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A CLASS OF AUSTERE SUBMANIFOLDS

MARCOS DAJCZER AND LUIS A. FLORIT

To Detlef Gromoll on his 60th birthday

Abstract. Austerity is a pointwise algebraic condition on the second

fundamental form of an Euclidean submanifold and requires that the
nonzero principal curvatures in any normal direction occur in pairs with

opposite signs. These submanifolds have been introduced by Harvey and

Lawson in the context of special Lagrangian submanifolds.
The main purpose of this paper is to classify all austere submanifolds

whose Gauss maps have rank two. This condition means that the image
of the Gauss map in the corresponding Grassmannian is a surface. The
hypersurface case is due to Dajczer and Gromoll and the three dimen-

sional case to Bryant. We show that any such submanifold is, roughly,
a subbundle of the normal bundle of a surface whose ellipse of curvature
of a certain order is a circle. We also characterize austere submanifolds
which are Kaehler manifolds.

Introduction

Austerity is a pointwise algebraic condition on the second fundamental
form of a submanifold in Euclidean space. It requires that the nonzero prin-
cipal curvatures in any normal direction occur in oppositely signed pairs.
Introduced by Harvey and Lawson [HL] in the context of special Lagrangian
submanifolds, the austerity condition is, aside from the case of surfaces, much
stronger than minimality. Immediate examples of austere submanifolds are
holomorphic submanifolds and cones of minimal spherical surfaces. A large
class of non-holomorphic submanifolds are the minimal real Kaehler subman-
ifolds; see [DG2] and [DG4].

Among other results, R. Bryant ([Br]; see also [Bo]) described parametri-
cally the austere submanifolds of dimension three locally. These are subman-
ifolds of “rank two”; i.e., the Gauss map has rank two, or equivalently, the
kernel of the second fundamental form has constant codimension two. Observe
that under this condition austerity and minimality are equivalent.
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Our main result is an extension of Bryant’s description to rank two austere
submanifolds of arbitrary dimension. Bryant himself noted the similarity be-
tween his parametrization and the Gauss parametrization from [DG1] when
dealing with hypersurfaces. In this paper we provide two alternative “dual”
classifications. One is the polar parametrization, an extension of the Gauss
parametrization for hypersurfaces of rank two, which performs better for sub-
manifolds in low codimension. The other parametrization reduces to that of
Bryant in the three–dimensional case, and we call it the bipolar parametriza-
tion. In most situations, this parametrization is much easier to compute.

In this paper we proceed as follows. We first observe that austere subman-
ifolds of rank two belong to a much broader class of rank two submanifolds
which we call elliptic. Then we construct the above pair of parametrizations
for all elements in this class. Roughly speaking, we prove that locally an
elliptic submanifold is parametrically determined by a (Euclidean or spheri-
cal) associated polar or bipolar elliptic surface and a function on the surface
which satisfies a certain elliptic PDE. Classically, Euclidean elliptic surfaces
are contained in the larger class of surfaces called nets and were studied by
Eisenhart [Ei] in local coordinates. The defining condition is that all coordi-
nate functions satisfy the same differential equation

A
∂2

∂x2
+ 2B

∂2

∂x∂y
+ C

∂2

∂y2
+D

∂

∂x
+ E

∂

∂y
= 0,

where A, . . . , E are smooth functions defined on an open subset of the plane.
Ellipticity of the surface means, of course, that AC −B2 > 0.

Extending a well-known construction from the theory of minimal surfaces,
one may associate to any elliptic surface a sequence of ellipses of curvature.
It turns out that an elliptic submanifold is austere if and only if the ellipse of
curvature of a certain order of the associated (polar or bipolar) elliptic surface
is a circle.

We should point out that the classification of elliptic submanifolds is es-
sentially a problem of a local nature, thus making the parametric approach
satisfactory. In fact, we prove that, up to a Euclidean factor, complete elliptic
submanifolds may have dimension at most three, and we provide an explicit
three dimensional irreducible example. In higher dimensions, we show that
the set of singular points admits a Whitney stratification by elliptic subman-
ifolds with dimensions decreasing by two.

In their paper [HL], Harvey and Lawson proved that the canonical La-
grangian immersion in C

N of the normal bundle of a submanifold in R
N

is special Lagrangian if and only if the submanifold is austere. Special La-
grangian submanifolds are of interest because they are not only minimal but
absolutely area minimizing. Here we construct new special Lagrangian sub-
manifolds generalizing those of [HL]. In general, these are not normal bundles
over austere submanifolds, and they have quite interesting singularities.
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We conclude the paper with the study of rank two Euclidean submani-
folds which are Kaehler manifolds. We first show that nonflat irreducible real
Kaehler submanifolds of rank two other than surfaces or hypersurfaces (which
are classified in [DG2]) are austere submanifolds. This result is somewhat un-
expected since the hypersurface situation is quite different. Our main result on
this topic is a complete description of the rank two real Kaehler submanifolds
by means of a Weierstrass–type representation which arose from our bipo-
lar parametrization. The parametrization of the holomorphic submanifolds is
rather simple, and is as follows.

Take a holomorphic curve g : U ⊂ C → R
2m ∼= C

m defined on a simply
connected domain, and let Ψ: U × Cn−1 → R

2m, n+ 1 ≤ 2m, be given by

Ψ(z, w) = Re


∫ z

ψ
dg

dz
dz +

n−1∑
j=1

wj
djg

dzj
(z)

 ,

where ψ is a holomorphic function on U . Then Ψ parametrizes a holomorphic
Kaehler submanifold of rank two and, conversely, any such submanifold can
be parametrized in this way, at least locally.

We conclude this introduction by pointing out that minimal submanifolds
of rank two are also interesting in a quite different context. B. Y. Chen
[Cb] showed that any minimal Euclidean submanifold Mn satisfies pointwise
the inequality 2 inf K ≥ n(n − 1)s, where K and s denote, respectively, the
sectional and the scalar curvature of Mn. Equality, an intrinsic condition,
holds if and only if the minimal submanifold either has rank two or is totally
geodesic; see also [DF].

1. Elliptic submanifolds

After some preliminaries, we introduce the concept of an elliptic subman-
ifold and analyze in detail the consequences of ellipticity on the structure of
the normal bundle. We then turn our attention to the special case of elliptic
surfaces and other related tools in the construction of our parametrizations.

