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SOME REMARKS ABOUT REINHARDT DOMAINS IN Cn

NGUYEN QUANG DIEU AND LE MAU HAI

Abstract. We show that, given a bounded Reinhardt domain D in Cn,

there exists a hyperconvex domain Ω such that Ω contains D and every
holomorphic function on a neighborhood of D extends to a neighbor-

hood of Ω. As a consequence of this result, we recover an earlier result

stating that every bounded fat Reinhardt domain having a Stein neigh-
bourhoods basis must be hyperconvex. We also study the connection

between the Caratheodory hyperbolicity of a Reinhardt domain and that
of its envelope of holomorphy. We give an example of a Caratheodory
hyperbolic Reinhardt domain in C3, for which the envelope of holomor-

phy is not Caratheodory hyperbolic, and we show that no such example
exists in C2.

1. Introduction

Let D be a domain in Cn. We say that D is Reinhardt if D is invariant
under some action (for a precise definition see Section 2). Reinhardt domains
are important objects in complex analysis, and characterizations of properties
such as pseudoconvexity, hyperconvexity, and various kinds of hyperbolicity,
have been given for such domains in, e.g., [CCW], [Zw1], [Zw2].

The aim of this note is to establish further properties of Reinhardt do-
mains. Our main result, stated in Section 3, is an analogue of the well known
fact that every holomorphic function on a neighbourhood of the closure of the
Hartogs triangle extends holomorphically to a neighbourhood of the closure
of the unit bidisk. In particular, we show that, given a bounded Reinhardt
domain D in Cn, there exists a hyperconvex domain Ω such that Ω contains
D and every holomorphic function on a neighbourhood of D extends to a
neighbourhood of Ω. As a consequence of this result, we recover an earlier
result given in [LNN] which states that every bounded fat Reinhardt domain
having a Stein neighbourhoods basis must be hyperconvex. In Section 4, we
study the connection between the Caratheodory hyperbolicity of a Reinhardt
domain and that of its envelope of holomorphy. It is easy to give an example
of a Caratheodory hyperbolic Reinhardt domain in C3 such that its envelope
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of holomorphy contains a complex line and hence is not Caratheodory hy-
perbolic. However, we show in Proposition 4.1 that such an example cannot
exist in C2. We conclude the paper with an explicit description of a Stein
neighbourhoods basis for the closure of a hyperconvex Reinhardt domain.

2. Preliminaries

A subsect D of Cn is said to be Reinhardt if for every (θ1, . . . , θn) ∈ Rn

we have
(z1, . . . , zn) ∈ D ⇒ (eiθ1z1, . . . , e

iθnzn) ∈ D.
Given a Reinhardt subset D in Cn, we denote by logD∗ its logarithmic image,
i.e,

logD∗ = {(log |z1|, . . . , log |zn|) : (z1, . . . , zn) ∈ D∗},
where D∗ = {(z1, . . . , zn) ∈ D : z1 . . . zn 6= 0}. In a slight abuse of notation
we write logD instead of logD∗ whenever D = D∗.

If D is a domain in Cn we write D̂ for the envelope of holomorphy of
D. In case D is a Reinhardt domain, by a result in [Ca] D̂ is pseudoconvex
Reinhardt.

Next, we set

Vj = {z ∈ Cn : zj = 0}, 1 ≤ j ≤ n, V =
⋃

1≤j≤n

Vj .

The following useful criterion for pseudoconvexity of a Reinhardt domain can
be found in [Zw1].

Lemma 2.1. Let D be a Reinhardt domain in Cn. Then the following
conditions are equivalent.

(i) D is pseudoconvex.
(ii) logD∗ is convex, and if D ∩ Vj 6= ∅ for some 1 ≤ j ≤ n, then

(z1, . . . , zj−1, zj , . . . , zn) ∈ D ⇒ (z1, . . . , zj−1, λzj , . . . , zn) ∈ D, |λ| < 1.

As the referee pointed out to us, in case D is a Reinhardt domain containing
0, the above-mentioned results in [Ca] and [Zw1] are well known and go back
to a 1906 paper by Hartogs.

