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GENERIC AUTOMORPHISMS OF SEPARABLY CLOSED
FIELDS

ZOÉ CHATZIDAKIS

Abstract. We show that the class of separably closed fields with a
generic automorphism is an elementary class, whose theory is model

complete in a natural extension of the language of fields with an auto-
morphism. We describe the completions of this theory and obtain some
results on types, imaginaries, and modularity.

Introduction

Generic automorphisms of a saturated structure M appear in a paper by
Lascar [L], where they are used towards the study of the automorphism group
Aut(M). In many cases, if σ is a generic automorphism of M , then the struc-
ture (M,σ) is existentially closed in the class of models of Th(M) with a
distinguished automorphism σ. A natural question arises: Given a model-
complete theory T , does the theory of models of T with a distinguished auto-
morphism σ have a model companion TA? In [CP], Pillay and I showed that
if this model-companion TA exists, then it is well-behaved, and we obtained
a description of the completions of TA and of the types. In case T is also
stable, we showed that TA is simple (unstable in most cases), and obtained a
description of the imaginaries in terms of the imaginaries of the models of T .

At the moment there is no general criterion for the existence of the theory
TA. We know that it exists when T is the theory of algebraically closed fields
(see [M] and [CH]), or when T is the theory of differentially closed fields
of characteristic 0 (unpublished result of Hrushovski). There are also some
criteria of existence when T is ω-stable of finite rank; more details are given
in [CP] (see also [KkP]). The theory TA is known not to exist for various
unstable theories T ; see Kikyo’s paper [K].

Consider the theory T = SCFe of separably closed fields of degree of im-
perfection e, where e ∈ N ∪ {∞}. Does TA exist? Recall that a field with
a distinguished automorphism σ is called a difference field, so our question

Received January 10, 2000; received in final form October 18, 2000.
2000 Mathematics Subject Classification. Primary 03C60. Secondary 03C45.

c©2001 University of Illinois

693
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is equivalent to the following: Does the theory of separably closed difference
fields of a fixed degree of imperfection have a model-companion?

As stated, the question has an immediate negative answer, since SCFe
is not model complete in the language L of rings. Hence we first need to
enrich the language L, and expand the theory SCFe accordingly, so that
in the new language, if K ⊆ L are fields then L is a separable extension
of K. This is done by adding to L new function symbols, called the λ-
functions (see Section 1), getting a language Lλ, and adding to T the axioms
defining these functions to obtain the theory SCFe,λ. As these functions are
definable within the field language, we are not adding any definable sets,
but only strengthening the notion of substructure. If e is finite, one can
instead add constant symbols b1, . . . , be for the elements of a p-basis. Then
SCFe,b = SCF ∪ {b1, . . . , be form a p-basis} is complete and model-complete
in L(b1, . . . , be), but does not eliminate quantifiers.

Even with this first adjustment the problem is slightly delicate, because sep-
arably closed fields have a very rich and complicated structure. For instance,
observe that if σ ∈ Aut(K) and a ∈ K satisfies the equation σ(x) = xp, then
necessarily a ∈

⋂
n∈NK

pn . Thus the formula σ(x) = xp implies an infinite
conjunction of L-formulas (modulo T ∪ {σ is an automorphism}).

The main result of this paper is that if T is the appropriate extension of
the theory of separably closed fields in Lλ (or possibly in L(b1, . . . , be) if we
consider only fields of finite degree of imperfection), then TA exists. We then
derive some easy consequences along the lines of [CP] and [CH].

This paper is organised as follows. In Section 1, we set up the notation
and conventions, and recall the basic facts on difference fields and separa-
bly closed fields needed in the paper. In Section 2 we show the existence
and give axiomatisations of the model companion SCFAe,λ of the theory of
difference fields models of Tλ and of degree of imperfection ≤ e (see (2.6)
and (2.12)); the cases of finite and infinite degree of imperfection need to be
treated separately. We deduce the existence and an axiomatisation SCFAe,b

of the model companion SCFAe,b of the theory (in the language Lσ(b̄)) of dif-
ference fields with fixed p-basis b̄ = {b1, . . . , be} (see (2.7)). In Section 3, we
describe the completions of SCFAe,λ, its types, the formulas, and prove the
independence theorem and elimination of imaginaries of the completions of
SCFAe,b. These results are slightly stronger than those obtained by applying
the results of [CP], but their proofs follow the same lines. In Section 4, we
extend various results obtained in [CH] for the model companion ACFA of
the theory of difference fields to SCFAe,λ: Let (K,σ) |= SCFAe,λ; then Fix(σ)
is a PAC-field of degree of imperfection e, with absolute Galois group Ẑ; if
n ≥ 1 then (K,σn) |= SCFAe,λ; if K is ω-saturated, then

⋂
nK

pn |= ACFA.
We also show that if K is a separable extension of the difference field k and is
a model of SCFAe,λ, then the subfield of K consisting of elements which are
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transformally algebraic over k is an elementary substructure of K. In Section
5 we study modular sets.

1. Preliminaries on difference fields and fields of positive
characteristic

(1.1) Setting and notation. We will always work inside a large al-
gebraically closed field Ω of characteristic p > 0, which will contain all
fields considered. The language Lσ is obtained by adjoining to the language
L = {+,−, ·, 0, 1} of rings a unary function symbol for σ. A difference field
is a field K with a distinguished automorphism σ, and is naturally an Lσ-
structure. I should mention that our definition of difference fields slightly
differs from the usual definition which only requires σ to be a field embed-
ding, i.e., not necessarily onto. Our difference fields are called inversive by
Cohn. All the basic algebraic results on difference fields can be found in the
first few chapters of Cohn’s book [C].

