CHARACTERIZATION OF BANACH FUNCTION SPACES THAT PRESERVE THE BURKHOLDER SQUARE-FUNCTION INEQUALITY

MASATO KIKUCHI
Dedicated to Professor Tamotsu Tsuchikura on his eightieth birthday

Abstract

Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach function space over a nonatomic probability space. We give a necessary and sufficient condition on X for the inequalities $c\left\|f_{\infty}\right\|_{X} \leq\|S(f)\|_{X} \leq C\left\|f_{\infty}\right\|_{X}$ to hold for all uniformly integrable martingales $f=\left(f_{n}\right)_{n \geq 0}$, where $f_{\infty}=\lim _{n} f_{n}$ a.s. and $S(f)=\left\{f_{0}^{2}+\sum_{n=1}^{\infty}\left(f_{n}-f_{n-1}\right)^{2}\right\}^{1 / 2}$.

1. Introduction

In 1966 Burkholder [4] proved that if $1<p<\infty$, then there are positive constants c_{p} and C_{p} such that

$$
\begin{equation*}
c_{p}\left\|f_{\infty}\right\|_{p} \leq\|S(f)\|_{p} \leq C_{p}\left\|f_{\infty}\right\|_{p} \tag{1}
\end{equation*}
$$

for all uniformly integrable martingales $f=\left(f_{n}\right)_{n \geq 0}$, where $f_{\infty}=\lim _{n} f_{n}$ almost surely (a.s.) and $S(f)=\left\{f_{0}^{2}+\sum_{n=1}^{\infty}\left(f_{n}-f_{n-1}\right)^{2}\right\}^{1 / 2}$. Recall that (1) holds neither for $p=1$ nor for $p=\infty$. Here we consider this inequality for Banach function spaces (see Definition 1 below). Our main result is that if such a space X satisfies the inequality

$$
c\left\|f_{\infty}\right\|_{X} \leq\|S(f)\|_{X} \leq C\left\|f_{\infty}\right\|_{X}
$$

for all uniformly integrable martingales $f=\left(f_{n}\right)$, then X is rearrangementinvariant and its norm is equivalent to a rearrangement-invariant norm for which the Boyd indices satisfy $0<\alpha_{X} \leq \beta_{X}<1$.

Both the Doob maximal inequality and the Burkholder-Davis-Gundy inequality, in which the maximal function of f replaces the limit function f_{∞}, have already been studied for rearrangement-invariant spaces (see Antipa [1]

[^0]and the closely related and independent work of Johnson and Schechtman [7], Kikuchi [8], and Novikov [13]). This work shows that the converse of our main result is true (see Proposition 3).

2. Notation and terminology

Let $(\Omega, \Sigma, \mathbb{P})$ be a nonatomic probability space*.
2.1. Banach function spaces. If X and Y are Banach spaces of random variables, we write $X \hookrightarrow Y$ to mean that X is continuously embedded in Y, i.e., that $X \subset Y$ and $\|x\|_{Y} \leq c\|x\|_{X}$ for all $x \in X$ with some constant $c>0$.

Definition 1. A real Banach space $\left(X,\|\cdot\|_{X}\right)$ of (equivalence classes of) random variables on Ω is called a Banach function space if it satisfies the following conditions:
(B1) $L_{\infty} \hookrightarrow X \hookrightarrow L_{1}$;
(B2) if $x \in X$ and $|y| \leq|x|$ a.s., then $y \in X$ and $\|y\|_{X} \leq\|x\|_{X}$;
(B3) if $x_{n} \in X, 0 \leq x_{n} \uparrow x$ a.s. and $\sup _{n}\left\|x_{n}\right\|_{X}<\infty$, then $x \in X$ and $\|x\|_{X}=\sup _{n}\left\|x_{n}\right\|_{X}$.
We adopt the convention that $\|x\|_{X}=\infty$ unless $x \in X$.
Let x and y be random variables. We write $x \simeq{ }_{d} y$ if they are equimeasurable, or in other words, they are identically distributed.

Definition 2. (i) A Banach function space X is said to be rearrange-ment-invariant (or simply r.i.) if it satisfies the following condition:
(R1) if $x \in X$ and $x \simeq{ }_{d} y$, then $y \in X$.
(ii) The norm of a Banach function space X is said to be rearrangement-invariant (or simply r.i.) if it satisfies the following condition:
(R2) if $x, y \in X$ and $x \simeq_{d} y$, then $\|x\|_{X}=\|y\|_{X}$.
Note that if the norm of a Banach function space X is r.i., then the space X is r.i. To see this, suppose that $x \simeq_{d} y$ and $x \in X$. Then, for all integers $n \geq 1$, we have $|x| \wedge n \simeq{ }_{d}|y| \wedge n$ and hence $\||y| \wedge n\|_{X}=\||x| \wedge n\|_{X} \leq\|x\|_{X}$ by (R2) and (B2). This, together with (B3), implies that $y \in X$. As for the converse, the norm of an r.i. space ${ }^{\dagger} X$ is not always r.i. (see [11, p. 114] or [5, p. 99]). There is, however, an r.i. norm $\|\|\cdot\|\|_{X}$ on X such that $\|\cdot\|_{X} \approx\|\cdot\| \|_{X}$ (see [11, p. 138] or [5, p. 106]). Here we write $\|\cdot\|_{X} \approx\|\cdot\| \|_{X}$ if these norms are equivalent.

Now let $I=(0,1]$ and let μ be Lebesgue measure on the σ-algebra \mathfrak{M} of Lebesgue measurable subsets of I. The nonincreasing rearrangement of a

[^1]random variable x on Ω, which is denoted by x^{*}, is the function on I defined as
$$
x^{*}(t)=\inf \{\lambda>0 \mid \mathbb{P}(|x|>\lambda) \leq t\} \quad(t \in I)
$$
where we follow the convention that $\inf \emptyset=\infty$. Note that x^{*} and $|x|$ are equimeasurable, i.e.,
$$
\mu\left(x^{*}>\lambda\right)=\mathbb{P}(|x|>\lambda) \quad \text { for all } \lambda>0
$$

The nonincreasing rearrangement φ^{*} of a measurable function $\varphi: I \rightarrow \mathbb{R}$ is defined in the same way. If φ and ψ are measurable functions on I, then

$$
\begin{equation*}
\int_{I}|\varphi(s) \psi(s)| d s \leq \int_{I} \varphi^{*}(s) \psi^{*}(s) d s \tag{2}
\end{equation*}
$$

This is called the Hardy-Littlewood inequality (see, e.g., [2, p. 44]). In particular,

$$
\begin{equation*}
\int_{E}|\varphi(s)| d s \leq \int_{0}^{\mu(E)} \varphi^{*}(s) d s \quad(E \in \mathfrak{M}) \tag{3}
\end{equation*}
$$

Following [2], we write $\varphi \prec \psi$ to mean that

$$
\int_{0}^{t} \varphi^{*}(s) d s \leq \int_{0}^{t} \psi^{*}(s) d s \quad \text { for all } t \in I
$$

It is then clear that $\varphi \prec \psi$ if and only if $\varphi^{*} \prec \psi^{*}$. Moreover, if x and y are random variables on Ω, then we write $x \prec y$ to mean that $x^{*} \prec y^{*}$.

