Illinois Journal of Mathematics Volume 45, Number 3, Fall 2001, Pages 925–938 S 0019-2082

INTEGRATION IN VECTOR SPACES

GUNNAR F. STEFÁNSSON

ABSTRACT. We define an integral of a vector-valued function $f: \Omega \longrightarrow X$ with respect to a bounded countably additive vector-valued measure $\nu: \Sigma \longrightarrow Y$ and investigate its properties. The integral is an element of $X \otimes Y$, and when f is ν -measurable we show that f is integrable if and only if $||f|| \in L_1(\nu)$. In this case, the indefinite integral of f is of bounded variation if and only if $||f|| \in L_1(|\nu|)$. We also define the integral of a weakly ν -measurable function and show that such a function f satisfies $x^*f \in L_1(\nu)$ for all $x^* \in X^*$ and is $|y^*\nu|$ -Pettis integrable for all $y^* \in Y^*$.

1. Introduction and notation

R.G. Bartle [1] introduced an integral in which both the function to be integrated and the measure take values in normed linear spaces; the integral of an X-valued function with respect to a Y-valued (finitely) additive measure appears as an element of a Banach space Z via a bilinear mapping $X \times Y \longrightarrow Z$. The integral possesses some of the properties usually associated with the Lebesgue theory of integration; in particular, the Vitali and Bounded Convergence theorems remain valid in this setting, while the Lebesgue Dominated Convergence theorem fails.

In this paper we define the integral of an X-valued function with respect to a Y-valued measure as an element of the injective tensor product of $X \otimes Y$.

We begin by defining the integral of a strongly measurable function, an analogue of the Bochner integral [2], and closely connected to the integral of D. R. Lewis [3]. Next, we extend the integral to less measurable functions, namely, functions which are not essentially separably valued. This extension requires a different approach to the integral, and our setup follows that of [2, Section I.3].

Given a Banach space X, its closed unit ball is denoted by B_X , and its dual by X^* . If X and Y are Banach spaces, the space of all bounded linear operators from X to Y is denoted by $\mathcal{L}(X,Y)$, and $\mathcal{K}(X,Y)$ denotes the closed

Received July 21, 2000; received in final form February 22, 2001.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46G10, 28B05. Secondary 46B99.

subspace of all compact linear operators. $\mathcal{B}(X, Y)$ represents the space of all bounded bilinear functionals on $X \times Y$, and the completion of the tensor product $X \otimes Y$ with respect to the least reasonable cross norm is $X \otimes Y$.

If (Ω, Σ) is a measurable space and $\nu : \Sigma \longrightarrow Y$ a countably additive measure, its semivariation on a set $E \in \Sigma$ is given by $\|\nu\|(E) = \sup\{|y^*\nu|(A) : y^* \in B_{Y^*}\}$, where $|y^*\nu|$ is the variation of the scalar measure $y^*\nu$. The measure ν is called bounded if $\|\nu\|(\Omega) < \infty$. The variation of ν , denoted by $|\nu|$, is given by $|\nu|(E) = \sup_{\pi} \sum_{A \in \pi} \|\nu(A)\|$, where the supremum is taken over all finite partitions π of E into pairwise disjoint members of Σ .

By a theorem of Rybakov [2, Section IX.2, Theorem 2], there exists $y^* \in B_{Y^*}$ such that $|y^*\nu| \leq ||\nu|| \ll |y^*\nu|$. As defined in [3], a function $f: \Omega \longrightarrow \mathbb{R}$ is said to have a generalized integral with respect to ν if f is $y^*\nu$ -integrable for all $y^* \in Y^*$. The generalized ν -integral of f over $E \in \Sigma$ is an element $y_E^{**} \in Y^{**}$ such that

$$y_E^{**}(y^*) = \int_E f \, dy^* \nu$$

for all $y^* \in Y^*$. The function is called ν -integrable if y_E^{**} belongs to the image of Y in Y^{**} . In [6] it was shown that the space of all (equivalence classes) of functions having a generalized integral with respect to ν is a Banach space when equipped with the norm

$$||f||_{\nu} = \sup\left\{\int_{\Omega} |f| \, d|y^* \nu| \, : \, y^* \in B_{Y^*}\right\}.$$

We denote this space by $w-L_1(\nu)$. The space $L_1(\nu)$ of all ν -integrable functions is a closed subspace of $w-L_1(\nu)$.

If $\mu : \Sigma \longrightarrow \mathbb{R}$ is countably additive and finite, $L_1(\mu, X)$ denotes the Banach space of all (equivalence classes) of μ -Bochner integrable functions $f: \Omega \longrightarrow X$ with norm

$$\|f\| = \int_{\Omega} \|f\| \, d\mu$$

If $x^* f \in L_1(\mu)$ for all $x^* \in X^*$ then f is said to be μ -Dunford integrable. In this case, the mapping

$$T_f: X^* \longrightarrow L_1(\mu),$$

defined by $T_f(x^*) = x^* f$, is bounded. The μ -Dunford integral of f over a set $E \in \Sigma$ is an element $x_E^{**} \in X^{**}$ such that for all $x^* \in X^*$,

$$x_E^{**}(x^*) = \int_E x^* f \, d\mu.$$

If $x^{**} \in X \subset X^{**}$ then f is said to be μ -Pettis integrable. $P(\mu, X)$ denotes the completion of the vector space of all (equivalence classes of) μ -Pettis integrable functions $f : \Omega \longrightarrow X$ with norm

$$||f||_P = \sup\left\{\int_{\Omega} |x^*f| \, d\mu \, : \, ||x^*|| \le 1\right\}.$$