If K and L are subfields of Ω, we denote by KL the subfield of Ω com-
posite of K and L, by Ks the separable closure of K inside Ω, i.e., the set
of elements of Ω which are separably algebraic over K, and by Kalg the set
of elements of Ω which are algebraic over K. Since we are in characteristic
p, the map Frob: x 7→ xp defines a monomorphism on K, called the Frobe-
nius automorphism, and the image Kp of K by this map is a subfield of K.
Similarly, we denote by K1/p the image of K by the inverse of the Frobenius
automorphism. We denote by Kp∞ the field

⋂
n∈NK

pn , and by Kp−∞ the
field

⋃
n∈NK

1/pn . Ak denotes the k-dimensional affine space, and Ak(K) its
K-rational points. We also view A

k(K) as a k-dimensional K-vector space.
We assume familiarity with the basic notions of algebraic geometry: al-

gebraic sets and varieties (or absolutely irreducible algebraic sets), generic
points, linear disjointness, separable and regular extensions; see, e.g., [L2,
Chap. I–III].

(1.2) The theory ACFA. Recall that the model companion ACFA of the
theory of difference fields in the language Lσ is axiomatised by the scheme of
axioms expressing the following properties of (K,σ):

• K is an algebraically closed field and σ is an automorphism of K.
• If U and V are varieties defined over K, such that V ⊆ U × σ(U)

and the projections V → U and V → σ(U) are generically onto, then
there is a tuple ā such that (ā, σ(ā)) ∈ V . (Here σ(U) denotes the
variety image by σ of the variety U .)

(1.3) Difference polynomial rings. Let k ⊆ K be difference fields,
with K a sufficiently saturated model of ACFA. We define the difference
polynomial ring k[X1, . . . , Xn]σ by taking the ring k[X1, . . . , Xn]σ to be the
ordinary polynomial ring k[σj(Xi) | i = 1, . . . , n; j ∈ N], and extending σ to
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k[X1, . . . , Xn]σ in the way suggested by the name of the generating elements.
Note that σ is not onto. The order of a difference polynomial f is the largest
m such that some indeterminate σm(Xi) appears in f .

Ideals I of k[X1, . . . , Xn]σ satisfying σ(I) ⊆ I are called σ-ideals. A perfect
σ-ideal of k[X1, . . . , Xn]σ is a σ-ideal I satisfying moreover that aσ(am) ∈ I
implies a ∈ I for all m ∈ N. Thus a perfect σ-ideal is radical. A prime
σ-ideal is a σ-ideal which is prime and perfect. Quotients of k[X1, . . . , Xn]σ
by prime σ-ideals are domains on which σ defines an embedding. Thus they
embed uniquely in a smallest difference field. If ā is an n-tuple of K, we
define Iσ(ā/k) = {f(X̄) ∈ k[X̄]σ | f(ā) = 0}, where X̄ = (X1, . . . , Xn). Then
Iσ(ā/k) is a prime σ-ideal of k[X1, . . . , Xn]σ.

While k[X1, . . . , Xn]σ has infinite ascending chains of σ-ideals, it satis-
fies the ascending chain condition on perfect σ-ideals and on prime σ-ideals.
A σ-equation (over k) is an equation of the form f(x1, . . . , xn) = 0 where
f(X1, . . . , Xn) ∈ k[X1, . . . , Xn]σ. The set of solutions (in Kn) of a set of
σ-equations is called a σ-closed set; it can be defined by a finite set of σ-
equations. Thus the topology on Kn whose basic closed sets are the σ-closed
sets is Noetherian. A σ-closed set is called irreducible if it is not the union of
two proper σ-closed subsets. Every σ-closed set of Kn is the union of finitely
many irreducible σ-closed sets, which are called its irreducible components.
If the irreducible σ-closed set V is defined by σ-equations over k, then V is
defined over k, and the set of difference polynomials over k vanishing on
V is a prime σ-ideal of k[X1, . . . , Xn]σ, denoted by I(V ). If ā ∈ Kn and
I(V ) = Iσ(ā/k), then a is called a generic of V over k.

(1.4) Transformal transcendence bases. Let k ⊆ K be as above, and
let ā be a tuple of elements of K. We denote by k(ā)σ the difference field
generated by ā over k, i.e., the difference subfield k(σi(ā) | i ∈ Z) of K. If
the transcendence degree tr.deg(k(ā)σ/k) of k(ā)σ over k is finite then we say
that ā is transformally algebraic over k. In that case, there is a non-negative
integer m such that k(ā)σ ⊆ k(ā, . . . , σm(ā))alg. Observe that since σ and σ−1

are automorphisms of k(ā)σ, we then have k(ā)σ ⊆ k(σj(ā), . . . , σj+m(ā))alg

for every j ∈ Z.
An element b ∈ K is transformally transcendental over k, if the elements

σi(b), i ∈ Z, are algebraically independent over k. Observe that a tuple
ā is either transformally algebraic over k, or contains an element which is
transformally transcendental over k. We call a set B ⊆ K transformally
independent over k if the elements σj(b), b ∈ B, j ∈ Z, are algebraically
independent over k, or, equivalently, if the elements σj(b), b ∈ B, j ∈ N, are
algebraically independent over k. If L is a difference subfield of K containing
k, and B ⊂ L is a maximal transformally independent set over k, then B
is called a transformal transcendence basis of L over k. Observe that L is
then transformally algebraic over k(B)σ. Any two transformal transcendence
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bases of L over k have the same cardinality, and this cardinality is called the
transformal transcendence degree of L over k, and denoted by ∆(L/k). If ā
is a finite tuple, we also define ∆(ā/k) = ∆(k(ā)σ/k); observe that ∆(ā/k) ≤
tr.deg(k(ā)/k) (the transcendence degree of k(ā) over k).

(1.5) p-bases. Details and proofs can be found in [B, §13]. Let K be a
field of characteristic p > 0 and k a subfield of K. Then kKp is a subfield of
K, and so K is a kKp-vector space. We say that elements b1, . . . , bn ∈ K are
p-independent over k if the set of p-monomials in b1, . . . , bn, i.e., monomials of
the form b

i(1)
1 · · · bi(n)

n with 0 ≤ i(1), . . . , i(n) ≤ p− 1, is linearly independent
in the kKp-vector space K, or, equivalently, if bi /∈ kKp(b1, . . . , bi−1) for
i = 1, . . . , n.