Note that if $\left(X,\|\cdot\|_{X}\right)$ is endowed with an r.i. norm, then (R2) can be replaced by the following condition (cf. [2, p. 90]):
(R^{\prime}) if $x \in X$ and $y \prec x$, then $y \in X$ and $\|y\|_{X} \leq\|x\|_{X}$.
We now recall the Luxemburg representation theorem. If $\left(X,\|\cdot\|_{X}\right)$ is an r.i. space over Ω endowed with an r.i. norm, then there exists an r.i. space $\left(\widehat{X},\|\cdot\|_{\hat{X}}\right)$ over I endowed with an r.i. norm such that
(L1) $x \in X$ if and only if $x^{*} \in \widehat{X}$;
(L2) $\|x\|_{X}=\left\|x^{*}\right\|_{\widehat{X}}$ for all $x \in X$.
See [2, pp. 62-64] for a proof. Such a space $\left(\widehat{X},\|\cdot\|_{\hat{X}}\right)$ is unique; we call ($\widehat{X},\|\cdot\|_{\widehat{X}}$) the Luxemburg representation of X.

In order to state our results, we need the notion of the Boyd indices. For each $s \in(0, \infty)$, the dilation operator D_{s}, acting on the space of measurable functions on I, is defined by

$$
\left(D_{s} \varphi\right)(t)=\left\{\begin{array}{ll}
\varphi(s t), & \text { if } s t \in I, \\
0, & \text { otherwise }
\end{array} \quad(t \in I)\right.
$$

If $\left(Y,\|\cdot\|_{Y}\right)$ is an r.i. space over I, then each D_{s} is a bounded linear operator from Y into Y, and $\left\|D_{s}\right\|_{B(Y)} \leq 1 \vee s^{-1}$, where $\|\cdot\|_{B(Y)}$ denotes the operator norm. The lower and upper Boyd indices are defined by

$$
\alpha_{Y}=\sup _{0<s<1} \frac{\log \left\|D_{s^{-1}}\right\|_{B(Y)}}{\log s}=\lim _{s \rightarrow 0+} \frac{\log \left\|D_{s^{-1}}\right\|_{B(Y)}}{\log s}
$$

and

$$
\beta_{Y}=\inf _{1<s<\infty} \frac{\log \left\|D_{s^{-1}}\right\|_{B(Y)}}{\log s}=\lim _{s \rightarrow \infty} \frac{\log \left\|D_{s^{-1}}\right\|_{B(Y)}}{\log s},
$$

respectively. If $\left(X,\|\cdot\|_{X}\right)$ is an r.i. space over Ω endowed with an r.i. norm, then the Boyd indices of $\left(X,\|\cdot\|_{X}\right)$ are defined by $\alpha_{X}=\alpha_{\widehat{X}}$ and $\beta_{X}=\beta_{\widehat{X}}$, where \widehat{X} is the Luxemburg representation of X. Moreover, if $\left(X,\|\cdot\|_{X}\right)$ is an arbitrary r.i. space and if $\|\|\cdot\|\|_{X}$ is an r.i. norm on X such that $\|\cdot\|_{X} \approx\|\cdot\| \|_{X}$, then the Boyd indices of $\left(X,\|\cdot\|_{X}\right)$ are defined to be those of $\left(X,\| \| \cdot\| \|_{X}\right)$. In any case, we have $0 \leq \alpha_{X} \leq \beta_{X} \leq 1$ (see [3] or [2, p. 149]).
2.2. Martingales. By a filtration we mean a nondecreasing sequence $\mathcal{F}=$ $\left(\mathcal{F}_{n}\right)_{n \geq 0}$ of sub- σ-algebras of Σ. Given a filtration $\mathcal{F}=\left(\mathcal{F}_{n}\right)$, we denote by $\mathcal{M}_{\mathcal{F}}$, the collection of all uniformly integrable martingales with respect to \mathcal{F}. As is well known, every $f \in \mathcal{M}_{\mathcal{F}}$ converges almost surely (a.s.) to some $f_{\infty} \in L_{1}(\Omega)$ and $f_{n}=\mathbb{E}\left[f_{\infty} \mid \mathcal{F}_{n}\right](n=1,2, \ldots)$ (see, e.g., [6, p. 26]).

In what follows, we will consider martingales with respect to various filtrations, and accordingly we let $\mathcal{M}=\bigcup_{\mathcal{F}} \mathcal{M}_{\mathcal{F}}$, where the union is over all filtrations \mathcal{F}. We will use the following notation for $f=\left(f_{n}\right)_{n \geq 0} \in \mathcal{M}$:

- $\Delta_{0} f:=f_{0} ; \Delta_{n} f:=f_{n}-f_{n-1} \quad(n=1,2, \ldots)$,
- $S_{n}(f):=\left\{\sum_{j=0}^{n}\left(\Delta_{j} f\right)^{2}\right\}^{1 / 2} \quad(n=0,1,2, \ldots)$,
- $\quad S(f):=\lim _{n \rightarrow \infty} S_{n}(f)$,
- $M_{n}(f):=\max _{0 \leq j \leq n}\left|f_{j}\right| \quad(n=0,1,2, \ldots)$,
- $M(f):=\lim _{n \rightarrow \infty} M_{n}(f)$,
- $f_{\infty}:=\lim _{n \rightarrow \infty} f_{n} \quad$ a.s.

3. Main results

Given a Banach function space $\left(X,\|\cdot\|_{X}\right)$ over Ω, we let

$$
\begin{gather*}
\mathcal{M}(X)=\left\{f=\left(f_{n}\right) \in \mathcal{M} \mid f_{\infty} \in X\right\} \tag{4}\\
\mathcal{H}(X)=\left\{f=\left(f_{n}\right) \in \mathcal{M} \mid S(f) \in X\right\} \tag{5}
\end{gather*}
$$

Our main result is as follows:

Theorem 1. Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach function space over Ω. Then the following are equivalent:
(i) there are constants c and C, depending only on X, such that

$$
\begin{equation*}
c\left\|f_{\infty}\right\|_{X} \leq\|S(f)\|_{X} \leq C\left\|f_{\infty}\right\|_{X} \quad(f \in \mathcal{M}) \tag{4}
\end{equation*}
$$

(ii) $\mathcal{M}(X)=\mathcal{H}(X)$;
(iii) X is rearrangement-invariant and can be renormed with an equivalent rearrangement-invariant norm for which the Boyd indices satisfy $0<$ $\alpha_{X} \leq \beta_{X}<1$.

Note that except for possible changes in the constants, inequality (4) holds for a norm if and only if it holds for every equivalent norm.

Recall the convention that $\|x\|_{X}=\infty$ unless $x \in X$. This shows that (i) implies (ii). That (ii) implies (iii) follows from Propositions 1 and 2 below, and that (iii) implies (i) is just the assertion of Proposition 3 below.

Proposition 1. Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach function space over Ω. If $\mathcal{M}(X) \subset \mathcal{H}(X)$, then:
(i) X is rearrangement-invariant;
(ii) $\beta_{X}<1$.

Proposition 2. Let $\left(X,\|\cdot\|_{X}\right)$ be a rearrangement-invariant space over Ω. If $\beta_{X}<1$ and if $\mathcal{H}(X) \subset \mathcal{M}(X)$, then $\alpha_{X}>0$.

Proposition 3. Let $\left(X,\|\cdot\|_{X}\right)$ be as in Proposition 2. If $0<\alpha_{X} \leq$ $\beta_{X}<1$, then there are constants c and C, depending only on X, such that (4) holds.

Proposition 3 follows from the results of Antipa [1]; however, we will give an alternative proof of Proposition 3 via Shimogaki's Theorem.

In order to prove Propositions 1 and 2, we need the following lemmas.
Lemma 1. Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach function space. Then X is rear-rangement-invariant if and only if it satisfies the following condition:
$\left(\mathrm{R} 1^{\prime}\right)$ if $x, y \geq 0$ a.s., $\{x>0\} \cap\{y>0\}=\emptyset, x \simeq{ }_{d} y$, and $x \in X$, then $y \in X$.

