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ASYMPTOTIC THEORIES OF DIFFERENTIAL FIELDS

ZOÉ CHATZIDAKIS AND EHUD HRUSHOVSKI

Abstract. We relate the integrability of vector fields, and of the van-

ishing of p-torsion, to model-theoretic questions concerning separably
closed fields, endowed canonically with a derivation. While each dif-
ferential field (Fp(t)s, Dp) is known to be decidable, we show that the

asymptotic theory of these fields as a class is undecidable in a strong
sense. This precludes a geometric answer to certain generalizations of

the Grothendieck-Katz conjecture.

Introduction

For a prime p > 0, let Fp(t)s be the field of separably algebraic functions in
one variable over the algebraic closure of the prime field. This field admits a
unique derivation Dp with Dp(t) = 1; viewed as a differential field, we denote
it by Kp. For each given prime p, it follows from results of Ershov [Er] that
Kp has a decidable theory. We show however that the asymptotic theory, as
p → ∞, is undecidable. Indeed, the finite field Fp together with the space
of maps Fp → Fp(t)s is uniformly interpretable in these differential fields;
they are indeed uniformly bi-interpretable with this essentially second-order
structure (Theorem (3.12)).

With some additional effort, we show (Theorem (2.11)) that the asymp-
totic Diophantine theory of these differential fields is already undecidable (to
the second degree, 0′′). Indeed, given an arbitrary Σ0

2-set A in the sense of re-
cursion theory, one can exhibit a differential equation E(c, x̄) over Q(t), such
that the set{

c ∈ N | E(c, x̄) has a separable algebraic solution over Fp(t)

for large enough p
}

coincides with A.
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This work constitutes a first attempt to investigate the logical environment
of some conjectures of Grothendieck and Katz, in a generalized nonlinear
version that we heard from Kazhdan. We later found that the same conjecture
(in somewhat greater generality) was formulated in [ESBT], as well as by Bost;
[Ch-L] is an excellent reference.

Let E be a system of algebraic ordinary differential equations over Q(t)alg

of finite differential order, say, a single differential polynomial in one variable,
F (x,Dx, . . . ,Dnx) = 0, 0 6= F ∈ Q(t)alg[X0, . . . , Xn]. For almost all primes
p, one can reduce the coefficients modulo p to obtain a system of ODE’s Ep
over Fp(t)s. The conjectures can be interpreted as regarding the set Xp of
separably algebraic solutions of the Ep; they give criteria for the existence of
a Kolchin dense set of such solutions. This will be explained in Section 5;
we point out here that the conjectures imply that for an equation to have a
dense set of solutions modulo p, for almost all p, is a recursively enumerable
property.

Our results address the simple existence of a separable algebraic solution,
not the existence of a dense set thereof. Thus they do not yield any direct
information on the conjectures. They do indicate however that these questions
live in a dangerous neighbourhood. The set of equations admitting separable
algebraic solutions modulo almost every prime is not recursively enumerable,
and cannot be governed by a geometric principle analogous to the conjectures
cited above.

Integrability of a vector field in characteristic 0 is a natural model theo-
retic notion, meaning that a corresponding Kolchin closed set, definable with
parameters in the theory of differentially closed fields, is in the algebraic clo-
sure of the constants, over parameters. The other side of the conjectures, in
all formulations except for Grothendieck’s original one, mentions p-curvature
and is more frightening to model theorists. We show therefore that vanishing
p-curvature is equivalent to the existence of a dense set of separable algebraic
solutions. For linear equations, this is a well-known theorem of Cartier (cf.
Katz [K1, Theorem 7.1]). In the general case, it is a consequence of [E]. How-
ever, the logical proof is natural and connects nicely to standard theorems of
model theoretic algebra, and we thought it worth leaving in.

This paper is organised as follows. In Section 1, we introduce a family of
structures, Fp, for p ranging over all odd prime numbers. We then consider the
theory T ′ of sentences true in all but finitely many of the Fp, and show that its
universal and existential parts are Σ0

2-complete (Theorem (1.5)). In Section
2, we show how to interpret the structure Fp in the differential field Kp,
uniformly in p and using formulas of low complexity. This allows us to derive
Theorem (2.11). In Section 3, we show the bi-interpretability (uniformly in
p) of the differential field Kp with a second-order structure. Section 4 gives
some examples of linear differential equations over Q(t), whose reductions
modulo p have solutions in Fp(t)s for infinitely many p’s, or for all but finitely
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many p’s. In Section 5 we discuss the conjecture, and give a model-theoretic
formulation.

1. The structures Fp and their asymptotic Diophantine theory

(1.1) Setting, definitions and notation. Let Le = {R+, R×, Re, 0, 1},
where R+ and R× are ternary relations, Re is a binary relation, and 0, 1 are
constant symbols. For each odd prime p, consider the Le-structure Fp with
universe {0, . . . , p− 1} viewed as the initial segment [0, p− 1] of N, and where
R+ and R× are the restrictions to [0, p − 1]3 of the graphs of addition and
multiplication on N, and where Re is the graph of the function e : x 7→ 2x

mod (p) defined on [0, p− 1]. The constants 0 and 1 are interpreted as 0 and
1. We let T ′ be the set of Le-sentences which hold in all but finitely many of
the Le-structures Fp.

Let P (X̄) ∈ N[X̄]. There is a positive existential Le-formula ∃z̄ϕ(x̄, y, z̄)
such that for any odd prime p and for any ā, b in Fp we have

N |= P (ā) = b ⇐⇒ Fp |= ∃z̄ ϕ(ā, b, z̄).

To simplify notation, if P1(X̄) and P2(X̄) are two polynomials over N, we
will denote by “P1(x̄) =∗ P2(x̄)” the positive existential Le-formula (in the
variable x̄) such that, for any odd prime p and tuple ā in Fp,

N |= P1(ā) = P2(ā) < p ⇐⇒ Fp |= P1(ā) =∗ P2(ā).

Let us immediately remark that the induced order relation on Fp is positively
existentially definable:

x < y ⇐⇒ ∃z (x+ z + 1 =∗ y).

(1.2) Bounds on witnesses of Diophantine definitions of ∆0-sets.
We work in the language Lar of arithmetic, Lar = {+, ·, 0, 1, <}. We define
expk(x) by induction as follows: exp0(x) = x, exp(x) = exp1(x) = 2x, and
expk+1(x) = 2expk(x). Recall that a ∆0-formula ϕ(x1, . . . , xn) is a formula of
the form

Qmxn+m ≤ xi(m)Qm−1xn+m−1 ≤ xi(m−1) · · ·
Q1xn+1 ≤ xi(1)ψ(x1, . . . , xn+m),

where 1 ≤ i(j) ≤ n, ψ is a quantifier-free Lar-formula, and the Qi are quanti-
fiers. (Note: Some authors allow the bounds on the variables xn+1, . . . , xn+m

to be Lar-terms in the variables x1, . . . , xn. The two definitions however co-
incide up to equivalence in N, as one easily sees. For instance, the formula
∃x ≤ y2ψ(x, y, . . . ) is equivalent to the formula ∃x1 ≤ y ∃x2 ≤ y (x1 6=
y ∧ ψ(x1y + x2, y, . . . )).)
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The arithmetic hierarchy is defined as follows: Σ0- and Π0-formulas are
∆0-formulas; a Σi+1-formula is one of the form ∃x̄ϕ(x̄, ȳ), where ϕ(x̄, ȳ) is a
Πi-formula, and a Πi+1-formula is the negation of a Σi+1-formula.

By classical results of Matijasevič and Robinson, Davis, Putnam, any sub-
set of Nk which is definable by a ∆0-formula is definable by a Diophantine
formula, i.e., by a formula of the form ∃ȳ P1(x̄, ȳ) = P2(x̄, ȳ), where the Pi’s
are polynomials over N. The following result give us bounds on the size of the
witnesses ȳ in terms of the size of the elements of x̄.

Proposition (Gaifman-Dimitracopoulos). Let ϕ(x̄) be a ∆0-formula.
There are k ∈ N, n = n(ϕ) ∈ N, and polynomials P1(X̄, Ȳ ) and P2(X̄, Ȳ ) ∈
N[X̄, Ȳ ], such that for all tuples ā in N and N = sup{ā, n}

N |= ϕ(ā) ⇐⇒ N |= ∃ȳ
(
P1(ā, ȳ) = P2(ā, ȳ)

)
⇐⇒ N |= ∃ȳ < expk(N)

(
P1(ā, ȳ) = P2(ā, ȳ) < expk(N)

)
.

