⊂ A(t) whenever 0 < s ≤ t ≤ 1;

(ii) P

(
A(t)

)
= t for all t ∈ I;

(iii)
∫
A(t)

x dP =
∫ t

0
x∗(s) ds for all t ∈ I;

(iv) {ω ∈ Ω |x(ω) > x∗(t)} ⊂ A(t) ⊂ {ω ∈ Ω |x(ω) ≥ x∗(t)} for all t ∈ I.
In particular, if P(x = s) = 0 for all s > 0 and if t0 = P(x > 0), then A(t)
may be taken to be the set {ω ∈ Ω |x(ω) > x∗(t)} for each t ∈ (0, t0].

We now consider an averaging operator P and its adjoint Q: for ϕ ∈ L1(I)
define

(Pϕ)(t) =
1
t

∫ t

0

ϕ(s) ds (t ∈ I),

and for ϕ ∈
⋂

0<t<1 L1(t, 1) define

(Qϕ)(t) =
∫ 1

t

ϕ(s)
s

ds (t ∈ I).

Then it is easy to derive the following formulae:

PQϕ = Pϕ+Qϕ
(
ϕ ∈ L1(I)

)
;(6a)

QPϕ = Pϕ+Qϕ−
∫
I

ϕdµ
(
ϕ ∈ L1(I)

)
.(6b)

We recall Shimogaki’s Theorem on the boundedness of P and Q. In terms of
Boyd indices, it can be expressed as follows:

Shimogaki’s Theorem ([14]). Let (Y, ‖ · ‖Y ) be a rearrangement-invar-
iant space over I endowed with a rearrangement-invariant norm. Then:

(i) βY < 1 if and only if P is a bounded operator from Y into Y ;
(ii) αY > 0 if and only if Q is a bounded operator from Y into Y .

For a proof of (an extension of) this theorem see [2, p. 150] or [3]. Note
that P (resp. Q) is a bounded linear operator from Y into Y if and only if
P(Y ) ⊂ Y (resp. Q(Y ) ⊂ Y ). This is an immediate consequence of the closed
graph theorem, since Y ↪→ L1(I). Thus:

• βY < 1 if and only if P(Y ) ⊂ Y ;
• αY > 0 if and only if Q(Y ) ⊂ Y .

The next lemma is a variant of Shimogaki’s Theorem. Before stating it, we
must introduce some notation.
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Notation. Let (Y, ‖ · ‖Y ) be a Banach function space over I.
(i) We denote by DY the collection of all nonnegative nonincreasing func-

tions in Y .
(ii) We denote by D ′Y the collection of functions ϕ ∈ DY such that µ(ϕ >

0) ≤ 1/2.

Lemma 3. Let (Y, ‖ · ‖Y ) be as in Shimogaki’s Theorem. Then:
(i) βY < 1 if and only if P(D ′Y ) ⊂ Y ;
(ii) αY > 0 if and only if Q(DY ) ⊂ Y .

Furthermore D ′Y may be replaced by D ′Y \ L∞(I) in (i).

Proof. The last statement is clear, since Pϕ ∈ L∞ for any ϕ ∈ L∞.
To prove (i) and (ii), it suffices to show that:
(i′) if P(D ′Y ) ⊂ Y , then P(Y ) ⊂ Y ;
(ii′) if Q(DY ) ⊂ Y , then Q(Y ) ⊂ Y .
To prove (i′), assume that Pϕ ∈ Y whenever ϕ ∈ D ′Y . Let ψ ∈ Y and

choose λ > 0 so that µ(|ψ| > λ) ≤ 1/2. If we let ϕ = ψ∗1{ψ∗>λ}, then
ϕ ∈ D ′Y and hence Pϕ ∈ Y . By inequality (3) and the inequality ψ∗ ≤ ϕ+ λ
we have ∣∣(Pψ)(t)

∣∣ ≤ (Pψ∗)(t) ≤ (Pϕ)(t) + λ (t ∈ I).

Hence Pψ ∈ Y , as desired.
To prove (ii′), assume that Qϕ ∈ Y whenever ϕ ∈ DY . Let ψ ∈ Y , or

equivalently, let ψ∗ ∈ DY ; then Qψ∗ ∈ Y . It suffices to show that Q|ψ| ∈ Y ,
since |Qψ| ≤ Q|ψ| (cf. (B2)). Using inequality (2), we find that∫ t

0

(Q|ψ|)(s) ds =
∫ 1

0

(1 ∧ s−1t) |ψ(s)| ds

≤
∫ 1

0

(1 ∧ s−1t)ψ∗(s) ds

=
∫ t

0

(Qψ∗)(s) ds (t ∈ I).