A subset B of K is p-independent over k if every finite subset of B is p-
independent over k. If B ⊂ K is not p-independent over k, then there is a
finite subset B0 of B and b ∈ B \ B0 such that b ∈ kKp[B0]. A maximal
p-independent over k subset of K is called a p-basis of K over k; if B is a
p-basis of K over k, then K = kKpn [B] for any n ∈ N. Any two p-bases of
K over k have the same cardinality. We define the degree of imperfection of a
field K as the size of B if K has a finite p-basis B, and∞ otherwise. Observe
that a p-basis of K over k is also a p-basis of Ks over k and over ks.

(1.6) Derivations. Let R ⊂ S be commutative rings. Recall that an R-
derivation on S is an additive map δ : S → S which vanishes on R and satisfies
δ(xy) = δ(x)y + xδ(y). Let A ⊆ Ω be a finite set, and assume that every k-
derivation on k(A) vanishes on k(A). Then k(A) is separably algebraic over
k (see [L1, Prop. X.7.2]). We will use the following easy consequence of this
fact:

Lemma. Let A,B be finite subsets of Ω.
(1) A ⊆ k(Ap) if and only if A is separably algebraic over k.
(2) Assume that A is separably algebraic over k(Bp) and that B is sepa-

rably algebraic over k(A). Then (A,B) is separably algebraic over k.

Proof. (1) If a is separably algebraic over k then a ∈ k(ap), and this gives
the right-to-left implication. Conversely, assume that A ⊂ k(Ap) and let D
be a k-derivation on k(A). Then D vanishes on k(Ap), and therefore vanishes
on A. Hence A is separably algebraic over k.

(2) Let D be a k-derivation on k(A,B). Then D vanishes on k(Bp) and
therefore vanishes on A since A is separably algebraic over k(Bp). This implies
that D vanishes on B, and therefore that (A,B) is separably algebraic over
k.

(1.7). Recall that K is a separable extension of k if k and Kp are linearly
disjoint over kp, or, equivalently, if any p-basis of k extends to a p-basis of
K. If B ⊂ K is a transcendence basis of K over k such that K is separably



698 ZOÉ CHATZIDAKIS

algebraic over k(B), then B is called a separating transcendence basis ofK over
k. If K is finitely generated and separable over k then K has a separating
transcendence basis over k. This result does not hold when K is infinitely
generated over k: if t is transcendental over k, then the field

⋃
n∈N k(t1/p

n

)
is a separable extension of k, but does not have a separating transcendence
basis over k. If B ⊂ K is such that K is separably algebraic over k(B), then
B will contain a p-basis of K over k, and therefore a separating transcendence
basis of K over k is always a p-basis of K over k. The converse, however, only
holds if K is finitely generated over k as a field. Observe, however, that if B
is a p-basis of K over k, then the elements of B are algebraically independent
over k.

(1.8) Separably closed fields and the λ-functions. For each e ∈ N ∪
{∞}, the theory expressing that K is a separably closed field of degree of
imperfection e is a complete theory (Ershov [E]), which we denote by SCFe,
and is stable (Wood [W]). If K is separably closed and {b1, . . . , be} is a p-
basis of K, then SCFe,b = Th(K, b1, . . . , be) is model complete in the language
L(b1, . . . , be).

For each n fix an enumeration mi,n(x̄) (1 ≤ i ≤ pn) of the p-monomials
x
i(1)
1 · · ·xi(n)

n with 0 ≤ i(1), . . . , i(n) ≤ p − 1, and define the (n + 1)-ary
functions λi,n : Kn ×K → K as follows:

If the n-tuple b̄ is not p-independent, or if the (n + 1)-tuple (b̄, a) is p-
independent, then λi,n(b̄; a) = 0. Otherwise, the λi,n(b̄; a) satisfy

a =
pn∑
i=1

λi,n(b̄; a)pmi,n(b̄).

Note that these functions depend on the field K, and that the above properties
define them uniquely. These functions are definable in the pure ring language,
and we call them the λ-functions of K.

Consider the language Lλ = L ∪ {λi,n | n ∈ N, 1 ≤ i ≤ pn}, and let
Tλ be the Lλ-theory obtained by adjoining to the theory of fields axioms
expressing the defining properties of the functions λi,n. Let SCFe,λ = SCFe∪
Tλ. Then SCFe,λ is complete and eliminates quantifiers but does not eliminate
imaginaries (Delon [D]).

Fix a separably closed field K. When the degree of imperfection of K is fi-
nite, one may fix a p-basis {b1, . . . , be} of K, and only consider the unary func-
tions λi,e(b1, . . . , be;x). Then Th(K) eliminates quantifiers and imaginaries in
the language Lλ(b1, . . . , be) = L ∪ {b1, . . . , be, λi,e(b1, . . . , be;−) : 1 ≤ i ≤ pe}
(Delon [D]).

(1.9) Lemma. Let L be a subfield of K. Then K is a separable extension
of L if and only if L is closed under the λ-functions of K.
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Proof. This follows easily from the definition of the λ-functions of K, but
we will give the proof. Assume that K is not a separable extension of L.
Choose a tuple (a1, . . . , an) ∈ Ln which is p-independent in L but not in
K, with n minimal. Then a1, . . . , an−1 are p-independent in K, and an ∈
Kp[a1, . . . , an−1], an /∈ Lp[a1, . . . , an−1]. Hence λi,n−1(a1, . . . , an−1; an) ∈
K\L for some i. This shows one direction. For the other direction assume that
for some a1, . . . , an ∈ L and some i the element λi,n−1(a1, . . . , an−1; an) is not
in L. Note that the λj(a1, . . . , an−1; an) are (the unique) solutions of the equa-
tion (∗) :

∑
j X

p
jmj,n−1(a1, . . . , an−1) = an. From λi,n−1(a1, . . . , an−1; an) /∈

L, we obtain first that {a1, . . . , an−1} is p-independent in K, and then that
{a1, . . . , an} is p-independent in L, for otherwise there would be elements bj
in L satisfying (∗) in L, and we would have bj = λj,n−1(a1, . . . , an−1; an) ∈ K
for all j. Thus a1, . . . , an is p-independent in L but not in K.