This result appears in [DG], with k = 3, with only an indication of the proof
(“checking the proof of the Matijasevič-Robinson-Davis-Putnam Theorem”).
Before learning of the Gaifman-Dimitracopoulos result, we had checked the
proof of the Matijasevič-Robinson-Davis-Putnam Theorem given in Smoryń-
ski’s book [S], and obtained the value k = 4; and in the particular case of
the ∆0-formula expressing y = 2x, that k = 2. In what follows we will
use our bounds. Our calculations of the bounds can be found at http:
//www.logique.jussieu.fr/www.zoe/papiers/DFptbounds.dvi. They are
completely straightforward.

(1.3) Lemma. For each k ≥ 1, there is a positive existential formula
θk(x) such that for every odd prime p and a < p we have

Fp |= θk(a) ⇐⇒ N |= expk(a) > p.

Proof. Let

θ1(x) = ∃y < x∃y′∃z1∃z2

[
(y′ =∗ y + 1)

∧Re(y, z1) ∧Re(y′, z2) ∧ (z2 < z1)
]
.

By the remark made at the end of (1.1), this is a positive existential formula,
which says that e(y + 1) < e(y) for some y < x. Assume that 2a > p, and
let b ≤ a be smallest such that 2b > p. Then 2b−1 = e(b − 1) < p, and
e(b) = e(b− 1) + e(b− 1)− p < e(b− 1). This shows one direction for k = 1,
and the other direction is clear.

Note that expk(a) > p if and only if
∨k
i=1 expi(a) > p, if and only if∨k−1

i=0 2e
i(a) > p, where ei denotes e iterated i times. Hence, for k > 1, we
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define

θk(x) = ∃y0, . . . , yk−1

[
y0 = x ∧

k−2∧
i=0

Re(yi, yi+1)
]
∧
k−1∨
i=0

θ1(yi).

(1.4) Lemma. There is an integer n0 and for each ` ≥ 1 there is a pos-
itive existential Le-formula E`(x, y) such that for all a ∈ N and every odd
prime p we have:

(1) If p > exp2(sup{n0, exp`(a)}) then Fp |= E`(a, exp`(a)).
(2) If b ∈ Fp and Fp |= E`(a, b) then b = exp`(a).

Proof. Consider the ∆0-formula defining y = 2x, and let n0 and polyno-
mials P1, P2 be given by Proposition (1.2), i.e., such that for all a, b ∈ N and
N = sup{n0, a, b}, we have

N |= 2a = b ⇐⇒ ∃v̄ (P1(a, b, v̄) = P2(a, b, v̄))

⇐⇒ ∃v̄ < exp2(N) (P1(a, b, v̄) = P2(a, b, v̄) < exp2(N)).

We set, for ` ∈ N, ` > 1,

E1(x, y) = ∃v̄
[
Re(x, y) ∧ P1(x, y, v̄) =∗ P2(x, y, v̄)

]
,

E`(x, y) = ∃y0, . . . , y`(y0 = x ∧ y` = y) ∧
`−1∧
i=0

E1(yi, yi+1)

Let a ∈ N, and let ai = expi(a) for i = 0, . . . , `. Our choice of n0 implies that
for each i < ` there is v̄ < exp2(sup{n0, ai+1}) such that

P1(ai, ai+1, v̄) = P2(ai, ai+1, v̄) < exp2(sup{n0, ai+1}).
Hence, if p > exp2(sup{n0, a`}), then all ai’s are in Fp, and

Fp |= ∃v̄ (P1(ai, ai+1, v̄) =∗ P2(ai, ai+1, v̄))

for i = 0, . . . , `− 1. This shows that Fp |= E`(a, exp`(a)) and proves (1).
(2) is clear.

(1.5) Theorem. Let α(z) be a Σ2-formula (of Lar). There are Le-for-
mulas β(z) and γ(z), with β universal and γ positive existential, such that for
any c ∈ N

N |= α(c) ⇐⇒ T ′ ` β(c) ⇐⇒ T ′ ` γ(c).

Proof. By standard results, we may assume that α(z) = ∃x∀y ≥ x ϕ(y, z),
where ϕ(y, z) is ∆0.

Part 1: Finding β. We will in fact find a positive existential Le-formula
δ(z) such that for any c ∈ N

N |= ¬α(c) ⇐⇒ T ′ ∪ {δ(c)} is consistent.

Then β(z) = ¬δ(z) will be our desired universal formula.
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Note that ¬α(z) simply says that there are infinitely many y such that
¬ϕ(y, z) holds. Let n = n(¬ϕ) and P1, P2 ∈ N[Y,Z, V̄ ] be given by Proposition
(1.2), i.e., such that for any N ≥ n and `, c ≤ N
N |= ¬ϕ(`, c) ⇐⇒ ∃v̄ (P1(`, c, v̄) = P2(`, c, v̄))

⇐⇒ ∃v̄ < exp4(N) (P1(`, c, v̄) = P2(`, c, v̄) < exp4(N)).

Consider the Le-sentence δ(z)

∃y∃v̄ [P1(y, z, v̄) =∗ P2(y, z, v̄) ∧ θ5(y)].

By (1.3), this is a positive existential Le-formula. Assume that c ∈ N satisfies
¬α(z). We want to show that T ′ ∪ {δ(c)} is consistent, that is, that there are
arbitrarily large prime numbers p such that δ(c) holds in Fp.

Let d ∈ N, d > n(¬ϕ), and d > c. By assumption, there is ` > d such that
N |= ¬ϕ(`, c). Let p be the largest prime such that exp5(`) > p. Then
exp4(`) < p, and there is a tuple b̄ in N such that b̄ < exp4(`) and P1(`, c, b̄) =
P2(`, c, b̄) < exp4(`). Thus we have

b̄ < p, P1(`, c, b̄) = P2(`, c, b̄) < p, exp5(`) > p,

so that
Fp |= P1(`, c, b̄) =∗ P2(`, c, b̄) ∧ θ5(`).

From ` < p we deduce that p > d. This shows that T ′ ∪ {δ(c)} is consistent.
Conversely, assume that T ′ ∪ {δ(c)} is consistent. We want to show that

there are arbitrarily large `’s such that ¬ϕ(`, c) holds. Let d ∈ N, d > c.
Our assumption implies that there is a prime p larger than exp5(d) such that
Fp |= δ(c). Fix such a p and let ` and b̄ < p be such that

Fp |= P1(`, c, b̄) =∗ P2(`, c, b̄) ∧ θ5(`).

Then
N |= ¬ϕ(`, c) ∧ exp5(`) > p.

From exp5(d) < p < exp5(`) we deduce that d < `. This being true for all d,
we get N |= ¬α(c).

Part 2: Finding γ. Consider the formula

ψ(z, u1, u2) = (u1 < u2) ∧ ∀y ≤ u2 (¬ϕ(y, z)→ y < u1).

This is a ∆0-formula, which says that there are no solutions of ¬ϕ(y, z) in
the interval [u1, u2]. Let n = n(ψ), and Q1, Q2 ∈ N[Z,U1, U2, V̄ ] be given by
Proposition (1.2), i.e., such that for a, b, c ∈ N and N = sup{a, b, c, n}
N |= ψ(a, b, c) ⇐⇒ ∃v̄ (Q1(a, b, c, v̄) = Q2(a, b, c, v̄))

⇐⇒ ∃v̄ < exp4(N) (Q1(a, b, c, v̄) = Q2(a, b, c, v̄) < exp4(N)).

Consider the formula

γ(z) = ∃u1, u2, v̄ [E6(u1, u2) ∧ θ5(u2) ∧Q1(z, u1, u2, v̄) =∗ Q2(z, u1, u2, v̄)].
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Let us assume that N |= α(c), and let d ∈ N be such that

N |= ∀y ≥ d ϕ(y, c).

Let p be a prime greater than exp11(sup{c, d}), exp2(n0), and exp4(n(ψ)).
We will show that Fp |= γ(c). Let `1 be smallest such that exp11(`1) > p, and
let `2 = exp6(`1). Then exp4(`2) < p < exp5(`2), and by (1.3)

Fp |= E6(`1, `2) ∧ θ5(`2).

Moreover, `1 > d, whence

N |= ∀y ≤ `2 (¬ϕ(y, c)→ y < `1).

If N = sup{`2, n(ψ)}, there is b̄ < exp4(N) such that Q1(c, `1, `2, b̄) =
Q2(c, `1, `2, b̄) < exp4(N), and therefore

Fp |= Q1(c, `1, `2, b̄) =∗ Q2(c, `1, `2, b̄).

This shows that Fp |= γ(c).
Let us now assume that T ′ ` γ(c). Choose d > 1 such that γ(c) holds in

all structures Fp with p > d. For each prime p > d, let `1(p), `2(p) be such
that

Fp |= ∃v̄
[
E6(`1(p), `2(p)) ∧ θ5(`2(p)) ∧ (Q1(c, `1(p), `2(p), v̄)

=∗ Q2(c, `1(p), `2(p), v̄)
]
.

