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COMPACT COMPOSITION OPERATORS ON A HILBERT
SPACE OF DIRICHLET SERIES

FRÉDÉRIC BAYART

Abstract. We study the compactness of composition operators on the
Hilbert space of Dirichlet series with square summable coefficients. In

particular, we give some necessary and sufficient conditions for compact-
ness. We also describe the spectrum of such operators, and we extend
our work to some weighted spaces.

1. Introduction

Let H be the Hilbert space of Dirichlet series with square summable coef-
ficients:

H =

f(s) =
+∞∑

1

ann
−s : ‖f‖2 =

(
+∞∑

1

|an|2
)1/2

< +∞

 .

By the Cauchy-Schwarz inequality, the functions in H are all holomorphic
on the half-plane C1/2 (where, for θ real, Cθ = {s ∈ C : <(s) > θ} and
C+ = C0). Taking an = 1/(n1/2 log n) shows that the functions in H are in
general not defined on a larger domain. In [5], J. Gordon and H. Hedenmalm
solved the following problem:

For which analytic mappings φ : C1/2 → C1/2 is the compo-
sition operator Cφ(f) = f ◦ φ a bounded linear operator on
H?

Theorem 1. An analytic function φ : C1/2 → C1/2 defines a bounded
composition operator Cφ : H → H if and only if:

(a) It is of the form
φ(s) = c0s+ ϕ(s),

where c0 ∈ N, and ϕ(s) =
∑+∞

1 cnn
−s admits a representation by a

Dirichlet series that is convergent in some half-plane.
(b) φ has an analytic extension to C+, also denoted by φ, such that:
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(i) φ(C+) ⊂ C+ if c0 ≥ 1.
(ii) φ(C+) ⊂ C1/2 if c0 = 0.

In this statement, conditions (a) and (b) have two different meanings: Con-
dition (a) is an arithmetic condition (f ◦φ must be a Dirichlet series), whereas
(b) is an analytic condition (f ◦ φ must be in H).

The next step in the study of composition operators on a Banach space
of analytic functions is to compare the properties of the operator Cφ and
of its symbol φ. We began this comparison in [1], where, for example, we
characterized completely the Fredholm composition operators on H: Cφ is
Fredholm if and only if φ(s) = s+ iτ, τ ∈ R.

Here we consider the compactness question: What conditions should we
impose on φ for Cφ to be a compact operator? In [1], we gave some sufficient
conditions: If φ(C+) is strictly smaller than it can be, Cφ is compact. More
precisely, if φ(C+) ⊂ Cε, ε > 0, for c0 ≥ 1, or if φ(C+) ⊂ C1/2+ε, ε > 0, for
c0 = 0, then Cφ is compact. One of our aims is to obtain less trivial sufficient
conditions, and to give necessary conditions.

This paper is organized as follows. In Section 2, we give the background
material necessary to make this paper as self-contained as possible. In Section
3, we explain the main difficulties which we encounter. Next, we give some
partial results on the problem of finding sufficient (Section 4) and necessary
(Section 5) conditions for compactness. In Section 6, we describe the spectrum
of compact composition operators on H, and in Section 7, we extend our
results to some other Hilbert spaces of Dirichlet series recently introduced by
J. McCarthy [8].

Part of this work was done when I was visiting Professor Hakan Hedenmalm
at Lund University. I thank him and the mathematical department for their
hospitality.

2. Background material

Let Θ be the dual group of Q+ , where Q+ denotes the multiplicative dis-
crete group of strictly positive rational numbers. Θ is the set of all characters
χ : Q+ → C:

(a) χ(mn) = χ(m)χ(n) for all m,n in Q+.
(b) |χ(n)| = 1.

Θ and T∞, the Cartesian product of countably many copies of the unit circle,
can be identified in the following way. Given a point z = (z1, z2, . . . ) ∈ T∞,
we define the value of χ at the primes through

χ(2) = z1, χ(3) = z2, . . . , χ(pm) = zm, . . . ,

and extend the definition multiplicatively. This then yields a character, and
clearly all characters are obtained by this procedure. In the sequel, we will
drop the notation Θ and write χ ∈ T∞ (see [6] for details).
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Characters are connected with vertical limit functions of H. Indeed, fix
any element f(s) =

∑+∞
1 ann

−s of H. The vertical translations of f are the
functions fτ (s) = f(s+iτ). To every sequence (τn) of translations there exists
a subsequence, say (τn(k)), such that fτn(k) converges uniformly on compact
subsets of the domain C1/2 to a limit function, say f̃(s). We call f̃ a vertical
limit function of f . In [6], the following result was proved.

Lemma 1. The vertical limit functions of the function f(s) =
∑+∞

1 ann
−s

coincide with the functions of the form

fχ(s) =
+∞∑

1

anχ(n)n−s,

where χ is a character.

In [6], it was also explained that it is illuminating to consider all functions
fχ to obtain properties of f and of H. For example, for almost all (with
respect to the Haar measure m of T∞) characters χ, the function fχ can be
extended to C+. Moreover, we can compute the norm of f in terms of the
function fχ (see [6, Theorem 4.1] or [1, Lemma 5]):

Lemma 2. Let µ be a finite Borel measure on R. Then

‖f‖22µ(R) =
∫
T∞

∫
R

|fχ(it)|2dµ(t)dm(χ).