(1.10) Basic λ-terms. We work in a large separably closed field K, with
finite p-basis B = {b1, . . . , be}. We let I = I(B) = {1, . . . , pe}, λi(B;−) =
λi,e(b1, . . . , be;−) and mi(B) = mi,e(b1, . . . , be). If µ ∈ In, we define by
induction on n the function λµ(B;−) and the pn-monomial mµ(B) as follows:
if n = 0, then λµ(B;x) = x, mµ(B) = 1; if n ≥ 1, write µ = ν_i, where
ν ∈ In−1, i ∈ I, and define

λµ(B;x) = λi(B;λν(B;x)), mµ(B) = mi(B)p
n−1

mν(B).

Then we have, for any a ∈ K and n ∈ N,

a =
∑
µ∈In

λµ(B; a)p
n

mµ(B).

If µ ∈ In, we call λµ a λ-term of level n. Note that all basic λ-terms are terms
of the language Lλ(b1, . . . , be). We let I<ω =

⋃
n∈N I

n.
If B ⊆ K is infinite, then by abuse of notation, we will denote by {λµ(B;x) |

µ ∈ In} the set of all terms λµ(b1, . . . , be;x) where e ∈ N, b1, . . . , be ∈ B,
and µ ∈ I({b1, . . . , be})n. Note that for a given element c ∈ K, the set
{λµ(B; c) | µ ∈ In} is finite, and that c ∈ Fp[λµ(B; c) | µ ∈ In]p

n

[B].

Lemma. Let k ⊆ L ⊆ K, assume that L is a separable extension of k,
and that B is a p-basis of k and of K. Let C be a p-basis of L over k, and let
k〈C〉 = k(λµ(B; c) | c ∈ C, µ ∈ I<ω), the λ-functions being those of K.

(1) If c ∈ Lpn(B), then λµ(B; c) ∈ L for every µ ∈ In.
(2) Lk〈C〉 is closed under the λ-functions of K. If a ∈ L and ν ∈ In,

then λν(B; a) ∈ L[λµ(B; c) | c ∈ C, µ ∈ In].
(3) If D is another p-basis of K and a ∈ L, ν ∈ In, then λν(B; a) ∈

Fp[λµ(D; a), λµ(B; d) | d ∈ D,µ ∈ In]. If D ⊂ k, then λν(B; a) ∈
k[λµ(D; a) | µ ∈ In].
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Proof. (1) As B ⊂ L, we have Lp
n

(B) = Lp
n

[B], and c ∈ Lp
n

[B0] for
some finite subset B0 of B, so that we may assume that B is finite. Then
c =

∑
j∈I c

p
jmj(B) for some cj ∈ Lp

n−1
. Thus cj = λj(B; c) ∈ Lpn−1

. Since
λµ = λν ◦ λj for some ν ∈ In−1 and j ∈ I, an induction on n gives us that
λν(B; cj) = λµ(B; c) ∈ L.

(2) By assumption, B ∪ C is a p-basis of L; hence L = Lp
n

[B,C] for
every n ≥ 0. By the definition of the λ-functions, we also have that c ∈
(Fp[λµ(B; c) | µ ∈ In])p

n

[B] for any c ∈ K. Hence L ⊆ (L[λµ(B; c) | c ∈
C, µ ∈ In])p

n

[B], and (1) gives that λν(B; a) ∈ L[λµ(B; c) | c ∈ C, µ ∈ In].
Hence Lk〈C〉 is closed under the λ-functions of K.

(3) By assumption, K = Kpn [D] = Kpn [B]. If a ∈ L, then a ∈ (Fp[λµ(D; a)
| µ ∈ In])p

n

[D], and if d ∈ D then d ∈ (Fp[λµ(B; d) | µ ∈ In])p
n

[B]. Thus
a ∈ Fp[λµ(D; a), λµ(B; d) | µ ∈ In, d ∈ D]p

n

[B], and (1) gives the first asser-
tion. The second assertion follows from the fact that D ⊂ k and that k is
closed under the λ-functions of K.

(1.11) λ-polynomial rings over k when k has finite degree of im-
perfection. Let B be a p-basis of k of finite size e. Then the set I defined
above has size pe. We define k〈X〉≤n,B to be the quotient of the polynomial
ring k[Xµ | µ ∈ I≤n] by the ideal generated by the polynomials

Xµ −
∑
i∈I

Xp
µ_imi(B)

for µ ∈ I≤n−1, and we let k〈X〉B =
⋃
n k〈X〉≤n,B . If we consider only one p-

basis B, then we will omit B from the notation. We define k〈X1, . . . , Xn〉≤n,B
and k〈X1, . . . , Xn〉B analogously.

Then B is a p-basis of (the field of fractions of) k〈X1, . . . , Xn〉B . If B
is a p-basis of an extension K of k and a1, . . . , an ∈ K, then there is a
unique k-morphism k〈X1, . . . , Xn〉B → K which sends Xi to ai. Note also
that k〈X1, . . . , Xn〉B is generated as a ring by the elements λµ(B;Xi), i =
1, . . . , n, µ ∈ I(B)<ω.

If C is another p-basis of k, then there is a natural k[X1, . . . , Xn]-isomor-
phism : k〈X1, . . . , Xn〉B → k〈X1, . . . , Xn〉C . This follows from the previous
observation, and the fact that by Lemma 1.10(3), we have k〈X1, . . . , Xn〉≤m,C
⊆ k〈X1, . . . , Xn〉≤m,B and k〈X1, . . . , Xn〉≤m,B ⊆ k〈X1, . . . , Xn〉≤m,C for ev-
ery m ∈ N.

(1.12) Lemma. Let K be a separable extension of k, with p-basis B over
k, and let C ⊂ k be p-independent. Consider the fields k1 = k(c1/p | c ∈ C)
and k2 = k(c1/p

n | c ∈ C, n ∈ N). Then B is a p-basis of k1K over k1 and of
k2K over k2.

Proof. Clearly k1K = k1K
p[B] and k2K = k2K

p[B], so we only need to
show that B is p-independent over k1 in k1K and over k2 in k2K. Since K
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is a separable extension of k, the fields kp
−∞

and K are linearly disjoint over
k. Hence K is linearly disjoint from k1 and from k2 over k. This implies
that k1K

p and K are linearly disjoint over kKp. Hence linearly independent
elements of the kKp-vector space K stay linearly independent in the k1K

p-
vector space k1K. This shows that B stays p-independent over k1 in k1K.
The proof for k2K is similar.