3. Extending holomorphic functions near Reinhardt compact sets

It is well known that every holomorphic function on a neighbourhood of
the (closed) Hartogs triangle {(z, w) : |z| ≤ |w| ≤ 1} extends holomorphically
to a neighbourhood of the closed unit bidisk. Notice that the unit bidisk
is a hyperconvex (in fact, convex) domain, while the Hartogs triangle is not
hyperconvex. In this section we are interested in finding an extension of this
phenomenon to a certain class of compact Reinhardt sets. We first recall that
a bounded domain D in Cn is said to be hyperconvex if there is a negative
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exhaustive continuous plurisubharmonic function for D. It is a remarkable
fact that for a bounded domain D to be hyperconvex it is enough to have
a weak plurisubharmonic barrier at every point ξ ∈ ∂D, i.e, there exists a
non-constant negative plurisubharmonic function ψ on D such that

lim
z→ξ

ψ(z) = 0.

This fact is perhaps most clearly explained in [Bl]. If the domain in question
is pseudoconvex Reinhardt, then we have the following simpler criterion.

Lemma 3.1. Let D be a bounded pseudoconvex Reinhardt domain in Cn.
Then we have:

(i) At every point ξ ∈ (∂D)\V there exists a weak plurisubharmonic bar-
rier which extends to a plurisubharmonic function in a neighbourhood
of ξ in Cn.

(ii) D is hyperconvex if and only if there exists a weak plurisubharmonic
barrier at every point ξ ∈ (∂D) ∩ V.

Proof. (i) The proof is implicitly contained in that of Theorem 2.14 in
[CCW]. We therefore omit the details.

(ii) This part follows immediately from Lemma 3.1(i) and Theorem 1.6 in
[Bl]. �

We also need a piece of terminology: A compact set K in Cn is called
admissible if K has a neighbourhood basis of connected open sets.

Theorem 3.2. Let K be an admissible compact Reinhardt domain in Cn.
Assume that K∗ 6= ∅ and that either logK∗ is not contained in a hyperplane
or 0 ∈ K. Then there exists an admissible compact set K̃ having the following
properties:

(a) K ⊂ K̃ and Int(K̃) is a bounded hyperconvex Reinhardt domain.
(b) Every holomorphic function on a neighbourhood of K extends to a

holomorphic function on a neighbourhood of K̃.

The following lemma is the key ingredient in the proof of Theorem 3.2.

Lemma 3.3. Let {Uk}k≥1 be a decreasing sequence of bounded pseudocon-
vex Reinhardt domains in Cn satisfying Uk+1 ⊂ Uk. Let

G =
⋂
k≥1

Uk.

Assume that Int(G) is not empty. Then Int(G) is a hyperconvex Reinhardt
domain.
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Proof of Lemma 3.3. Set Ω = Int(G). We first show that Ω is connected.
For this, it suffices to check that Ω∗ = Ω \ V is connected. Indeed, take two
arbitrary points a, b ∈ Ω∗ and set

a′ = (log |a1|, . . . , log |an|) ∈ log Ω∗,

b′ = (log |b1|, . . . , log |bn|) ∈ log Ω∗.

There exist two small balls S1 and S2 centered at a′ and b′ such that S1∪S2 ⊂
log Ω∗. Then

S1 ∪ S2 ⊂ log(Un)∗, n ≥ 1.
Since log(Un)∗ is a convex domain in Rn, we infer that

conv(S1 ∪ S2) ⊂ log(Un)∗, n ≥ 1.

Thus conv(S1 ∪ S2) ⊂ logG∗, and consequently

conv(S1 ∪ S2) ⊂ log Ω∗.

This implies that Ω∗ is connected. Notice that Ω̂ ⊂ Uk for all k. Thus Ω̂ = Ω,
and hence Ω is a pseudoconvex Reinhardt domain.

It remains to check that Ω is hyperconvex. By Lemma 3.1(i) it is enough
to show the existence of a weak plurisubharmonic barrier at every point a ∈
(∂Ω) ∩ V. To see this, let a ∈ (∂Ω) ∩ V. We first show that a cannot be 0.