We shall need to extend the notation fχ to the class of functions of the
form φ(s) = c0s + ϕ(s), where c0 ∈ N and ϕ is a Dirichlet series. For such
functions, φχ will be defined by

φχ(s) = c0s+ ϕχ(s).

It should be pointed out that in this case we cannot interpret φχ as a vertical
limit function of φ: φχ is a vertical limit of the functions φτ (s) = c0s+ϕ(s+iτ).
The connection between the composition operator Cφ and Cφχ is clarified in
[5], where it was shown that for any holomorphic mapping φ : C1/2 → C1/2 of
the form φ(s) = c0s+ϕ(s), for any f ∈ H, and for any χ ∈ T∞, the following
relation holds:

(f ◦ φ)χ(s) = fχc0 ◦ φχ(s), s ∈ C1/2.

Moreover, for almost all χ ∈ T∞, this relation remains true in C+. Before
proceeding further, we mention that this formula, and the fact that almost
every fχ is defined on C+, explain the strange appearance of the half-plane
C+ in Theorem 1.

Of course, Dirichlet series are connected with arithmetical conditions. We
recall a theorem of Kronecker in a form which will be useful for us:
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Definition 1. A sequence (qj) of integers is said multiplicatively inde-
pendent if, for any d ≥ 1 and for any c1, . . . , cd in Z the equality

c1 log q1 + · · ·+ cd log qd = 0

implies c1 = · · · = cd = 0.

Lemma 3. Let q1, . . . , qd be multiplicatively independent integers. Then
the function

R → T
d

t 7→ (qit1 , . . . , q
it
d )

has dense range.

In particular, if P (s) = a1q
−s
1 + · · ·+ adq

−s
d is a Dirichlet polynomial with

spectrum in the qj ’s, then

sup {|P (s)| : <(s) = 0} =
d∑
1

|aj |.

The last tool that we will need is the following lemma (Lemma 11 of [1], which
is a strengthening of Proposition 4.3 of [5]).

Lemma 4. Let φ(s) = c0s+ ϕ(s), φ : C+ → C+. If φ(s) 6= s+ iτ , τ ∈ R,
then there exist η > 0 and ε > 0 so that φ(C1/2−ε) ⊂ C1/2+η.

3. Main difficulties

Let φ : C1/2 → C1/2 be an analytic function of the form φ(s) = c0s+ϕ(s),
c0 ≥ 1. We denote by ψ1 : C+ → D = {z ∈ C : |z| < 1} the conformal
transformation of C+ onto D defined by ψ1(s) = (s− 1)/(s+ 1). Let us
define ψ = ψ1 ◦ φ ◦ψ−1

1 . Then ψ is a holomorphic mapping from D to D, and
by the Littlewood subordination principle [10], Cψ is a continuous operator
on the classical Hardy space

H2(D) =

{
f =

+∞∑
0

anz
n :

+∞∑
0

|an|2 < +∞

}
.

To obtain the continuity of Cφ onH, the main idea of Gordon and Hedenmalm
was to transfer the continuity of Cψ through the identity ψ = ψ1◦φ◦ψ−1

1 . One
might expect that similar arguments would allow us to obtain the compactness
of Cφ from that of Cψ.

Unfortunately, this is hopeless since, because of the behavior of φ near
+∞, Cψ is never compact on H2(D). Let us recall a classical result on the
compactness of composition operators on H2(D) (see [10, Chapter 3]). Let ψ
be a holomorphic mapping from D to D. By using the images of reproducing
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kernels by C∗ψ, it can be shown that the compactness of Cψ implies

lim
|z|→1

1− |ψ(z)|
1− |z|

= +∞.(1)

If ψ is written as ψ = ψ1 ◦ φ ◦ ψ−1
1 , where φ(s) = c0s + ϕ(s), c0 ≥ 1, this

condition is never satisfied. Indeed, there exists a half-plane in which the
Dirichlet series ϕ is absolutely convergent, and in this half-plane, |ϕ(s)| ≤ A,
where A is a constant. Let s1 be a sufficiently large real number, and let
s2 = φ(s1). Let us set z1 = ψ1(s1) and z2 = ψ1(s2), so that z2 = ψ(z1). It is
clear that z1 tends to 1 if s1 tends to +∞. Now,

1− |z1| = 1−
∣∣∣∣s1 − 1
s1 + 1

∣∣∣∣ = 1−

∣∣∣∣∣
s2−ϕ(s1)

c0
− 1

s2−ϕ(s1)
c0

+ 1

∣∣∣∣∣ = 1−
∣∣∣∣s2 − ϕ(s1)− c0
s2 − ϕ(s1) + c0

∣∣∣∣ .
As s1 is large, |s2| is large too, whereas ϕ(s1) and c0 remain bounded. Hence
there exists a constant C ′ such that∣∣∣∣s2 − ϕ(s1)− c0

s2 − ϕ(s1) + c0

∣∣∣∣ ≤ 1− C ′

|s2|
.

Moreover,

1− |z2| = 1−
∣∣∣∣s2 − 1
s2 + 1

∣∣∣∣ ≤ C ′′

|s2|
.

In particular,
1− |ψ(z1)|

1− |z1|
≤ C ′′

C ′
.