Then

N |= ∃v̄ Q1(c, `1(p), `2(p), v̄) = Q2(c, `1(p), `2(p), v̄)

∧`2(p) = exp6(`1(p)) ∧ exp5(`2(p)) > p

and therefore

N |= ∀y ≤ `2(p)(¬ϕ(y, c)→ y < `1(p)).

Hence we have shown the following: If ` ∈
⋃
d<p prime[`1(p), `2(p)], then

N |= ϕ(`, c). Clearly, as the prime p goes to infinity, so does `2(p), because
exp5(`2(p)) > p. Hence, to finish the proof, it is enough to show that if p′ is
the prime immediately after p, then

`1(p′) < `2(p).

We know that `2(p′) < p′ < 2p. Hence exp6(`1(p′)) = `2(p′) < 2p. Since
p > 2, we have 2p < 2p, and therefore exp5(`1(p′)) < p < exp5(`2(p)), whence
`1(p′) < `2(p). This being true for all primes greater than d, we have that
N |= α(c).
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2. Uniform definition of Fp
We fix p > 2 and consider a separably closed field K of characteristic p and

degree of imperfection 1 (that is, [K : Kp] = p), equipped with a derivation
D : K → K with range containing 1. Fix any element t such that Dt = 1.
Then t /∈ Kp, and therefore K = Kp ⊕Kpt⊕ · · · ⊕Kptp−1.

Given a ∈ K and 0 ≤ i < p we will denote by a(i) the ti-coordinate of a in
the Kp-vector space K with respect to the basis {1, t, . . . , tp−1}, so that we
have

a =
p−1∑
i=0

a(i)t
i.

In this notation, we haveD(
∑p−1
i=0 a(i)t

i) =
∑p−1
i=1 ia(i)t

i−1. Note that the field
Kp coincides with the field of constants {a ∈ K | Da = 0} of the derivation
D.

Let LD = {+,−, ·, D, 0, 1} be the language of differential fields. We will
work in the language LD ∪ {t}, and show that we can define uniformly in p
the Le-structure Fp in the differential field K. (It may be helpful to keep in
mind a particular model such as K = Fp(t)s, and D = Dp defined earlier, but
all such differential fields are elementarily equivalent.)

(2.1) Consider the set S =
⋃p−1
i=0 K

pti. Then S is quantifier-free definable
(uniformly in p) in Kp by the formula x = 0∨D(tDx/x) = 0). Indeed, assume
that a 6= 0 and tDa/a is a constant c. Then we get ca = tDa, i.e.,

p−1∑
i=0

ca(i)t
i =

p−1∑
i=0

ia(i)t
i,

which implies ca(i) = ia(i) for i = 0, . . . , p − 1, so that at most one a(i) is
non-zero.

(2.2) The map f : x 7→ tDx/x sends a non-zero element cti of S to i, and
therefore sends S \ {0} onto {0, 1, . . . , p − 1} ⊂ Kp. We extend f to all of
S by setting f(0) = 0 and let F denote the image of f . (In fact, the set F
coincides with the subfield Fp of K).

(2.3) Note that for a ∈ K, a(p−1) = 0 ⇐⇒ ∃y Dy = a. Hence, given
b ∈ S, b 6= 0, we have

a(f(b)) = 0 ⇐⇒ ∃y Dy = (bt)−1a.

(2.4) Let a ∈ Kp and consider the element â =
∑p−1
i=0 a

iti. Then â(i) = ai,
and â is uniquely defined by the formula

D(x− atx) = 0 ∧ x(0) = 1.

Hence the graph of the function ̂: Kp → K is positively existentially definable
(uniformly in p) (by (2.3)).
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(2.5) The elements 1̂, tp, and t̂p are positively existentially definable (uni-
formly in p).

Indeed, 1̂ is defined by D(x − tx) = 0 ∧ x(0) = 1. Also, tp = 1̂(t − 1) + 1.
Hence the second and third assertions follow by (2.4).

(2.6) The graph of the function g : F → S, b 7→ tb, is positively existen-
tially definable (uniformly in p).

Let b ∈ F . Then

c = g(b) ⇐⇒ (f(c) = b) ∧ ((1̂− c)(b) = 0).

Use (2.3).

(2.7) Consider the function h : K × F → Kp, (a, b) 7→ a(b). Then the
graph of h is positively existentially definable (uniformly in p): For a ∈ K,
b ∈ F , c ∈ Kp,

h(a, b) = c ⇐⇒ (a− cg(b))(b) = 0.
The result follows from (2.3) and (2.6).

(2.8) Definition of R+ and R×. Let a, b, c ∈ F ⊆ N. Then R+(a, b, c)
holds if and only if a+ b = c , if and only if tpatpb = tpc. Hence,

R+(a, b, c) ⇐⇒ t̂p(a)t̂p(b) = t̂p(c)

This shows that R+ is positively existentially definable (uniformly in p). Sim-
ilarly, R×(a, b, c) holds if and only if tpab = tpc, so that

R×(a, b, c) ⇐⇒ ̂̂tp(a)(b)
= t̂p(c),

and R× is positively existentially definable (uniformly in p).

(2.9) Definition of Re. For a ∈ F , we have

e(a) = 2̂(a),

so that the graph Re of the function e is positively existentially definable
(uniformly in p).

(2.10) We will not use this here, but it is interesting to remark that the
graph of the restriction of the function x 7→ xp to Kp is positively existentially
definable (uniformly in p), since

ap = (â(at− 1) + 1)/tp.

Similarly, the shift operator Sh : K → K, defined by

(Sh(x))(i) =

{
x(p−1) if i = 0,
x(i−1) otherwise,

is positively existentially definable, using

Sh(a) = ta+ (1− tp)a(p−1).
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(2.11) Theorem. Let T be the set of LD-sentences which hold in all but
finitely many of the differential fields (Fp(t)s, Dp). Let α(z) be a Σ2-formula
(of Lar). There are LD-formulas β∗(z) and γ∗(z), with β∗ universal and γ∗

existential, such that for every c ∈ N
N |= α(c) ⇐⇒ T ` β∗(c) ⇐⇒ T ` γ∗(c).

Proof. The formulas δ(z) and γ(z) constructed in Theorem (1.5) are pos-
itive existential formulas of Le. By (2.2), (2.8) and (2.9), there are positive
existential LD-formulas δ′(z, t′) and γ′(z, t′) such that for any prime p and
c < p, we have

Fp |= δ(c) ⇐⇒ Fp(t)s |= ∃t′ (Dt′ = 1 ∧ δ′(c, t′)),
Fp |= γ(c) ⇐⇒ Fp(t)s |= ∃t′ (Dt′ = 1 ∧ γ′(c, t′)).

Then β∗(z) = ¬(∃t′Dt′ = 1∧ δ′(z, t′)) and γ∗(z) = ∃t′ (Dt′ = 1∧γ′(z, t′)) are
our desired LD-formulas.

(2.12) Additional remarks.
(1) Going to the complement, it follows that the existence of solutions of

systems of differential equations for infinitely many p is therefore Π2-complete,
as is the non-existence of solutions for infinitely many p.

(2) Our proof only used K = Kp ⊕ tKp ⊕ · · · ⊕ tp−1Kp, and not the fact
that K is separably closed.

(3) Note that the set defined by γ∗(z) is the projection of a differential
algebraic set of finite order.

(4) If (K,D) |= T , then K is an algebraically closed field of characteristic
0.

3. Bi-interpretability of K with a second-order structure

Fix p, and let K = Fp(t)s, with derivation D = Dp. Consider the structure
L, with universe the set of functions from F = Z/pZ to C = Kp. We view L
as a 3-sorted structure (L,C,F), in the language Lf = {+,×, 0, 1, tp,+F ,−F ,
0F , 1F , h}, where:

(i) +, × are addition and multiplication on the field C, with distinguished
constants 0, 1 and tp.

(ii) +F is the usual addition on the group F , and −F the usual subtrac-
tion; we have distinguished constants 0F and 1F , where 0F is inter-
preted as the zero element of the group F and 1F is any generator of
the group F .

(iii) h is the evaluation map: L×F → C, (a, i) 7→ a(i).
As a set, L is isomorphic to K via the map a 7→

∑p−1
i=0 a(i)ti. By the

results of the previous section, the Lf -structure (L,C,F) is definable in the
differential field K. Moreover, the complexity of this definition is low: C is
quantifier-free definable, and F is existentially definable. The graphs of all
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functions are existentially definable (and therefore also universally definable),
and the constants are existentially definable in LD ∪ {t}.