Throughout this paper, we denote by f : Mn → Q
N
ε , ε = 0, 1, a submani-

fold of either the Euclidean space RN (ε = 0) or the unit Euclidean sphere SN

(ε = 1) with substantial codimension N − n. The k-th normal space Nf
k (x)

of f at x ∈Mn is defined as

Nf
k (x) = span{αk+1

f (X1, . . . , Xk+1) : ∀X1, . . . , Xk+1 ∈ TxM},

where α`f : TM × · · · × TM → T⊥f M , ` ≥ 2, is the symmetric tensor called
the `-th fundamental form and given by

α`f (X1, . . . , X`) = π`−1
(
∇⊥X` . . .∇

⊥
X3
αf (X2, X1)

)
.
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Here, π1 = I and π` stands for the projection onto (Nf
1 ⊕. . .⊕N

f
`−1)⊥∩T⊥f M .

We set α2
f = αf , and make the convention that α1

f : TM → TM is α1
f = I.

Whenever necessary, we assume that all spaces Nf
k form subbundles of the

normal bundle. Clearly, this condition is verified along connected components
of an open dense subset of Mn.

From now on, we assume that f : Mn → Q
N
ε has constant rank 2. This

means that the relative nullity subspaces ∆(x) ⊂ TxM , defined by

∆(x) = {X : αf (X,Y ) = 0, ∀Y ∈ TxM},

form a tangent subbundle of codimension two. Recall that the leaves of the
integrable relative nullity distribution are totally geodesic submanifolds in the
ambient QNε .

The cone Cf : Mn × R+ → R
N+1 of a submanifold f : Mn → S

N of rank
two has the same rank since the relative nullity leaves of Cf are the cones of
the relative nullity leaves of f . Moreover, one has NCf

k = Nf
k , k ≥ 1, up to

parallel transport in RN+1. Thus, it suffices to consider the Euclidean case
since we had restricted ourselves to submanifolds of RN and SN .

The rank condition and the symmetry of the second fundamental form
imply that the first normal spaces of f satisfy dimNf

1 ≤ 3. Theorem 1 in [DT]
says that f is a hypersurface in substantial codimension when dimNf

1 = 1.
On the other hand, one can show that a submanifold with dimNf

1 = 3 is either
a Euclidean surface or the cone over a spherical surface up to an Euclidean
factor. In the remaining case dimNf

1 = 2, at any point either there exist
linearly independent “conjugate directions” X1, X2 ∈ ∆⊥ , i.e., αf (X1, X1)±
αf (X2, X2) = 0, or f admits an “asymptotic direction” 0 6= X ∈ ∆⊥, i.e.,
αf (X,X) = 0.

Proposition 1. If f : Mn → Q
N
ε satisfies dimNf

1 = 2, then dimNf
k ≤ 2

for all k ≥ 1.

Proof. If there exists a pair of conjugate directions, we have

αk+1
f (X1, X1, Y1, . . . , Yk−1)± αk+1

f (X2, X2, Y1, . . . , Yk−1)

= πk
(
∇⊥Yk−1

. . .∇⊥Y1
(αf (X1, X1)± αf (X2, X2))

)
= 0,

and the proof follows easily. The argument in the case of an asymptotic
direction is similar. �

Given a submanifold f : Mn → Q
N
ε with dimNf

1 = 2, we analyze the case
of conjugate X1, X2 ∈ ∆⊥ so that αf (X1, X1) + αf (X2, X2) = 0 everywhere.
The pairs aX1 + bX2, aX2 ∓ bX1 also satisfy the condition and, up to signs,
there are no others. Thus, the almost complex structure J : ∆⊥ → ∆⊥ (J2 =
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− I) given by JX1 = X2 and JX2 = −X1 is locally well defined up to sign.
Notice that J is orthogonal only when f is minimal.

Definition 2. We call a submanifold f : Mn → Q
N
ε in codimension

N − n ≥ 2 elliptic if it has rank 2 and there is a (necessarily unique up to
sign) almost complex structure J : ∆⊥ → ∆⊥ such that

(1) αf (Z,Z) + αf (JZ, JZ) = 0, ∀Z ∈ ∆⊥.

Notice that cones of elliptic spherical submanifolds are trivially elliptic.
Moreover, if τ = τf denotes the index of the “last” of the normal subbundles
of f , i.e.,

(2) T
⊥
f M = Nf

1 ⊕ · · · ⊕Nf
τ ,

then
∑τ
i=1 dimNf

i = N − n since f is by assumption substantial. Set

τ∗ =

{
τ if N − n is even,

τ − 1 if N − n is odd.

Definition 3. Given an elliptic submanifold f : Mn → Q
N
ε ⊆ RN+ε, we

call an element β ∈ C∞(Mn,RN+ε) an s-cross section to f , 1 ≤ s ≤ τ∗, if

dβ (TM) ⊂ Nf
s ⊕ · · · ⊕Nf

τ ,

at each point, up to parallel transport in RN+ε.

For the sake of simplicity, we now argue with the help of the pair of normal
vector fields ξk1 , ξ

k
2 ∈ N

f
k defined as

ξk1 = αk+1
f (

k+1︷ ︸︸ ︷
Z, . . . ,Z), ξk2 = αk+1

f (JZ,
k︷ ︸︸ ︷

Z, . . . ,Z), k ≥ 0.

Here, Z ∈ Nf
0 := ∆⊥ stands for an arbitrary fixed local vector field which does

not vanish at any point. Let Vs ⊂ Nf
s × Nf

s , 0 ≤ s ≤ τ , be the subspace
defined by

(3) Vs = {(µ1, µ2) ∈ Nf
s ×Nf

s : 〈µ1, ξ
s
1〉+ 〈µ2, ξ

s
2〉 = 0 = 〈µ2, ξ

s
1〉 − 〈µ1, ξ

s
2〉},

and let Ps : C∞(Mn,RN+ε)→ Nf
s ×Nf

s be given by

Ps(β) =
(

(∇̃Zβ)Nfs , (∇̃JZβ)Nfs

)
.

Lemma 4. With the above notations, we have:
(i) Any nonzero element in Vs is a basis of Nf

s . Moreover, dimVs = 2 if
and only if dimNf

s = 2, and Vs = 0 if and only if dimNf
s = 1.

(ii) Ps(β) ∈ Vs for any s-cross section β to f . In particular, the ten-
sor Ps|Nfs+1

: Nf
s+1 → Vs is injective when s ≤ τ − 1, and thus an

isomorphism for s ≤ τ∗ − 1.
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Proof. From the proof of Proposition 1, we get Nf
k = span{ξk1 , ξk2}, k ≥ 0,

and part (i) follows immediately from this.
By definition,

ξk+1
1 =

(
∇̃Zξk1

)
Nfk+1

and ξk+1
2 =

(
∇̃Zξk2

)
Nfk+1

, k ≥ 0.