Since z1 can be chosen arbitrarily close to the circle, this is in contradiction
with (1). Hence Cψ is not compact.

On the other hand, it is not as easy as usual to obtain good necessary
conditions for the compactness. Recall that on a Hilbert space H of analytic
functions on a domain U , a reproducing kernel at w ∈ U is a function Kw of
H which satisfies

∀f ∈ H, 〈f,Kw〉 = f(w).

For any composition operator Cψ on H it is almost trivial that C∗ψ(Kw) =
Kψ(w). (The proof given in [10] for H2(D) can be transferred to this more
general setting.) In general, by considering the images of certain sequences of
normalized reproducing kernels one obtains conditions like (1) which ψ must
satisfy for Cψ to be compact.

In the case of H, the reproducing kernel at w in C1/2 is given by Kw(s) =∑+∞
n=1 n

−wn−s, whose norm equals ζ(2<w)1/2. The previous arguments give
in this context the following result.
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Proposition 1. Let Cφ be a compact composition operator on H. Then

ζ
(
2<(φ(w))

)
ζ
(
2<(w)

) <(w)→1/2−−−−−−−→ 0.

Proof. Let (wn) be a sequence in C1/2, whose real part tends to 1/2. The
sequence (Kwn/‖Kwn‖) converges weakly to 0. Now, the compactness of Cφ
implies that of C∗φ, and

C∗φ

(
Kwn

‖Kwn‖

)
n→+∞−−−−−→ 0,

or
‖Kφ(wn)‖
‖Kwn‖

=
ζ
(
2<φ(wn)

)
ζ
(
2<wn

) n→+∞−−−−−→ 0. �

Nevertheless, this proposition is not useful. Indeed, if φ(s) 6= s+iτ , Lemma
4 asserts that φ(C1/2) ⊂ C1/2+ε, and in this case the condition is always
satisfied. Thus the proposition just says that if φ(s) = s+ iτ , then Cφ is not
compact. But this is clear since in this case Cφ is even invertible!

In the following, we will handle the problem of compactness by different
and more efficient ways.

4. Sufficient conditions

Compact composition operators on H2(D) have been completely charac-
terized by J. Shapiro [9]. Let us recall his method. His starting point is a
formula to compute the norm of an element of H2(D) by an area integral: If
f ∈ H2(D), then

‖f‖22 = |f(0)|2 + 2
∫
D

|f ′(z)|2 log
1
|z|
dA(z),(2)

where dA = 1
πdxdy. This led Shapiro to introduce, for a holomorphic mapping

ψ : D→ D, its counting function defined by

Nψ(w) =


∑

z∈ψ−1(w)

log
1
|z|

if w ∈ ψ(D),

0 if w /∈ ψ(D).

The condition (satisfied by any holomorphic function ψ : D → D) Nψ(z) =
O(log(1/|z|)) as |z| → 1− is a way to interpret the continuity of Cψ on H2(D).
Shapiro showed that the strengthening of this condition to

Nψ(z) = o

(
log

1
|z|

)
as |z| → 1−

characterizes the compactness of Cψ.
We now apply the same idea to H. We begin by giving a new expression

for the norm of an element of H.
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Proposition 2. Let µ be a probability Borel measure on R. Then, for all
f ∈ H,

‖f‖22 = 4
∫
T∞

∫ +∞

σ=0

∫
t∈R

σ|f ′χ(σ + it)|2dµ(t)dσdm(χ) + |f(∞)|2.(3)

Proof. By Lemma 2, if σ > 0,∫
T∞

∫
R+

σ|f ′χ(σ + it)|2dµ(t)dm(χ) =
∑
n≥2

σ|an|2n−2σ log2(n).

Now, an integration by parts shows that∫ +∞

0

n−2σσdσ =
1

4 log2 n
.

This gives the proposition. �

Inspired by Shapiro’s method and by the above proposition, it seems nat-
ural to introduce the following definition.

Definition 2. Let φ : C+ → C+, φ(s) = c0s + ϕ(s). The counting
function of φ is defined by

Nφ(s) =


∑

w∈φ−1(s)

<(w) if s ∈ φ(C+),

0 otherwise.

We begin by proving a Littlewood-like inequality (see [10, Section 10.3])
for this counting function.

Proposition 3. Let φ : C+ → C+, φ(s) = c0s+ ϕ(s), c0 ≥ 1. Then,

Nφ(s) ≤ 1
c0
<(s) for all s ∈ C+.

Proof. If s /∈ φ(C+), the result is trivial. Otherwise, let w1, . . . , wN be any
distinct pre-images of s under φ, where N is any finite number. For ζ > 0
let us set ψξ(s) = (s− ξ)/(s+ ξ), which maps C+ conformally onto D. We
define ψ = ψc0ξ ◦ φ ◦ψ−1

ξ , which is a holomorphic function from D to D, with

ψ(0) =
ϕ(ξ)

2c0ξ + ϕ(ξ)
.