Conversely, we will show that we can define in L the addition and multi-
plication of K (denoted by ·), and the derivation of K. For convenience we
have added a constant symbol for tp, but in fact any element of C which is
not in Cp would do as well (the derivation would be slightly different, in the
same way as in Fp(t)s it depends on the choice of the element t). You will
observe that the definitions given below also have a low complexity, modulo
quantification over F . We use some of the notation introduced in Section 2.

(3.1) For a ∈ C, let ā denote the function in L which takes the constant
value a. Then the map a 7→ ā is definable:

x = ā ⇐⇒ ∀i ∈ F , x(i) = a.

(3.2) For a ∈ C, let â denote the function in L defined by â(i) = ai. Then
the map a 7→ â is definable by the formula

x(0F ) = 1 ∧ ∀i ∈ F , (i+F 1F = 0F ) ∨ x(i+F 1F ) = a× x(i).

(3.3) The sum map Σ : L→ C, a 7→
∑
i∈F a(i) is definable:

Σ(a) = b ⇐⇒ ∃z z(0F ) = a(0F ) ∧ ∀i ∈ F (i+F 1F = 0F ∧ z(i) = b)

∨ z(i+F 1F ) = z(i) + a(i+F 1F ).

(3.4) For a ∈ C, the function a 7→ ap is definable: we have ap = â(−1F )×
a.

(3.5) Pointwise addition and multiplication are definable in L, and will
be denoted also by + and ×: a + b = c ⇐⇒ ∀i ∈ F a(i) + b(i) = c(i), and
similarly for ×.

(3.6) The identity function id : F → C is definable:

x(0F ) = 0 ∧ ∀i ∈ F (x(i+F 1F ) = x(i) + 1).

(3.7) Hence the derivation D is definable:

D(x) = y ⇐⇒ ∀i ∈ F y(i) = id(i+F 1F )× x(i+F 1F )).

(3.8) Each of the idempotent functions 1̄|i is definable (uniformly in i ∈
F), where

1̄|i(j) =

{
1 if j ≤ i,
0 otherwise.

Indeed, we have

x = 1̄|i ⇐⇒ x(0F ) = 1 ∧ (i+F 1F = 0F ∨ x(i+F 1F ) = 1)

∧ ∀j ∈ F (j = i ∨ j +F 1F = 0F ∨ x(j +F 1F ) = x(j)).
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(3.9) Multiplication of the field K is definable.
We will first show that the function L2×F → L, which to (x, y, i) associates

the function zi defined by

zi(j) =

{
x(j)× y(i−F j) if j ≤ i,
tp × x(j)× y(i−F j) otherwise,

is definable. For each i ∈ F consider the element

di = 1̄|i + tp × (1̄− 1̄|i).

Then v = zi if and only if

∃u(∀j ∈ F , u(j) = x(j)× y(i−F j)) ∧ (v = di × u).

It then follows that the element z = x · y is defined by

∀i ∈ F (z(i) = Σ(zi)).

(3.10) We therefore can use all the definability results proved in Section
2. In particular, the map C × F → C, (a, i) 7→ ai is definable, so that the
map i 7→ tpi is also definable. We also saw that the restriction of x 7→ xp to
C is definable in K. This implies:

(3.11) The Frobenius map L→ C, x 7→ xp, is definable.

y = xp ⇐⇒ ∃z (∀i ∈ F , z(i) = x(i)p × tpi) ∧ y = Σ(z).

Thus we have shown the following result:

(3.12) Theorem. The differential field (K,D) and the 3-sorted structure
(L,C,F) are bi-interpretable, uniformly in p. The interpretation of (L,C,F)
in (K,D) is done via existential formulas, and the interpretation of (K,D)
in (L,C,F) is done by formulas involving only existential quantifiers of the
sort L, but universal quantifiers of the sort F . The Frobenius map x 7→ xp is
definable in (K,D) uniformly in p.

(3.13) Concluding remarks. The 3-sorted structure (L,C,F) is in fact
a second-order structure. Indeed, consider those elements of L with image con-
tained in {0, 1} (i.e., the idempotents of the ring (L,+,×)). These functions
are characteristic functions of (definable) subsets of F . These elements allow
us to quantify over all subsets of F , thus giving us a second-order structure.

The function h is strongly related to the λ-functions of Delon [D]. Recall
that, in our case, the λ-functions of the field L, denoted by λ0, . . . , λp−1, are
defined uniquely by the equation

x =
p−1∑
i=0

λi(x)pti.
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The map h gives us, when composed with the inverse of the map defined
in (3.11), a map H : L × F → L, such that for every a ∈ L and i ∈ F ,
H(a, i) = λi(a).

Note that in order to get bi-interpretability of (L,C,F) with the differential
field K, we had to use the evaluation map h. It would therefore be interest-
ing to study reducts of the structures (L,C,F), as p goes to ∞, in weaker
languages. For instance, one could retain the ring structure on L given by
pointwise addition and multiplication, but delete the function h and add the
shift operator of (2.10) and the sum-map of (3.3). Another interesting reduct
would be the field K, together with a predicate W for the Kp-subspace defined
by h(x, 0) = 0. Again, as p tends to ∞, it is likely that the theory becomes
quite complicated. While it is unlikely that we can define the λ-functions or
the derivation, we are still able to define in (K,W ), uniformly in p, the image
of the derivation Dp (as it equals t−1W ). Other examples of reducts are the
fields (K, f), where f is the function λ0, or the function λ(p−1)/2.

4. Some elementary examples

(4.1) As a consequence of Theorem (2.11), there exists a nonlinear dif-
ferential equation (in several unknowns) over Q(t), having an accidental sep-
arable algebraic solution modulo p for almost every prime p, but for purely
Gödelian reasons, without any global geometric reason at all. In fact, there
exists a differential equation over Q(t) having a separable algebraic solution
modulo p for almost every prime p, but such that this fact is not provable
in ZFC. For let X be the set of differential equations over Q(t) admitting
an algebraic solution, or more generally having a separable algebraic solution
modulo p for almost all p provably in ZFC. Let Y be the set of differential
equations over Q(t), having a separable algebraic solution modulo p for al-
most every prime p. Then X ⊂ Y . Now X is Σ1, while Y is Σ2-complete, so
X 6= Y .

The formula γ∗(z) of (2.11) is positive existential, and deciding which of
the sentences γ∗(c), c ∈ N, holds in almost all differential fields (Fp(t)s, Dp)
is a Σ2-complete problem. To this formula corresponds a family of Kolchin
closed sets X(z, t) which we will now describe. Consider the Le-formula γ(z)
defined in Part 2 of the proof of Theorem (1.5), and write it as ∃v̄ θ(v̄, z),
where θ(v̄, z) is positive quantifier-free. One verifies that, given c ∈ N and a
prime p sufficiently large, the set {ā ∈ Fp | Fp |= θ(ā, c)} is either empty (if
N |= ¬α(c)), or else is finite but of size growing with p (of order of magnitude at
least log4

2(p)), so that it will be infinite in any non-principal ultraproduct of the
Fp(t)s’s. By the results of Section 2, there is an LD-formula ∃w̄ θ∗(w̄, x, v̄, z),
where θ∗ is quantifier-free positive, such that if (K,D) is a model of T , t ∈ K
satisfies Dt = 1 and F ⊂ K is defined by Dx = 0 ∧ ∃y (y 6= 0) ∧ tDy = xy,
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then for any (ā, c) in F ,

F |= θ(ā, c) ⇐⇒ K |= ∃w̄ θ∗(w̄, t, ā, c).

Furthermore, one verifies that given (ā, c) ∈ F , the set of w̄ ∈ Fp(t)s satisfying
θ∗(w̄, t, ā, c) is either empty, or has fixed Kolchin order m not depending on
the particular model of T . Let X(z, t) be the family of Kolchin closed sets
defined by the formula θ∗(w̄, t, v̄, z). If c ∈ N satisfies α, then the order of
X(c, t) is at least m+ 1. On the other hand, for p sufficiently large, reducing
modulo p the equations defining X(c, t), we get a Kolchin closed set Xp(c, t)
defined over Fp(t), also of order ≥ m + 1. However, the set of ā ∈ Kp such
that there is some w̄ with (w̄, ā) ∈ Xp(c, t) is finite because it is contained
in F ; thus the Kolchin closure of Xp(c, t)(Fp(t)s) has order m, and the set of
solutions of Xp(c, t) in Fp(t)s is never Kolchin dense in Xp(c, t).

Here are some similar cases occurring for arithmetic and geometric rather
than logical reasons.

(4.2) Example. There exist linear differential equations over Q(t), with
a basis of solutions in Fp(t) for infinitely many primes p, but with no nonzero
solution in Q(t)alg.