Proof. It suffices to show that (R1') implies (R1). Suppose that $x \simeq{ }_{d} y$ and $x \in X$. To prove that $y \in X$, we may assume $y \notin L_{\infty}$ (cf. (B1)). Choose $\lambda>0$ so large that $\mathbb{P}(|x|>\lambda)<1 / 3$. Clearly $x^{\prime}:=|x| 1_{\{|x|>\lambda\}}$ and $y^{\prime}:=|y| 1_{\{|y|>\lambda\}}$ are equimeasurable and $x^{\prime} \in X$. Since the set $\left\{x^{\prime}=0, y^{\prime}=0\right\}$ contains no atom and $\mathbb{P}\left(x^{\prime}=0, y^{\prime}=0\right)>1 / 3$, there is a random variable $z \geq 0$ such that $\{z>0\} \subset\left\{x^{\prime}=0, y^{\prime}=0\right\}$ and $z \simeq{ }_{d} x^{\prime}(c f .[5$, p. 44]). Then condition (R1') yields that $z \in X$, since $\{z>0\} \cap\left\{x^{\prime}>0\right\}=\emptyset$ and $x^{\prime} \in X$. Now the same
reasoning shows that $y^{\prime} \in X$. Therefore $|y| \leq y^{\prime}+\lambda \in X$, and thus $y \in X$ as desired.

Lemma $2([2$, p. 46$])$. Suppose that $x \in L_{1}(\Omega)$ is nonnegative. Then there is a family $\{A(t) \mid t \in I\}$ of measurable subsets of Ω satisfying the following conditions:
(i) $A(s) \subset A(t)$ whenever $0<s \leq t \leq 1$;
(ii) $\mathbb{P}(A(t))=t$ for all $t \in I$;
(iii) $\int_{A(t)} x d \mathbb{P}=\int_{0}^{t} x^{*}(s) d s$ for all $t \in I$;
(iv) $\left\{\omega \in \Omega \mid x(\omega)>x^{*}(t)\right\} \subset A(t) \subset\left\{\omega \in \Omega \mid x(\omega) \geq x^{*}(t)\right\}$ for all $t \in I$. In particular, if $\mathbb{P}(x=s)=0$ for all $s>0$ and if $t_{0}=\mathbb{P}(x>0)$, then $A(t)$ may be taken to be the set $\left\{\omega \in \Omega \mid x(\omega)>x^{*}(t)\right\}$ for each $t \in\left(0, t_{0}\right]$.

We now consider an averaging operator \mathcal{P} and its adjoint \mathcal{Q} : for $\varphi \in L_{1}(I)$ define

$$
(\mathcal{P} \varphi)(t)=\frac{1}{t} \int_{0}^{t} \varphi(s) d s \quad(t \in I)
$$

and for $\varphi \in \bigcap_{0<t<1} L_{1}(t, 1)$ define

$$
(\mathcal{Q} \varphi)(t)=\int_{t}^{1} \frac{\varphi(s)}{s} d s \quad(t \in I)
$$

Then it is easy to derive the following formulae:

$$
\begin{array}{ll}
\mathcal{P Q} \varphi=\mathcal{P} \varphi+\mathcal{Q} \varphi & \left(\varphi \in L_{1}(I)\right) \\
\mathcal{Q} \mathcal{P} \varphi=\mathcal{P} \varphi+\mathcal{Q} \varphi-\int_{I} \varphi d \mu & \tag{6b}\\
\left(\varphi \in L_{1}(I)\right)
\end{array}
$$

We recall Shimogaki's Theorem on the boundedness of \mathcal{P} and \mathcal{Q}. In terms of Boyd indices, it can be expressed as follows:

Shimogaki's Theorem ([14]). Let $\left(Y,\|\cdot\|_{Y}\right)$ be a rearrangement-invariant space over I endowed with a rearrangement-invariant norm. Then:
(i) $\beta_{Y}<1$ if and only if \mathcal{P} is a bounded operator from Y into Y;
(ii) $\alpha_{Y}>0$ if and only if \mathcal{Q} is a bounded operator from Y into Y.

For a proof of (an extension of) this theorem see [2, p. 150] or [3]. Note that \mathcal{P} (resp. \mathcal{Q}) is a bounded linear operator from Y into Y if and only if $\mathcal{P}(Y) \subset Y$ (resp. $\mathcal{Q}(Y) \subset Y)$. This is an immediate consequence of the closed graph theorem, since $Y \hookrightarrow L_{1}(I)$. Thus:

- $\beta_{Y}<1$ if and only if $\mathcal{P}(Y) \subset Y$;
- $\alpha_{Y}>0$ if and only if $\mathcal{Q}(Y) \subset Y$.

The next lemma is a variant of Shimogaki's Theorem. Before stating it, we must introduce some notation.

Notation. Let $\left(Y,\|\cdot\|_{Y}\right)$ be a Banach function space over I.
(i) We denote by \mathcal{D}_{Y} the collection of all nonnegative nonincreasing functions in Y.
(ii) We denote by \mathcal{D}_{Y}^{\prime} the collection of functions $\varphi \in \mathcal{D}_{Y}$ such that $\mu(\varphi>$ $0) \leq 1 / 2$.

Lemma 3. Let $\left(Y,\|\cdot\|_{Y}\right)$ be as in Shimogaki's Theorem. Then:
(i) $\beta_{Y}<1$ if and only if $\mathcal{P}\left(\mathcal{D}_{Y}^{\prime}\right) \subset Y$;
(ii) $\alpha_{Y}>0$ if and only if $\mathcal{Q}\left(\mathcal{D}_{Y}\right) \subset Y$.

Furthermore \mathcal{D}_{Y}^{\prime} may be replaced by $\mathcal{D}_{Y}^{\prime} \backslash L_{\infty}(I)$ in (i).
Proof. The last statement is clear, since $\mathcal{P} \varphi \in L_{\infty}$ for any $\varphi \in L_{\infty}$.
To prove (i) and (ii), it suffices to show that:
(i') if $\mathcal{P}\left(\mathcal{D}_{Y}^{\prime}\right) \subset Y$, then $\mathcal{P}(Y) \subset Y$;
(ii') if $\mathcal{Q}\left(\mathcal{D}_{Y}\right) \subset Y$, then $\mathcal{Q}(Y) \subset Y$.
To prove (i'), assume that $\mathcal{P} \varphi \in Y$ whenever $\varphi \in \mathcal{D}_{Y}^{\prime}$. Let $\psi \in Y$ and choose $\lambda>0$ so that $\mu(|\psi|>\lambda) \leq 1 / 2$. If we let $\varphi=\psi^{*} 1_{\left\{\psi^{*}>\lambda\right\}}$, then $\varphi \in \mathcal{D}_{Y}^{\prime}$ and hence $\mathcal{P} \varphi \in Y$. By inequality (3) and the inequality $\psi^{*} \leq \varphi+\lambda$ we have

$$
|(\mathcal{P} \psi)(t)| \leq\left(\mathcal{P} \psi^{*}\right)(t) \leq(\mathcal{P} \varphi)(t)+\lambda \quad(t \in I)
$$

Hence $\mathcal{P} \psi \in Y$, as desired.
To prove (ii'), assume that $\mathcal{Q} \varphi \in Y$ whenever $\varphi \in \mathcal{D}_{Y}$. Let $\psi \in Y$, or equivalently, let $\psi^{*} \in \mathcal{D}_{Y}$; then $\mathcal{Q} \psi^{*} \in Y$. It suffices to show that $\mathcal{Q}|\psi| \in Y$, since $|\mathcal{Q} \psi| \leq \mathcal{Q}|\psi|$ (cf. (B2)). Using inequality (2), we find that

$$
\begin{aligned}
\int_{0}^{t}(\mathcal{Q}|\psi|)(s) d s & =\int_{0}^{1}\left(1 \wedge s^{-1} t\right)|\psi(s)| d s \\
& \leq \int_{0}^{1}\left(1 \wedge s^{-1} t\right) \psi^{*}(s) d s \\
& =\int_{0}^{t}\left(\mathcal{Q} \psi^{*}\right)(s) d s \quad(t \in I)
\end{aligned}
$$

This shows that $\mathcal{Q}|\psi| \prec \mathcal{Q} \psi^{*}$ (since these two functions are nonincreasing). Hence $\mathcal{Q}|\psi| \in Y$ (cf. ($\left.\mathrm{R}^{\prime}\right)$), as desired.