Clearly, ψ(ψξ(wk)) = ψc0ξ(s), and Littlewood’s inequality asserts that

N∑
1

log
∣∣∣∣ 1
ψξ(wk)

∣∣∣∣ ≤ log

∣∣∣∣∣1− ψc0ξ(s)ψ(0)
ψc0ξ(s)− ψ(0)

∣∣∣∣∣ .(4)
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Now, if ω denotes any wi, observe that

log
∣∣∣∣ 1
ψξ(ω)

∣∣∣∣ =
1
2

log
∣∣∣∣ |ω|2 + 2ξ<(ω) + |ξ|2

|ω|2 − 2ξ<(ω) + |ξ|2

∣∣∣∣
=

1
2

log
∣∣∣∣1 +

4ξ<(ω)
|ω|2 − 2ξ<(ω) + |ξ|2

∣∣∣∣ .
Since ω is in a finite set, if ε > 0 is fixed, then for ξ large enough and
i = 1, . . . , N one has

log
∣∣∣∣ 1
ψξ(wi)

∣∣∣∣ ≥ 2(1− ε)<(wi)
ξ

.(5)

Likewise, if ξ is large enough, then

log

∣∣∣∣∣1− ψc0ξ(s)ψ(0)
ψc0ξ(s)− ψ(0)

∣∣∣∣∣ ≤ (1 + ε) log
∣∣∣∣ 1
ψc0ξ(s)

∣∣∣∣ ≤ 2(1 + ε)2<(s)
c0ξ

.(6)

Now, inequalities (4), (5) and (6) give

N∑
1

<(wk) ≤ (1 + ε)2

(1− ε)
<(s)
c0

.

By letting ε→ 0 and N → +∞, we obtain the proposition. �

Formula (3) requires an integration on T∞. Therefore, we will need esti-
mates for all functions Nφχ , χ ∈ T∞. Nevertheless, some estimates for Nφ
transfer to Nφχ , as the following result illustrates.

Proposition 4. Let φ(s) : C+ → C+, φ(s) = c0s+ϕ(s), c0 ≥ 1. Suppose
that there exists ε > 0 and θ > 0 such that, for any s ∈ C+ with <(s) ≤ θ,

Nφ(s) ≤ ε<(s).

Then, for any χ ∈ T∞ and any s ∈ C+ with <(s) ≤ θ we have

Nφχ(s) ≤ ε<(s).

Proof. Let us recall that, for τ ∈ R, φτ (w − iτ) = φ(w)− ic0τ . Therefore,
Nφτ (s− ic0τ) = Nφ(s).

Let us assume that the proposition is does not hold for some χ ∈ T∞,
and for a complex number s ∈ C+, with <(s) ≤ θ. In particular, there exist
elements w1, . . . , wN of C+ satisfying φχ(wk) = s and

<(w1) + · · ·+ <(wN ) > ε<(s).

Let us fix η > 0 such that <(w1) + · · · + <(wN ) − Nη > ε<(s). We set
Bk = B(wk, η) = {w ∈ C+ : |w−wk| < η}. There exists a sequence (τn) such
that φτn converges uniformly to φχ on each Bk. Since s ∈ φχ(Bk) for each k,
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Hurwitz’s lemma implies that we can find an integer n such that s ∈ φτn(Bk)
for k = 1, . . . , N . Let us consider w′k ∈ Bk with φτn(w′k) = s. Then

<(w′1) + · · ·+ <(w′N ) > ε<(s).

This is in contradiction with Nφτn (s) ≤ ε<(s). �

We are now able to prove the main result of this paper.

Theorem 2. Let φ : C+ → C+, φ(s) = c0s+ ϕ(s), c0 ≥ 1. Suppose that:

(a) =ϕ is bounded on C+.
(b) Nφ(s) = o

(
<(s)

)
if <(s)→ 0.

Then Cφ is compact on H.

Proof. Let (fn) be a sequence inH which converges weakly to 0 and satisfies
‖fn‖ ≤ 1. Let A be a constant such that

∣∣=ϕ∣∣ ≤ A. By formula (3) we have

‖fn ◦ φ‖22 = |fn ◦ φ(∞)|2

+ 4
∫
T∞

∫
R+

∫ 1

0

σ
∣∣f ′n,χc0 (φχ(σ + it))

∣∣2 ∣∣φ′χ(σ + it)
∣∣2 dtdσdm(χ).

The first term is easy to handle. |fn(+∞)| converges to 0 if n → +∞. To
deal with the second term, we begin by making the non-univalent change of
variables w = φχ(σ + it). Observe that, since t ∈ [0, 1], −A ≤ =w ≤ A + c0.
By applying, for example, Theorem 2.4.18 of [3], we have∫

R+

∫ 1

0

σ
∣∣f ′n,χc0 (φχ(σ + it))

∣∣2 ∣∣φ′χ(σ + it)
∣∣2 dtdσ

≤
∫
R+

∫ A+c0

−A

∣∣f ′n,χc0 (s)
∣∣2Nφχ(s)dtdσ.

We fix ε > 0 and θ > 0 such that for s = σ + it, <(s) < θ implies Nφ(s) ≤
ε<(s). We split the integral in two parts:

(1) On the one hand,∫
T∞

∫ θ

0

∫ A+c0

−A

∣∣f ′n,χc0 (s)
∣∣2Nφχ(s)dtdσdm

≤ ε
∫
T∞

∫
R+

∫ A+c0

−A

∣∣f ′n,χc0 (s)
∣∣2 <(s)dtdσdm.