Assume a = 0. Take an arbitrary point p = (p1, . . . , pn) in Ω∗. Fix k ≥ 1.
Since Ω ⊂ Uk+1 ⊂ Uk, we can find ε > 0 such that

{z ∈ Cn : |z1| < ε, . . . , |zn| < ε} ∪ {p} ⊂ Uk.
Since log(Uk)∗ is convex we have

log(Uk)∗ ⊃ conv ((log |p1|, . . . , log |pn|) ∪ {(x1, . . . , xn) : xj < log ε})(1)

⊃ {(x1, . . . , xn) : x1 < log |p1|, . . . , xn < log |pn|} .
It follows that

(2) {z ∈ Cn : |zi| < |pi|, 1 ≤ i ≤ n} ⊂ Uk, k ≥ 1.

Therefore, 0 ∈ Int(G) = Ω, which is a contradiction. This proves the claim
that a 6= 0.

We may therefore assume that a is of the form a = (0, 0, . . . , 0, ak+1, . . . , an),
where 1 ≤ k < n and aj 6= 0 for all k + 1 ≤ j ≤ n. Let π denote the pro-
jection (z1, . . . , zn) 7→ (zk+1, . . . , zn). By Lemma 2.1 π(Ω) is a pseudoconvex
Reinhardt domain in Cn−k. We claim that π(a) /∈ π(Ω). Otherwise we can
find α = (c1, c2, . . . , ck, ak+1, . . . , an) ∈ Ω∗. Set

α̃ = (log |c1|, . . . , log |ck|, log |ak+1|, . . . , log |an|) ∈ log Ω∗.

Then there exists a small ball S̃ centered at α̃ such that S̃ ⊂ log Ω∗. This
implies that there exists a Reinhardt neighbourhood (in Cn) S of α such that

logS = S̃ ⊂ log Ω∗.
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We deduce that there exists δ > 0 such that

min(|z1|, . . . , |zn|) > δ, (z1, . . . , zn) ∈ S.
Fix m ≥ 1. We have Um ∩ Vj 6= ∅ for j = 1, . . . , k. By Lemma 2.1 we get

(z1, . . . , zn) ∈ S ⇒ (0, . . . , 0, zk+1, . . . , zn) ∈ Um.
Now, let π̃ be the projection (x1, . . . , xn) 7→ (xk+1, . . . , xn) and fix

(z0
1 , . . . , z

0
n) ∈ S. We can find ε > 0 small enough such that{

(z1, . . . , zk, z
0
k+1, . . . , z

0
n) : |zj | < ε, j = 1, . . . , k

}
⊂ Um.

This implies that

log(Um)∗ ⊃ (log |z0
1 |, . . . , log |z0

n|)∪
{
{(x1, . . . , xk) : xj < log ε, j = 1, . . . , k}

× (log |z0
k+1|, . . . , log |z0

n|)
}
.

and hence

log(Um)∗ ⊃ conv
(

(log |z0
1 |, . . . , log |z0

n|)

∪
{

(x1, . . . , xk, log |z0
k+1|, . . . , log |z0

n|) : xj < log ε, j = 1, . . . , k
})

⊃
{

(x1, . . . , xk, log |z0
k+1|, . . . , log |z0

n|) : xj < log |z0
j |, j = 1, . . . , k

}
.

It follows that

log(Um)∗ ⊃ {(x1, . . . , xk) : xj < log δ} × π̃(logS).

This implies that G contains a neighbourhood of a. In other words, a ∈
Int(G) = Ω, which is absurd. Thus π(a) /∈ π(D) and therefore π(a) ∈ ∂π(D).
Hence we can find a weak plurisubharmonic barrier u at π(a) in π(D). It
follows that u ◦ π is a weak plurisubharmonic barrier for a in D. Therefore Ω
is hyperconvex. �

Proof of Theorem 3.2. For each k ≥ 1 we define

Dk =
{
z ∈ Cn : dist(z,K) <

1
k

}
.

As K is admissible, Dk is a Reinhardt domain for all k ≥ 1. Set

Uk = D̂k, K̃ =
∞⋂
k=1

Uk, Ω = Int(K̃).