We are now ready to prove Propositions 1 and 2.
Proof of Proposition 1. Suppose $\mathcal{M}(X) \subset \mathcal{H}(X)$.
(i) To prove that X is r.i., it suffices to show that X satisfies (R1') (see Lemma 1). Assume that $x, y \geq 0$ a.s., $\{x>0\} \cap\{y>0\}=\emptyset, x \simeq{ }_{d} y$, and $x \in X$. We must prove that $y \in X$. To this end, we may assume $y \notin L_{\infty}$.

There are two cases to consider:

Case 1: $\mathbb{P}(y=s)=0$ for any $s>0$;
Case 2: $\mathbb{P}(y=s)>0$ for some $s>0$.
In Case 1 , we define $\tilde{y} \in L_{1}$ and $\alpha \in \mathbb{R}$ by letting $\tilde{y}=y$ and $\alpha=0$.
In Case 2, we define \tilde{y} and α as follows. Let $\Omega_{0}=\bigcup_{s \in \Gamma}\{y=s\}$ and let $\alpha=\mathbb{P}\left(\Omega_{0}\right)$, where Γ is the set of $s>0$ such that $\mathbb{P}(y=s)>0$. Since Ω is nonatomic, we can find a nonnegative random variable r such that $\{r>0\}=$ Ω_{0} and $r^{*}(t)=(\alpha-t)^{+}$for all $t \in I$ (see [5, p. 44]). We then define $\tilde{y}=y+r$.

In any case, we have:

- $\mathbb{P}(\tilde{y}=s)=0$ for all $s>0$;
- $\{y>0\}=\{\tilde{y}>0\}$;
- $y \leq \tilde{y} \leq y+\alpha$ on Ω, and hence $y^{*} \leq \tilde{y}^{*} \leq y^{*}+\alpha$ on I.

In the rest of the proof of (i), we do not have to distinguish the two cases.
Define a sequence $\left\{t_{n}\right\}_{n=1}^{\infty}$ in I by setting

$$
\begin{aligned}
t_{0} & =\mathbb{P}(\tilde{y}>0) \\
t_{n} & =\sup \left\{s \in I \mid\left(\mathcal{P} \tilde{y}^{*}\right)(s)>2\left(\mathcal{P} \tilde{y}^{*}\right)\left(t_{n-1}\right)\right\} \quad(n=1,2, \ldots)
\end{aligned}
$$

Then, since $y \notin L_{\infty}$ and $\mathcal{P} \tilde{y}^{*}$ is continuous, it is easy to verify that $0<t_{n}<$ t_{n-1} for all $n \geq 1$, and

$$
\begin{equation*}
\left(\mathcal{P} \tilde{y}^{*}\right)\left(t_{n}\right)=2\left(\mathcal{P} \tilde{y}^{*}\right)\left(t_{n-1}\right) \quad(n=1,2, \ldots) \tag{7}
\end{equation*}
$$

From (7) it follows that $t_{n} \downarrow 0$ as $n \rightarrow \infty$. Let $\{A(t) \mid t \in I\}$ be a family of sets in Σ satisfying the four conditions of Lemma 2 (relative to x). Let

$$
A_{n}=A\left(t_{n}\right), \quad B_{n}=\left\{\omega \mid \tilde{y}(\omega)>\tilde{y}^{*}\left(t_{n}\right)\right\}, \text { and } \Lambda_{n}=A_{n} \cup B_{n}
$$

for each $n=0,1,2 \ldots$. We define a filtration $\mathcal{F}=\left(\mathcal{F}_{n}\right)_{n \geq 0}$ and a martingale as follows:

$$
\begin{align*}
\mathcal{F}_{n} & =\sigma\left\{\Lambda \backslash \Lambda_{n} \mid \Lambda \in \Sigma\right\}, \\
f_{n} & =\mathbb{E}\left[x \mid \mathcal{F}_{n}\right], \tag{8}
\end{align*}
$$

Because $\mathbb{P}\left(A_{n}\right)=\mathbb{P}\left(B_{n}\right)=t_{n}$ and $A_{n} \cap B_{n}=\emptyset$, we see from (iii) of Lemma 2 that

$$
f_{n}=\frac{1_{\Lambda_{n}}}{\mathbb{P}\left(\Lambda_{n}\right)} \mathbb{E}\left[x 1_{\Lambda_{n}}\right]+x 1_{\Omega \backslash \Lambda_{n}}=\frac{1}{2}\left(\mathcal{P} y^{*}\right)\left(t_{n}\right) 1_{\Lambda_{n}}+x 1_{\Omega \backslash \Lambda_{n}}
$$

Therefore

$$
\Delta_{n} f= \begin{cases}\frac{1}{2}\left(\mathcal{P} y^{*}\right)\left(t_{n}\right)-\frac{1}{2}\left(\mathcal{P} y^{*}\right)\left(t_{n-1}\right) & \text { on } \Lambda_{n} \\ x-\frac{1}{2}\left(\mathcal{P} y^{*}\right)\left(t_{n-1}\right) & \text { on } \Lambda_{n-1} \backslash \Lambda_{n}, \quad(n=1,2, \ldots) . \\ 0 & \text { on } \Omega \backslash \Lambda_{n-1}\end{cases}
$$

Since $x=0$ on B_{n}, it follows that

$$
\begin{equation*}
\Delta_{n} f=-\frac{1}{2}\left(\mathcal{P} y^{*}\right)\left(t_{n-1}\right) \quad \text { on } B_{n-1} \backslash B_{n} \tag{9}
\end{equation*}
$$

Using (7), (9), the continuity of $\mathcal{P} \tilde{y}^{*}$, and the nonincreasing property of \tilde{y}^{*}, we see that on $B_{n-1} \backslash B_{n}$

$$
\begin{aligned}
y & \leq \tilde{y} \leq \tilde{y}^{*}\left(t_{n}\right) \\
& \leq\left(\mathcal{P} \tilde{y}^{*}\right)\left(t_{n}\right)=2\left(\mathcal{P} \tilde{y}^{*}\right)\left(t_{n-1}\right) \\
& \leq 2\left(\mathcal{P} y^{*}\right)\left(t_{n-1}\right)+2 \alpha=4\left|\Delta_{n} f\right|+2 \alpha
\end{aligned}
$$

Because $\{y>0\}=\{\tilde{y}>0\}=B_{0}$ and $B_{n} \downarrow \emptyset$ a.s., we deduce that a.s.

$$
\begin{equation*}
y=\sum_{n=1}^{\infty} y 1_{B_{n-1} \backslash B_{n}}=4\left(\sum_{n=1}^{\infty}\left|\Delta_{n} f\right|^{2} 1_{B_{n-1} \backslash B_{n}}\right)^{1 / 2}+2 \alpha \leq 4 S(f)+2 \alpha \tag{10}
\end{equation*}
$$

On the other hand, since $\mathbb{P}\left(\Lambda_{n}\right)=2 t_{n} \rightarrow 0$ as $n \rightarrow \infty$, we see that $f_{\infty}=$ $x \in X$ or equivalently $f=\left(f_{n}\right) \in \mathcal{M}(X)$. Hence $S(f) \in X$ by hypothesis. Combining this with (10), we conclude that $y \in X$. This completes the proof of (i).
(ii) As shown above, X is r.i. Hence we may assume (see the discussion following Definition 2) that X is endowed with an r.i. norm. Let $\left(\widehat{X},\|\cdot\|_{\widehat{X}}\right)$ be the Luxemburg representation of X. To prove that $\beta_{X}<1$, it suffices to show that $\mathcal{P} \varphi \in \widehat{X}$ whenever $\varphi \in \mathcal{D}_{\hat{X}}^{\prime} \backslash L_{\infty}(I)$ (see Lemma 3).