2. Definition of the integral and basic properties

Throughout this section, let X and Y be real Banach spaces, (Ω, Σ) a measurable space and $\nu : \Sigma \longrightarrow Y$ a bounded and countably additive measure. We assume that the measurable space is complete with respect to $|y^*\nu|$, where $y^* \in B_{Y^*}$ is chosen such that $\|\nu\| \ll |y^*\nu|$. A function $f : \Omega \longrightarrow X$ is said to be ν -measurable if there exists a sequence (ϕ_n) of simple functions such that $\|\|\mu\| \ll \|x^*\nu|$. A function $f : \Omega \longrightarrow X$ is said to be ν -measurable if there exists a sequence (ϕ_n) of simple functions such that $\|\|m\| = 0 \|\|\nu\|$ -almost everywhere. Similarly, a function $f : \Omega \longrightarrow X$ is weakly ν -measurable if for each $x^* \in X^*$ the scalar function x^*f is $\|\nu\|$ -measurable. Clearly, f is ν -measurable if and only if it is $|y^*\nu|$ -measurable. Thus we have the following Pettis type measurability theorems (see [2, Section II.1]).

THEOREM A. A function $f: \Omega \longrightarrow X$ is ν -measurable if and only if

- (1) f is $\|\nu\|$ -essentially separably valued, and
- (2) f is weakly ν -measurable.

COROLLARY B. A function $f : \Omega \longrightarrow X$ is ν -measurable if and only if f is the ν -almost everywhere uniform limit of a sequence of countably valued ν -measurable functions.

Let $\phi = \sum x_i \chi_{A_i}$ be an X-valued simple function and let $E \in \Sigma$. We define $\int_E \phi \, d\nu$ by the equation

$$\int_E \phi \, d\nu = \sum x_i \otimes \nu(E \cap A_i).$$

Since ν is additive, $\int_E \phi \, d\nu$ does not depend on the representation of ϕ . Furthermore, for any element $x^* \otimes y^* \in B_{X^*} \times B_{Y^*}$, we get

$$\begin{aligned} \left| x^* \otimes y^* \left(\int_E \phi \, d\nu \right) \right| &= \left| \sum x^*(x_i) \cdot y^* \nu(E \cap A_i) \right| \\ &\leq \sum |x^*(x_i)| \cdot |y^* \nu| \left(E \cap A_i \right) \\ &\leq \sum ||x_i|| \cdot |y^* \nu| \left(E \cap A_i \right) \\ &= \int_E ||\phi|| \, d \left| y^* \nu \right|. \end{aligned}$$

Therefore, if we view $\int_E \phi \, d\nu$ as an element of $X \check{\otimes} Y$, then

$$\left\|\int_{E} \phi \, d\nu\right\| \le \sup\left\{\int_{E} \|\phi\| \, d \, |y^*\nu| \, : \, y^* \in B_{Y^*}\right\}.$$

DEFINITION 1. A ν -measurable function $f : \Omega \longrightarrow X$ is called $\check{\otimes}$ -integrable, if there exists a sequence (ϕ_n) of simple functions such that

(1)
$$\lim_{n} \sup \left\{ \int_{\Omega} \|f - \phi_n\| \, d \, |y^*\nu| \, : \, y^* \in B_{Y^*} \right\} = 0.$$

In this case, the sequence $\left(\int_E \phi_n d\nu\right)$ is a Cauchy sequence in $X \otimes Y$ for each $E \in \Sigma$. The limit,

(2)
$$\int_E f \, d\nu = \lim_n \int_E \phi_n \, d\nu,$$

is called the $\check{\otimes}$ -integral of f over E with respect to ν . Since the integral of a simple function does not depend on the representation of this function, the above limit is well defined and independent of the defining sequence $(\int_E \phi_n d\nu)$. To simplify the notation, we set

$$\mathbf{N}(f) = \sup\left\{\int_{\Omega} \|f\| \, d \, |y^*\nu| \, : \, y^* \in B_{Y^*}\right\} \,,$$

whenever $f: \Omega \longrightarrow X$ is ν -measurable.

THEOREM 1. A ν -measurable function f is $\check{\otimes}$ -integrable if and only if ||f|| is ν -integrable.

Proof. To prove necessity, let f be a $\check{\otimes}$ -integrable function and (ϕ_n) a sequence of simple functions such that $\lim_n \mathbf{N}(f - \phi_n) = 0$. If we denote the essential supremum of $\|\phi_n(\cdot)\|$ by M_n , then $\mathbf{N}(\phi_n) \leq M_n \|\nu\|(\Omega)$ and consequently, $\mathbf{N}(f) < \infty$. It follows that $\|f\|$ has a generalized integral with respect to ν ; that is, $\|f\| \in w - L_1(\nu)$. But $\|f\| - \|\phi_n\| \leq \|f - \phi_n\|$, and therefore $\|\|f\| - \|\phi_n\|\|_{\nu} \leq \mathbf{N}(f - \phi_n)$. Thus, $(\|\phi_n\|)$ converges to $\|f\|$ in $w \cdot L_1(\nu)$. Since each $\|\phi_n\| \in L_1(\nu)$, and $L_1(\nu)$ is a closed subspace of $w \cdot L_1(\nu)$, $\|f\|$ is in fact an element of $L_1(\nu)$.