First, note that for all k, Uk is a bounded pseudoconvex Reinhardt domain.
Next, we claim that Uk+1 ⊂ Uk for all k. To see this, we let Wk be a pseu-
doconvex domain which is relatively compact in Uk and satisfies Dk+1 ⊂Wk.
Such a domain exists since Dk+1 ⊂ Dk. Thus Uk+1 ⊂ Uk, and the claim
follows. Hence we have

K̃ ⊂ Uk+1 ⊂ Uk, k ≥ 1.
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We infer that K̃ = K̃, so K̃ is compact, and obviously K ⊂ K̃. It remains to
prove that Ω is hyperconvex. By Lemma 3.3, this will follow if we can show
that Ω 6= ∅. There are two cases to be considered:

(a) If logK∗ is not contained in any hyperplane (in Rn), then conv(logK∗)
has non-empty interior. Since log(Uk)∗ is a convex set containing conv(logK∗),
we infer that Ω 6= ∅.

(b) If 0 ∈ K, then we take a point a = (a1, . . . , an) ∈ K∗. Using (1) and
(2) from the proof of Lemma 3.3 we see that

{(z1, . . . , zn) : |zj | < |aj |} ⊂ Dk, k ≥ 1.

Thus 0 ∈ Ω.
The proof is thereby finished. �

Remarks. (1) It follows easily from the construction of K̃ that K̃ is the
largest compact set satisfying (b) in Theorem 3.2.

(2) If K = {(z, w) : |z| ≤ |w| ≤ 1} is the closed Hartogs triangle, then
(1) and (2) imply that K̃ = {(z, w) : max(|z|, |w|) ≤ 1} is the closed unit
bidisk. Thus we recover the well known fact mentioned at the beginning of
the section.

(3) The condition K∗ 6= ∅ is absolutely necessary for Int(K̃) 6= ∅ to hold.
Indeed, assume that K∗ = ∅ and Int(K̃) 6= ∅. Then we can find δ 6= 0 such
that the hypersurface z1 . . . zn = δ meets Int(K̃). It follows that the function

f(z) =
1

z1 . . . zn − δ
is holomorphic on a neighbourhood of K but is nonextendible to any neigh-
bourhood of K̃. This contradicts the choice of K̃.

(4) If logK∗ is contained in a hyperplane H of Rn and K ∩ V = ∅, then
Int(K̃) = ∅. Indeed, notice that conv(logK∗) is a convex compact subset of
H. Thus there exists a decreasing sequence of convex domains Lk in Rn such
that

⋂
k≥1 Lk = conv(logK∗). Let L̃k be the pseudoconvex Reinhardt domain

in Cn defining by log L̃k = Lk. Clearly, K ⊂ L̃k for all k, and
⋂
k≥1 L̃k has

empty interior. As K ∩ V = ∅, we see that K ⊂ L̃k for all k. It follows that
Int(K̃) = ∅.

From Theorem 3.2 we deduce immediately the following result of [LNN].

Corollary 3.4. Let D be a bounded Reinhardt domain in Cn. Assume
that D is fat, i.e, Int(D) = D, and that D has a Stein neighbourhoods basis.
Then D is hyperconvex.

As a converse to this statement, at the end of this paper we will give a
concrete construction of a Stein neighbourhoods basis for the closure of a
hyperconvex Reinhardt domain.
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4. Caratheodory hyperbolicity of Reinhardt domains

In this section we are concerned with the relation between Caratheodory
hyperbolicity of a Reinhardt domain D and that of its envelope of holomorphy
D̂. Before formulating the main result of this section, we introduce some
notation and terminology.

Let D be an arbitrary domain in Cn and ∆ the unit disk in C. We denote
by H(D,∆) the set of holomorphic maps from D into ∆. The Caratheodory
distance on D is then defined by

cD(z, w) = sup{ρ(f(z), f(w)) : f ∈ H(D,∆)}
for z, w ∈ D. Here ρ is the Poincaré distance on ∆. The domain D is
called Caratheodory hyperbolic if cD(z, w) > 0 for z 6= w. In other words,
D is Caratheodory hyperbolic if and only if the space H∞(D) of bounded
holomorphic functions on D separates the points of D.

The following simple example shows that the Caratheodory hyperbolicity
of D does not imply that of D̂. Consider the following two domains:

D = {(z1, z2, z3) ∈ C3 : max(|z1z2|, |z1z3|, |z2|, |z3|) < 1},
D′ = D\{(z1, 0, 0)}.

Clearly D is not Caratheodory hyperbolic (as it contains a complex line),
while D′ is so (since the four functions z1z2, z1z3, z2, z3 separate points of
D′). However D̂′ = D since the line {(z1, 0, 0)} is of codimension 2 in C3.