Let us show that

ξk+1
1 = −

(
∇̃JZξk2

)
Nfk+1

and ξk+1
2 =

(
∇̃JZξk1

)
Nfk+1

, k ≥ 0.

We prove only the first equation; the second equation follows by a similar
argument. We compute

ξk+1
1 = αk+2

f (Z, . . . ,Z) = πk+1(∇⊥Z . . .∇
⊥
Zαf (Z,Z))

= −πk+1(∇⊥Z . . .∇
⊥
Zαf (JZ, JZ)) = −αk+2

f (JZ, JZ,Z, . . . ,Z)

= −
(
∇̃JZαk+1

f (JZ,Z, . . . ,Z)
)
Nfk+1

,

and the claim follows.
To prove part (ii) we first verify the conditions in (3). We have

〈∇̃Zβ, ξs1〉 = −〈∇̃Zβ, ∇̃JZξs−1
2 〉 = 〈∇̃JZ∇̃Zβ, ξs−1

2 〉 = 〈∇̃Z∇̃JZβ, ξs−1
2 〉

= −〈∇̃JZβ, ∇̃Zξs−1
2 〉 = −〈∇̃JZβ, ξs2〉.

Similarly, 〈∇̃JZβ, ξs1〉 = 〈∇̃Zβ, ξs2〉. To conclude the proof observe that Ps|Nfs+1

is injective by the definition of the Nf
k ’s. �

The following result contains several basic facts which will be very useful
throughout the paper.

Proposition 5. With the above notations we have, for 1 ≤ s ≤ τ∗:
(i) dimNf

s = 2 and dimNf
τ ≤ 2; hence τ∗ = [(N−n)/2].

(ii) The almost complex structure J0 = J on Nf
0 = ∆⊥ induces an almost

complex structure Js on each Nf
s such that

Js(∇̃Xξ)Nfs = (∇̃XJs−1ξ)Nfs = (∇̃JXξ)Nfs , ∀ ξ ∈ N
f
s−1, X ∈ ∆⊥,

J ts−1(∇̃Xξ)Nfs−1
= (∇̃XJ tsξ)Nfs−1

= (∇̃JXξ)Nfs−1
, ∀ ξ ∈ Nf

s , X ∈ ∆⊥.

(iii) If β : Mn → R
N+ε is an s-cross section to f , then

J ts(β∗X)Nfs = (β∗JX)Nfs , ∀X ∈ ∆⊥.

Proof. Part (i) follows from Lemma 4. For part (ii), define Js on Nf
s by

(4) Jsα
s+1
f (X1, . . . , Xs+1) = αs+1

f (JX1, . . . , Xs+1).
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A simple way to see that Js is well defined is to make use of the formula

(5) αkf (Zϕ1 , . . . ,Zϕk) = cos(Σϕj)ξk−1
1 + sin(Σϕj)ξk−1

2 ,

where Zϕ = cosϕZ + sinϕJZ. The rest of the argument is straightforward.
Finally, to prove (iii) observe that Vs = {(µ, J tsµ) : µ ∈ Nf

s } and use that
Ps(β) ∈ Vs by Lemma 4. �

We now examine the important two–dimensional case. Take X ∈ TL
and λ ∈ C∞(L2) on an oriented Riemannian manifold L2. It is easy to see
that the spherical or Euclidean surface f : L2 → Q

N
ε ⊆ RN+ε, N ≥ 4, whose

coordinate functions are any N+ε linearly independent solutions (with length
one if ε = 1) of the linear elliptic differential equation

(6) ∆u+X(u) + ελu = 0,

is elliptic (except possibly at isolated points) with respect to the complex
structure in L2. Conversely, if one considers on a given elliptic surface f : L2 →
Q
N
ε a metric 〈 , 〉J which makes its almost complex structure J orthogonal,

condition (1) means that all coordinate functions are solutions of (6). Now
X ∈ TL and λ ∈ C∞(L2) are, respectively, the constriction of the symmetric
tensors T = J∇−∇ and 〈 , 〉 with respect to the metric 〈 , 〉J , i.e.,

(7) X = T (e, e) + T (Je, Je) and λ = ‖e‖2 + ‖Je‖2, ‖e‖J = 1.

If f is minimal, taking 〈 , 〉J = 〈 , 〉, we get X = 0 and λ = 2.
Even though s-cross sections have been defined for submanifolds of arbi-

trary dimension, we confine ourselves to the case of surfaces. In this case, a
complete characterization can be obtained as follows.

Given an elliptic surface g : L2 → Q
N
ε , we denote by Σ the vector space

of classes of functions ϕ ∈ C∞(L2) satisfying (6), where two functions which
differ by a constant are considered to be equivalent only when ε = 0. A
straightforward computation shows that (6) takes the form

(8) (Hessϕ +εϕ I) J = J t (Hessϕ +εϕ I)

with respect to the metric induced by g.
Now let Tr, 1 ≤ r ≤ τ∗g , stand for the vector space of classes of r-cross

sections where two maps are equivalent if, up to a constant, they differ by a
section of Ng

r+1 ⊕ · · · ⊕Ng
τg . Given [h] ∈ Tr, 1 ≤ r < s ≤ τ∗g , it follows easily

from (ii) in Lemma 4 that there exist unique sections γj ∈ Ng
j , r+ 1 ≤ j ≤ s,

such that

(9) h̄ = h+ γr+1 + · · ·+ γs

satisfies [h̄] ∈ Ts. We show next that all Tr’s are canonically isomorphic to Σ.
Given [h] ∈ Tr, set h = εϕg + Z + δ where ϕ ∈ C∞(L2), Z ∈ TgL and

δ ∈ T⊥g L. The vanishing of the TgL-component of h∗Y, Y ∈ TL, says that
εϕY + ∇Y Z − AgδY = 0. In particular, the map (Y,X) 7→ 〈∇Y Z,X〉 has
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to be symmetric. An easy argument, which for ε = 1 uses the fact that the
span{g}-component of h∗Y also vanishes, gives Z = ∇ϕ and

(10) Hessϕ +εϕ I = Agδ .

The ellipticity of g yields AgδJ = J tAgδ . We conclude from (8) and (10) that
ϕ satisfies (6).

Now define a linear map Υ: Tr → Σ by Υ([h]) = [ϕ]. Then Υ([h]) = 0
is equivalent to (h)TgL = ∇ϕ = 0. It follows from (10) that Agδ = 0; hence
(h)Ng1 = 0. Lemma 4 in turn yields h ∈ Ng

r+1 ⊕ · · · ⊕ Ng
τg . Hence, Υ is

injective.
Given [ϕ] ∈ Σ, there exists a unique γ1 ∈ Ng

1 such that Agγ1
= Hessϕ +εϕ I.