Since $\mu(\varphi>0) \leq 1 / 2$ (and Ω is nonatomic), we can find nonnegative random variables x and y such that $x^{*}=y^{*}=\varphi$ on I and $\{x>0\} \cap\{y>$ $0\}=\emptyset$. We then define $\tilde{y}, \alpha,\left\{t_{n}\right\},\left\{A_{n}\right\},\left\{B_{n}\right\},\left\{\Lambda_{n}\right\}, \mathcal{F}=\left(\mathcal{F}_{n}\right)$, and $f=\left(f_{n}\right)$ as in the proof of (i). Then

$$
\left(\mathcal{P} \tilde{y}^{*}\right)\left(t_{n}\right) \leq 4\left|\Delta_{n} f\right|+2 \alpha \quad \text { on } \quad B_{n-1} \backslash B_{n}
$$

as shown above. Therefore

$$
\sum_{n=1}^{\infty}\left(\mathcal{P} \tilde{y}^{*}\right)\left(t_{n}\right) 1_{B_{n-1} \backslash B_{n}} \leq 4 S(f)+2 \alpha
$$

Observe that the nonincreasing rearrangement of the left-hand side is the function $s \mapsto \sum_{n=1}^{\infty}\left(\mathcal{P} \tilde{y}^{*}\right)\left(t_{n}\right) 1_{\left[t_{n}, t_{n-1}\right)}(s)$. It is greater than or equal to $\mathcal{P} \tilde{y}^{*}$. Thus we find that

$$
\mathcal{P} \varphi=\mathcal{P} y^{*} \leq \mathcal{P} \tilde{y}^{*} \leq \sum_{n=1}^{\infty}\left(\mathcal{P} \tilde{y}^{*}\right)\left(t_{n}\right) 1_{\left[t_{n}, t_{n-1}\right)} \leq 4 S(f)^{*}+2 \alpha
$$

Since $x^{*}=\varphi \in \mathcal{D}_{\widehat{X}} \subset \widehat{X}$, we see that $f_{\infty}=x \in X$ (cf. (L1)). Hence $S(f) \in X$ by hypothesis. As a consequence, $\mathcal{P} \varphi \leq 4 S(f)^{*}+2 \alpha \in \widehat{X}$. This completes the proof of Proposition 1.

Proof of Proposition 2. Assume that $\beta_{X}<1$ and $\mathcal{H}(X) \subset \mathcal{M}(X)$. To prove Proposition 2, we may assume that X is endowed with an r.i. norm. According to Lemma 3, it suffices to show that $\mathcal{Q} \varphi \in \widehat{X}$ whenever $\varphi \in \mathcal{D}_{\widehat{X}}$. To this end, we may assume $\varphi \not \equiv 0$; hence $(\mathcal{Q} \varphi)(t) \rightarrow \infty$ as $t \rightarrow 0+$. Choose
a random variable x so that $x^{*}=\mathcal{Q} \varphi$ on I and define a sequence $\left\{t_{n}\right\}$ in I by setting

$$
\begin{aligned}
t_{0} & =1 \\
t_{n} & =\sup \left\{s \in I \mid\left(\mathcal{P} x^{*}\right)(s)>\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)+n^{-1}\right\} \quad(n=1,2, \ldots)
\end{aligned}
$$

Then it is easy to verify that $0<t_{n}<t_{n-1}$ and

$$
\begin{equation*}
\left(\mathcal{P} x^{*}\right)\left(t_{n}\right)=\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)+n^{-1} \quad(n=1,2, \ldots) \tag{11}
\end{equation*}
$$

Since $\left(\mathcal{P} x^{*}\right)\left(t_{n}\right)=\left(\mathcal{P} x^{*}\right)\left(t_{0}\right)+\sum_{j=1}^{n} j^{-1} \rightarrow \infty$, we see that $t_{n} \downarrow 0$ as $n \rightarrow \infty$. Let $\{A(t) \mid t \in I\}$ be a family of sets in Σ satisfying the four conditions of Lemma 2, and let $\Lambda_{n}=A\left(t_{n}\right)$ for each $n \geq 0$. Then, by (iv) of Lemma 2,

$$
\begin{equation*}
x^{*}\left(t_{n-1}\right) \leq x \leq x^{*}\left(t_{n}\right) \quad \text { on } \Lambda_{n-1} \backslash \Lambda_{n} \tag{12}
\end{equation*}
$$

Define $\mathcal{F}=\left(\mathcal{F}_{n}\right)_{n \geq 0}$ and $f=\left(f_{n}\right)_{n \geq 0}$ by (8). Then it is easy to see that

$$
f_{n}=\left(\mathcal{P} x^{*}\right)\left(t_{n}\right) 1_{\Lambda_{n}}+x 1_{\Omega \backslash \Lambda_{n}} \quad(n=0,1,2, \ldots)
$$

Therefore

$$
\left|\Delta_{n} f\right|= \begin{cases}n^{-1} & \text { on } \Lambda_{n} \tag{13}\\ \left|x-\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)\right| & \text { on } \Lambda_{n-1} \backslash \Lambda_{n}, \quad(n=1,2, \ldots) \\ 0 & \text { on } \Omega \backslash \Lambda_{n-1}\end{cases}
$$

Using (11) and (12) we find that, on $\Lambda_{n-1} \backslash \Lambda_{n}$,

$$
\begin{aligned}
-n^{-1} & \leq\left(\mathcal{P} x^{*}\right)\left(t_{n}\right)-x^{*}\left(t_{n}\right)-n^{-1} \\
& =\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)-x^{*}\left(t_{n}\right) \\
& \leq\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)-x \\
& \leq\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)-x^{*}\left(t_{n-1}\right)
\end{aligned}
$$

Hence it follows that

$$
\left|\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)-x\right| \leq\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)-x^{*}\left(t_{n-1}\right)+n^{-1} \quad \text { on } \Lambda_{n-1} \backslash \Lambda_{n}
$$

Since $\mathcal{P} x^{*}-x^{*}=\mathcal{P} \mathcal{Q} \varphi-\mathcal{Q} \varphi=\mathcal{P} \varphi$ by (6a), we have

$$
\left|\left(\mathcal{P} x^{*}\right)\left(t_{n-1}\right)-x\right| \leq(\mathcal{P} \varphi)\left(t_{n-1}\right)+n^{-1} \quad \text { on } \Lambda_{n-1} \backslash \Lambda_{n}
$$