2. The main result

Let e ∈ N ∪ {∞}, and Lλ,σ = Lλ ∪ {σ}. In this section we prove that
the Lλ,σ-theory of difference fields models of Tλ and of degree of imperfection
≤ e has a model companion, and that the Lσ(b1, . . . , be)-theory of difference
fields with p-basis {b1, . . . , be} has a model companion. Before embarking into
preparatory lemmas, let me explain the strategy of the proof.

Clearly existentially closed difference fields (in Lλ,σ or in Lσ(b1, . . . , be))
need to be separably closed, since any automorphism of a field extends to an
automorphism of its separable closure. By a linearisation argument already
used for the axiomatisation of the theory ACFA of existentially closed dif-
ference fields, one reduces the problem of solving systems of σ-equations to
the problem of finding a point ā in some variety U defined over K, such that
(ā, σ(ā)) ∈ V for some variety V contained in U ×σ(U) and projecting gener-
ically onto U and σ(U). While in the theory of difference fields we know that
such a problem always has a solution in some extension (cf. the axiomatisa-
tion of ACFA; see [CH] or [M], or (1.2)), here we need to find conditions on
V , that are elementary in the parameters of K used to define V , and which
ensure that there is a solution ā in some Lλ,σ-extension L of K. In particular,
such an ā must generate a difference field which is separable over K.

It turns out that the main difficulty is to find elementary conditions which
ensure that K(ā)σ is a separable extension of K: if we manage to do that, then
Lemma (2.2) allows us to complete the proof. We then reduce the problem to
the case where dim(U) = dim(V ); see Lemma (2.1). To show that K(ā)σ is a
separable extension of K, it is enough to show that K(ā, σ(ā), . . . , σm(ā)) is
a separable extension of K for every m ∈ N. We solve this problem in (2.4)
and (2.5).

Let me mention a case where the solution of the problem is easy. Let
K(V ) = K(x̄, ȳ), and assume that ȳ is separably algebraic over K(x̄). This
condition is certainly elementary in the parameters defining V . Let (ā, ā1) be a
generic over K of the algebraic set V , and let σ be an extension of σ to Ω which
sends ā to ā1. Then σ(ā) ∈ K(ā)s, and therefore K(ā, . . . , σm(ā)) ⊆ K(ā)s

for every m ≥ 0, which implies that K(ā)σ is a separable extension of K.
A similar argument applies if x̄ is separably algebraic over K(ȳ) in K(V ).
However there are examples of equations solvable in a separable extension of
K which are not of this form; e.g., the equation σ2(x)p + bσ(x) + xp = 0 has
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a solution in a separable extension of K. (Note also that if a is a solution
of this equation which is generic over K, then the degree of transcendence of
K(a)σ over K is 2, and K(a)σ has same p-basis as K.)

(2.1) Lemma. Let k be a difference field, and k(ā)σ a separable extension
of k. Then there is a transformal transcendence basis b̄ ⊆ ā of k(ā)σ over k,
such that k(ā)σ is a separable extension of k(b̄)σ.

Proof. The proof is by induction on the transformal transcendence degree
∆(ā/k) of ā over k. If it equals 0, there is nothing to prove, so we will
assume that it is positive. It suffices to find an element b ∈ ā such that b
is transformally transcendental over k and k(ā)σ is a separable extension of
k(b)σ. We will then use induction applied to the extension k(ā)σ of k(b)σ to
obtain the result.

For n ∈ N consider the field Kn = k(ā, σ(ā), . . . , σn(ā)). Replacing ā by
ā_ · · ·_ σm(ā) for some m, we may assume that tr.deg(Kn/k) = d+ne where
d = tr.deg(ā/k) and e = ∆(ā/k). Each Kn is a finitely generated separable
extension of k, and therefore has a separating transcendence basis over k of
size d+ ne. In other words, we have

(1) [Kn : k(Kp
n)] = pd+ne.

Claim. There is b ∈ ā such that for any n ≥ 0 the elements b, σ(b), . . . ,
σn(b) are p-independent over k in Kn.

Otherwise, for each b ∈ ā, there is an n = n(b) such that the elements
b, σ(b), . . . , σn(b) are not p-independent over k in Kn. Take n minimal with
this property; then for some i ≤ n we have σi(b) ∈ k(Kp

n)(b, σ(b), . . . , σi−1(b)).
As σ(Kn) ⊆ Kn+1, we get that σi+1(b) ∈ k(Kp

n+1)(b, . . . , σi−1(b)), . . . ,
σi+m(b) ∈ k(Kp

n+m)(b, . . . , σi−1(b)) for m ≥ 0, so that any subset of {b, . . . ,
σm+n(b)} which is p-independent in Km+n has size ≤ n.

Let N = sup{n(b) | b ∈ ā}, and let m ≥ N . By the above argument,
any subset of {ā, . . . , σm(ā)} which is p-independent in Km has size at most
|ā|N . Then [Km : k(Kp

m)] ≤ p|ā|N , which contradicts the unboundedness of
[Km : k(Kp

m)] given by equation (1) and proves the claim.
Take an element b satisfying the conclusion of the claim. Then the elements

σi(b), i ∈ N, are p-independent over k in the field k(σi(ā) | i ∈ N). Using the
fact that σ−1 is an automorphism, we deduce that the elements σi(b), i ∈ Z,
are p-independent over k in k(σi(ā) | i ∈ Z) = k(ā)σ. Hence k(ā)σ is a
separable extension of k(b)σ.

(2.2) Lemma. Let k be a difference field with finite p-basis B, and let
k(ā)σ be a finitely generated difference field extending k which is separable
over k. Then k(ā)σ embeds into a difference field M with p-basis B.
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Proof. By (2.1), it suffices to show the result in the following two cases:

(a) ā is transformally independent over k.
(b) ā is transformally algebraic over k.

The separable closure of k has also p-basis B, so we may assume that k is
separably closed.

(a) Note that k(ā)σ is a purely transcendental extension of k, with tran-
scendence basis {σi(d) | d ∈ ā, i ∈ Z} over k. As σ induces a permutation of
this transcendence basis, the automorphism σ of k(ā)σ extends uniquely to
an automorphism of M = k(σi(d)1/pn | d ∈ ā, i ∈ Z, n ∈ N). Then M is a
separable extension of k, with p-basis B.