This follows easily from the fact that dimNg
1 = 2 and (8). Therefore, h1 =

εϕg + ∇ϕ + γ1 satisfies [h1] ∈ T1. We conclude from (9) that Υ is an iso-
morphism. In particular, we have the following recursive procedure for the
construction of the r-cross sections to an elliptic surface.

Proposition 6. Let g : L2 → Q
N
ε be an elliptic surface. Then any r-cross

section, 1 ≤ r ≤ τ∗g , can be given as

(11) hϕ = εϕg +∇ϕ+ γ0 + γ1 + · · ·+ γr,

where ϕ satisfies (6) and is unique (up to a constant in the case ε = 0),
γ0 is any section of Ng

r+1 ⊕ · · · ⊕ Ng
τg , γ1 ∈ Ng

1 is the unique solution of
Agγ1

= Hessϕ +εϕ I and γj ∈ Ng
j , 2 ≤ j ≤ r, are the unique sections given by

(9). Conversely, any hϕ of the form (11) is an r-cross section.

2. Polar surfaces

By a polar surface to an elliptic submanifold f : Mn → Q
N−ε
ε ⊆ RN we

mean, roughly speaking, a surface whose Gauss map in the Grassmannian
G(2, N) coincides with the last two dimensional subbundle in the splitting (2)
of the normal bundle. We first prove that any elliptic submanifold carries a
polar surface. Then we show that polar surfaces are elliptic with respect to
an almost complex structure naturally induced by f .

Since our work is of local nature, we may assume that an elliptic submani-
fold f is the saturation of a fixed cross section L2 ⊂Mn to the relative nullity
foliation. The almost complex structure J on ∆⊥ induces an almost complex
structure J̃ on TL defined by

(12) P J̃ = JP,

where P : TL→ ∆⊥ denotes the orthogonal projection.
We claim that all subbundles in the orthogonal sum decomposition (2)

are parallel in the normal connection (and thus parallel in QN−εε ) along ∆.
Consequently, each Nf

k can be viewed as a plane bundle along L2. The claim
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for Nf
1 follows from the Codazzi equation. We have

(∇⊥T αf (X,Y ))
(Nf1 )⊥ = (∇⊥Xαf (T, Y ))

(Nf1 )⊥ = 0, ∀T ∈ ∆.

A similar use of the Codazzi equations of higher order (see [Sp]) yields the
same conclusion for the remaining normal subbundles.

Definition 7. A polar surface to an elliptic submanifold f : Mn → Q
N−ε
ε

⊆ RN is an immersion of a cross section L2 (as above) defined as follows:
(i) When N −n− ε is odd, then g : L2 → S

N−1 is the spherical image of
a unit normal field spanning the last one dimensional normal bundle,
i.e.,

(13) span{g(x)} = Nf
τ (x).

(ii) When N − n− ε is even, then g : L2 → R
N is any surface such that

(14) Tg(x)L = Nf
τ (x)

up to parallel identification in RN .

Proposition 8. Any elliptic submanifold f admits locally a polar surface.
Moreover, in substantial codimension any polar surface g to f is elliptic with
respect to J̃ and, up to parallel identification,

(15) Ng
s = Nf

τ∗f−s
and J̃s = J tτ∗f−s, ∀ 0 ≤ s ≤ τ∗f .

In particular, g is substantial if and only if f has no Euclidean factor.

Proof. In the case of odd codimension the existence of a polar surface fol-
lows from the definition. When N −n is even, endow L2 with the orientation
and a Riemannian metric which makes J̃ orientation preserving and orthogo-
nal. Take a nowhere vanishing smooth local section ξ ∈ Nf

τf
which is constant

along ∆. To prove the first statement, it suffices to show that there exist
linearly independent 1-forms θ, ψ so that the differential equation

(16) dg = θξ + ψJ tτf ξ

has solution.
Let v and w be duals to θ and ψ, respectively. The integrability condition

for (16) is

(17) dθ ξ + dψ J tτf ξ − (∇̃J̃vξ + ∇̃J̃wJ
t
τf
ξ) dV = 0,

where dV stands for the volume element of L2. From (ii) in Proposition 5
and (12) we easily see that the vanishing of the Nf

τf−1-component of (17) is

equivalent to w = J̃v, i.e., ψ = −θ ◦ J̃ . In particular, θ and ψ are linearly
independent when θ 6= 0. Take a, b ∈ C∞(L2) and a 1-form θ0 such that

∇̃J̃vξ − ∇̃vJ
t
τf
ξ = aξ + bJ tτf ξ and dθ0 = a dV .
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The Nf
τf

-component of (17) yields θ = θ0 + dϕ, where ϕ is any solution of the
elliptic equation ∆ϕ = div θ0 − b. This proves the first statement.

For the remainder of the proof we use Proposition 5 several times. From
(13) and (14) it follows that Nf

τ∗f−1 = Ng
1 . Considering g as a τ∗f -cross section

to f that is constant along ∆, and using the fact that Nf
τ∗f

is constant along
∆, we easily get

(∇̃J̃Y g∗J̃Y )Ng1 = (∇̃JPY g∗JPY )Nf
τ∗
f
−1

= (∇̃JPY J tτ∗f g∗PY )Nf
τ∗
f
−1

= −(∇̃Y g∗Y )Ng1 .

This shows that g is elliptic. The equality between normal spaces is now clear.
In addition,

(∇̃XJ tτ∗f−sξ)Nfτ∗
f
−s−1

= (∇̃JXξ)Ngs+1
= (∇̃X J̃sξ)Ngs+1

, ξ ∈ Nf
τ∗f−s

= Ng
s ,

and

J tτ∗f−s(∇̃Xϕ)Nf
τ∗
f
−s

= (∇̃JXϕ)Ngs = J̃s(∇̃Xϕ)Ngs , ϕ ∈ Nf
τ∗f−s+1 = Ng

s−1,

so (15) follows for all possible values of s. �

Remark 9. Notice that Proposition 6 gives an alternative proof for the
existence of polar surfaces to elliptic surfaces.

3. The parametrizations

In this section we describe parametrically elliptic submanifolds by means of
two alternative representations, the polar and bipolar parametrizations, each
of which is determined by an elliptic surface and a solution of a certain elliptic
differential equation.

An interesting feature in the case of the polar parametrization, the one we
describe first, is that the differential equation mentioned above is the same as
that defining the elliptic surface.