Now, as in the proof of formula (3), this last quantity is dominated by (2A+
c0)ε‖fn‖22.



734 FRÉDÉRIC BAYART

(2) On the other hand,∫
T∞

∫ +∞

θ

∫ A+c0

−A

∣∣f ′n,χc0 (s)
∣∣2Nφχ(s)dtdσdm

≤
∫
T∞

∫ +∞

θ

∫ A+c0

−A

∣∣f ′n,χc0 (s)
∣∣2 <(s)

c0
dtdσdm

≤ 2A+ c0
c0

∫ +∞

θ

σ
∑
k≥1

|an,k|2(log2 k)k−2σdσ,

where we have written fn(s) =
∑
k≥1 an,kk

−s. We fix K large enough such
that, for k ≥ K,

log2 k

∫ +∞

θ

σk−2σdσ ≤ ε.

By setting

M = max
k

log2 k

∫ +∞

θ

σk−2σdσ,

we obtain ∫
T∞

∫ +∞

θ

∫ A+c0

−A

∣∣f ′n,χc0 (s)
∣∣2Nφχ(s)dtdσdm

≤ 2A+ c0
c0

(
M

K∑
k=1

|an,k|2 + ε

)
.

It remains to observe that, for each k = 1, . . . ,K, we have an,k → 0 as
n→ +∞, and the compactness of Cφ is proved. �

Corollary 1. Let φ : C+ → C+, φ(s) = c0s+c1+
∑
n≥2 cnn

−s. Suppose
that:

(a)
∑
n≥2

|cn| log n ≤ c0.

(b) <φ(s)/<s <s→0+

−−−−−→ +∞.
Then Cφ is compact.

Proof. Condition (a) ensures that =ϕ is bounded on C+, and that φ is
univalent. But in this case, if w ∈ φ(C+), then Nφ(w) = <

(
φ−1(w)

)
. Hence,

condition (b) of the corollary implies condition (b) of the theorem. �

Remark. For other sufficient conditions for compactness, with c0 = 0,
we refer to [4].

Question. The condition “=ϕ bounded on C+” seems to be just a tech-
nical one. Does the theorem remain true without this condition?
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5. Necessary conditions

Definition 3. For w ∈ C+ and l ≥ 1 we define the partial reproducing
kernel of order l in w by

Kl,w(s) =
l∏

j=1

∑
n≥1

p
−n(w+s)
j

 =
∑
n≥1

P+(n)≤pl

n−wn−s,

where P+(n) denotes the greatest prime divisor of n.

These partial reproducing kernels are defined on C+ and not only on C1/2.
Clearly, by Euler’s identity we have

‖Kl,w‖2 =
l∏

j=1

(
1

1− p−2<(w)
j

)1/2

.

Kl,w reproduces partially H: If f(s) =
∑+∞

1 ann
−s ∈ H, then

〈f,Kl,w〉 =
∑

P+(n)≤pl

ann
−w.

For certain composition operators Cφ, it is easy to compute C∗φ(Kl,w).

Proposition 5. Let φ(s) = c0s+
∑+∞
n=1 cnn

−s, with cn = 0 if P+(n) > l.
(a) If c0 6= 0, then C∗φ (Kl,w) = Kl,φ(w).
(b) If c0 = 0, then C∗φ (Kl,w) = Kφ(w).

Proof. (a) If c0 6= 0 and n ≥ 1, we compute n−φ(s):

n−φ(s) = (nc0)−s n−ϕ(s)

= (nc0)−s exp

− +∞∑
k=1

P+(k)≤pl

ckk
−s log n


= (nc0)−s

+∞∏
k=1

P+(k)≤pl

+∞∑
j=0

(−ck log n)j

j!
(
kj
)−s

= (nc0)−s
∑
k≥1

akk
−s

 ,

where ak = 0 if P+(k) > pl. (This formal computation of the Dirichlet series
of n−φ(s) is justified in [5, Section 3].) Therefore, if P+(n) > pl, the Dirichlet
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series n−φ(s) =
∑+∞

1 bkk
−s satisfies bk = 0 for P+(k) < pl, and so

〈n−s, C∗φ (Kl,w)〉 = 〈n−φ(s),Kl,w〉 = 0.

On the other hand, if P+(n) < pl, then the Dirichlet series n−φ(s) =∑+∞
1 bkk

−s satisfies bk = 0 for P+(k) > pl, and so

〈n−s, C∗φ (Kl,w)〉 = 〈n−φ(s),Kl,w〉 = 〈n−φ(s),Kw〉 = n−φ(w).

(b) If c0 = 0, then for n ≥ 1,

n−φ(s) =
+∞∑

1

bkk
−s,

with bk = 0 if P+(k) > pl. This gives directly, for every n ≥ 1,

〈n−φ(s),Kl,w〉 = 〈n−φ(s),Kw〉 = n−φ(w),

and so C∗φ(Kl,w) = Kφ(w). �

We deduce from these considerations the following result.

Theorem 3. Let l be an integer, and let Cφ, φ(s) = c0s + ϕ(s), be a
composition operator on H such that cn = 0 if P+(n) > pl. Suppose that Cφ
is compact.