(b) Let C be a p-basis of k(ā)σ over k. Then k(ā)σ = k(āp)σ(C). If C = ∅,
then we are done: B is a p-basis of k(ā)σ. Assume therefore that C 6= ∅.
Consider the quotient of the polynomial ring k(C)〈Xc | c ∈ C〉B by the ideal
generated by the polynomials Xc − c for c ∈ C, and let M0 be its field of
fractions. Then M0 is a separable extension of k, with p-basis B, and we
may choose M0 free from k(ā)σ over k(C), because the elements of C are
p-independent over k in k(ā)σ. Hence M = M0k(ā)σ is a separable extension
of k, with p-basis B (by (1.10)(1) and because k(ā)σ = k(āp)σ(C)). We
consider the λ-functions of M indexed by I = I(B), and define σ(λµ(B; c)) =
λµ(σ(B);σ(c)) for µ ∈ I<ω. We need to show that σ defines an automorphism
of M . For n ∈ N let Mn = k(ā)σ(λµ(B; c) | c ∈ C, µ ∈ In), let 0n be the
element of In corresponding to the pn-monomial 1, and let Jn = In \ {0n}.
Then the elements λµ(B; c), c ∈ C, µ ∈ Jn, are algebraically independent over
k(ā)σ and generate Mn over k(ā)σ. As σ(B) is also a p-basis of M , we know
that for c ∈ C we have σ(c) =

∑
µ∈In λµ(σ(B);σ(c))p

n

mµ(σ(B)), and by the
definition of σ this coincides with

∑
µ∈In σ(λµ(B; c)p

n

)σ(mµ(B)). Hence σ
extends uniquely to a ring homomorphism Mn →Mn. We have:

k(ā)σ(λµ(B; c) | c ∈ C, µ ∈ In) = k(ā)σ(λµ(B, σ(c)) | c ∈ C, µ ∈ In)

(by (1.10)(2))

= k(ā)σ(λµ(σ(B), σ(c)) | c ∈ C, µ ∈ In)

(by (1.10)(3)).

This shows that σ is onto, and therefore is also injective as the elements
λµ(σ(B), σ(c)), c ∈ C, µ ∈ Jn, must be algebraically independent over k(ā)σ.
Hence σ defines an automorphism of Mn for every n, and therefore defines an
automorphism of M .

(2.3) An example. The following example shows that Lemma (2.2) does
not generalise to the case where B is infinite.



704 ZOÉ CHATZIDAKIS

Let b be an element transformally transcendental over Fp, k = Fp(b)sσ, and
let a be a solution of σ(x) = x+ b. If L is a difference field containing k(a)σ
which is separable over k, then {σi(b) | i ∈ Z} ∪ {a} is p-independent in L.

Let B = {σi(b) | i ∈ Z}, let L be a difference field containing k(a)σ,
separable over k, and assume that a ∈ Lp[B]. Let m < n ∈ Z be such that
a ∈ Lp[σm(b), . . . , σn(b)] and n−m is minimal. Let B0 = {σm(b), . . . , σn(b)},
and write a =

∑
i λi(B0; a)pmi(B0). By the minimality of n − m, we get

that σm(b) ∈ Lp[a, σm+1(b), . . . , σn(b)] and σn(b) ∈ Lp[σm(b), . . . , σn−1(b), a].
This implies that there are indices i and j such that λi(B0; a) 6= 0, λj(B; a) 6=
0, and the exponents of σm(b) in mi(B0) and of σn(b) in mj(B0) are positive.
Then σ(a) − a =

∑
k λk(σ(B0;σ(a))pmk(B0) − λk(B0; a)pmk(B0), and the

coefficients of the monomials mi(B0) and σ(mj(B0)) in this expression are
non-zero, because σm(b) /∈ σ(B0), σn+1(b) /∈ B0. But this contradicts the
p-independence of B and the fact that σ(a)− a = b.

(2.4) Lemma. Let k(ā)σ be a separable extension of k, with σ(ā) ∈ k(ā)alg,
and let d = tr.deg(k(ā)/k). Then there is a separating transcendence basis
c̄ ∪ d̄ of k(ā, σ(ā), . . . , σd(ā)) over k, such that c̄ ∪ σ−1(d̄) ⊆ ā ∪ σ(ā) ∪ · · · ∪
σd−1(ā) and σ−1(d̄) is separably algebraic over k(c̄p, d̄).

Proof. Let 0 ≤ i ≤ d+ 1, and consider the field

Kd,i = k(āp, . . . , σi−1(āp), σi(ā), . . . , σd(ā)).

Then Kd,0 = k(ā, . . . , σd(ā)), Kd,d+1 = k(āp, . . . , σd(āp)) = k(Kp
d,0), and

Kd,i is a purely inseparable extension of Kd,i+1 for every i ≤ d. As Kd,0

is a separable, finitely generated extension of k, of transcendence degree d
over k, we have [Kd,0 : Kd,d+1] = pd. Hence there is 0 ≤ i ≤ d such that
Kd,i = Kd,i+1, and we fix such an i. Choose d̄ ⊆ σi+1(ā) ∪ · · · ∪ σd(ā)
maximal p-independent over k in Kd,0. Then Kd,i = Kd,i+1 = k(Kp

d,0)[d̄], and
Kd,0 = Kd,i+1(ā, . . . , σi−1(ā)). Choose c̄ ⊆ ā∪ · · · ∪ σi−1(ā) such that c̄∪ d̄ is
a p-basis of Kd,0 over k. Then c̄, d̄ satisfy the conclusion: since σ−1(d̄) ∈ Kd,i,
we have that σ−1(d̄) ∈ k(Kp

d,0)[d̄] ⊆ k(c̄p, d̄p)s[d̄] ⊆ k(c̄p, d̄)s.