Theorem 10. Given an elliptic surface g : L2 → Q
N−ε and 1 ≤ s ≤ τ∗g ,

consider the smooth map Ψ: Λs → R
N defined by

(18) Ψ(δ) = h(x) + δ, δ ∈ Λs(x),

where Λs := Ng
s+1 ⊕ · · · ⊕ Ng

τg and h is any s-cross section to g. Then, at
regular points, Mn = Ψ(Λs) is an elliptic submanifold with polar surface g.
Conversely, any elliptic submanifold f : Mn → R

N without local Euclidean
factor admits a local parametrization (18), where g is a polar surface to f .

Proof. We first prove the direct statement. Since h is an s-cross section to
g, it follows that Tξ(x)M = Λs−1(x) and that ∆Ψ(ξ(x)) = Λs(x). It remains to
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show that Ψ is elliptic. For any s-cross section β to g and X ∈ TL we have,
by Proposition 5,(
∇̃JX∇̃JXβ

)
Ngs−1

=
(
∇̃JX

(
∇̃JXβ

)
Ngs

)
Ngs−1

=
(
∇̃JXJ ts

(
∇̃Xβ

)
Ngs

)
Ngs−1

= −
(
∇̃X∇̃Xβ

)
Ngs−1

.

For a local section ξ ∈ Λs and Y ∈ TxL, set Z = (∇̃Y (h+ ξ))Ngs (x) ∈ Tξ(x)M .
Since h+ ξ is an s-cross section to g, we have

αΨ(Z,Z)(ξx) =
(
∇̃Y ∇̃Y (h+ ξ)

)
Ngs−1(x)

= −
(
∇̃JY ∇̃JY (h+ ξ)

)
Ngs−1(x)

= −αΨ(J tsZ, J
t
sZ)(ξx),

and the ellipticity of Ψ follows.
For the converse, take a polar surface g : L2 → Q

N−ε
ε to f . Since f has no

Euclidean factor, g is substantial, and hence elliptic. From Proposition 8 we
have ∆f = Λτ∗f and TM = Λτ∗f−1 along L2. Thus, the cross section h := f |L2

is a τ∗f -cross section to g. �

Observe that picking a different γ0 in (11) only results in a reparametriza-
tion of Ψ(Λs). Hence, it is convenient to take γ0 = 0 when using the recursive
procedure from Proposition 6 to generate s-cross sections. By doing this one
can see why the polar parametrization can be more effective for submanifolds
in low codimension. For instance, in codimension two it suffices to take 1-
cross sections of the form hϕ = ∇ϕ + γ, where γ ∈ Ng

1 is unique satisfying
Agγ = Hessϕ, for a given solution ϕ of (6).

Our next goal is to introduce the bipolar parametrization, but we first
discuss two additional concepts.

Definition 11. We define a bipolar surface to an elliptic submanifold f
to be any polar surface to a polar surface to f .

Notice that the only bipolar surface to an elliptic spherical surface is the
surface itself. When the elliptic surface is Euclidean, the bipolar surfaces are
all surfaces with the same Gauss map.

Definition 12. Given an elliptic surface g : L2 → Q
N
ε and 0 ≤ s ≤ τ∗g−1,

we call dual s-cross section to g any element ĥ ∈ C∞(L2,RN+ε) satisfying at
each point

dĥ (TL) ⊂ ε span{g} ⊕Ng
0 ⊕ · · · ⊕Ng

s .

Notice that a dual 0-cross section to an elliptic surface in Euclidean space
is just a bipolar surface whose nature we discussed above. The terminology
is justified by the following observation.
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Proposition 13. Let g : L2→QNε be an elliptic surface with polar surface
ĝ. A dual s-cross section to g is just a ([N/2]−s−1)-cross section to ĝ.

Proof. From (i) in Proposition 5 we have τ∗g = τ∗ĝ = [N/2] − 1, and the
proof follows using Proposition 8. �

The exact dual to the polar parametrization is as follows.

Theorem 10′. Given an elliptic surface g : L2 → Q
N−ε
ε and 0 ≤ s ≤

τ∗g − 1, consider the smooth map Ψ̂ : Λ̂s → R
N defined by

(19) Ψ̂(δ) = ĥ(x) + δ̂, δ̂ ∈ Λ̂s(x),

where Λ̂s := ε span{g} ⊕ Ng
0 ⊕ · · · ⊕ N

g
s−1 and ĥ is any dual s-cross section

to g. Then, at regular points, M = Ψ(Λ̂s) is an elliptic submanifold with
bipolar surface g. Conversely, any elliptic submanifold f : Mn → R

N without
local Euclidean factor admits a local parametrization (19), where g is a bipolar
surface to f .

Proof. The result follows from Theorem 10 and Propositions 8 and 13. �

The above result gives a rather simple and easy to compute parametriza-
tion. In particular, there is no need to go through complicate recursive proce-
dures in order to determine cross sections to the elliptic surface or subbundles
in the decomposition of its normal bundle.

Endow a simply connected elliptic g : L2 → Q
N−ε
ε with a metric 〈 , 〉J which

makes J orthogonal. Now consider the linear second order elliptic operator

(20) L(ϕ) := ∆ϕ−X(ϕ) + (ελ− div X)ϕ,

where X ∈ TL, λ ∈ C∞(L2) are as in (7), and let ϕ ∈ C∞(L2) satisfy
L(ϕ) = 0. If ε = 0, take θ ∈ C∞(L2) such that dθ = (dϕ− ϕX∗) ◦ J . Then

(21) dh =

{
dg ◦ (θI + ϕJ) if ε = 0,
((dϕ− ϕX∗)g + ϕdg) ◦ J if ε = 1,

is a completely integrable first order system of PDEs.

Theorem 14. Consider a simply connected elliptic surface g : L2 → Q
N−ε
ε

and a function ϕ ∈ C∞(L2) satisfying L(ϕ) = 0. Let h : L2 → R
N be the

solution of (21). Then, at regular points, the map Ψ: L2 × R2s+ε → R
N

defined by

Ψ(x, t) = h(x) + ε t0 g(x) +
s∑
j=1

{
t2j−1

∂jg

∂v∂uj−1
(x) + t2j

∂jg

∂uj
(x)
}

for 0 ≤ s ≤ [(N−ε)/2]−2 and any coordinate system (u, v) for L2, parametrizes
an elliptic submanifold. Conversely, any elliptic submanifold without local Eu-
clidean factor can be locally parametrized in this way.
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Proof. From Lemma 4 we see easily that the vectors

(∂j+1g/∂uj∂v)Ngj , (∂j+1g/∂uj+1)Ngj , 0 ≤ j ≤ τ∗g ,

form a basis of Ng
j for any coordinate system. On the other hand, in (19) we

may take ĥ to be a dual 0-cross section, without loss of generality. In fact,
by (9) and Proposition 13 any given dual s-cross section to g differs from an
associated (and essentially unique) dual 0-cross section to g by an element
γ0 ∈ Λ̂s.