(a) If c0 ≥ 1, then lim<(s)→0 <φ(s)/<s = +∞.
(b) If c0 = 0, then lim<(s)→0 <(s)lζ (2<φ(s)) = 0.

Proof. (a) Let (sn) be a sequence in C+ with <(sn) → 0. We can always
assume that <φ(sn) → 0. As before, Kl,sn/‖Kl,sn‖ converges weakly to 0.
The compactness of C∗φ implies that

C∗φ

(
Kl,sn

‖Kl,sn‖

)
=
Kl,φ(sn)

‖Kl,sn‖
converges to 0,

or equivalently
l∏

j=1

(
1− p−2<sn

j

1− p−2<φ(sn)
j

)
n→+∞−−−−−→ 0.

Now,
1− p−2<φ(sn)

j ∼+∞ 2<φ(sn) log pj ,

where un ∼+∞ vn means that un/vn → 1 if n tends to +∞. Similarly,

1− p−2<(sn)
j ∼+∞ 2<(sn) log pj .

Finally, we obtain
<φ(sn)
<(sn)

n→+∞−−−−−→ +∞,

which is the result.
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(b) In this case, since C∗φ(Kl,sn) = Kφ(sn), the same reasoning shows that

l∏
j=1

(
1− p−2<(sn)

j

)
ζ (2<φ(sn)) n→+∞−−−−−→ 0.

Using 1− p−2<(sn)
j ∼+∞ 2<(sn) log pj gives the result. �

Corollary 2. Let φ(s) = c0s + c1 +
∑d
j=1 cqjq

−s
j , c0 6= 0, where (qj)

are multiplicatively independent integers, and cqj 6= 0. Then the following are
equivalent:

(i) <(c1) > |cq1 |+ · · ·+ |cqd |.
(ii) φ(C+) ⊂ Cε, where ε > 0.
(iii) Cφ is compact.

Proof. Observe that, by Kronecker’s theorem, if we want Cφ to be bounded
onH (equivalently, φ(C+) ⊂ C+), we have to assume <(c1) ≥ |cq1 |+· · ·+|cqd |.
By the same theorem, assertions (i) and (ii) are equivalent, and as mentioned
in the introduction (or by an application of Theorem 2), (ii) implies (iii).
Therefore it remains to prove that (iii) implies (i).

If <(c1) = |cq1 |+· · ·+|cqd |, there exists a sequence (sn) in C+ with <(sn) =
1/n and

<

(
d∑
1

cqjq
−sn
j

)
≤ −

d∑
1

∣∣cqj ∣∣ q−1/n
j +

1
n2
.

Then,

< (φ(sn)) ≤ c0
n

+ <(c1)−
q∑
1

∣∣cqj ∣∣ q−1/n
j +

1
n2

=
c0
n

+ <(c1)−
q∑
1

∣∣cqj ∣∣+
∑d

1

∣∣cqj ∣∣ log qj
n

+ o

(
1
n

)

=
c0 +

∑d
1

∣∣cqj ∣∣ log qj
n

+ o

(
1
n

)
.

In particular, <φ(sn)/<(sn) cannot converge to +∞, so Cφ is not compact.
�

Corollary 3. Let φ(s) = c1 + c22−s, with <(c1) ≥ |c2|+ 1/2. Then the
following are equivalent:

(i) <(c1) > |c2|+ 1/2.
(ii) φ(C+) ⊂ C1/2+ε, where ε > 0.
(iii) Cφ is compact.
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Proof. Here, too, it suffices to prove that (iii) implies (i). Without loss
of generality, we can assume that c1 ∈ R. If c1 = |c2| + 1/2, there exists a
sequence (sn) in C+ such that <(sn) = 1/n, and c22−sn = −|c2|2−1/n. Now,

ζ (2<φ(sn)) = ζ
(

1 + |c2|(1− 2−1/n)
)

∼+∞
1

|c2|(1− 2−1/n)
∼+∞ Kn.

In particular, <(sn)ζ(2<φ(sn)) does not converge to 0. �

Remark. This result was also proved in [4], using different methods.

Remark. For composition operators Cφ with φ(s) = c0s + c1 +∑d
j=1 cqjq

−s
j , where (qj) are multiplicatively independent integers, the sit-

uation is quite different according to whether c0 = 0 or c0 6= 0:
If c0 6= 0, then for Cφ to be bounded it is necessary and sufficient that

<(c1) ≥ |cq1 |+ · · ·+ |cqd |. Cφ is compact if and only if this inequality is strict.
If c0 = 0, then the boundedness of Cφ is characterized by the condition

<(c1) ≥ 1
2 + |cq1 | + · · · + |cqd |. The strict inequality is still necessary and

sufficient for Cφ to be compact if d = 1. On the other hand, for d ≥ 2 it was
proved in [4] that Cφ is always compact (and even Hilbert-Schmidt if d ≥ 3).

6. Spectrum

If T is an operator on a Hilbert space H, we denote by Sp(T ) its spectrum:

Sp(T ) = {λ ∈ C : T − λIdH is not invertible} .

Even on H2(D), our understanding of the spectra of composition operators is
far from being complete. If a power of the operator is compact, the situation is
much easier, since determining the spectrum becomes equivalent to finding the
eigenvalues. In [2], J. Caughran and H. Schwartz gave a complete description
of the spectra of compact composition operators on H2(D). In this section,
we will do the same for H.