(2.5) Lemma. Let U and V be varieties of dimension d defined over the
difference field k, and assume that V ⊆ U × σ(U), and that V projects gener-
ically onto U and onto σ(U). Write k(V ) = k(x1, . . . , xn, y1, . . . , yn) and
assume that there is 1 ≤ r ≤ d such that (x1, . . . , xr, yr+1, . . . , yd) is a sepa-
rating transcendence basis of k(V ) over k, and that xr+1, . . . , xd are separably
algebraic over k(xp1, . . . , x

p
r , yr+1, . . . , yd). Then there is a tuple ā such that

k(ā)σ is a separable extension of k, and (ā, σ(ā)) is a generic of V over k.

Proof. Choose in some difference field (K,σ) containing k (e.g., in a model
of ACFA) a tuple ā = (a1, . . . , an) such that (ā, σ(ā)) is a generic of the
algebraic set V . Our assumption on the dimensions of U and V implies that
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σ(ā) is algebraic over k(ā), so that k(ā)σ ⊆ k(ā)alg. Let c̄ = (a1, . . . , ar),
and d̄ = (σ(ar+1), . . . , σ(ad)). Then c̄ ∪ d̄ is a separating transcendence basis
of k(ā, σ(ā)) over k, and σ−1(d̄) is separably algebraic over k(c̄p, d̄). We will
show by induction on m ≥ 1 that

(i) σ−1(d̄), . . . , σm−2(d̄) are separably algebraic over k(c̄p, σm−1(d̄));
(ii) c̄ ∪ σm−1(d̄) is a separating transcendence basis of k(ā, . . . , σm(ā))

over k.
For m = 1, this is our assumption. Assume the result proved for m.

Then σ(c̄) ∈ k(c̄, d̄)s and by applying σ to (i) we get that d̄, . . . , σm−1(d̄) ∈
k(σ(c̄)p, σm(d̄))s. By Lemma (1.6)(2) applied to k(c̄, σm(d̄)), d̄ and σ(c̄),
we obtain that σ(c̄), d̄ ∈ k(c̄, σm(d̄))s, and therefore that d̄, . . . , σm−1(d̄) ∈
k(c̄p, σm(d̄))s (as σ(c̄)p ∈ k(c̄p, σm(d̄p))s). From σ−1(d̄) ∈ k(c̄p, d̄)s we deduce
(i).

We know that ā ∈ k(c̄, d̄)s ⊆ k(c̄, σm(d̄))s, and by the induction hypothesis
we have σ(ā), . . . , σm+1(ā) ∈ k(σ(c̄), σm(d̄))s. As σ(c̄) ∈ k(c̄, d̄)s, we get (ii).

Hence k(ā, . . . , σm(ā)) is a separable extension of k for every m ≥ 1. This
implies that k(ā)σ is separable over k.

(2.6) Theorem. Let e ∈ N. The theory of difference fields of degree of
imperfection ≤ e which are models of Tλ, has a model companion SCFAe,λ.
The theory SCFAe,λ is axiomatised by formulas expressing the following prop-
erties of the Lλ,σ-structure (K,σ):

(i) SCFe,λ.
(ii) σ is an automorphism of K.
(iii) If U and V are varieties defined over K and satisfy the hypotheses of

(2.5), then there is a tuple ā such that (ā, σ(ā)) ∈ V .

Proof. We will first show that (iii) is expressible by an infinite collection
of first-order statements. Let U and V be varieties defined over K. Then
there is a finite tuple c̄ of elements of K, and finite tuples F (X̄, T̄ ) and
G(X̄, Ȳ , T̄ ) of polynomials over Fp, such that the ideal of K[X̄] of polyno-
mials vanishing on U is generated by the tuple F (X̄, c̄), and the ideal of
K[X̄, Ȳ ] of polynomials vanishing on V is generated by G(X̄, Ȳ , c̄). Write
K[V ] = K[x̄, ȳ], x̄ = (x1, . . . , xn), ȳ = (y1, . . . , yn), and let r ≤ d be such that
K(x1, . . . , xr, yr+1, . . . , yd) is a separating transcendence basis of K(V ) over
K, and xr+1, . . . , xd are separably algebraic over K(xp1, . . . , x

p
r , yr+1, . . . , yd).

Since the algebraic varieties U and V are defined over Fp(c̄), this implies
that Fp(c̄)(V ) is separably algebraic over Fp(c̄)(x1, . . . , xr, yr+1, . . . , yd), and
xr+1, . . . , xd are separably algebraic over Fp(c̄)(x

p
1, . . . , x

p
r , yr+1, . . . , yd).

If d̄ is a finite tuple of K of the same length as c̄, define U(d̄) to be the
algebraic set defined by the equations F (X̄, d̄) = 0, and V (d̄) to be the alge-
braic set defined by G(X̄, Ȳ , d̄) = 0. We claim that there is a quantifier-free
formula ϕ of the language L of rings satisfied by (c̄, σ(c̄)), and such that if
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(d̄, σ(d̄)) satisfies ϕ, then the algebraic sets U(d̄) and V (d̄) have the following
properties:

• U(d̄) and V (d̄) are (absolutely irreducible) varieties of dimension d.
• V (d̄) ⊆ U(d̄)×U(σ(d̄)), and the projections V (d̄)→ U(d̄) and V (d̄)→
U(σ(d̄)) are generically onto.
• Fp(d̄)(V (d̄)) is separably algebraic over Fp(d̄)(x1, . . . , xr, yr+1, . . . , yd),

and the elements xr+1, . . . , xd of Fp(d̄)(V (d̄)) are separably algebraic
over Fp(d̄)(xp1, . . . , x

p
r , yr+1, . . . , yd).

Since the theory of algebraically closed fields is strongly minimal and elim-
inates the quantifier ∃∞, the property of the Zariski closure of a definable set
of being of a given dimension is elementary in the parameters defining this
set. Then standard results on polynomial rings over fields (see, e.g., [DS]) and
elimination of quantifiers of the theory of algebraically closed fields give that
the first two items are elementary properties of d̄.

The conditions of separability given in the third item are easily express-
ible using the polynomials G(x̄, ȳ, d̄), since they correspond to some sub-
determinants of the Jacobian ofG(x̄, ȳ, d̄) being non-zero; see [L1], Proposition
X.7.3. Note that as d = dim(V (d̄)), the elements x1, . . . , xr, yr+1, . . . , yd of
Fp(d̄)(V (d̄)) are necessarily algebraically independent over Fp(d̄).