To prove sufficiency, assume ||f|| is ν -integrable. By [3, Theorem 2.2], the indefinite integral of ||f|| with respect to ν is a countably additive Y-valued measure and $\lim_{\|\nu\|(E)\to 0} \mathbf{N}(f \cdot \chi_E) = 0$.

Using Corollary B, we obtain a sequence (f_n) of countably valued functions such that $||f - f_n|| \le 1/n ||\nu||$ -almost everywhere. Then $||f_n|| \le ||f|| + 1/n$ and so, by [6, Proposition 5], $||f_n||$ is ν -integrable for all n. In particular,

(3)
$$\lim_{\|\nu\|(E)\to 0} \mathbf{N}(f_n \cdot \chi_E) = 0.$$

Write

$$f_n = \sum_{k=1}^{\infty} x_{n,k} \chi_{E_{n,k}},$$

where $E_{n,i} \cap E_{n,j} = \emptyset$ if $i \neq j$, $E_{n,k} \in \Sigma$ and $x_{n,k} \in X$. For each n, equation (3) above allows us to choose p_n large enough so that

$$\sup_{\|y^*\| \le 1} \int_{\bigcup_{k>p_n} E_{n,k}} \|f_n\| \, d \, |y^*\nu| \, < \, \frac{\|\nu\|(\Omega)}{n}.$$

If we let $\phi_n = \sum_{k < p_n} x_{n,k} \chi_{E_{n,k}}$, then ϕ_n is a simple function and

$$\mathbf{N}(f - \phi_n) \le \mathbf{N}(f - f_n) + \mathbf{N}(f_n - \phi_n) \le \frac{2\|\nu\|(\Omega)}{n}.$$

COROLLARY 1. If f is ν -measurable and bounded, then f is $\check{\otimes}$ -integrable.

COROLLARY 2. Let f and g be two ν -measurable functions. If g is $\check{\otimes}$ -integrable and $||f|| \leq ||g|| ||\nu||$ -almost everywhere, then f is $\check{\otimes}$ -integrable.

The following result gives some fundamental properties of the $\check{\otimes}$ -integral.

THEOREM 2. If f is a $\check{\otimes}$ -integrable function, then the set function μ_f defined on Σ by

$$\mu_f(E) = \int_E f \, d\iota$$

is a countably additive measure. Furthermore, we have:

- (1) $\|\mu_f\|(E) = \sup \left\{ \int_E |x^*f| \ d \ |y^*\nu| : x^* \in B_{X^*}, y^* \in B_{Y^*} \right\};$
- (2) $\lim_{\|\nu(E)\|\to 0} \|\mu_f\|(E) = 0;$
- (3) μ_f is of bounded variation if and only if $||f|| \in L_1(|\nu|)$, in which case

$$|\mu_f|(E) = \int_E ||f|| \, d|\nu|.$$

Proof. To prove that μ_f is countably additive it suffices to show that μ_f is weakly countably additive, in view of the Orlicz-Pettis theorem. To this end, let (E_n) be a sequence of pairwise disjoint sets in Σ , let $E = \bigcup_n E_n$, and fix an element $x^* \otimes y^* \in X^* \otimes Y^*$. Equation (2) above shows that for any $F \in \Sigma$

$$(x^* \otimes y^*) \int_F f \, d\nu = \int_F x^* f \, dy^* \nu,$$

and therefore

$$\left| (x^* \otimes y^*) \mu_f(E) - \sum_{n=1}^k (x^* \otimes y^*) \mu_f(E_k) \right| = \left| (x^* \otimes y^*) \mu_f(\bigcup_{n>k} E_n) \right|$$
$$\leq \int_{\bigcup_{n>k} E_n} |x^* f| \, d|y^* \nu|.$$

Clearly $\lim_{n \to kE_n} |x^*f| d |y^*\nu| = 0$, and therefore $(x^* \otimes y^*)\mu_f$ is countably additive. Since $x^* \otimes y^*$ was arbitrary, a theorem of Lewis [4, Lemma 1.1] allows us to conclude that μ_f is weakly countably additive.

To prove (1), we use the fact that any element u^* of $(X \otimes Y)^*$ is of integral type; that is, for any $u \in X \otimes Y$,

$$u^*(u) = \int_{B_{X^*} \times B_{Y^*}} x^* \otimes y^*(u) \, d\mu(x^*, y^*) \quad \text{and} \quad \|u^*\| = |\mu|(B_{X^*} \times B_{Y^*}),$$

where μ is a regular Borel measure on the compact space $(B_{X^*}, \text{weak}^*) \times (B_{Y^*}, \text{weak}^*)$. Let π be a partition of a set E in Σ and u^* an element of the unit ball of $(X \check{\otimes} Y)^*$. Then

$$\begin{split} \sum_{A \in \pi} |u^* \mu_f(A)| &= \sum_{A \in \pi} \left| \int_{B_{X^*} \times B_{Y^*}} x^* \otimes y^* \left(\mu_f(A) \right) \, d\mu(x^*, y^*) \right| \\ &\leq \int_{B_{X^*} \times B_{Y^*}} \sum_{A \in \pi} \left| \int_A x^* f \, dy^* \nu \right| \, d|\mu|(x^*, y^*) \\ &\leq \int_{B_{X^*} \times B_{Y^*}} \sum_{A \in \pi} \int_A |x^* f| \, d \, |y^* \nu| \, d|\mu|(x^*, y^*) \\ &= \int_{B_{X^*} \times B_{Y^*}} \left(\int_E |x^* f| \, d \, |y^* \nu| \right) \, d|\mu|(x^*, y^*) \\ &\leq \sup \left\{ \int_E |x^* f| \, d \, |y^* \nu| \, : \, x^* \in B_{X^*}, y^* \in B_{Y^*} \right\} \cdot |\mu|(B_{X^*} \times B_{Y^*}) \\ &\leq \sup \left\{ \int_E |x^* f| \, d \, |y^* \nu| \, : \, x^* \in B_{X^*}, y^* \in B_{Y^*} \right\}. \end{split}$$