We recall the following lemma (see [7, p. 270]), which allows us to reduce
the eigenvalue problem to a finite dimensional problem:

Lemma 5. Suppose H is a Hilbert space with H = K⊕L, where K is finite
dimensional and C is a bounded operator on H that leaves K or L invariant.
If the operator C has the matrix representation(

X Y
0 Z

)
or
(
X 0
Y Z

)
with respect to this decomposition, then Sp(C) = Sp(X) ∪ Sp(Z).
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Here, too, we will distinguish between the two cases c0 = 0 and c0 6= 0.
Observe that, if c0 = 0, then φ(C+) ⊂ C1/2 and φ(+∞) 6= +∞. In particular,
φ admits a fixed point in C1/2.

Theorem 4. Let Cφ be a composition operator on H, φ(s) = c0s+ ϕ(s).
Suppose that there exists N ≥ 1 such that CNφ is compact.

(a) If c0 = 0, then Sp(Cφ) = {0, 1} ∪ {[φ′(α)]k : k ≥ 1}, where α is the
fixed point of φ in C1/2.

(b) If c0 = 1, then Sp(Cφ) = {0, 1} ∪ {k−c1 : k ≥ 2}.
(c) If c0 > 1, then Sp(Cφ) = {0, 1}.

Remark. If c0 = 0, Lemma 4 implies that φ ◦ φ(C+) ⊂ C1/2+ε (ε >
0). Therefore (Cφ)2 is compact and Theorem 4 gives the spectrum of all
composition operators in this setting.

Proof. The proof uses ideas from the corresponding theorem in Section 7.4
of [7]. We begin by proving (a). We denote by Kα the reproducing kernel at
α ∈ C1/2 and by K(m)

α its m-th derivative. If f(s) =
∑+∞

1 ann
−s, then

〈f,K(m)
α 〉 =

∑
n≥1

(−1)m (log n)m ann−α = f (m)(α).

Let us set Km = span(Kα, . . . ,K
(m)
α ). Km is invariant under C∗φ. Indeed,

〈f, C∗φ(K(m)
α )〉 = (f ◦ φ)(m) (α).

Now,

(f ◦ φ)(m) (α) = [φ′(α)]m f (m) ◦φ(α) +λ1f
(m−1) ◦φ(α) + · · ·+λm−1f

′ ◦φ(α),

and so

C∗φ

(
K(m)
α

)
= [φ′(α)]mK(m)

α + λ1K
(m−1)
α + · · ·+ λm−1K

′
α.

Let Xm be the restriction of C∗φ to Km. The matrix of Xm in the basis

(Kα, . . . ,K
(m)
α ) is upper-triangular, and the coefficients on the diagonal are

1,
[
φ′(α)

]k, 1 ≤ k ≤ m. These numbers are in the spectrum of Xm, and
therefore also in the spectrum of C∗φ.

Now, for each m, let Lmbe the orthogonal complement of Km in H. The
block matrix for C∗φ is then

C∗φ =
(
Xm Ym
0 Zm

)
.

By the lemma, Sp(C∗φ) = Sp(Xm) ∪ Sp(Zm), and it is sufficient to prove that
the spectral radius of Zm tends to 0. Suppose that this is not the case. Like
Cφ, Zm has compact square, and its spectrum, except for the value 0, reduces
to eigenvalues. By passing to subsequences, we obtain a sequence of scalar
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numbers (λm), with |λm| ≥ ε > 0, and a norm 1 sequence (zm) ∈ Lm, such
that Zmzm = λmzm. Since

⋃
mKm = H2 and zm ⊥ Km, (zm) converges

weakly to 0. Now, C∗φ(zm) = Ymzm + Zmzm = Ymzm + λmzm, and(
C∗φ
)2 (zm) = XmYmzm + λmYmzm︸ ︷︷ ︸

∈Km

+λ2
mzm︸ ︷︷ ︸
∈Lm

.

In particular, ‖(C∗φ)2(zm)‖ does not converge to 0, which contradicts the com-
pactness of (C∗φ)2. �

Assertions (b) and (c) of Theorem 4 are direct consequences of the following
propositions, where Spp(Cφ) denotes the point spectrum of Cφ, i.e.,

Spp(Cφ) = {λ ∈ C : Cφ − λIdH is not one-to-one} .

Proposition 6. Let Cφ be a composition operator on H, with c0 ≥ 1.
Then:

Spp(Cφ) = {1} if c0 > 1,

Spp(Cφ) ⊂ {1} ∪
{
k−c1 : k ≥ 2

}
if c0 = 1.

Proof. Let f be an eigenvector of Cφ for λ, so that f ◦ φ(s) = λf(s). We
first take s = +∞. Then we have either λ = 1, which is in Spp(Cφ) since any
constant function is an eigenvector, or λ 6= 1, in which case f(+∞) = 0. Next,
write f(s) =

∑
l>k akk

−s, with l ≥ 2 and al 6= 0, and consider the coefficient
of l−s in f ◦ φ(s). By [5], the Dirichlet series of f ◦ φ can be obtained by
expanding the product in the representation

f ◦ φ(s) =
∑
k≥l

akk
−c0sk−c1

+∞∏
n=2

1 +
+∞∑
j=1

(−cn log k)j

j!
n−js

 .