We now show that in C2 this implication does hold.

Proposition 4.1. Let D be a Caratheodory hyperbolic domain in C2.
Then D̂ is Caratheodory hyperbolic in C2.

To prove this result we need the following lemma.

Lemma 4.2. Let D be a Reinhardt domain in Cn satisfying D ∩ V = ∅.
Then we have D̂ ∩ V = ∅ and

log D̂ = conv(logD).

Proof of Lemma 4.2. The result is undoubtedly well known, but due to
a lack of a suitable reference we offer a short proof. As D ∩ V = ∅, we
have D̂ ∩ V = ∅. Since log D̂ is a convex domain containing logD, we see
that conv(logD) ⊂ log D̂. To obtain the reverse inclusion, we let D′ be
the Reinhardt domain in Cn

∗ satisfying logD′ = conv(logD). It is clear
that D ⊂ D′ and D′ is pseudoconvex in Cn. The desired conclusion now
follows. �

Proof of Proposition 4.1. In view of Theorem 2.5.1 (iv) in [Zw2] we need
to show that log(D̂)∗ contains no affine line and that D̂ ∩ Vj is either empty
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or Caratheodory hyperbolic (viewed as subset of C) for j = 1, 2. To this end,
we proceed in three steps.

Step 1: D̂∗ is Caratheodory hyperbolic. Indeed, since D̂∗ ∩ V = ∅, by The-
orem 2.5.1 (iv) in [Zw2] and Lemma 4.2 it suffices to show that conv(logD∗)
contains no affine line. Suppose there is an affine line l ⊂ conv(logD∗). Let
x0 be any point in log(D∗)\l. By considering the convex hull of x0 ∪ l we see
that there exists an affine line l′ parametrized by

l′ = {(a1x+ b1, a2x+ b2) : x ∈ R}, a2
1 + a2

2 6= 0,

such that l′ ∩ logD∗ 6= ∅ and l′ ⊂ conv(logD∗). It follows that D̂∗ contains
the analytic curve ϕ(C), where

ϕ(z) = (ea1z+b1 , ea2z+b2).

Since each function in H∞(D) extends to an element of H∞(D̂), by the Liou-
ville theorem we deduce that every function in H∞(D) is constant on ϕ(C).
Since D is Caratheodory hyperbolic, this implies that ϕ(C) ∩ D = ∅. Thus
l′ ∩ logD∗ = ∅, which is a contradiction. Hence D̂∗ is Caratheodory hyper-
bolic.

Step 2: log(D̂)∗ contains no affine line. If not, then by the same reason-
ing as in the first step we get a holomorphic map ψ : C → C2

∗ such that
ψ(C) ⊂ (D̂)∗. On the other hand, by the result obtained in Step 1, D̂∗ is
Caratheodory hyperbolic. According to Theorem 2.5.1 (vi) in [Zw2] there
exists a biholomorphism mapping Φ from C2

∗ onto C2
∗ which is bounded on

D̂∗. The Riemann extension theorem implies that Φ extends to a bounded
holomorphic mapping on D, which we also denote by Φ. Now, applying the
Liouville theorem to the composite map Φ ◦ ψ, we deduce that Φ is constant
on ψ(C). This is absurd and hence proves the claim of Step 2.

Step 3: D̂∩Vj is either empty or Caratheodory hyperbolic (viewed as subset
of C) for j = 1, 2. Suppose this is not the case. We may assume, without
loss of generality, that D′ = D̂ ∩ V2 6= ∅ and that D′ is not Caratheodory
hyperbolic. Since each component of D′ is a Reinhardt domain in C, there
are only two cases to be considered:

(a) If D′ = C, then obviously D̂ contains the analytic curve ϕ(z) = (z, 0).
By the Liouville theorem we have ϕ(C) ∩D = ∅. Thus D̂\ϕ(C) is a pseudo-
convex domain containing D, but strictly contained in D̂, which is absurd.

(b) If D′ = C∗, then by considering the analytic curve ϕ(z) = (ez, 0) and
using an argument similar to that of the previous case, we also arrive at a
contradiction.