It remains to show that any dual 0-cross section to g is locally of the form
h+ εµg, where h is a solution of (21) and µ ∈ C∞(L2). In fact, one must have
a 1-form ψ and a section S ∈ End (TL) such that

dh = ε ψ g + dg ◦ S.

The integrability condition reduces to the equations

α(Y, SZ) = α(SY,Z),

(∇Y S)Z − (∇ZS)Y = ε (ψ(Y )Z − ψ(Z)Y ),

and an additional equation for ε = 1,

dψ(Y,Z) = 〈SZ, Y 〉 − 〈SY,Z〉, ∀Y,Z ∈ TL.

The first equation is equivalent to S = θI +ϕJ for some θ, ϕ ∈ C∞(L2). It is
now easy to see that the other equations become

(22) dθ = (dϕ− ϕX∗) ◦ J + εψ,

and, when ε = 1,

(23) div ψ ◦ J + ϕλ = 0.

The integrability condition for (22) when ε = 0 is (20). On the other hand,
if ε = 1 we can take θ = 0 by replacing h by h − θg. Then (20) follows from
(22) and (23). �

Remark 15. The Gauss parametrization for hypersurfaces is due to Sbrana
[Sb] and was rediscovered in [DG1]. On the other hand, the parametrization
used by Bryant and Borisenko in the case of hypersurfaces M3 ⊂ R4 goes
back to Schur and Bianchi [Bi1].

4. The singularities

In this section we first show that the classification of complete elliptic
submanifolds reduces to the three dimensional case, and we provide a complete
example in this case. We then describe the structure of the singular set of
elliptic submanifolds of higher dimensions.
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Theorem 16. Let f : Mn → R
N be a complete submanifold that is elliptic

on a dense subset of Mn. Then each connected component of an open dense
subset of Mn is isometric to L3 × Rn−3 and f splits accordingly. Moreover,
the splitting is global if Mn is simply connected and does not contain an open
subset L2 × Rn−2.

Proof. The minimum of the dimensions of the relative nullity subspaces of
f is ν0 = n− 2. Moreover, dimNf

1 ≤ 2 everywhere. It follows that the open
subsets U0 = {x ∈ Mn : ν(x) = ν0} and U1 = {x ∈Mn : dimNf

1 (x) = 2} are
also dense. This clearly implies that U2 = {x ∈ Mn : f satisfies (1)} is open.
Hence, the dense subset M̃ of Mn where f is elliptic is M̃ = U0 ∩U1 ∩U2 and
is open.

By a standard result the leaves of minimum relative nullity are complete
when Mn is complete. We recall next some basic facts about the intrinsic
splitting tensor C : ∆×∆⊥ → ∆⊥ which is defined as

CTX = −(∇XT )
∆⊥ .

From the Codazzi equation, we get

∇TAξ = AξCT +A
∇⊥T ξ

, ∀T ∈ ∆, ξ ∈ T⊥f M.

In particular,

(24) AξCT = CtTAξ.

Moreover, the Codazzi equation also yields

(25) ∇SCR = CRCS + C∇SR, ∀S,R ∈ ∆.

Lemma 17 ([DG3]). The following statements hold along U0:
(i) The codimension of kerC in ∆ satisfies codim kerC ≤ 1.
(ii) For any S ∈ ∆(x) the only possible real eigenvalue of CS is 0, and

kerCS is parallel along the velocity field S of the line x+ tS.
(iii) Let T be a unit vector field perpendicular to kerC on the subset U ⊂ U0

defined by U = {x ∈ U0 : C(x) 6= 0}. If CT is invertible and the leaves
of ∆ are complete along U , then U = L3 × Rn−3 and f splits.

Returning to the proof of the theorem, we first show that

(26) CS ∈ span{I, J}, ∀S ∈ ∆.

To see this, observe that condition (1) may be stated as AξJ = J tAξ, for all
ξ ∈ T⊥f M . We easily get (26) using (24) and the fact that dimNf

1 = 2.
We now follow closely the arguments in the proof of Proposition 2.1 in

[DG3]. Consider the disjoint union U0 = M0 ∪M1 ∪M2, where M0 is the
closed subset where C = 0 and M2 is the subset where CT is invertible. By
(ii) in Lemma 17, each Mj is a union of complete leaves of ∆. Take x ∈ M̃ ∩ U .
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From (ii) in Lemma 17 and (26) it follows that CT (x) has no real eigenvalues,
i.e., M̃ ⊂ M0 ∪ M2. Hence, int(M0) ∪ M2 is dense since M̃ is open. By
the de Rham decomposition theorem each connected component of int (M0)
is a product L2 × Rn−2 where f splits. Moreover, by (iii) in Lemma 17 each
component of M2 is a product L3 × Rn−3 on which f splits. This concludes
the proof. �

Corollary 18. Let f : Mn → R
N be a complete elliptic submanifold.

Then Mn = L3 × Rn−3 and f splits accordingly.

Proof. Consider the open subsets U1 ⊂ Mn where f splits a Rn−2 factor
and U2 ⊂ Mn along which f splits a Rn−3 factor but not a Rn−2 factor.
Then a polar surface to f has substantial codimension N − n+ 2 on U1 and
N − n + 3 on U2. Since the zeroes of a solution of an elliptic equation are
isolated, it follows that U1 and U2 cannot have a common boundary point,
and this concludes the proof. �

Example 19. The following example due to F. Zheng (private communi-
cation) is a complete irreducible 3-dimensional submanifold which is elliptic
everywhere. Consider the graph f : R3 → R

5 given by

f(x, y, z) =
(
x, y, z,

2xy − zx2 + zy2

1 + z2
,

2zxy + x2 − y2

1 + z2

)
.

It is easy to verify that

(−y + xz)fx + (x+ yz)fy + (1 + z2)fz ∈ ∆(x, y, z).

Since fxx = −fyy 6∈ TfR
3, we have αf (fx, fx) + αf (fy, fy) = 0 and the

sectional curvature satisfies K(fx, fy) < 0. In particular, f has rank 2 at
all points. Finally, since TfR3 ⊕ span{fxx, fxy} = R

5 everywhere, we obtain
dimNf

1 = 2.

By an argument already given in the proof of Theorem 14, we may restrict
h in Theorem 10 to be a τ∗g -cross section, without loss of generality. Then
the singular set of Ψ becomes Λs+1 ⊂ Λs. In fact, from (ii) in Lemma 4 we
have Im Ψ∗(δx) = Λs−1(x) for any δx ∈ Λs \ Λs+1 and Im Ψ∗(δx) = Λs(x) for
δx ∈ Λs+1. We thus get a Whitney stratification

(27) Λs ⊃ Λs+1 ⊃ Λs+2 ⊃ · · · ⊃ Λτ∗g
of the singular set of Ψ, and each image Ψ(Λj), s + 1 ≤ j ≤ τ∗g , is also an
elliptic submanifold.