This, together with (13), implies that

$$
\begin{aligned}
\left|\Delta_{n} f\right| & \leq n^{-1} 1_{\Lambda_{n}}+\left\{(\mathcal{P} \varphi)\left(t_{n-1}\right)+n^{-1}\right\} 1_{\Lambda_{n-1} \backslash \Lambda_{n}} \\
& =n^{-1} 1_{\Lambda_{n-1}}+(\mathcal{P} \varphi)\left(t_{n-1}\right) 1_{\Lambda_{n-1} \backslash \Lambda_{n}}
\end{aligned}
$$

for each $n \geq 1$. Since $\left|f_{0}\right|=\left|\mathbb{E}\left[x \mid \mathcal{F}_{0}\right]\right|=\|x\|_{1}=\|\varphi\|_{1}$, it follows that

$$
\begin{equation*}
S(f) \leq\|\varphi\|_{1}+K+\sum_{n=1}^{\infty}(\mathcal{P} \varphi)\left(t_{n-1}\right) 1_{\Lambda_{n-1} \backslash \Lambda_{n}} \tag{14}
\end{equation*}
$$

where $K=\left\{\sum_{n=1}^{\infty} n^{-2}\right\}^{1 / 2}$. Note that the nonincreasing rearrangement of the last sum in (14) is the function $s \mapsto \sum_{n=1}^{\infty}(\mathcal{P} \varphi)\left(t_{n-1}\right) 1_{\left[t_{n}, t_{n-1}\right)}(s)$. Hence by (14),

$$
S(f)^{*} \leq\|\varphi\|_{1}+K+\sum_{n=1}^{\infty}(\mathcal{P} \varphi)\left(t_{n-1}\right) 1_{\left[t_{n}, t_{n-1}\right)} \leq\|\varphi\|_{1}+K+\mathcal{P} \varphi
$$

Note that right-hand side belongs to \widehat{X}. Indeed, since $\beta_{\widehat{X}}=\beta_{X}<1$ and $\varphi \in \widehat{X}$, Shimogaki's Theorem shows that $\mathcal{P} \varphi \in \widehat{X}$. Therefore $S(f) \in X$. Since $\mathcal{H}(X) \subset \mathcal{M}(X)$, we conclude that $x=f_{\infty} \in X$, or equivalently that $\mathcal{Q} \varphi=x^{*} \in \widehat{X}$. This completes the proof.

We now turn to the proof of Proposition 3. As mentioned before, Proposition 3 follows from the results of [1]. We give here another proof. We begin with a lemma which extends Garsia's lemma. For notation and terminology see, e.g., [6].

LEMMA 4 ([8]). Let $\left(x_{n}\right)_{n \geq 0}$ be a nondecreasing sequence of nonnegative random variables adapted to a filtration $\mathcal{F}=\left(\mathcal{F}_{n}\right)_{n \geq 0}$, let $x_{\infty}=\lim _{n \rightarrow \infty} x_{n}$, and let y be a nonnegative integrable random variable. If the inequality

$$
\begin{equation*}
\mathbb{E}\left[x_{\infty}-x_{\tau-1} \mid \mathcal{F}_{\tau}\right] \leq \mathbb{E}\left[y \mid \mathcal{F}_{\tau}\right] \tag{15}
\end{equation*}
$$

holds a.s. for every \mathcal{F}-stopping time τ, with the convention that $x_{-1}=0$, then $x_{\infty}^{*} \prec \mathcal{Q} y^{*}$.

Proof. Let $t \in I$ and $t^{\prime}=\inf \left\{s \in I \mid x_{\infty}^{*}(s)=x_{\infty}^{*}(t)\right\}$. Then $0 \leq t^{\prime} \leq t$, $\left(0, t^{\prime}\right)=\left\{s \in I \mid x_{\infty}^{*}(s)>x_{\infty}^{*}(t)\right\}$, and $x_{\infty}^{*}(s)=x_{\infty}^{*}(t)$ whenever $t^{\prime} \leq s \leq t$. Applying (15) to the stopping time $\tau=\inf \left\{n \geq 0 \mid x_{n}>x_{\infty}^{*}(t)\right\}$ and using the Hardy-Littlewood inequality (cf. (3)), we have

$$
\begin{aligned}
\int_{0}^{t} x_{\infty}^{*}(s) d s-t x_{\infty}^{*}(t) & =\int_{0}^{t^{\prime}}\left(x_{\infty}^{*}(s)-x_{\infty}^{*}(t)\right) d s \\
& =\mathbb{E}\left[\left(x_{\infty}-x_{\infty}^{*}(t)\right) 1_{\left\{x_{\infty}>x_{\infty}^{*}(t)\right\}}\right] \\
& \leq \mathbb{E}\left[\left(x_{\infty}-x_{\tau-1}\right) 1_{\{\tau<\infty\}}\right] \\
& \leq \mathbb{E}\left[y 1_{\left\{x_{\infty}>x_{\infty}^{*}(t)\right\}}\right] \\
& \leq \int_{0}^{t} y^{*}(s) d s
\end{aligned}
$$

Thus $\mathcal{P} x_{\infty}^{*}-x_{\infty}^{*} \leq \mathcal{P} y^{*}$ on I. Therefore it follows from (6a) and (6b) that

$$
\begin{equation*}
\mathcal{P} x_{\infty}^{*}-\left\|x_{\infty}^{*}\right\|_{1}=\mathcal{Q}\left(\mathcal{P} x_{\infty}^{*}-x_{\infty}^{*}\right) \leq \mathcal{Q} \mathcal{P} y^{*}=\mathcal{P} \mathcal{Q} y^{*}-\left\|y^{*}\right\|_{1} \tag{16}
\end{equation*}
$$

On the other hand, setting $\tau \equiv 0$ in (15) yields that

$$
\left\|x_{\infty}^{*}\right\|_{1}=\|x\|_{1} \leq\|y\|_{1}=\left\|y^{*}\right\|_{1}
$$

Combining this with (16), we conclude that $\mathcal{P} x_{\infty}^{*} \leq \mathcal{P} \mathcal{Q} y^{*}$ on I, or equivalently that $x_{\infty}^{*} \prec \mathcal{Q} y^{*}$.

Lemma 5. Let x and y be nonnegative integrable random variables. If the inequality

$$
\begin{equation*}
\lambda \mathbb{P}(x \geq \lambda) \leq \int_{\{x \geq \lambda\}} y d \mathbb{P} \tag{17}
\end{equation*}
$$

holds for any $\lambda>0$, then $x^{*} \leq \mathcal{P} y^{*}$ on I.
Proof. Let $t \in I$ and $t^{\prime}=\mathbb{P}\left(x \geq x^{*}(t)\right)$; then $t^{\prime} \geq t$. Setting $\lambda=x^{*}(t)$ in (17) and using the Hardy-Littlewood inequality (cf. (3)), we obtain

$$
x^{*}(t) \leq \frac{1}{t^{\prime}} \int_{\left\{x \geq x^{*}(t)\right\}} y d \mathbb{P} \leq\left(\mathcal{P} y^{*}\right)\left(t^{\prime}\right) \leq\left(\mathcal{P} y^{*}\right)(t)
$$

as desired.
Proof of Proposition 3. Suppose $0<\alpha_{X} \leq \beta_{X}<1$. Then both \mathcal{P} and \mathcal{Q} are bounded operators from \widehat{X} into \widehat{X}. To prove (4), we may assume that X is endowed with an r.i. norm. Recall (the conditional form of) Davis' inequality: there are constants $k>0$ and $k^{\prime}>0$ such that