Hence

$$\|\mu_f\|(E) \le \sup\left\{\int_E |x^*f| \ d \, |y^*\nu| \, : \, x^* \in B_{X^*}, y^* \in B_{Y^*}\right\}.$$

To establish the reverse inequality, note that

$$\begin{aligned} \|\mu_f\|(E) &= \sup \left\{ |u^*\mu_f|(E) : \|u^*\| \le 1 \right\} \\ &\geq \sup \left\{ |(x^* \otimes y^*)\mu_f|(E) : \|x^*\|, \|y^*\| \le 1 \right\} \\ &= \sup \left\{ \int_E |x^*f| \, d|y^*\nu| : x^* \in B_{X^*}, y^* \in B_{Y^*} \right\}. \end{aligned}$$

To prove (2), observe that if $y^* \in B_{Y^*}$ is chosen so that $\|\nu\| \ll |y^*\nu|$, the countably additive measure μ_f vanishes on sets of $|y^*\nu|$ -measure zero. Thus, by [2, Theorem I.2.1], μ_f is $|y^*\nu|$ -continuous, and hence ν -continuous.

To prove (3), let us first assume that $||f|| \in L_1(|\nu|)$ and fix $E \in \Sigma$. If π is a finite partition of E, then

$$\sum_{A \in \pi} \|\mu_f(A)\| \le \sum_{A \in \pi} \int_A \|f\| \, d|\nu| = \int_E \|f\| \, d|\nu|.$$

Thus, μ_f is of bounded variation and $|\mu_f|(E) \leq \int_E ||f|| d|\nu|$.

For the converse, suppose μ_f is of bounded variation. If we view $\mu_f(E)$ as an element of $\mathcal{L}(Y^*, X)$, then for any fixed $y^* \in Y^*$, $\mu_f(\cdot)(y^*)$ is a countably additive X-valued measure. If fact, for any $E \in \Sigma$,

$$\mu_f(E)(y^*) = \int_E f \, dy^* \nu,$$

which is the Bochner integral of f with respect to $y^*\nu$. If π is a finite partition of E, then

$$\sum_{A \in \pi} \|\mu_f(A)(y^*)\| \le \sum_{A \in \pi} \|\mu_f(A)\| \cdot \|y^*\|,$$

and hence

$$\int_{E} \|f\| \, d|y^*\nu| \le \|y^*\| \cdot |\mu_f|(E).$$

Fix $E \in \Sigma$ and let $A \in \Sigma$ be a subset of E. Find $y^* \in Y^*$ with $||y^*|| = 1$ such that $||\nu(A)|| = |y^*\nu(A)|$. If $|a| \cdot \chi_A \leq ||f||$, then

$$\|\nu(A)\| = |y^*\nu(A)| \le \int_A d|y^*\nu| \le |a|^{-1} \int_A \|f\| \, d|y^*\nu| \le |a|^{-1} |\mu_f|(A).$$

Consequently, $|a| \cdot |\nu|(E) \leq |\mu_f|(E)$. It follows that for any real-valued, non-negative simple function ϕ satisfying $\phi \leq ||f||$ we have

$$\int_E \phi \, d|\nu| \le |\mu_f|(E)$$

Therefore, $||f|| \in L_1(|\nu|)$ and $\int_E ||f|| \, d|\nu| \le |\mu_f|(E)$.

THEOREM 3 (Dominated Convergence Theorem). Let (f_n) be a sequence of $\check{\otimes}$ -integrable functions which converges $\|\nu\|$ -a.e to a function f. If there exists a $\check{\otimes}$ -integrable function g such that $\|f_n\| \leq \|g\| \|\nu\|$ -a.e., then f is $\check{\otimes}$ -integrable and

$$\lim_{n} \int_{E} f_n \, d\nu = \int_{E} f \, d\nu, \qquad E \in \Sigma.$$

In fact, the limit is uniform with respect to $E \in \Sigma$.

Proof. Note that $||f|| \leq ||g|| ||\nu||$ -a.e. Hence, by Corollary 2, f is $\check{\otimes}$ -integrable. Fix $\epsilon > 0$, and for each n let

$$E_n = \{ \omega \in \Omega : \| f(\omega) - f_n(\omega) \| \ge \epsilon \}$$

For any $E \in \Sigma$ and $(x^*, y^*) \in B_{X^*} \times B_{Y^*}$ we have

$$\left| \int_{E} x^{*}(f - f_{n}) dy^{*} \nu \right| \leq \left| \int_{E \setminus E_{n}} x^{*}(f - f_{n}) dy^{*} \nu \right| + \left| \int_{E \cap E_{n}} x^{*}(f - f_{n}) dy^{*} \nu \right|$$
$$\leq \epsilon \cdot \|\nu\|(E \setminus E_{n}) + 2\|\mu_{g}\|(E \cap E_{n})$$
$$\leq \epsilon \cdot \|\nu\|(\Omega) + 2\|\mu_{g}\|(E_{n}).$$

Hence

$$\left\|\int_{E} f \, d\nu - \int_{E} f_n \, d\nu\right\| \le \epsilon \cdot \|\nu\|(\Omega) + 2\|\mu_g\|(E_n)$$

Since $\lim_n \|\mu_g\|(E_n) = 0$, and ϵ can be chosen arbitrarily small, the result follows.