Proof. Take the equation (t2D2 + tD− 2)x = 0. If b2 = 2, we can factor it
as

(tD − b)(tD + b)x = 0
(Note that the operators (tD − c) commute with each other if c ∈ Qalg.) If
b ∈ {0, . . . , p− 1}, and b2 ≡ 2 mod p, this has solutions tb, t−b. Conversely, if
0 6= x ∈ Fp(t)s is a solution, write x =

∑p−1
i=0 ait

i. Then (t2D2 + tD− 2)x = 0
translates to (i(i− 1) + i− 2)ai = 0 for all i ≥ 1. If p > 2 is such that 2 is not
a square mod p, there are no nonzero solutions in Fp(t)s. Hence there can be
no nonzero solutions in Q(t)alg.

(4.3) Example. Linear differential equations over Q(t), with a solution
in Fp(t) for almost all primes p, but with no nonzero solution in Q(t)alg.

Proof. Let L be a non-cyclic finite Galois extension of Q, G = Gal(L/Q).
We form a (finite) set S = {a1, . . . , an} by choosing for each σ ∈ G, σ 6= 1,
an element a ∈ Fix(σ) \ Q. We impose furthermore the condition that the
set S is closed under the action of G, and the ai’s are distinct. Then F (T ) =∏n
i=1(T − ai) ∈ Q[T ], and the differential equation

(∗) F (tD)x =
n∏
i=1

(tD − ai)x = 0

has its coefficients in Q(t).
Then (∗) has a solution of the form tb in Fp(t), for almost all p: Indeed,

any pseudo-finite field containing Q must contain Fix(σ) for some σ ∈ G, and
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hence a root b of F (T ). So for almost all p there exists c = tb ∈ Fp(t) solving
F (tD)x = 0.

On the other hand, Q(t)alg does not contain a non-trivial solution of this
equation. Indeed, assume by way of contradiction that c is such a solution,
and choose k largest such that ck

def=
∏k
i=1(tD − ai)c 6= 0. Then k < n, so

that ck is a non-trivial solution (in Q(t)alg) of the equation tDx = ak+1x.
This gives us the desired contradiction, as ak+1 6∈ Q.

(4.4) Example. Here is an example of the same phenomenon, with geo-
metric rather than arithmetic overtones. Consider the system of equations

Dy1 = Dy2 = 0, (t− 1)−1y1 + t−1y2 = Dz.

This has a solution with (y1, y2) 6= (0, 0) iff t−1, (t−1)−1 are linearly dependent
over the constants, modulo the image of D. This is the case for all p, since
indeed the image of D has codimension 1 over the constants in Fp(t)s. But
it is not the case in characteristic 0. Equivalently, the equation Du = 0,
(t − 1)−1(u − 1) − t−1u = Dz, has a solution in Fp(t)s for all primes p, but
does not have a solution in Q(t)alg.

(4.5) Let us now give an example of the kind of guess that the logic
would immediately show to be false. The culprit in Examples (4.1) and (4.2)
is the logarithmic derivative. It seems possible indeed that these derivatives
have a special role in this story, at least for linear differential equations. If
the ratio of the logarithmic derivatives of two elements is algebraic, then for
infinitely many p it can become rational, and then a transcendental relation
in characteristic 0 becomes algebraic modulo infinitely many primes. (The
same phenomenon occurs for the Abelian analogues, but we feel too diffident
to hazard a guess about their role in the general situation.)

Let Q(t) = L0 ⊂ L1 ⊂ · · · ⊂ Ln be a sequence of fields of algebraic
functions, where each Li+1 is either algebraic over Li, or has the form Li(uα)
for some α ∈ Qalg and some u ∈ Li. If a differential equation has a solution
in such an Ln, then it has an algebraic solution mod p for infinitely many p
(for those p splitting completely in the number field generated by the various
α). By (4.1), the converse is false, nor would adding Abelian logarithms, etc.,
help.

5. Statement of the conjecture and generic solutions

We state here the conjecture referred to in the introduction, in the form
we heard it from David Kazhdan. Our lemmas here were all anticipated by
[ESBT], and by [E]. (A possible exception is a simple lemma showing the
equivalence between a foliation and a vector field version of the conjecture.)
Paragraphs (5.1)–(5.9) contain preliminary results, and (5.10)–(5.13) discuss
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the problems in characteristic p and non-linear Cartier. The statements of
the conjecture and its equivalent formulations appear in (5.15).

(5.1) Preliminaries. Our varieties will always be affine non-singular va-
rieties, and we will always be working birationally. Recall that if K is an
algebraically closed field, f1(X̄), . . . , fm(X̄) generate a prime ideal of K[X̄],
and V ⊂ An is defined by the equations fi(x̄) = 0, i = 1, . . . ,m, then the
tangent bundle of V , T (V ), is the set of tuples (x̄, ū) ∈ A2n satisfying x̄ ∈ V ,
and

∑n
j=1

∂fi
∂Xj

(x̄)uj = 0 for i = 1, . . . ,m. If x̄ ∈ V , then Tx̄(V ) = {ū |
(x̄, ū) ∈ T (V )}. If g, h ∈ K(V ), then we define hdg : T (V ) → A

1, by
hdg(x̄, ū) = h(x̄)dgx̄(ū) = h(x̄)

∑n
j=1

∂g
∂Xj

(x̄)uj . A 1-form on V is then a
sum of functions as above, and an exact 1-form is one of the form dg for some
g ∈ K(V ).

If the field K has a derivation D, then we also define the shifted tangent
bundle TD(V ), by the equations x̄ ∈ V ,

∑n
j=1

∂fi
∂Xj

(x̄)uj + fDi (x̄) = 0 for
i = 1, . . . ,m (where fDi is the polynomial obtained by applying D to the
coefficients of fi). Note that if V is defined over the constants of K, then
TD(V ) = T (V ).

(5.2) Generalities regarding differential fields. We fix a field K with
a derivation D, and a differentially closed field U containing K. A Kolchin
closed subset of the affine n-space An(U) is one defined by a set of differential
equations. When V is a smooth variety, and s is a rational section of the
shifted tangent bundle TD(V ) of V (that is, a rational map V → A

n, which to
each point x̄ in a Zariski open subset of V associates an element of Tx̄,D(V )),
the equation

Dx̄ = s(x̄)
is said to be in standard form, and defines a subset X = Xs of V . The pair
(V, s) is called a standard presentation for X. A rational section of T (V ) will
also be called a (rational) vector field on V . A Kolchin-closed subset of Xs is
then just the intersection with Xs of an algebraic variety. Hence, a subset of
X is Kolchin-dense iff it is Zariski dense. We define the Kolchin order of Xs

to be dim(V ).
Note that being given standard presentations for X over K is equivalent

to being given an extension Ds of the derivation D to K(V ). Note also that
any Kolchin closed set of finite order is differentially birationally equivalent
to a set given by an equation in standard form.

If f = (f1, . . . , fk) : V → W is a morphism of varieties (defined over K),
then for all x̄ in a Zariski open subset of V and all ū ∈ Tx̄(V ) we have dfx̄(ū) ∈
Tf(x̄)(W ), and {dfx̄(ū) | ū ∈ Tx̄(V )} describes the subspace Tf(x̄)(f(V )) of
Tf(x̄)(W ). If f is onto and s is a rational section of the tangent bundle T (V ),
then we obtain a rational section s′ of T (W ), defined by s′(f(x̄)) = dfx̄(s(x̄)).
We then write “ s′ ◦f = df ◦s ”. Note that in this case the map f∗ : K(W )→
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K(V ) is an inclusion, and if Ds′ and Ds are the K-derivations on K(W ) and
K(V ) corresponding to s′ and s, then f∗ ◦ Ds′ is the restriction of Ds to
f∗(K(W )).

A foliation on a variety V is (for us, working algebraically and birationally)
a definable map f on V , such that f(x̄) is a line in Tx̄(V ). Equivalently, a
foliation is given by a nonzero vector field s on V , but if h 6= 0 is a rational
function on V , then s and hs define the same foliation.

(5.3) Computational lemma. Let K be an infinite field of characteris-
tic p > 0, and D a non-trivial derivation on K.

(1) Dp is a derivation, so is cD for any c ∈ K.
(2) If 1 < m < n < p and L =

∑n
i=m aiD

i is a derivation, then ai = 0
for each i, m ≤ i ≤ n.

(3) If D and cD commute, then Dc = 0.
(4) (cD)p = eD + cpDp, where e = (cD)p−1c. (Thus if D = bD1, then

Dp = (Dp−1b)b−1D + bpD1
p.)

(5) If Dp = 0, then (aD)p is proportional to D. (More generally, if Dp

is proportional to D, then so is (aD)p.)
(6) Suppose Dp = aD. Let D = bD1, where a = (Dp−1b)b−1. Then

aD = Dp = (Dp−1b)b−1D + bpD1
p, so D1

p = 0.
(7) If D = bD1, then −bp+1Dp−1

1 (b−1) = Dp−1b.
(8) If D = bD1, then (Dp−2

1 )(b−1) = −b−pDp−2b.