This shows that Q|ψ| ≺ Qψ∗ (since these two functions are nonincreasing).
Hence Q|ψ| ∈ Y (cf. (R2′)), as desired. �

We are now ready to prove Propositions 1 and 2.

Proof of Proposition 1. Suppose M(X) ⊂ H(X).
(i) To prove that X is r.i., it suffices to show that X satisfies (R1′) (see

Lemma 1). Assume that x, y ≥ 0 a.s., {x > 0} ∩ {y > 0} = ∅, x ' d y, and
x ∈ X. We must prove that y ∈ X. To this end, we may assume y /∈ L∞.

There are two cases to consider:
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Case 1: P(y = s) = 0 for any s > 0;
Case 2: P(y = s) > 0 for some s > 0.

In Case 1, we define ỹ ∈ L1 and α ∈ R by letting ỹ = y and α = 0.
In Case 2, we define ỹ and α as follows. Let Ω0 =

⋃
s∈Γ{y = s} and let

α = P(Ω0), where Γ is the set of s > 0 such that P(y = s) > 0. Since Ω is
nonatomic, we can find a nonnegative random variable r such that {r > 0} =
Ω0 and r∗(t) = (α− t)+ for all t ∈ I (see [5, p. 44]). We then define ỹ = y+ r.

In any case, we have:
• P(ỹ = s) = 0 for all s > 0;
• {y > 0} = {ỹ > 0};
• y ≤ ỹ ≤ y + α on Ω, and hence y∗ ≤ ỹ∗ ≤ y∗ + α on I.

In the rest of the proof of (i), we do not have to distinguish the two cases.
Define a sequence {tn}∞n=1 in I by setting

t0 = P(ỹ > 0);

tn = sup
{
s ∈ I

∣∣ (P ỹ∗)(s) > 2(P ỹ∗)(tn−1)
}

(n = 1, 2, . . .).

Then, since y 6∈ L∞ and P ỹ∗ is continuous, it is easy to verify that 0 < tn <
tn−1 for all n ≥ 1, and

(7) (P ỹ∗)(tn) = 2(P ỹ∗)(tn−1) (n = 1, 2, . . .).

From (7) it follows that tn ↓ 0 as n → ∞. Let {A(t) | t ∈ I} be a family of
sets in Σ satisfying the four conditions of Lemma 2 (relative to x). Let

An = A(tn), Bn =
{
ω | ỹ(ω) > ỹ∗(tn)

}
, and Λn = An ∪Bn

for each n = 0, 1, 2 . . . . We define a filtration F = (Fn)n≥0 and a martingale
as follows:

(8)
Fn = σ{Λ \ Λn |Λ ∈ Σ},
fn = E[x | Fn ],

(n = 0, 1, 2, . . .).

Because P(An) = P(Bn) = tn and An ∩Bn = ∅, we see from (iii) of Lemma 2
that

fn =
1Λn

P(Λn)
E

[
x1Λn

]
+ x1Ω\Λn =

1
2

(P y∗)(tn)1Λn + x1Ω\Λn .

Therefore

∆nf =


1
2 (P y∗)(tn)− 1

2 (P y∗)(tn−1) on Λn,

x− 1
2 (P y∗)(tn−1) on Λn−1 \ Λn,

0 on Ω \ Λn−1,

(n = 1, 2, . . .).

Since x = 0 on Bn, it follows that

(9) ∆nf = −1
2

(P y∗)(tn−1) on Bn−1 \Bn.
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Using (7), (9), the continuity of P ỹ∗, and the nonincreasing property of ỹ∗,
we see that on Bn−1 \Bn

y ≤ ỹ ≤ ỹ∗(tn)

≤ (P ỹ∗)(tn) = 2(P ỹ∗)(tn−1)

≤ 2(P y∗)(tn−1) + 2α = 4|∆nf |+ 2α.

Because {y > 0} = {ỹ > 0} = B0 and Bn ↓ ∅ a.s., we deduce that a.s.

(10) y =
∞∑
n=1

y 1Bn−1\Bn = 4
( ∞∑
n=1

|∆nf |21Bn−1\Bn

)1/2

+ 2α ≤ 4S(f) + 2α.