Given an elliptic submanifold f : Mn → R
N , n ≥ 4, without Euclidean

factor, let M̃n be the extension of f(Mn) in RN obtained by extending each
leaf of relative nullity of f to a complete affine Euclidean space Rn−2. Lo-
cally, this extension is obtained in an obvious way in terms of a polar (or
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bipolar) parametrization. From our next result, we conclude that the singu-
lar set of M̃n is an elliptic submanifold in RN of dimension n− 2 with similar
singularities.

Proposition 20. Let Ψ: Λs → R
N be an elliptic submanifold of dimen-

sion n ≥ 4 given in terms of the polar parametrization by the use of a τ∗g -cross
section to a polar surface g. Then Ψ(Λs+1) is the singular set of Ψ(Λs).

Proof. Since f has no local Euclidean factor and n ≥ 4, we obtain
dimNg

[(N−n+2)/2] = 2. This is equivalent to codim kerC = 2. We conclude
from (26) that

(28) span{CT : T ∈ ∆} = span{I, J}.
Hence, D(x) = {S ∈ ∆(x) : CS(x) = I} is a codimension 2 affine subspace
of ∆(x) at any x ∈ L2. By (25), the operator CS(t) for S ∈ D(x) satisfies
the Ricatti equation ∇SCS = C2

S along the line x + tS. Hence, CS(t) =
CS(0)(I − tCS(0))−1 is singular, precisely, at t = 1. Thus, the submanifold is
singular at x+S. We conclude from (27) that the set of singular points forms
an affine codimension 2 subbundle of the nullity bundle. �

5. Austere and special Lagrangian submanifolds

In this section we give a description of the austere elliptic submanifolds. In
particular, this leads to the construction of a new family of special Lagrangian
submanifolds with interesting singularities.

Definition 21. Given an elliptic submanifold f : Mn → Q
N
ε , we define

the kth-order curvature ellipse Efk (x) ⊂ Nf
k (x), 0 ≤ k ≤ τ∗f , at x ∈Mn as

Efk (x) = {αk+1
f (Zϕ, . . . , Zϕ) : Zϕ = cosϕZ + sinϕJZ and ϕ ∈ [0, 2π)},

where Z ∈ ∆⊥(x) has unit length and satisfies 〈Z, JZ〉 = 0.

It follows from (5) that Efk (x) is, in fact, an ellipse. Notice that Efk (x) is
the same for different points in a leaf of relative nullity.

Theorem 22. Let f : Mn → R
N be an elliptic submanifold with polar

surface g and bipolar surface ĝ. Then,

f is austere ⇐⇒ Eg[(N−n)/2] is a circle ⇐⇒ E ĝ[(n−2)/2] is a circle.

Proof. Observe first that f is minimal if and only if Ef0 is a circle. On the
other hand, from (4) and (5) we have

(29) Efk (x) is a circle ⇐⇒ Jk is orthogonal

for all k. The result now follows from Proposition 8. �
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The bipolar parametrization in the minimal case extends that given by
Bryant [Br] to higher dimensions. Observe that the three dimensional situa-
tion considered by Bryant is quite special in the sense that the bipolar surface
has to be minimal.

Remarks 23. (1) In the following section we discuss an explicit recursive
procedure which yields the (necessarily minimal) Euclidean surfaces whose
ellipses of curvature are all circles up to an arbitrary order. In particular, the
polar surface to such a surface has circular curvature ellipses from some order
on.

(2) It was shown in [DG1] that any simply connected minimal submanifold
of rank 2 admits a 1-parameter associated family of isometric deformations
which are also minimal.

It is easy to see that the canonical immersion into CN ∼= R
N ⊕ RN of the

normal bundle of a submanifold f : Mn → R
N given by

F (δx) = (f(x), δx), δx ∈ T
⊥
f(x)M,

is Lagrangian with respect to the complex structure J(X,Y ) = (−Y,X).
Moreover, it was proved in [HL] that F is special Lagrangian if and only if f
is austere. We parametrize the special Lagrangian immersions associated to
our austere submanifolds using the above results and notations.

Given an elliptic surface g with Egs a circle, set XN
s = (Ng

s )⊥ = Λs ⊕ Λ̂s,
and define maps Φ, Φ̂ : XN

s → C
N as

Φ(δx + δ̂x) = (h(x) + δx, δ̂x) and Φ̂(δx + δ̂x) = (δx, ĥ(x) + δ̂x),

where h and ĥ are, respectively, a τ∗g -cross section and dual 0-cross section
to g. These are special Lagrangian submanifolds which generalize those of [HL]
and [Bo]. In fact, they belong to a more general class of special Lagrangian
immersions, to be discussed next, which in general are not normal subbundles
over austere submanifolds. Moreover, they have rank 4 and are ruled by
Euclidean spaces of codimension 2.

Theorem 24. With the above notations, the map Φ̃ : XN
s → C

N given by

(30) Φ̃(δx + δ̂x) = (h(x) + δx, ĥ(x) + δ̂x)

is special Lagrangian at regular points. Moreover, the set of singular points of
Φ̃ is Λs+1 ⊕ Λ̂s−1, which has a Whitney stratification

XN
s ⊃ Λs+1 ⊕ Λ̂s−1 ⊃ Λs+2 ⊕ Λ̂s−2 ⊃ · · ·

Proof. Being special Lagrangian is a condition on the Gauss map only; see
[HL]. Since trivially Φ and Φ̃ have the same Gauss map, the first statement
follows. The remainder of the proof is straightforward. �
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6. Elliptic real Kaehler submanifolds

In this section we first show that all rank two Euclidean isometric immer-
sions of nonflat irreducible Kaehler manifolds, other than surfaces, are either
hypersurfaces or austere submanifolds. We then completely describe the latter
submanifolds by means of a Weierstrass–type representation.

Theorem 25. Let f : M2n → R
N , n ≥ 2, N − 2n ≥ 2, be a locally

substantial rank two isometric immersion of a nowhere flat Kaehler manifold
without local Euclidean factor. Then f is austere.

Proof. Let R and J ′ denote the curvature tensor and the Kaehler structure
of M2n. By our rank assumption, the relative nullity ∆ of f coincides with
the nullity of R. From the identity J ′ ◦R(X,Y ) = R(X,Y )◦J ′ and the Gauss
equation, we obtain that ∆ and ∆⊥ are J ′-invariant. We only need to show
that M2n is elliptic with respect to the Kaehler structure J ′|

∆⊥ on a dense
subset of M2n. We have

(31) CJ′T = J ′CT , ∀T ∈ ∆.