Proof. (1) is standard. To see (2), expand

L(xy)− xLy − yLx =
n∑

i=m

i∑
j=0

ai

(
i

j

)
(Djx)(Di−jy)−

n∑
i=m

xaiD
iy + yaiD

ix.

This differential polynomial must vanish identically on K2, and as K is infinite
and D is not trivial, it must be 0. The coefficient of (Dx)(Di−1y) shows that
ai = 0.

(3) follows from [D, cD] = (Dc)D.
(4) follows from (2): (cD)p is a derivation, and is a linear combination of

D,D2, . . . , Dp and thus must be a linear combination of D,Dp alone. An easy
computation gives the exact value of the coefficients.

(5) and (6) are immediate consequences of (4).
(7) can be derived by using (4) in two ways, once with D = bD1 and once

with D1 = b−1D, and comparing the two resulting expressions for Dp−bpD1
p.

Now if one applies D1 to (8) and multiplies by bp+1 one obtains (7). Thus in
(8) we have at least that Dp−2

1 b−1 + b−pDp−2b is a constant (of D). However,
an explicit evaluation would yield a polynomial in Db, . . . ,Dp−2b that can
only be a constant in general if it vanishes in general.
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(5.4) Definition of s(p). Using the identification above of sections of
TD(V ) with derivations on K(V ), we write s(p) for the rational section t such
that Dt = (Ds)p, the iterated composition of p copies of Ds (which is a
derivation by (5.3)).

Warning. We use this notation even if s is not defined over the constants.
In particular, it may happen that V is defined over the constants while s is
not. In this case s(p) depends on the derivation D on K, and not only on the
algebraic data K,V, s. Nonetheless, we will write simply s(p) when this does
not lead to confusion.

Lemma. Let K be a separably closed field of characteristic p > 0.
(1) Let V be a smooth variety over K. Let ω be an exact 1-form on V ,

and let s be a vector field. Suppose ω ◦ s = 0. Then ω ◦ s(p) = 0.
(2) In (1), assume instead ω ◦ s = 1. Then still ω ◦ s(p) = 0.

Proof. (1) We work in the function field F = K(V ). Let ω = dg1, and
let g1, g2, . . . , gn be a separating transcendence basis of K(V ) over K. (If
g1 ∈ K(V )pK, then ω = 0 and there is nothing to prove). So we have a basis
Di = ∂/∂gi for the K-derivations of F . Observe first that, on the polynomial
ring K[g1, . . . , gn], the analogue of (5.3)(2) is valid for the (partial) derivatives
D1, . . . , Dn: If L =

∑
ν aνD

ν is a differential operator, where all the Dν are
of the form D

i(1)
1 · · ·Di(n)

n , with 0 ≤ i(j) < p for each j ≤ n and
∑
j i(j) ≥ 2,

and if L is a derivation, then L = 0. This is proved in the same way as
(5.3)(2), using the Leibniz rule for several commuting derivations. Observe
also that each Dp

i = 0. Hence the same holds in K(V ).
Now write Ds =

∑n
i=1 biDi. Then 0 = ω ◦ s = b1, so actually Ds =∑n

i=2 biDi. Thus Dp
s is a differential operator involving products of the Di,

i ≥ 2. By the first paragraph, Dp
s =

∑p
i=2 ciDi for appropriate ci ∈ K(V ).

Thus ω ◦ s(p) = 0.
(2) Let ω = dg. Let W = V × A1, t ∈ K(W ) correspond to the projection

W → A
1, and let ω′ = d(g − t) = dg − dt (an exact 1-form on W ). Let

s′ = (s, 1). Then ω′ ◦ s′ = dg ◦ s − (dt) ◦ 1 = 1 − 1 = 0. By (1), we have
ω′ ◦ (s′)(p) = 0. But (s′)(p) = (s(p), 0). So dg ◦ s(p) = 0.

(5.5) Definition of integrability. Let V be a smooth variety, s an ev-
erywhere defined rational vector field on V , and f the corresponding foliation.

(1) We say that C is an algebraic integral curve of f , if C ⊂ V is an
algebraic curve such that on some Zariski open subset C ′ of C, we
have s|C′ ⊆ T (C ′) (Note that this does not depend on the choice of
s.) An integral curve of a vector field is then an integral curve of the
corresponding foliation.

(2) We assume that the characteristic is 0. We say that f is (birationally)
integrable if through every point in a Zariski open subset of V there
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passes an algebraic integral curve of f . Similar terminology is used
for s.

(5.6) Lemma (char. 0). Let V be a smooth variety and s an everywhere
defined rational vector field on V , defined over an algebraically closed field L,
with s 6= 0, and f the corresponding foliation. Let (U, D) be a differentially
closed field, with L contained in the field k of constants of U. Let X = Xs =
{x ∈ V | Dx = s(x)}. The following conditions are equivalent:

(I1) f is integrable.
(I2) There exists a Zariski open set V 0 ⊂ V and a regular rational function

h : V 0 → V ′ with irreducible fibres of dimension 1, all of whose fibres
are integral curves of f .

(I3) There exists a differential rational function g : X → X ′ with X ′ =
V ′(k) a definable subset of the constants, g defined over the constants,
and with fibres of Kolchin order 1.

Proof. Assume (I1), and s 6= 0. By compactness, there exists a Zariski-
closed set E ⊂ V and a constructible family {Ca | a ∈ M} of (irreducible)
curves on V , such that s does not vanish on V 1 = V \ E, and through any
p ∈ V 1 there exists a ∈M with p ∈ Ca, and Ca an (irreducible) integral curve
of s. We may assume that if a 6= b ∈ M , then the intersection Ca ∩ Cb is
finite. (Otherwise we factor M by the definable equivalence relation a ∼ b if
and only if Ca ∩ Cb is infinite.) Then, for any point p ∈ V 1, there exists a
unique integral curve Ca through p. It follows that a = h(p), for some rational
function h : V 0 →M , for some Zariski open subset V 0 of V with Ca = h−1(a)
for a ∈ V 0. Thus (I2) holds, with V ′ = M . That (I2) implies (I1) is clear.

Assume (I2). Factoring V ′ by the relation h−1(a) = h−1(b), we may as-
sume that for each p ∈ V 0, h(p) generates the field of definition of the curve
h−1(h(p)). Since everything said so far is purely algebraic, we may assume
that h and V ′ are defined over k. We will now show that if p ∈ X = Xs, then
D(h(p)) = 0. Let p ∈ X, a = h(p), Ca = h−1(a). Then the tangent space
Tp(Ca) is defined by the equation dhp(ū) = 0. Since h is defined over the
constants and p ∈ X, we have Da = Dh(p) = dhp(Dp) = dhp(s(p)). Because
Ca is an integral curve of s, we have s(p) ∈ Tp(Ca), and therefore Da = 0.
Clearly, if a ∈ V ′(k), then h−1(a) = Ca defines a subset of V of Kolchin order
1.

We now assume (I3). Let L′ be an algebraically closed subfield of k over
which everything is defined, and fix a generic p ∈ X over L′, and a = g(p).
Since Dp = s(p), we may assume that g is a rational polynomial function.
Then g−1(a) is a Kolchin closed subset ofX of order 1. Let Ya be an irreducible
component of g−1(a) passing through p, of maximal order. If dim(Ya) = 0,
then p is algebraic over L′(a), i.e., X ⊂ k. Thus s = 0, a contradiction. It
follows that dim(Ya) = 1, and the Zariski closure Ca of Ya in V is an irreducible
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algebraic curve, defined over some finite extension of L′(a). Hence, replacing
X ′ by some finite cover Y ′ → X ′, we may assume that g−1(a) is irreducible,
of dimension 1. As p was generic, this holds on some Kolchin-dense subset
X0 of X.

Since g is defined over the constants, g extends to a rational polynomial
map h defined on some Zariski open subset V 0 of V , taking its values in
V ′. From Dh(p) = 0 we deduce that dhp(Dp) = dhp(s(p)) = 0, so that
s(p) ∈ Tp(Ca). This being true at a generic point of V , it is true on some
Zariski open subset of V and shows that for almost all a ∈ V ′, h−1(a) defines
an irreducible algebraic integral curve of s.

(5.7) Lemma (char. 0). Let V and V ′ be varieties, and f : V → V ′ a
finite-to-one onto rational map. Assume that s is a vector field on V , s′ is a
vector field on V ′, and that df ◦ s = s′ ◦ f . Then (V, s) is integrable if and
only if (V ′, s′) is integrable.