On the other hand, since P(Λn) = 2tn → 0 as n → ∞, we see that f∞ =
x ∈ X or equivalently f = (fn) ∈ M(X). Hence S(f) ∈ X by hypothesis.
Combining this with (10), we conclude that y ∈ X. This completes the proof
of (i).

(ii) As shown above, X is r.i. Hence we may assume (see the discussion
following Definition 2) that X is endowed with an r.i. norm. Let (X̂, ‖ · ‖X̂)
be the Luxemburg representation of X. To prove that βX < 1, it suffices to

show that Pϕ ∈ X̂ whenever ϕ ∈ D ′
X̂
\ L∞(I) (see Lemma 3).

Since µ(ϕ > 0) ≤ 1/2 (and Ω is nonatomic), we can find nonnegative
random variables x and y such that x∗ = y∗ = ϕ on I and {x > 0} ∩ {y >
0} = ∅. We then define ỹ, α, {tn}, {An}, {Bn}, {Λn}, F = (Fn), and f = (fn)
as in the proof of (i). Then

(P ỹ∗)(tn) ≤ 4|∆nf |+ 2α on Bn−1 \Bn,

as shown above. Therefore
∞∑
n=1

(P ỹ∗)(tn)1Bn−1\Bn ≤ 4S(f) + 2α.

Observe that the nonincreasing rearrangement of the left-hand side is the
function s 7→

∑∞
n=1(P ỹ∗)(tn)1[tn, tn−1)(s). It is greater than or equal to P ỹ∗.

Thus we find that

Pϕ = P y∗ ≤ P ỹ∗ ≤
∞∑
n=1

(P ỹ∗)(tn)1[tn, tn−1) ≤ 4S(f)∗ + 2α.

Since x∗ = ϕ ∈ DX̂ ⊂ X̂, we see that f∞ = x ∈ X (cf. (L1)). Hence S(f) ∈ X
by hypothesis. As a consequence, Pϕ ≤ 4S(f)∗ + 2α ∈ X̂. This completes
the proof of Proposition 1. �

Proof of Proposition 2. Assume that βX < 1 and H(X) ⊂ M(X). To
prove Proposition 2, we may assume that X is endowed with an r.i. norm.
According to Lemma 3, it suffices to show that Qϕ ∈ X̂ whenever ϕ ∈ DX̂ .
To this end, we may assume ϕ 6≡ 0; hence (Qϕ)(t) → ∞ as t → 0+. Choose



876 MASATO KIKUCHI

a random variable x so that x∗ = Qϕ on I and define a sequence {tn} in I
by setting

t0 = 1;

tn = sup
{
s ∈ I

∣∣ (Px∗)(s) > (Px∗)(tn−1) + n−1
}

(n = 1, 2, . . .).

Then it is easy to verify that 0 < tn < tn−1 and

(11) (Px∗)(tn) = (Px∗)(tn−1) + n−1 (n = 1, 2, . . .).

Since (Px∗)(tn) = (Px∗)(t0) +
∑n
j=1 j

−1 →∞, we see that tn ↓ 0 as n→∞.
Let {A(t) | t ∈ I} be a family of sets in Σ satisfying the four conditions of
Lemma 2, and let Λn = A(tn) for each n ≥ 0. Then, by (iv) of Lemma 2,

(12) x∗(tn−1) ≤ x ≤ x∗(tn) on Λn−1 \ Λn.

Define F = (Fn)n≥0 and f = (fn)n≥0 by (8). Then it is easy to see that

fn = (Px∗)(tn)1Λn + x1Ω\Λn (n = 0, 1, 2, . . .).

Therefore

(13) |∆nf | =


n−1 on Λn,∣∣x− (Px∗)(tn−1)

∣∣ on Λn−1 \ Λn,

0 on Ω \ Λn−1,

(n = 1, 2, . . .).

Using (11) and (12) we find that, on Λn−1 \ Λn,

−n−1 ≤ (Px∗)(tn)− x∗(tn)− n−1

= (Px∗)(tn−1)− x∗(tn)

≤ (Px∗)(tn−1)− x
≤ (Px∗)(tn−1)− x∗(tn−1).

Hence it follows that∣∣(Px∗)(tn−1)− x
∣∣ ≤ (Px∗)(tn−1)− x∗(tn−1) + n−1 on Λn−1 \ Λn.