$$
\begin{aligned}
& \mathbb{E}\left[M(f)-M_{\tau-1}(f) \mid \mathcal{F}_{\tau}\right] \leq k \mathbb{E}\left[S(f) \mid \mathcal{F}_{\tau}\right] \quad \text { a.s., and } \\
& \mathbb{E}\left[S(f)-S_{\tau-1}(f) \mid \mathcal{F}_{\tau}\right] \leq k^{\prime} \mathbb{E}\left[M(f) \mid \mathcal{F}_{\tau}\right] \quad \text { a.s. }
\end{aligned}
$$

for all $f \in \mathcal{M}_{\mathcal{F}}$ and for all \mathcal{F}-stopping times τ (see, e.g., [6, p. 286] or [10, p. 89]). It then follows from Lemma 4 that $M(f)^{*} \prec k \mathcal{Q} S(f)^{*}$ and $S(f)^{*} \prec$ $k^{\prime} \mathcal{Q} M(f)^{*}{ }^{\ddagger}$ Therefore, by (L2) and ($\mathrm{R} 2^{\prime}$), we have

$$
\begin{equation*}
\|M(f)\|_{X}=\left\|M(f)^{*}\right\|_{\widehat{X}} \leq k\left\|\mathcal{Q} S(f)^{*}\right\|_{\widehat{X}} \leq k\|\mathcal{Q}\|_{B(\widehat{X})}\|S(f)\|_{X} \tag{18}
\end{equation*}
$$

and

$$
\begin{equation*}
\|S(f)\|_{X}=\left\|S(f)^{*}\right\|_{\hat{X}} \leq k^{\prime}\left\|\mathcal{Q} M(f)^{*}\right\|_{\hat{X}} \leq k^{\prime}\|\mathcal{Q}\|_{B(\hat{X})}\|M(f)\|_{X} \tag{19}
\end{equation*}
$$

Now we recall Doob's inequality (see, e.g., [10, p. 34]): for any $f \in \mathcal{M}$,

$$
\lambda \mathbb{P}(M(f)>\lambda) \leq \int_{\{M(f)>\lambda\}}\left|f_{\infty}\right| d \mathbb{P} \quad(\lambda>0)
$$

It then follows from Lemma 5 that $M(f)^{*} \leq \mathcal{P} f_{\infty}^{*}$ on I. Therefore

$$
\begin{equation*}
\|M(f)\|_{X}=\left\|M(f)^{*}\right\|_{\widehat{X}} \leq\|\mathcal{P}\|_{B(\widehat{X})}\left\|f_{\infty}\right\|_{X} \quad(f \in \mathcal{M}) \tag{20}
\end{equation*}
$$

Combining (18), (19), and (20), we obtain (4) with $c=\left(k\|\mathcal{Q}\|_{B(\widehat{X})}\right)^{-1}$ and $C=k^{\prime}\|\mathcal{Q}\|_{B(\hat{X})}\|\mathcal{P}\|_{B(\hat{X})}$.

[^2]
4. Application to weighted norm inequalities

Let $\Phi:[0, \infty) \rightarrow[0, \infty)$ be an N-function, namely, an increasing convex function such that:

- $\Phi(u)=0$ if and only if $u=0$;
- $\lim _{u \rightarrow \infty} \frac{\Phi(u)}{u}=\infty$;
- $\lim _{u \rightarrow 0+} \frac{\Phi(u)}{u}=0$.

Then the complementary function Ψ, which is given by

$$
\Psi(u)=\sup \{u v-\Phi(v) \mid v \geq 0\} \quad(v \geq 0)
$$

is also an N-function. We say that Φ satisfies the Δ_{2}-condition and write $\Phi \in \Delta_{2}$ if there exist constants $k>0$ and $u_{0} \geq 0$ such that $\Phi(2 u) \leq k \Phi(u)$ for $u \geq u_{0}$. We say that Φ satisfies the ∇_{2}-condition and write $\Phi \in \nabla_{2}$ if $\Psi \in \Delta_{2}$. Then $\Phi \in \nabla_{2}$ if and only if there exist constants $l>1$ and $v_{0} \geq 0$ such that $\Phi(v) \leq(2 l)^{-1} \Phi(l v)$ for $v \geq v_{0}$ (see [9, p. 25]).

Let L_{Φ} be the Orlicz space over $(\Omega, \Sigma, \mathbb{P})$ endowed with the Luxemburg norm $\|\cdot\|_{\Phi}\left(\right.$ see $\left[9\right.$, p. 78]), and denote by α_{Φ} and β_{Φ} the lower and upper Boyd indices of L_{Φ}. It is known that $\alpha_{\Phi}>0$ if and only if $\Phi \in \Delta_{2}$ (see [12, Theorems 3.2 and 4.2.]). Moreover, since $\alpha_{\Psi}+\beta_{\Phi}=1$, it follows that $\beta_{\Phi}<1$ if and only if $\Phi \in \nabla_{2}$.

Now let w be a weight random variable, i.e., let w be a (strictly) positive and integrable random variable. We assume that $\mathbb{E}[w]=1$ and consider the probability measure

$$
\mathbb{P}_{w}(\Lambda)=\mathbb{E}\left[w 1_{\Lambda}\right] \quad(\Lambda \in \Sigma)
$$

Let $\left(L_{\Phi, w},\|\cdot\|_{\Phi, w}\right)$ be the Orlicz space over $\left(\Omega, \Sigma, \mathbb{P}_{w}\right)$ endowed with the Luxemburg norm relative to \mathbb{P}_{w}. Denoting by ψ the right-derivative of Ψ, we claim that if $\psi\left(w^{-1}\right) \in L_{1}$, then $L_{\infty} \hookrightarrow L_{\Phi, w} \hookrightarrow L_{1}$, where L_{1} and L_{∞} are Lebesgue spaces with respect to \mathbb{P}. The first embedding is evident. To see the second embedding, suppose that $x \in L_{\Phi, w}$ and $\|x\|_{\Phi, w} \leq 1$. Then

$$
\mathbb{E}[|x|] \leq \mathbb{E}[\Phi(|x|) w]+\mathbb{E}\left[\Psi\left(w^{-1}\right) w\right] \leq 1+\mathbb{E}\left[\psi\left(w^{-1}\right)\right]=: M<\infty
$$

Here we have used the Young inequality $u v \leq \Phi(u)+\Psi(v)$ and the inequality $\Psi(v) \leq v \psi(v)$. Thus $\|\cdot\|_{1} \leq M\|\cdot\|_{\Phi, w}$ as claimed.

With the notation above, we have:
Theorem 2. Suppose that $\Phi \in \Delta_{2}$ and $\psi\left(w^{-1}\right) \in L_{1}$. Then the following are equivalent:
(i) there are constants c and C such that

$$
\begin{equation*}
c\left\|f_{\infty}\right\|_{\Phi, w} \leq\|S(f)\|_{\Phi, w} \leq C\left\|f_{\infty}\right\|_{\Phi, w} \quad(f \in \mathcal{M}) ; \tag{21}
\end{equation*}
$$

(ii) (a) there are constants c_{1} and c_{2} such that $c_{1} \leq w \leq c_{2}$ a.s., and (b) $\Phi \in \nabla_{2}$.