Proof. Our assumption implies that if U is a differentially closed field such
that all data are defined over some subfield L of the constants k, then f induces
a finite-to-one map X → Y , where X = Xs ⊂ V , and Y = Xs′ ⊂ V ′. (I3)
immediately gives that if (V ′, s′) is integrable, then so is (V, s). Conversely,
assume that g : X → X ′ is a rational map with fibres of dimension 1, and
with X ′ = W (k), for some variety W . By the proof of (5.6), we may assume
that for each a ∈ X ′, g−1(a) is an irreducible Kolchin closed subset of X
of dimension 1, and that a 6= b implies g−1(a) 6= g−1(b). We factor X ′ by
the equivalence relation E defined by E(a, b) if and only if for some generic
p ∈ g−1(a) and generic p′ ∈ g−1(b) we have f(p) = f(p′). Because we are in a
stable context, this is an equivalence relation, with finite classes as f is finite-
to-one. By elimination of imaginaries, and because the structure induced on
k by U is the pure field structure, we get X ′/E = W ′(k), for some algebraic
variety W ′ defined over k. This gives us a rational map g′ : Y → W ′(k)
satisfying the assumptions of (I3).

Remark (char. 0). Let f : V → V ′ be as above, with everything defined
over some algebraically closed field L. While not every vector field s on V is
such that df ◦ s is of the form s′ ◦ f , the converse is true: If s′ is a vector field
on V ′, then there is a vector field s on V such that df ◦s = s′ ◦f . This follows
from the fact that the derivation Ds′ on L(V ′) defined by s′ extends uniquely
to a derivation of L(V ). (As f is finite-to-one, L(V ) is a finite algebraic
extension of L(V ′).) This derivation in turn defines a rational vector field s
on V , and s clearly satisfies df ◦ s = s′ ◦ f . (In positive characteristic, one
needs to assume in addition that f is separable.)

(5.8) Definition of parametric integrability. Let V be a smooth va-
riety and s an everywhere defined rational vector field on V , and f the corre-
sponding foliation. We say that (V, f) (or (V, s)) is parametrically integrable
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if for a generic v ∈ V there exists a curve C, a finite-to-one rational map
π : C → A

1, and a rational map g : C → V such that, if s1 is the vector field
on C satisfying dπ◦s1 = 1◦π (where 1 is the constant vector field on A1), then
dga ◦ s1(a) = s(v) for some a ∈ C with g(a) = v and (v, a) a generic of V ×C
(over the field of definition of V and C). We then call g(C) a parametrised
curve through v.

(5.9) Lemma. Let (V, s) be as above, defined over an algebraically closed
field L of characteristic 0. Let (U, D) be a differentially closed field, with
L contained in the field k of constants of U, and fix t ∈ U, Dt = 1. Let
X = Xs = {x ∈ V | Dx = s(x)}. The following conditions are equivalent:

(PI0) s is parametrically integrable.
(PI1) Let s∗(v, u) = (s(v), 1), so that s∗ is a vector field on V × A1. Then

s∗ is integrable.
(PI2) There exists a finite-to-one rational map g : V → V ′, a vector field

s′ on V ′ satisfying dg ◦ s = s′ ◦ g, a variety W and a dominant map
f : W × A1 → V ′, such that for w ∈W , {f(w, t′) | t′ ∈ A1} describes
an integral curve of s′.

(PI3) There exists (over L) a finite-to-one differentially rational map h :
X → X ′, and with X ′ ⊂ k(t).

(PI3’) X ⊂ k(t)alg.

Proof. Assume (PI0), let v be a generic of V , and let C, g, π, s1, a be as
in Definition (5.8), b = π(a). Then C ′ = {(g(t′), π(t′)) | t′ ∈ C} defines a
curve C ′ on V × A1. The tangent space T(v,b)(C ′) is then parallel to (dga ◦
s1(a), dπa ◦ s1(a)) = (s(v), 1). Hence C ′ is an algebraic integral curve for s1.
As (v, b) is a generic of V × A1, this shows that s1 = s∗ is integrable.

Conversely, assume (PI1), and let C ⊂ V ×A1 be an algebraic integral curve
for s∗ through some generic point (v, b) of V × A1. Let π : C → A

1 be the
restriction to C of the projection V ×A1 → A

1. By assumption s∗|C ⊂ T (C),
so that (s(v), 1) ∈ T(v,b)(C), and this implies that the map π is not constant,
i.e., that it is dominant and therefore finite-to-one. Define a vector field s1 on
C by dπ ◦ s1 = 1 ◦π (see Remark (5.7)), and let g : C → V be induced by the
projection V ×A1 → V . Then (g, π) corresponds to the inclusion C ⊂ V ×A1,
so that T(v,b)(C) is parallel to (dg(v,b) ◦ s1(v, b), dπ(v,b) ◦ s1(v, b)). This implies
that dg(v,b) ◦ s1(v, b) = s(v), which is what we wanted to prove.

(PI2) clearly implies (PI1), using Lemma (5.7), as for w ∈W , {(f(w, t), t) |
t ∈ A1} is an integral curve of (s′, 1).

(PI3) implies (PI2): Since X is in standard form, we may assume that the
differential map h is in fact an algebraic (rational) map. Since X ′ is of finite
order, we may also assume, changing h if necessary, that X ′ is in standard
form: If v ∈ X, then D(h(v)) ∈ L(v,Dv, . . . ) = L(v). Let (V ′, s′) be a
standard presentation for X ′.



614 ZOÉ CHATZIDAKIS AND EHUD HRUSHOVSKI

If a is a generic element ofX ′, then a ∈ L(t, c1, . . . , cm) for some c1, . . . , cm ∈
k. Note that if c = (c1, . . . , cm), then c and t are independent, so the (dif-
ferential) locus Z of c over L(t) is in fact defined over L, and is a Kolchin
closed subset of km. Thus there exists a dominant rational map (defined over
L(t)) g0 : Z → X ′. The map g0 naturally defines a rational dominant map
g : W → V ′, where W is the Zariski closure of Z (which is defined over L).

Let f be a tuple of elements of L(W × A1) such that for z ∈ W we have
g(z) = f(z, t). We obtain an algebraic dominant map f : W×A1 → V ′, which
is defined over L. Let c and a be as in the previous paragraph. Then (c, t) is a
generic point of the algebraic set W ×A1, and a = f(c, t) is a generic point of
V ′. Since f(c, t) ∈ X ′, D(f(c, t)) = s′(f(c, t)). Since f is defined over L ⊂ k

and c ∈ km, we obtain that D(f(c, t)) = ∂f
∂T (c, t) = s′(f(c, t)). This shows

that the curve {f(c, u) | u ∈ A1} is an integral algebraic curve for s′ passing
through a. As a is a generic of V ′, this shows that (V ′, s′) is integrable.

(PI3) clearly implies (PI3’). Assume that (PI3’) holds, let a be a generic of
X over L, and let b be the tuple of coefficients of the minimal polynomial of a
over k(t). Then b ∈ dcl(L, a): Any automorphism of U which fixes a induces
an automorphism of k(t) (as it is the smallest field containing k and the set
of solutions of Dx = 1), and therefore fixes b. Hence there is a differential
rational map h defined over L such that h(a) = b. This map h is defined on
a Kolchin dense subset of X, and has for image a definable set X ′ consisting
of tuples in k(t), because b ∈ k(t). Since a is algebraic over the tuple b, the
map h is (generically) finite-to-one.

It remains to show that (PI1) implies (PI3’), or, since we are working
birationally, that X \ E ⊂ k(t)alg for some proper Kolchin closed E ⊂ X.

Let Y be the Kolchin set with standard presentation (V × A1, s∗), and let
(a, u) ∈ Y be generic. Let g : Y → Y ′ = V ′(k) be given by (I3). As Du = 1,
we know that u is a generic (over k) of the set defined by Dx = 1. Since the
fibres of g have Kolchin order 1, it follows that a is algebraic over k(u) = k(t),
which proves (PI3’).

(5.10) p-torsion and algebraic points. In characteristic p > 0, the
differential field of separable algebraic functions Fp(t)s satisfies an additional
universal axiom, and indeed an equation: Dp = 0.

Proposition. Let (L,D) be a differential field satisfying p = 0 and Dp = 0.
Then (L,D) embeds into an elementary extension of (Fp(t)s, D). If u ∈ L
satisfies Du = 1, one can demand u 7→ t.

Proof. If every element of L is a constant, i.e., if D = 0, then the (trivial)
differential field L embeds into the field of constants of an elementary exten-
sion of Fp(t)s. Otherwise, we show that there exists u ∈ L, Du = 1. There
exists a ∈ L, Da 6= 0. We still have Dpa = 0, so for some i ≥ 0, Di+1a 6= 0,
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Di+2a = 0. Let c = Di+1a, so that Dc = 0, and set u = (Dia)/c. Then
Du = 1.