Since Px∗ − x∗ = PQϕ−Qϕ = Pϕ by (6a), we have∣∣(Px∗)(tn−1)− x
∣∣ ≤ (Pϕ)(tn−1) + n−1 on Λn−1 \ Λn.

This, together with (13), implies that

|∆nf | ≤ n−1 1Λn +
{

(Pϕ)(tn−1) + n−1
}

1Λn−1\Λn

= n−1 1Λn−1 + (Pϕ)(tn−1)1Λn−1\Λn

for each n ≥ 1. Since |f0| =
∣∣E[x | F0 ]

∣∣ = ‖x‖1 = ‖ϕ‖1, it follows that

(14) S(f) ≤ ‖ϕ‖1 +K +
∞∑
n=1

(Pϕ)(tn−1)1Λn−1\Λn ,
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where K =
{∑∞

n=1 n
−2
}1/2. Note that the nonincreasing rearrangement of

the last sum in (14) is the function s 7→
∑∞
n=1(Pϕ)(tn−1)1[tn, tn−1)(s). Hence

by (14),

S(f)∗ ≤ ‖ϕ‖1 +K +
∞∑
n=1

(Pϕ)(tn−1)1[tn, tn−1) ≤ ‖ϕ‖1 +K + Pϕ.

Note that right-hand side belongs to X̂. Indeed, since βX̂ = βX < 1 and

ϕ ∈ X̂, Shimogaki’s Theorem shows that Pϕ ∈ X̂. Therefore S(f) ∈ X.
Since H(X) ⊂ M(X), we conclude that x = f∞ ∈ X, or equivalently that
Qϕ = x∗ ∈ X̂. This completes the proof. �

We now turn to the proof of Proposition 3. As mentioned before, Propo-
sition 3 follows from the results of [1]. We give here another proof. We begin
with a lemma which extends Garsia’s lemma. For notation and terminology
see, e.g., [6].

Lemma 4 ([8]). Let (xn)n≥0 be a nondecreasing sequence of nonnegative
random variables adapted to a filtration F = (Fn)n≥0, let x∞ = limn→∞ xn,
and let y be a nonnegative integrable random variable. If the inequality

(15) E[x∞ − xτ−1 | Fτ ] ≤ E[ y | Fτ ]

holds a.s. for every F-stopping time τ , with the convention that x−1 = 0, then
x∗∞ ≺ Qy∗.

Proof. Let t ∈ I and t′ = inf
{
s ∈ I

∣∣ x∗∞(s) = x∗∞(t)
}

. Then 0 ≤ t′ ≤ t,
(0, t′) =

{
s ∈ I

∣∣ x∗∞(s) > x∗∞(t)
}

, and x∗∞(s) = x∗∞(t) whenever t′ ≤ s ≤ t.
Applying (15) to the stopping time τ = inf

{
n ≥ 0

∣∣ xn > x∗∞(t)
}

and using
the Hardy-Littlewood inequality (cf. (3)), we have∫ t

0

x∗∞(s) ds− t x∗∞(t) =
∫ t′

0

(
x∗∞(s)− x∗∞(t)

)
ds

= E

[(
x∞ − x∗∞(t)

)
1{x∞>x∗∞(t)}

]
≤ E

[
(x∞ − xτ−1)1{τ<∞}

]
≤ E

[
y 1{x∞>x∗∞(t)}

]
≤
∫ t

0

y∗(s) ds.

Thus Px∗∞ − x∗∞ ≤ P y∗ on I. Therefore it follows from (6a) and (6b) that

(16) Px∗∞ − ‖x∗∞‖1 = Q(Px∗∞ − x∗∞) ≤ QP y∗ = PQy∗ − ‖y∗‖1 .

On the other hand, setting τ ≡ 0 in (15) yields that

‖x∗∞‖1 = ‖x‖1 ≤ ‖y‖1 = ‖y∗‖1 .
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Combining this with (16), we conclude that Px∗∞ ≤ PQy∗ on I, or equiva-
lently that x∗∞ ≺ Qy∗. �

Lemma 5. Let x and y be nonnegative integrable random variables. If the
inequality

(17) λP(x ≥ λ) ≤
∫
{x≥λ}

y dP

holds for any λ > 0, then x∗ ≤ P y∗ on I.