Before proving Theorem 2, we recall that

$$
\begin{align*}
& \int_{0}^{t} w^{*}(s) d s=\max \left\{\int_{\Lambda} w d \mathbb{P} \mid \Lambda \in \Sigma, \mathbb{P}(\Lambda)=t\right\} \\
& \int_{0}^{t} w_{*}(s) d s=\min \left\{\int_{\Lambda} w d \mathbb{P} \mid \Lambda \in \Sigma, \mathbb{P}(\Lambda)=t\right\}
\end{align*} \quad(t \in I),
$$

$)=w^{*}(1-s)($ see $[5$, p. 47]).
where $w_{*}(s)=w^{*}(1-s)($ see $[5, \mathrm{p} .47])$.
Proof. (ii) \Rightarrow (i). Condition (a) shows that $\|\cdot\|_{\Phi} \approx\|\cdot\|_{\Phi, w}$ and condition (b) shows that $\beta_{\Phi}<1$. Furthermore $\alpha_{X}>0$, since $\Phi \in \Delta_{2}$ by hypothesis. Hence we obtain (21) from Proposition 3.
(i) \Rightarrow (ii). Suppose that (i) holds. Then $L_{\Phi, w}$ is r.i. with respect to \mathbb{P} (or briefly, "P-r.i.") by Theorem 1. Hence there exists a \mathbb{P}-r.i. norm $\|\|\cdot\|\|_{\Phi, w}$ on $L_{\Phi, w}$ such that $k_{1}\|\cdot\|_{\Phi, w} \leq\| \| \cdot\left\|_{\Phi, w} \leq k_{2}\right\| \cdot \|_{\Phi, w}$ with some constants $k_{1}>0$ and $k_{2}>0$. By hypothesis, there exists $u_{0} \geq 0$ and $K \geq 1$ such that

$$
\begin{equation*}
\Phi\left(\frac{k_{2} u}{k_{1}}\right) \leq K \Phi(u) \quad \text { for all } u \geq u_{0} . \tag{23}
\end{equation*}
$$

Since $w \in L_{1}$, we can find a positive number δ such that $\mathbb{P}_{w}(\Lambda) \leq 1 / \Phi\left(u_{0}\right)$ whenever $\mathbb{P}(\Lambda)<\delta$. Suppose now that $\Lambda, \Lambda^{\prime} \in \Sigma$ and $0<\mathbb{P}(\Lambda)=\mathbb{P}\left(\Lambda^{\prime}\right)=$ $t<\delta$. Then $1_{\Lambda}^{*}=1_{\Lambda^{\prime}}^{*}$ and $\mathbb{P}_{w}(\Lambda) \leq 1 / \Phi\left(u_{0}\right)$. Furthermore,

$$
\begin{aligned}
k_{1}\left\{\Phi^{-1}\left(\frac{1}{\mathbb{P}_{w}(\Lambda)}\right)\right\}^{-1} & =k_{1}\left\|1_{\Lambda}\right\|_{\Phi, w} \\
& \leq\left\|1_{\Lambda}\right\|_{\Phi, w}=\left\|1_{\Lambda^{\prime}}\right\| \|_{\Phi, w} \\
& \leq k_{2}\left\|1_{\Lambda^{\prime}}\right\|_{\Phi, w}=k_{2}\left\{\Phi^{-1}\left(\frac{1}{\mathbb{P}_{w}\left(\Lambda^{\prime}\right)}\right)\right\}^{-1},
\end{aligned}
$$

or equivalently

$$
\begin{equation*}
\Phi^{-1}\left(\frac{1}{\mathbb{P}_{w}\left(\Lambda^{\prime}\right)}\right) \leq \frac{k_{2}}{k_{1}} \Phi^{-1}\left(\frac{1}{\mathbb{P}_{w}(\Lambda)}\right) . \tag{24}
\end{equation*}
$$

Using (23) and (24), we obtain that

$$
\int_{\Lambda} w d \mathbb{P}=\mathbb{P}_{w}(\Lambda) \leq K \mathbb{P}_{w}\left(\Lambda^{\prime}\right)=K \int_{\Lambda^{\prime}} w d \mathbb{P}
$$

Hence we may use (22) to deduce that

$$
\frac{1}{t} \int_{0}^{t} w^{*}(s) d s \leq \frac{K}{t} \int_{0}^{t} w_{*}(s) \quad(0<t<\delta)
$$

Letting $t \rightarrow 0+$, we conclude that ess sup $w \leq K$ ess inf w. This means that there exist constants c_{1} and c_{2} such that $c_{1} \leq w \leq c_{2}$ a.s. Therefore (21) can be written as

$$
c^{\prime}\left\|f_{\infty}\right\|_{\Phi} \leq\|S(f)\|_{\Phi} \leq C^{\prime}\left\|f_{\infty}\right\|_{\Phi} \quad(f \in \mathcal{M})
$$

with some constants c^{\prime} and C^{\prime}. According to Theorem 1, the upper Boyd in$\operatorname{dex} \beta_{\Phi}$ must be less than one, or equivalently Φ must satisfy the ∇_{2}-condition. This completes the proof.

Acknowledgement. The author would like to thank the referee for his helpful suggestions.

References

[1] A. Antipa, Doob's inequality for rearrangement-invariant function spaces, Rev. Roumaine Math. Pures Appl. 35 (1990), 101-108.
[2] C. Bennett and R. Sharpley, Interpolation of operators, Academic Press, Boston, MA, 1988.
[3] D. W. Boyd, Indices of function spaces and their relationship to interpolation, Canad. J. Math. 21 (1969), 1245-1254.
[4] D. L. Burkholder, Martingale transforms, Ann. Math. Statist. 37 (1966), 1494-1504.
[5] K. M. Chong and N. M. Rice, Equimeasurable rearrangements of functions, Queen's Papers in Pure and Appl. Math., vol. 28, Queen's Univ., Kingston, Ontario, 1971.
[6] C. Dellacherie and P. A. Meyer, Probabilities and potential. B, North-Holland, Amsterdam, 1982.
[7] W. B. Johnson and G. Schechtman, Martingale inequalities in rearrangement invariant function spaces, Israel J. Math. 64 (1988), 267-275.
[8] M. Kikuchi, Averaging operators and martingale inequalities in rearrangement invariant function spaces, Canad. Math. Bull. 42 (1999), 321-334.
[9] M. A. Krasnoselskiĭ and Ya. B. Rutickiĭ, Convex functions and Orlicz spaces, Translated from the first Russian edition by Leo F. Boron, P. Noordhoff Ltd., Groningen, 1961.
[10] R. L. Long, Martingale spaces and inequalities, Peking Univ. Press, Beijing, 1993.
[11] W. A. J. Luxemburg, Rearrangement-invariant Banach function spaces, Proc. Sympos. in Analysis, Queen's Papers in Pure and Appl. Math., vol. 10, Queen's Univ., Kingston, Ontario, 1967, pp. 83-144.
[12] L. Maligranda, Indices and interpolation, Dissertationes Math. (Rozprawy Mat.) 234, 1985.
[13] I. Ya. Novikov, Martingale inequalities in rearrangement invariant function spaces, Function spaces (Poznań, 1989), Teubner-Texte Math., vol. 120, Teubner, Stuttgart, 1991, pp. 120-127.
[14] T. Shimogaki, Hardy-Littlewood majorants in function spaces, J. Math. Soc. Japan 17 (1965), 365-373.

Department of Mathematics, Toyama University, 3190 Gofuku, Toyama 9308555, Japan

E-mail address: kikuchi@sci.toyama-u.ac.jp

[^0]: Received August 29, 2002; received in final form October 9, 2002.
 2000 Mathematics Subject Classification. 60G42, 60G46, 46E30.
 This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research, No. 14540164, 2002.

[^1]: * In essence, we may assume that Ω is the unit interval $(0,1]$ with Lebesgue measure on the σ-algebra of Lebesgue measurable sets.
 ${ }^{\dagger}$ By an r.i. space X, we mean a rearrangement-invariant Banach function space X.

[^2]: \ddagger To prove (4), we can assume that $f \in H_{1}$; hence $\mathcal{Q} S(f)^{*}$ and $\mathcal{Q} M(f)^{*}$ can be defined.