The proof of Proposition 4.1 is thus complete. �

To conclude this section, we present an example showing that for Kobayashi
hyperbolicity the conclusion of Proposition 4.1 fails even in the case C2.
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Example 4.3. Let ϕ be an upper semicontinuous function defined on
[0, 1) with values in (−∞, 0). Assume that limt→1−0 ϕ(t) = −∞. Then the
Hartogs domain

Ωϕ(∆) = {(z1, z2) ∈ ∆×C : |z2| < e−ϕ(|z|)}
is Kobayashi hyperbolic, but its envelope of holomorphy is not.

Proof. Since ϕ is locally bounded from below, the domain Ωϕ(∆) is Koba-
yashi hyperbolic (see [TT]). To compute the envelope of holomorphy of
Ωϕ(∆), we let ϕ̃ be the largest subharmonic minorant of ϕ on ∆. It is easy
to see that ϕ̃(z) goes to −∞ when z tends to ∂∆. By applying the maximum
principle we obtain ϕ̃ ≡ −∞. This implies that the envelope of holomorphy
of Ωϕ(∆) equals ∆ ×C, which is obviously not Kobayashi hyperbolic. This
completes the proof. �

5. Appendix

In this section we will give a concrete description of a Stein neighbourhoods
basis for the closure of a hyperconvex Reinhardt domain.

We first fix some notations. For α > 0 we define the following (possibly
multivalued) function

zα =

{
eα(log |z|+i arg z), z 6= 0,
0, z = 0.

Given a subset D in Cn, we set

Dα = {(zα1 , . . . , zαn ) : (z1, . . . , zn) ∈ D}.

Proposition 5.1. Let D be a bounded hyperconvex Reinhardt domain in
Cn. Then the domains {Dα}α>1 form a Stein neighbourhoods basis of D.

We require the following result due to Zwonek ([Zw2, Corollary 2.6.11])

Lemma 5.2. A bounded pseudoconvex Reinhardt domain D in Cn is hy-
perconvex if and only if D ∩ Vj 6= ∅ for every j ∈ {1, . . . , n} satisfying
D ∩ Vj 6= ∅. In particular, 0 6∈ ∂D.

Proof of Proposition 5.1. We split the proof into three steps.

Step 1: Dα is a pseudoconvex Reinhardt domain for any α > 0. First it
is immediate that Dα is a Reinhardt domain. It is also easy to check that
log(Dα)∗ = α(logD∗). Since D is a pseudoconvex Reinhardt domain, by
Lemma 2.1 so is Dα.

Step 2: Dβ ⊂ Dα for all 0 < β < α. Without loss of generality we may
assume that β = 1. Let a ∈ D. As logD∗ is convex we have

logD∗ ⊂ α(logD∗) = log(Dα)∗.
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Thus, if a 6∈ V , then a ⊂ Dα. If a = 0, then by Lemma 5.2 we have a ∈ D,
and thus a ∈ Dα. It remains to consider the case a 6= 0. We may assume
that a = (0, . . . , 0, ak+1, . . . , an), where aj 6= 0 for k + 1 ≤ j ≤ n. Let π be
the projection (z1, . . . , zn) 7→ (zk+1, . . . , zn). From the above reasoning we see
that π(a) ∈ π(Dα). Now by Lemma 5.2 we have D∩Vj 6= ∅ for all 1 ≤ j ≤ k.
Thus Lemma 2.1 implies that a ∈ Dα.

Step 3: D =
⋂
α>1D

α. Let a = (a1, . . . , an) ∈
⋂
α>1D

α. We have to show
that a ∈ D. If a 6∈ V , then since logD∗ is convex we have

(log |a1|, . . . , log |an|) ∈
⋂
α>1

α(logD∗) = logD∗.

It follows that a ∈ D. If a ∈ V , then we may assume that a = (0, . . . , 0, ak+1,
. . . , an), where aj 6= 0 for k + 1 ≤ j ≤ n. It follows from the above argument
that π(a) ∈ π(D), where π is the projection (z1, . . . , zn) 7→ (zk+1, . . . , zn).
On the other hand, we notice easily that D ∩ Vj 6= ∅ for all 1 ≤ j ≤ k. Thus
Lemma 5.2 implies D ∩ Vj 6= ∅ for all 1 ≤ j ≤ k. By Lemma 2.1 we get
a ∈ D. �
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