Proof. Let t ∈ I and t′ = P

(
x ≥ x∗(t)

)
; then t′ ≥ t. Setting λ = x∗(t) in

(17) and using the Hardy-Littlewood inequality (cf. (3)), we obtain

x∗(t) ≤ 1
t′

∫
{x≥x∗(t)}

y dP ≤ (P y∗)(t′) ≤ (P y∗)(t)

as desired. �

Proof of Proposition 3. Suppose 0 < αX ≤ βX < 1. Then both P and Q
are bounded operators from X̂ into X̂. To prove (4), we may assume that X is
endowed with an r.i. norm. Recall (the conditional form of) Davis’ inequality:
there are constants k > 0 and k′ > 0 such that

E

[
M(f)−Mτ−1(f)

∣∣ Fτ ] ≤ kE[S(f)
∣∣ Fτ ] a.s., and

E

[
S(f)− Sτ−1(f)

∣∣ Fτ ] ≤ k′E[M(f)
∣∣ Fτ ] a.s.

for all f ∈ MF and for all F-stopping times τ (see, e.g., [6, p. 286] or [10,
p. 89]). It then follows from Lemma 4 that M(f)∗ ≺ kQS(f)∗ and S(f)∗ ≺
k′QM(f)∗.‡ Therefore, by (L2) and (R2′), we have

(18)
∥∥M(f)

∥∥
X

=
∥∥M(f)∗

∥∥
X̂
≤ k

∥∥QS(f)∗
∥∥
X̂
≤ k ‖Q‖B(X̂)

∥∥S(f)
∥∥
X

and

(19)
∥∥S(f)

∥∥
X

=
∥∥S(f)∗

∥∥
X̂
≤ k′

∥∥QM(f)∗
∥∥
X̂
≤ k′ ‖Q‖B(X̂)

∥∥M(f)
∥∥
X
.

Now we recall Doob’s inequality (see, e.g., [10, p. 34]): for any f ∈M,

λP
(
M(f) > λ

)
≤
∫
{M(f)>λ}

|f∞| dP (λ > 0).

It then follows from Lemma 5 that M(f)∗ ≤ P f∗∞ on I. Therefore

(20)
∥∥M(f)

∥∥
X

=
∥∥M(f)∗

∥∥
X̂
≤ ‖P‖B(X̂) ‖f∞‖X (f ∈M).

Combining (18), (19), and (20), we obtain (4) with c =
(
k ‖Q‖B(X̂)

)−1 and
C = k′ ‖Q‖B(X̂) ‖P‖B(X̂). �

‡ To prove (4), we can assume that f ∈ H1; hence QS(f)∗ and QM(f)∗ can be defined.
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4. Application to weighted norm inequalities

Let Φ : [0, ∞) → [0, ∞) be an N -function, namely, an increasing convex
function such that:

• Φ(u) = 0 if and only if u = 0 ;

• lim
u→∞

Φ(u)
u

=∞ ;

• lim
u→0+

Φ(u)
u

= 0.

Then the complementary function Ψ, which is given by

Ψ(u) = sup
{
uv − Φ(v)

∣∣ v ≥ 0
}

(v ≥ 0),

is also an N -function. We say that Φ satisfies the ∆2-condition and write
Φ ∈ ∆2 if there exist constants k > 0 and u0 ≥ 0 such that Φ(2u) ≤ kΦ(u)
for u ≥ u0. We say that Φ satisfies the ∇2-condition and write Φ ∈ ∇2 if
Ψ ∈ ∆2. Then Φ ∈ ∇2 if and only if there exist constants l > 1 and v0 ≥ 0
such that Φ(v) ≤ (2l)−1 Φ(lv) for v ≥ v0 (see [9, p. 25]).

Let LΦ be the Orlicz space over (Ω, Σ, P) endowed with the Luxemburg
norm ‖ · ‖Φ (see [9, p. 78]), and denote by αΦ and βΦ the lower and upper
Boyd indices of LΦ. It is known that αΦ > 0 if and only if Φ ∈ ∆2 (see [12,
Theorems 3.2 and 4.2.]). Moreover, since αΨ + βΦ = 1, it follows that βΦ < 1
if and only if Φ ∈ ∇2.

Now let w be a weight random variable, i.e., let w be a (strictly) positive
and integrable random variable. We assume that E[w ] = 1 and consider the
probability measure

Pw(Λ) = E[w1Λ ] (Λ ∈ Σ).