Let $L_1(\nu, X, Y)$ denote the vector space of all $(\|\nu\|$ -equivalence classes of) $\check{\otimes}$ -integrable functions equipped with the norm $\mathbf{N}(\cdot)$.

THEOREM 4. $L_1(\nu, X, Y)$ is a Banach space.

Proof. If (f_n) is a Cauchy sequence in $L_1(\nu, X, Y)$ then (f_n) is uniformly Cauchy in $L_1(|y^*\nu|, X)$ for all $y^* \in B_{Y^*}$. Let f_{y^*} be the limit of (f_n) in $L_1(|y^*\nu|, X)$.

Find $z^* \in B_{Y^*}$ such that $\|\nu\| \ll |z^*\nu|$. There exists a set $E_{z^*} \in \Sigma$ of $|z^*\nu|$ -measure zero and a subsequence (f_{n_k}) of (f_n) such that

$$\lim_{h} f_{n_k}(\omega) = f_{z^*}(\omega)$$

off E_{z^*} . Similarly, for any $y^* \in B_{Y^*}$ there exists a set $E_{y^*} \in \Sigma$ of $|y^*\nu|$ -measure zero and a subsequence $(f_{n_{k,j}})$ of (f_{n_k}) such that

$$\lim_{j} f_{n_{k,j}}(\omega) = f_{y^*}(\omega)$$

off E_{y^*} . Then $f_{y^*}(\omega) = f_{z^*}(\omega)$ off $E_{y^*} \cup E_{z^*}$. Since $|y^*\nu|(E_{y^*} \cup E_{z^*}) = 0$, it follows that $f_{z^*} \in L_1(|y^*\nu|, X)$ and $f_{z^*} = f_{y^*} |y^*\nu|$ - a.e. Therefore, $f_{z^*} \in L_1(|y^*\nu|, X)$, for all $y^* \in B_{Y^*}$, and $\lim_n \mathbf{N}(f_{z^*} - f_n) = 0$. Set $f = f_{z^*}$.

It remains to show that f is $\check{\otimes}$ -integrable. But each f_n is $\check{\otimes}$ integrable, so we can find a sequence (ϕ_n) of simple functions so that $\mathbf{N}(f_n - \phi_n) < 1/n$. Then

$$\mathbf{N}(f - \phi_n) \le \mathbf{N}(f - f_n) + \mathbf{N}(f_n - \phi_n)$$

< $\mathbf{N}(f - f_n) + 1/n.$

Thus, f is $\check{\otimes}$ -integrable.

EXAMPLE 1. Take X to be any infinite-dimensional Banach space, and take $Y = \mathbb{R}$. Let $\Omega = [0, 1]$ and let ν be the Lebesgue measure.

There exists an unconditionally convergent series $\sum_{n} x_n$ in X that is not absolutely convergent. The function

$$f = \sum_{n} \frac{x_n}{\nu(E_n)} \chi_{E_n},$$

where (E_n) is any partition of [0, 1] into sets of positive measures, is ν -Pettis integrable but not ν -Bochner integrable. If we let f_n be the n'th partial sum, then

- (1) $\lim_{n \to \infty} f_n = f$ everywhere, and
- (2) $\lim_{\nu(E)\to 0} \sup \|\mu_{f_n}\|(E) = 0.$

Since f is not Bochner integrable, the usual formulation of the Vitali convergence theorem does not hold.

Let us consider the same example under more general assumptions.

EXAMPLE 2. Assume we have a sequence (f_n) of $\check{\otimes}$ -integrable functions and a ν -measurable function f such that the following two conditions hold:

- (1) $\lim_{n \to \infty} f_n = f \nu$ -almost everywhere, and
- (2) $\lim_{\nu(E)\to 0} \sup \|\mu_{f_n}\|(E) = 0.$

What can we say about the function f?

CLAIM 1. For any $(x^*, y^*) \in X^* \times Y^*$, we have $f \in P(y^*\nu, X)$ and $x^*f \in L_1(\nu)$.

Indeed, the first assertion follows from [5, Theorem 2.10] and the second follows from [3, Lemma 2.3], once we realize that $(\int_E x^* f_n d\nu)$ is a Cauchy sequence in Y for all $E \in \Sigma$.

CLAIM 2. For any $E \in \Sigma$, the sequence $(\mu_{f_n}(E))$ is Cauchy in $X \check{\otimes} Y$.

To see this, fix $E \in \Sigma$. Since $f_n \longrightarrow f \|\nu\|$ - a.e., we have $\|f_n\| \longrightarrow \|f\| \|\nu\|$ - a.e., and hence $\|f_n\| \longrightarrow \|f\| \|\nu\|$ -almost uniformly.