In fact, CJ′TX = −(∇XJ ′T )
∆⊥ = −J ′(∇XT )

∆⊥ = J ′CTX, proving (31) as
desired.

Let U ⊂ M2n be an open subset where Nf
1 has constant dimension. If

dimNf
1 = 1, we obtain from Theorem 1 in [DT] that f(U) is a hypersurface

in substantial codimension, which has been ruled out. Suppose now that
dimNf

1 = 3. From (24), we easily get span{CT : T ∈ ∆} ⊂ span{I}. This
and (31) yield C = 0, a contradiction to the assumption on Euclidean factors.
Thus, we have dimNf

1 = 2 on an open dense subset of M2n. In particular,
using the fact that C 6= 0, (24) and (31), we easily see that, at each point,
span{CT : T ∈ ∆} is a plane in the vector space of 2× 2 real matrices. Using
again dimNf

1 = 2, we easily deduce that there is T ∈ ∆ such that CT = I.
Hence, CJ′T = J ′|

∆⊥ by (31). We conclude the proof using (24). �

It was shown in [DR] that any minimal immersion of a Kaehler manifold in
Euclidean space is pluriharmonic. If it is already non-holomorphic, then it can
be made the real part of a holomorphic isometric immersion, its holomorphic
representative, and admits an associated 1-parameter family of non-congruent
isometric deformations; see [DG2]. There exist many hypersurfaces of rank
2 and sectional curvature K ≤ 0, which are Kaehler manifolds but are not
minimal; cf. [DG2]. This is possible because (28) does not necessarily hold
when first normal spaces are one-dimensional.

Following [DG4], we call an elliptic surface m-isotropic when the ellipses
of curvature up to order m are circles. The holomorphic curves in Cp are
precisely the (p − 1)-isotropic surfaces in R2p; cf. [La] or [Cc]. We have the
following characterization.
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Proposition 26. Let f : M2n → R
N , n ≥ 2, be an elliptic submanifold

without local Euclidean factor. Then M2n is Kaehler if and only if a bipolar
surface ĝ to f is (n−1)-isotropic. Moreover, f is holomorphic if and only if
ĝ is a holomorphic curve.

Proof. To prove the converse in the first statement, we consider a polar sur-
face g : L2 → R

N to f . For each x ∈ L2, set Ωx = Ng
τ∗f

(x)⊕· · ·⊕Ng
τg (x). Hence,

Ωx = Tf(x)M up to parallel transport along RN . Define J ′ ∈ End(Ωx) by

J ′ = J̃τ∗f ⊕ · · · ⊕ J̃τg .

Because tangents spaces to f(M) are constant along the relative nullity leaves,
we may extend J ′ to the whole space M2n by parallel transport. We have
J ′2 = − I and, by the hypothesis on the curvature ellipses and (29), J ′ is
orthogonal. Take ξ ∈ Ng

k and X ∈ TL. Using Proposition 5 and the orthog-
onality of J ′, we get

∇XJ ′ξ = −(∇̃X J̃ tkξ)Ngk−1
+ J̃k(∇̃Xξ)Ngk + J̃k+1(∇̃Xξ)Ngk+1

= J ′∇Xξ.

Since J ′ was extended to Mn by parallel transport, it is easy to see that
∇J ′ = 0, i.e., (M2n, J ′) is Kaehler.

We now prove the direct statement. At each point, define

∆k+1 = {(∇ZX)
(∆⊥⊕···⊕∆k)⊥ : X ∈ ∆k, Z ∈ ∆⊥}, k ≥ 0.

The identification ∆⊥ = Ng
τ∗f

from Proposition 8 easily yields

∆k = Ng
τ∗f+k, 0 ≤ k ≤ n− 1.

Since J = ±J ′|
∆⊥ by Theorem 25 and f has no Euclidean factor, using

Proposition 5 and the parallelism of J ′, we easily see that ±J ′ = J̃τ∗f ⊕· · ·⊕J̃τg .
This completes the proof of the first statement. The second statement in the
proposition follows from similar arguments. �

A complete description of m-isotropic Euclidean surfaces was given in
[DG4] using results due to C. C. Chen [Cc], and is as follows. On a simply
connected domain U ⊂ C, a minimal surface ĝ : U → R

N has the Weierstrass
representation

(32) ĝ = Re
∫ z

γdz,

where the Gauss map γ : U → C
N of ĝ is given by

γ =
β

2
(
1− φ2, i(1 + φ2), 2φ

)
,
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with β holomorphic and φ : U → C
N−2 meromorphic; see [HO] for details.

From [Cc], we have that ĝ is m-isotropic if and only if

(φ′, φ′) = · · · = (φm, φm) = 0,

where ( , ) stands for the standard symmetric inner product in CN−2. To
construct any m-isotropic surface, start with a nonzero holomorphic

α0 : U → C
N−2(m+1).

Assuming that αr : U → C
2r+p, 0 ≤ r ≤ m, has been defined already, set

αr+1 = βr+1

(
1− φ2

r, i(1 + φ2
r), 2φr

)
,

where φr =
∫ z
αrdz and βr+1 6= 0 is any holomorphic function. Then the

elliptic surface with Gauss map γ = αm, i.e., ĝ = Re φm, is m-isotropic.
Given a minimal surface ĝ : U → R

N with Gauss map γ, it is immediate that
the non-constant dual 0-cross sections to ĝ are the minimal surfaces which
can be represented as

(33) h = Re
∫ z

ψγdz,

where ψ 6= 0 is an arbitrary holomorphic function on U . We have the following
result.

Theorem 27. Consider a (n−1)-isotropic surface ĝ : U → R
N with Gauss

map γ defined on a simply connected domain U ⊂ C, and let ψ be a holomor-
phic function on U . Then Ψ: U × Cn−1 → R

N given by

(34) Ψ(z, w) = Re


∫ z

ψγdz +
n−2∑
j=0

wj+1
djγ

dzj
(z)


is, at regular points, a Kaehler austere submanifold of rank two with bipolar
surface ĝ. Conversely, any real Kaehler submanifold f : M2n → R

N of rank
two has locally a Weierstrass representation (34).

Proof. This result follows from Theorem 14, Proposition 26 and (33). �

Remarks 28. (1) The elements in the Whitney stratification (27) are now
elliptic Kaehler submanifolds.

(2) The parametrization (34) when starting with just a minimal surface
yields a large family of elliptic submanifolds.
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