Let (LΦ,w, ‖ · ‖Φ,w) be the Orlicz space over (Ω, Σ, Pw) endowed with the
Luxemburg norm relative to Pw. Denoting by ψ the right-derivative of Ψ, we
claim that if ψ(w−1) ∈ L1, then L∞ ↪→ LΦ,w ↪→ L1, where L1 and L∞ are
Lebesgue spaces with respect to P. The first embedding is evident. To see
the second embedding, suppose that x ∈ LΦ,w and ‖x‖Φ,w ≤ 1. Then

E

[
|x|
]
≤ E

[
Φ(|x|)w

]
+ E

[
Ψ(w−1)w

]
≤ 1 + E

[
ψ(w−1)

]
=: M <∞.

Here we have used the Young inequality uv ≤ Φ(u) + Ψ(v) and the inequality
Ψ(v) ≤ vψ(v). Thus ‖ · ‖1 ≤M ‖ · ‖Φ,w as claimed.

With the notation above, we have:

Theorem 2. Suppose that Φ ∈ ∆2 and ψ(w−1) ∈ L1. Then the following
are equivalent :
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(i) there are constants c and C such that

(21) c ‖f∞‖Φ,w ≤ ‖S(f)‖Φ,w ≤ C ‖f∞‖Φ,w (f ∈M);

(ii) (a) there are constants c1 and c2 such that c1 ≤ w ≤ c2 a.s., and
(b) Φ ∈ ∇2.

Before proving Theorem 2, we recall that

(22)

∫ t

0

w∗(s) ds = max
{∫

Λ

w dP

∣∣∣∣ Λ ∈ Σ, P(Λ) = t

}
∫ t

0

w∗(s) ds = min
{∫

Λ

w dP

∣∣∣∣ Λ ∈ Σ, P(Λ) = t

} (t ∈ I),

where w∗(s) = w∗(1− s) (see [5, p. 47]).

Proof. (ii) ⇒ (i). Condition (a) shows that ‖ · ‖Φ ≈ ‖ · ‖Φ,w and condition
(b) shows that βΦ < 1. Furthermore αX > 0, since Φ ∈ ∆2 by hypothesis.
Hence we obtain (21) from Proposition 3.

(i) ⇒ (ii). Suppose that (i) holds. Then LΦ,w is r.i. with respect to P (or
briefly, “P-r.i.”) by Theorem 1. Hence there exists a P-r.i. norm ||| · |||Φ,w
on LΦ,w such that k1 ‖ · ‖Φ,w ≤ ||| · |||Φ,w ≤ k2 ‖ · ‖Φ,w with some constants
k1 > 0 and k2 > 0. By hypothesis, there exists u0 ≥ 0 and K ≥ 1 such that

(23) Φ
(
k2 u

k1

)
≤ KΦ(u) for all u ≥ u0.

Since w ∈ L1, we can find a positive number δ such that Pw(Λ) ≤ 1/Φ(u0)
whenever P(Λ) < δ. Suppose now that Λ, Λ′ ∈ Σ and 0 < P(Λ) = P(Λ′) =
t < δ. Then 1∗Λ = 1∗Λ′ and Pw(Λ) ≤ 1/Φ(u0). Furthermore,

k1

{
Φ−1

(
1

Pw(Λ)

)}−1

= k1 ‖1Λ‖Φ,w

≤ |||1Λ|||Φ,w = |||1Λ′ |||Φ,w

≤ k2 ‖1Λ′‖Φ,w = k2

{
Φ−1

(
1

Pw(Λ′)

)}−1

,

or equivalently

(24) Φ−1

(
1

Pw(Λ′)

)
≤ k2

k1
Φ−1

(
1

Pw(Λ)

)
.

Using (23) and (24), we obtain that∫
Λ

w dP = Pw(Λ) ≤ KPw(Λ′) = K

∫
Λ′
w dP.
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Hence we may use (22) to deduce that

1
t

∫ t

0

w∗(s) ds ≤ K

t

∫ t

0

w∗(s) (0 < t < δ).

Letting t → 0+, we conclude that ess supw ≤ K ess inf w. This means that
there exist constants c1 and c2 such that c1 ≤ w ≤ c2 a.s. Therefore (21) can
be written as

c ′ ‖f∞‖Φ ≤ ‖S(f)‖Φ ≤ C
′ ‖f∞‖Φ (f ∈M)

with some constants c ′ and C ′. According to Theorem 1, the upper Boyd in-
dex βΦ must be less than one, or equivalently Φ must satisfy the ∇2-condition.
This completes the proof. �
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