Let $\epsilon > 0$ and choose $\delta > 0$ such that $\sup_n \|\mu_{f_n}\|(F) < \epsilon$ whenever $\|\nu\|(F) < \delta$. Next, choose a set $F \in \Sigma$ with $\|\nu\|(F) < \delta$ such that $\|f_n\| \longrightarrow \|f\|$ uniformly off F. Then, for any $(x^*, y^*) \in B_{X^*} \times B_{Y^*}$,

$$\begin{aligned} |(x^* \otimes y^*)(\mu_{f_n}(E) - \mu_{f_m}(E))| &\leq \int_{E \cap F} |x^*(f_n - f_m)| \, d|y^*\nu| \\ &+ \int_{E \setminus F} |x^*(f_n - f_m)| \, d|y^*\nu| \\ &\leq 2\epsilon + \epsilon \cdot ||\nu||(\Omega), \end{aligned}$$

for all sufficiently large n and m. Therefore,

$$\|\mu_{f_n}(E) - \mu_{f_m}(E)\| \le 2\epsilon + \epsilon \cdot \|\nu\|(\Omega)$$

for all sufficiently large n and m.

Let u_E denote the limit of the sequence $(\mu_{f_n}(E))$. Then

$$(x^* \otimes y^*)(u_E) = \lim_n (x^* \otimes y^*)(\mu_{f_n}(E)) = \lim_n \int_E x^* f_n \, dy^* \nu = \int_E x^* f \, dy^* \nu.$$

Thus we have shown that, under conditions (1) and (2), the function f, even though it need not be not $\check{\otimes}$ -integrable (as in Example 1), does have a weaker integral, namely $u_{(\cdot)} \in X \check{\otimes} Y$, such that for any x^* and y^* ,

$$(x^* \otimes y^*)(u_E) = \int_E x^* f \, dy^* \nu.$$

We now turn our attention to this weaker integral.

GUNNAR F. STEFÁNSSON

3. The integral of weakly measurable functions

Let $f: \Omega \longrightarrow X$ be a weakly ν -measurable function and choose an element $y_0^* \in B_{Y*}$ such that $\|\nu\| \ll |y_0^*\nu|$.

If $x^*f \in L_1(y^*\nu)$ for all $(x^*, y^*) \in X^* \times Y^*$ and we fix $x^* \in X^*$, then x^*f has a generalized integral with respect to ν . By [6, Proposition 2], the mapping

$$Y^* \ni y^* \longrightarrow x^* f \frac{dy * \nu}{d|y_0^* \nu|} \in L_1(|y_0^* \nu|)$$

is bounded. Similarly, the mapping

$$X^* \ni x^* \longrightarrow x^* f \frac{dy * \nu}{d|y_0^* \nu|} \in L_1(|y_0^* \nu|)$$

is bounded, because for any fixed $y^* \in Y^*$, the function f is $y^*\nu$ -Dunford integrable. This means that if we define an operator $T_{f,\nu} : X^* \times Y^* \longrightarrow L_1(|y_0^*\nu|)$ by the equation

$$T_{f,\nu}(x^*, y^*) = x^* f \frac{dy^*\nu}{d|y_0^*\nu|}$$

then $T_{f,\nu}$ is separately continuous, and thus continuous. Hence, for every $g \in L_{\infty}(|y_0^*\nu|)$, the map ψ_g defined by

$$\psi_g(x^*,y^*) = \int_\Omega g \cdot x^* f \, dy^*
u,$$

is an element of $\mathcal{B}(X^*, Y^*)$.

DEFINITION 2. A weakly $\|\nu\|$ -measurable function $f: \Omega \longrightarrow X$ is said to have a generalized weak \otimes -integral (with respect to ν) if $x^*f \in L_1(y^*\nu)$ for all $(x^*, y^*) \in X^* \times Y^*$. If f is such a function, and $E \in \Sigma$, the generalized weak \otimes -integral of f over E is defined by the element ψ_{χ_E} .

If $\psi_{\chi_E} \in X \otimes Y$ for all $E \in \Sigma$, then f is said to be *weakly* \otimes -*integrable* and ψ_{χ_E} is called the *weak* \otimes -*integral of* f over E and denoted by $\int_E f d\nu$.

The measure $\mu_f : \Sigma \longrightarrow \mathcal{B}(X^* \times Y^*)$, defined by $\mu_f(E) = \psi_{\chi_E}$, is not necessarily countably additive. A standard argument proves that μ_f is countably additive if and only if the operator $T_{f,\nu}$ is weakly compact.

The following theorem is an analogue of Theorem 2, whose proof applies with a few minor changes.

THEOREM 5. If f is weakly $\check{\otimes}$ -integrable, then we have:

- (1) $\lim_{\|\nu\|(E)\to 0} \int_E f \, d\nu = 0.$
- (2) If (E_n) is a sequence of pairwise disjoint sets in Σ and $E = \bigcup_{n=1}^{\infty} E_n$, then

$$\int_E f \, d\nu = \sum_{n=1}^{\infty} \int_{E_n} f \, d\nu,$$

where the sum on the right is unconditionally convergent. (3) If $\mu_f(E) = \int_E f \, d\nu$, then μ_f is of bounded semivariation and

$$\|\mu_f\|(E) = \sup\left\{\int_E |x^*f| \, d|y^*\nu| \, : \, \|x^*\|, \|y^*\| \le 1\right\}.$$

It should be clear that if $X = \mathbb{R}$, then f is $\check{\otimes}$ -integrable if and only if $f \in L_1(\nu)$. Similarly, if $Y = \mathbb{R}$, then f is $\check{\otimes}$ -integrable if and only if f is ν -Pettis integrable.