In particular, if c0 > 1, there is no term involving l−s, and Spp(Cφ) = {1}. If
c0 = 1, the coefficient of l−s is all−c1 . Hence, λal = all

−c1 , and λ = l−c1 . �

Conversely, we have:

Proposition 7. Let Cφ be a composition operator on H, c0 = 1. Then

{1} ∪
{
k−c1 : k ≥ 2

}
⊂ Sp(Cφ).

Proof. We set Km = {1, 2−s, . . . ,m−s} and Lm = K⊥m. Lm is invariant
under Cφ, and we have the block decomposition

Cφ =
(
X 0
Y Z

)
,
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which ensures that Sp(X) ⊂ Sp(Cφ). Now,

Cφ
(
k−s

)
= k−sk−c1 +

∑
j>k

ajj
−s.

In particular, the matrix of X is lower-triangular and therefore Sp(X) =
{1, 2−c1 , . . . ,m−c1}. �

7. Other spaces

In [8], J. McCarthy introduced new weighted Hilbert spaces of Dirichlet
series

Hα =

f(s) =
+∞∑

1

ann
−s : ‖f‖2α,2 = |a1|2 +

∑
n≥2

|an|2(log n)α < +∞

 ,

where α ∈ R. For α = 0, this is again H, whereas H−1 and H1 correspond,
respectively, to the Bergman space and to the Dirichlet space in the setting
of the disk. The methods used in the previous section can be generalized to
those spaces. More precisely, we have the following result.

Theorem 5. Fix α < 0 and φ : C+ → C+, φ(s) = c0s + ϕ(s), c0 ≥ 1.
Suppose that:

(a) =ϕ is bounded on C+.

(b) <φ(s)/<(s)
<(s)→0−−−−−→ +∞.

Then Cφ is a compact composition operator on Hα.

Remark. It must be pointed out that in this theorem we do not mention
any counting functions. The same phenomenon occurs in the disk for Bergman
spaces (see [9]).

Proof. First, we give an area integral formula like (3) for the norm of an
element of Hα. Recalling that∫ +∞

0

n−2σσβ−1dσ =
Γ(β)

(log n)β2β
,

we then obtain

‖f‖2α,2 = |a1|2 +
2−α+2

Γ(−α+ 2)

∫
T∞

∫
R

∫
R

σ−α+1|f ′χ(σ + it)|2dµ(t)dσdm(χ),

where µ still denotes a probability measure on R. We introduce a new counting
function Nφ,α by letting

Nφ,α(s) =
{ ∑

w∈φ−1(s) <1−α(s) if w ∈ φ(C+),
0 otherwise.
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By copying word for word the proofs of Propositions 3 and 4 and Theorem 2,
and by using the classical inequalities for counting functions on the disk (see
[9] or [10, Exercises 12–15]), one easily sees that the conditions (a) and

(b′) Nφ,α(s) = o
(
<1−α(s)

)
if <(s)→ 0

imply the compactness of Cφ on Hα. Thus, it remains to prove that, if α < 0,
(b′) is a consequence of condition (b) of the theorem. To see this, fix ε > 0
and θ > 0 such that

<(w) < θ =⇒ <(w) ≤ ε<φ(w).

Let s ∈ C+ with <(s) < θ. If s /∈ φ(C+), then Nφ,α(s) = 0. Otherwise,∑
w∈φ−1({s})

<1−α(w) ≤ ε−α<−α(s)
∑

w∈φ−1({s})

<(w)

≤ ε−α<−α(s)Nφ(s)

≤ ε−α

c0
<1−α(s). �

The necessary conditions given in Section 5 remain valid. The partial
reproducing kernels are now given by

Kl,w(s) = 1 +
∑
n≥2

P+(n)≤pl

1
(log n)α

n−w̄−s.

References

[1] F. Bayart, Hardy spaces of Dirichlet series and their composition operator, Monatsh.

Math. 136 (2002), 203—236.
[2] J. Caughran and H. Schwartz, Spectra of compact composition operators, Proc. Amer.

Math. Soc. 51 (1975), 127–130.
[3] H. Federer, Geometric measure theory, Springer-Verlag, New York, 1969.
[4] C. Finet, H. Queffélec, and A. Volberg, Numerical range and compactness of compo-

sition operators on a Hilbert space of Dirichlet series, preprint.
[5] J. Gordon and H. Hedenmalm, The composition operators on the space of Dirichlet

series with square summable coefficients, Michigan Math. J. 46 (1999), 313–329.

[6] H. Hedenmalm, P. Lindqvist, and K. Seip, A Hilbert space of Dirichlet series and a
system of dilated functions in L2(0, 1), Duke Math. J. 86 (1997), 1–36.

[7] C.C. Cowen and B.D. MacCluer, Composition operators on spaces of analytic func-
tions, CRC Press, Boca Raton, 1995.

[8] J. McCarthy, Hilbert spaces of Dirichlet series, preprint.

[9] J.H. Shapiro, The essential norm of a composition operator, Ann. of Math. 125 (1987),
375–404.

[10] , Composition operators and classical function theory, Springer-Verlag, New
York, 1993.



COMPACT COMPOSITION OPERATORS 743
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