Now start with any u ∈ L with Du = 1. By induction on ` < p, observe
that any element of ker(D`) can be written as x =

∑
0≤i≤`−1 aiu

i, with ai ∈
ker(D). (Let a`−1 = (1/(` − 1)!)D`−1x. Then Da`−1 = 0, x − a`−1u

`−1 ∈
ker(D`−1), and use induction.) In particular, the field L has dimension p over
ker(D).

If b ∈ L, Db = 0, then by standard lemmas on derivations there exists
an extension DM of D to M = L(b1/p) satisfying DM (b1/p) = 0. We have
(DM )p = 0 (on L and on b1/p, and hence in general). Iterating this, we may
enlarge L so that any D-constant is a p-th power in L.

Now view L as a pure field. Then [L : Lp] = [L : ker(D)] = p, so that
the separable closure of L is a separably closed field of degree of imperfection
1, with p-basis {u}. By Ershov’s theorem, Ls embeds elementarily in some
elementary extension F of Fp(t)s, with u 7→ t. Since both F and L have a
unique derivation satisfying Dt = 1, resp. Du = 1, this embedding is an
embedding of differential fields.

In fact, the theory of the differential field Fp(t)s is the model companion of
the universal theory of differential fields satisfying Dp = 0. It would be easy
to prove the proposition without quoting Ershov, but we preferred to make
the connection with existing model theory.

(5.11) Proposition (nonlinear Cartier). Let (V, s) be a standard pre-
sentation for X over Fp(t)s (Dt = 1). Then X has densely many separable
algebraic solutions iff s(p) = 0.

Proof. Suppose X has densely many separable algebraic solutions. Then
in an elementary extension L of the differential field Fp(t)s it has a generic
solution a. Now L |= (∀x)(Dpx = 0). Thus Dpa = s(p)(a) = 0. Since a is
generic, s(p) vanishes on V .

Conversely, suppose s(p) = 0. Let K = Fp(t)s(a), where a is a generic point
of V over Fp(t)s. Extend the derivation of Fp(t)s to K by setting Da = s(a).
Then Dpa = s(p)(a) = 0. As Dp is a derivation, vanishing on Fp(t)s and on
a, it vanishes on K. By Proposition (5.10), K embeds into an elementary
extension L of Fp(t)s. In L, X has a generic solution (namely a), so in
the elementary submodel Fp(t)s, it has a solution outside any given proper
subvariety of V .

(5.12) Important remark. In finite characteristic, Kolchin density of
the separable algebraic solutions implies finite order of the equation; since the
set of separable algebraic solutions definitely satisfies a finite order equation
(Dpx = 0 if nothing else).
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(5.13) Discussion and problems: Nonlinear Cartier cycles. The
view of the question presented here, via existence of dense sets of separable
algebraic points, raises an interesting issue. If a differential equation has a
Zariski dense set of separable algebraic solutions over Q(t), it does not follow
that almost all reductions modulo p have such a set of solutions. For instance,
the Manin kernel equations have a Zariski dense set of solutions—the torsion
points at least—but they are rarely integrable.

The conjecture is saved by some interesting algebraic cycles occurring only
in positive characteristic. In the case of the Manin kernels, for each p, one
obtains a differential equation of lower order, describing the multiples of p in
the Abelian variety; cf. [BV]. More generally, given an equation in standard
form (V, s), one obtains the (possibly reducible) Cp(V ) defined by the vanish-
ing of s(p). Another example may be the definition of the graph of Frobenius
given in Section 3.

It appears very interesting to study the asymptotic theories of these vari-
eties Cp(V ), in particular cases and in general.

(5.14) Notation. In what follows, we will reduce polynomials, varieties
over Qalg or Qalg(t), etc., modulo p, and indicate the resulting object over Fsp,
resp. Fp(t)s, by a lower index p.

(5.15) Statements of the conjectures. Our aim in this section and
the next one is to prove the equivalence of the following two conjectures:

(K) Let f be a rational algebraic foliation on a variety V over Qalg, repre-
sented by the rational vector field s. Assume that for almost all primes p, the
vector field s(p)

p is proportional to the vector field sp. Then (V, f) is integrable.

(MK) Let X be a Kolchin closed set of finite order, defined over Q(t)alg,
where Dt = 1. Assume that for almost all primes p, Xp has a Kolchin dense
set of solutions in Fp(t)s, where Dt = 1. Then, in any differentially closed
field U containing Q(t) and in which Dt = 1, X ⊂ k(t)alg, where k stands for
the constants of U.

In (5.6), we have discussed algebraic integrability (giving a more obviously
recursively enumerable form). Our proof of the equivalence of the two con-
jectures passes through a parametrised version (PK) of (K), which is more
model-theoretically convenient, and which we state below. We then prove the
equivalence of the homogeneous version stated as (K) with (PK).

Let us state immediately the parametrised version.

(PK) Let s be a rational vector field on a variety V over Qalg. Assume that
for almost all primes p, s(p)

p = 0. Then (V, s) is parametrically integrable.
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(5.16) Equivalence of the conjectures (K), (PK), and (MK).

(MK) ⇒ (PK): Let (V, s) satisfy the assumptions of (PK), and let X be
the Kolchin closed set it defines. By (5.11), for almost all p the reduction
of X modulo p has a Kolchin dense set of solutions in Fp(t)s. By (MK) and
(5.9), (V, s) is parametrically integrable.

(PK) ⇒ (MK): We work in a differentially closed field U. Let (V, s) be a
standard presentation over Qalg for a Kolchin set X of finite order satisfying
the hypothesis of (MK). By (5.11), s(p)

p = 0 for almost all p. By (PK) and
(5.9), this implies that X ⊂ k(t)alg. We have therefore shown that the validity
of (PK) implies the validity of (MK) for Kolchin closed sets defined over Qalg.
It remains to show that this restricted version of (MK) implies the general
one.

Let X be a Kolchin closed set defined over Q(t)alg, Dt = 1, which we may
and will assume irreducible, and which satisfies the hypotheses of (MK). Then
X is defined over Qalg(t, t′), where t′ ∈ Q(t)alg, and has standard presentation
(V, s), with V and s defined over Qalg(t, t′). We write V = W (t, t′), s =
s′(x, t, t′), where W and s′ are defined over Qalg. Let C be the curve locus of
(t, t′) over Qalg. Then the formula (y, y′) ∈ C ∧Dy = 1 isolates tp(t, t′/Qalg)
(the type in the sense of U).

We now consider the Kolchin set Y defined by (x, y, y′) ∈ W ∧ Dx =
s′(x, y, y′) ∧Dy = 1. It is defined over Qalg and has order 1 + ord(X). Note
that for almost all p, the reduction Cp of the curve C modulo p is absolutely
irreducible, and there exists t′′ ∈ Fp(t)s such that (t, t′′) belongs to Cp.

Let p be a prime such that Xp has a Kolchin dense set of solutions in Fp(t)s.
Then, in some elementary extension L of the differential field Fp(t)s, Xp has
a generic solution a over Fp(t)s. But then (a, t, t′′) is a generic solution of
Yp over Fsp, because Dt = 1. Hence Yp has a generic point in L, and this
implies that the set of points of Yp(Fp(t)s) is Kolchin dense in Yp. By (MK)
over Qalg, we have Y ⊂ k(t)alg, where k stands for the constants of U. As
X × {t, t′} ⊂ Y , we get the result.

(K)⇒ (PK): Given (V, s) as in (PK), consider (W, s∗), where W = V ×A1

and s∗ = (s, 1). Note that for every p, s∗p
(p) = (s(p)

p , 0). Thus if s(p)
p = 0 then

also s∗p
(p) = 0. By (5.3)(4) and (5), if h ∈ Qalg(W ), h 6= 0, then (hs∗)(p)

p is
proportional to (hs∗)p. By (K), (W,hs∗) is integrable, hence so is (W, s∗),
and it follows that (V, s) is parametrically integrable.

(PK)⇒ (K): Let (V, f) be as in (K), and let s be a vector field representing
f . Let g be a nonconstant rational function on V , such that dg◦s 6= 0. Replace
s by s/(dg ◦ s); then dg ◦ s = 1.

By Lemma (5.4), dgp ◦ s(p)
p = 0. However, by assumption, s(p)

p = rsp for
some r ∈ Fsp(V ). Thus r(dgp ◦ sp) = 0. So (recalling (dg ◦ s) = 1) we have

r = 0, and s
(p)
p = 0 for almost all p. At this point (PK) applies, so that s is
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parametrically integrable. But parametric integrability implies integrability,
since an algebraic integral curve of (s, 1) projects to an algebraic integral curve
of s.
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