In Claim 1 of Example 2 we showed that if a ν -measurable function f is $\check{\otimes}$ -integrable, then $x^*f \in L_1(\nu)$ and $f \in P(|y^*\nu|, X)$ for all $(x^*, y^*) \in X^* \times Y^*$. This is a property shared by the weakly $\check{\otimes}$ -integrable functions.

PROPOSITION 1. Assume $f: \Omega \longrightarrow X$ is weakly $\check{\otimes}$ -integrable. Then:

- (1) For every $y^* \in Y^*$, f is $|y^*\nu|$ -Pettis integrable.
- (2) For every $x^* \in X^*$, $x^*f \in L_1(\nu)$.

Proof. Let f be a weakly $\check{\otimes}$ -integrable function. To prove (1), fix $y^* \in Y^*$. We want to show that, for every $E \in \Sigma$, the functional

$$x^*\longmapsto \int_E x^*f\,d|y^*\nu|$$

is an element of X. To do so, we show that this functional is weak*-to-weak continuous. Let (x_{α}^*) be a net in B_{X^*} converging weak* to $x^* \in B_{X^*}$. Then $x_{\alpha}^* \otimes y^*(u)$ converges to $x^* \otimes y^*(u)$ for all $u \in X \otimes Y$. In particular,

$$\begin{split} \lim_{\alpha} x_{\alpha}^{*} \left(\int_{E} f \, dy^{*} \nu \right) &= \lim_{\alpha} \int_{E} x_{\alpha}^{*} f \, dy^{*} \nu \\ &= \lim_{\alpha} x_{\alpha}^{*} \otimes y^{*} \left(\int_{E} f \, d\nu \right) \\ &= x^{*} \otimes y^{*} \left(\int_{E} f \, d\nu \right) \\ &= \int_{E} x^{*} f \, dy^{*} \nu \\ &= x^{*} \left(\int_{E} f \, dy^{*} \nu \right). \end{split}$$

To prove (2), fix an element x^* in X^* . The remarks preceding Definition 2 show that x^*f is an element of w- $L_1(\nu)$. To prove that $f \in L_1(\nu)$, it suffices to verify that the indefinite integral

$$\mu_{x^*f}(E) = \int_E x^* f \, d\nu$$

is countably additive. Thus, let (E_n) be a sequence of pairwise disjoint sets in Σ and let $E = \bigcup E_n$. Then

$$\|\mu_{x^*f}(E) - \sum_{n=1}^{\kappa} \mu_{x^*f}(E_n)\| = \|\mu_{x^*f}(\bigcup_{n>k} E_n)\|$$
$$= \sup_{y^* \in B_{Y^*}} \left| y^* \int_{\bigcup_{n>k} E_n} x^*f \, d\nu \right|$$
$$\leq \sup_{y^* \in B_{Y^*}} \int_{\bigcup_{n>k} E_n} |x^*f| \, d|y^*\nu|$$
$$\leq \|\mu_f\|(\bigcup_{n>k} E_n).$$

Therefore

$$\lim_{k} \|\mu_{x^*f}(E) - \sum_{n=1}^{k} \mu_{x^*f}(E_n)\| \le \lim_{k} \|\mu_f\|(\cup_{n>k} E_n) = 0.$$

It follows that μ_{x^*f} is countably additive and, consequently, $x^*f \in L_1(\nu)$. \Box

PROPOSITION 2. If a ν -measurable function $f : \Omega \longrightarrow X$ has a generalized weak \otimes - integral (with respect to ν), then f is weakly $\check{\otimes}$ -integrable if and only if $T_{f,\nu}$ is weakly compact. In this case $T_{f,\nu}$ is compact.

Proof. First, we note that if a ν -measurable function f is $\check{\otimes}$ -integrable then it is weakly $\check{\otimes}$ -integrable and, for any $E \in \Sigma$, the two integrals over E are equal.

Let f be a ν -measurable function and assume f is weakly $\check{\otimes}$ -integrable. By Theorem 5, the indefinite integral of f is countably additive, and hence $T_{f,\nu}$ is weakly compact.

Now, assume f has a generalized integral and $T_{f,\nu}$ is weakly compact. Then $\mu_f : \Sigma \longrightarrow \mathcal{B}(X^* \times Y^*)$ is countably additive. We want to show that μ_f takes its values in $X \otimes Y$. To this end, write f as a sum

$$f = \sum_{n=1}^{\infty} f \cdot \chi_{E_n},$$

where (E_n) is a sequence of pairwise disjoint sets in Σ such that $f\chi_{E_n}$ is bounded, and $\bigcup_{n=1}^{\infty} E_n = \Omega$. Since μ_f is countably additive, we have

$$\mu_f(E) = \sum_{n=1}^{\infty} \mu_f(E \cap E_n)$$

for all $E \in \Sigma$. But $\mu_f(E \cap E_n) = \int_E f \chi_{E_n} d\nu$ is an element of $X \check{\otimes} Y$ for all n, because $f \cdot \chi_{E_n}$ is $\check{\otimes}$ -integrable. Consequently $\mu_f(E) \in X \check{\otimes} Y$ for all $E \in \Sigma$, and hence f is $\check{\otimes}$ -integrable.

To prove that $T_{f,\nu}$ is, in fact, compact, choose a sequence f_n of countably valued functions such that $||f - f_n|| \leq 1/n$. Then each f_n is weakly

Š-integrable. Indeed, f is weakly Š-integrable, $f - f_n$ is Š-integrable and therefore $f_n = f - (f - f_n)$ is weakly Š-integrable. Then we know that the indefinite integral, μ_{f_n} , is countably additive for all n. Write f_n as a sum

$$f_n = \sum_{k=1}^{\infty} x_{n,k} \chi_{E_{n,k}},$$

where $E_{n,i} \cap E_{n,j} = \emptyset$ if $i \neq j$ and $\bigcup_k E_{n,k} = \Omega$, and note that

$$\|\mu_{f_n}\|(E) \le \frac{\|\nu\|(E)}{n} + \|\mu_f\|(E).$$

Therefore $\lim_{\|\nu\|(E)\to 0} \sup_n \|\mu_{f_n}\|(E) = 0$. For each *n* find an integer p_n so that $\|\mu_{f_n}\|(\bigcup_{k>p_n} E_{n,k}) < 1/n$, and let $\phi_n = \sum_{k \le p_n} x_{n,k} \chi_{E_{n,k}}$.

Now, for any $g \in L_{\infty}(|y_0^*\nu|)$,

$$\begin{aligned} \|T_{f,\nu}^*(g) - T_{\phi_n,\nu}^*(g)\| &\leq \sup_{\|x^*\|, \|y^*\| \leq 1} \int_{\Omega} |g| |x^*(f - f_n)| \, d|y^*\nu| \\ &+ \sup_{\|x^*\|, \|y^*\| \leq 1} \int_{\Omega} |g| |x^*(f_n - \phi_n)| \, d|y^*\nu| \\ &\leq \|g\| \cdot \frac{\|\nu\|(\Omega)}{n} + \|g\| \cdot \|\mu_{f_n}\|(\cup_{k > p_n} E_{n,k}) \\ &\leq \|g\| \cdot \left(\frac{|\nu\|(\Omega)}{n} + \frac{1}{n}\right). \end{aligned}$$

Hence $T_{f,\nu}^*$ is the uniform operator limit of the sequence $(T_{\phi_n,\nu}^*)$. Since each ϕ_n has a finite range, each $T_{\phi_n,\nu}^*$ is a finite rank operator, and thus compact. It follows that $T_{f,\nu}^*$ is compact. Consequently, $T_{f,\nu}$ is compact as well. \Box

A Banach space Y is said to be *accessible* if, given a compact set K in Y and $\epsilon > 0$, there is a finite rank bounded linear operator $u : Y \longrightarrow Y$ such that $||u(y) - y|| < \epsilon$ for any $y \in K$. It is known that Y is accessible if and only if, for every Banach space X, we have $X^* \bigotimes Y = \mathcal{K}(X, Y)$.

EXAMPLE 3. Suppose that a weakly $\|\nu\|$ -measurable function f has a generalized weak \otimes -integral with respect to ν . Assume further that f satisfies conditions (1) and (2) of Proposition 1. Then, for every $E \in \Sigma$, we can consider the (generalized) integral ψ_E as an element u of $\mathcal{L}(X^*, Y)$ or as an element v of $\mathcal{L}(Y^*, X)$. Since $u^* = v$ and $v^* = u$, both u and v are weak*-to-weak continuous, and if either u or v is compact, both are compact.

Consider the case where u is compact and Y is accessible. For given $\epsilon > 0$ we can find a finite rank operator $w : Y \longrightarrow Y$ such that $||y - w(y)|| < \epsilon$ for all $y \in \overline{B_{X^*}}$. Thus $||u - wu|| < \epsilon$ and wu is a finite rank operator. But the adjoint, $(wu)^* = u^*w^*$, takes its values in X, and therefore $wu \in X \otimes Y$. Hence $u \in \overline{X \otimes Y} = X \otimes Y$. Similarly, if v is compact and X is accessible, $v \in X \otimes Y$. In either case, the integral ψ_E is an element of $X \otimes Y$.

GUNNAR F. STEFÁNSSON

THEOREM 6. Suppose that X or Y is accessible and $f: \Omega \longrightarrow X$ is weakly ν -measurable. The following statements are equivalent:

- (1) f is weakly $\check{\otimes}$ -integrable.
- (2) For every $y^* \in Y^*$, we have $f \in P(y^*\nu, X)$ and $\{\int_E x^* f \, d\nu : ||x^*|| \le 1\}$ is a compact subset of Y.
- (3) For every $x^* \in X^*$, we have $x^* f \in L_1(\nu)$ and $\{\int_E f \, dy^* \nu : ||y^*|| \le 1\}$ is a compact subset of X.

Proof. This is a direct consequence of Proposition 1 and Example 3. \Box

References

- [1] R. G. Bartle, A general bilinear vector integral, Studia Math. 15 (1956), 337-352.
- [2] J. Diestel and J. J. Uhl, Vector measures, Math Surveys, vol. 15, Amer. Math. Soc., Providence, RI, 1977.
- [3] D. R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157-165.
- [4] _____, Conditional weak compactness in certain inductive tensor products, Math. Ann. 201 (1973), 201–209.
- [5] G. F. Stefánsson, Pettis integrability, Trans. Amer. Math. Soc. 330 (1992), 401-418.
- [6] _____, l_1 of a vector measure, Le Matematiche **48** (1993), 219–234.

Department of Mathematics, Pennsylvania State University, Altoona College, Altoona, PA16601

E-mail address: gfs@math.psu.edu