Using compactness, we deduce that there is a scheme of axioms expressing
the properties (i), (ii) and (iii). It now remains to prove that SCFAe,λ is
indeed the model-companion of the theory of difference fields of degree of
imperfection ≤ e which are models of Tλ. We will first show that every
difference field (K,σ) of degree of imperfection ≤ e which is a model of Tλ
embeds in a model of SCFAe,λ.

First note that if K is a model of Tλ, then any field automorphism σ of K
is an Lλ-automorphism, since the λ-functions of K are first-order definable in
K. Also, any difference field of degree of imperfection f < e embeds in one of
degree of imperfection e: Let t̄ be an (e − f)-tuple of elements algebraically
independent over K, and extend σ to K(t̄) so that it fixes the elements of t̄.
Then the degree of imperfection of K(t̄) is e. Also, any automorphism of a
field K extends to an automorphism of the separable closure Ks of K, and
we may therefore assume that K satisfies (i) and (ii).

Let U and V be varieties defined over K and satisfying the hypotheses of
(iii). By (2.5), there is a separable extension K(ā)σ of K such that (ā, σ(ā))
is a generic of V . By Lemma (2.2) there is a difference field M containing
K(ā)σ, separable over K and with the same p-basis as K. Thus we have
shown that every occurrence of axiom (iii) can be satisfied in some separable
extension M of K with the same p-basis as K. A standard limit argument
then shows that K embeds in a model of SCFAe,λ. It remains to show that
SCFAe,λ is model-complete, i.e., that if K ⊆ L are models of SCFAe,λ then
K is existentially closed in L.
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Let (K,σ) ⊆ (L, σ) be models of SCFAe,λ. As e is finite, if B is a p-
basis of K, then B is also a p-basis of L, and therefore L is an elementary
L-extension of K. Any quantifier-free formula of Lλ is equivalent, modulo the
Lλ(B)-theory of (K,B), to an existential L(B)-formula. Hence it is enough
to show that any quantifier-free Lσ-formula ϕ(x̄) with parameters in K which
is satisfied in L is already satisfied in K. Using the usual trick of replacing
the formula (x 6= 0) by (∃y xy = 1), we may furthermore assume that ϕ(x̄)
is positive, i.e., that ϕ(x̄) is a finite conjunction of difference equations with
coefficients in K. Let ā be a tuple of L satisfying ϕ(x̄). Because ϕ is a finite
conjunction of difference equations, any tuple d̄ with Iσ(d̄/K) ⊇ Iσ(ā/K) will
satisfy ϕ. We will show that such a tuple exists in an elementary extension
K∗ of K, and therefore also in K.

By Lemma (2.1), there is a subtuple b̄ of ā such that b̄ is transformally in-
dependent over K and K(ā)σ is a separable transformally algebraic extension
of k = K(b̄)σ. Choose m large enough such that k(ā)σ ⊆ k(ā, . . . , σm(ā))alg,
and such that if ā′ is a tuple (in some model of ACFA containing K) such
that there is a k-isomorphism sending (ā′, . . . , σm(ā′)) to (ā, . . . , σm(ā)), then
this k-isomorphism extends to a k-isomorphism of difference fields k(ā′)σ →
k(ā)σ (see [C, 8.20.13] for the existence of such an m). By (2.4) applied to
k = K(b̄)σ, there is an integer n > m and a separating transcendence basis
c̄ ∪ d̄ of k(ā, . . . , σn(ā)) over k with c̄ ∪ σ−1(d̄) ⊆ ā ∪ · · · ∪ σn−1(ā), and such
that σ−1(d̄) is separably algebraic over k(c̄p, d̄).

Let U be the algebraic locus of (ā, . . . , σn−1(ā)) over ks (i.e., the small-
est algebraic set defined over ks and containing (ā, . . . , σn−1(ā)), and V the
algebraic locus of (ā, . . . , σn−1(ā), σ(ā), . . . , σn(ā)) over ks. As K(ā)σ is a
separable extension of k = K(b̄)σ, the algebraic sets U and V are varieties de-
fined over ks, of the same dimension (because k(ā)σ ⊆ k(ā, . . . , σn−1(ā))alg),
and they satisfy the hypotheses of (2.5) over ks after some renaming of the
variables.

Let K∗ be a sufficiently saturated elementary extension of K. It then suf-
fices to show that ϕ(x̄) is satisfied in K∗. We first claim that K∗ contains
arbitrarily large finite tuples of elements which are transformally transcen-
dental over K. First observe that any instance of (iii) with the varieties U
and V defined over K has a realisation ē in K∗ with (ē, σ(ē)) a generic of
the algebraic variety V over K. This follows from the saturation of K∗ and
the fact that, by (iii), any formula (x̄, σ(x̄)) ∈ V ∧ zg(x̄, σ(x̄)) = 1, where
g ∈ K[V ] \ {0}, has a solution in K. Thus, for any n,m, there is an m-tuple
ē of elements of K∗ satisfying σn(x) = x and tr.deg(k(ē)σ/k) = nm. By
saturation, there is ē ∈ (K∗)m such that the elements σi(g), g ∈ ē, i ∈ N, are
algebraically independent over K.

Choose a tuple c̄ of K∗, of the same length as b̄, and which is transformally
independent over K. Then the difference fields k = K(b̄)σ and K(c̄)σ are K-
isomorphic, by an isomorphism f sending b̄ to c̄. By Proposition 2.10 of [CH],
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if τ is an automorphism of K(c̄)sσ which agrees with σ on K(c̄)σ, then τ is
conjugate to σ by an element of Gal(K(c̄)sσ/K(c̄)σ). Hence the isomorphism
f extends to a difference field embedding f : ks → K∗. By axiom (iii) and
saturation of K∗, there is a tuple ē in K∗, such that (ē, σ(ē)) is a generic of
f(V ) over K(c̄)sσ. Then ē = (d̄, . . . , σn−1(d̄)) for some tuple d̄ of the same
length as ā, and Iσ(ā/K) = Iσ(d̄/K) because n > m, so that d̄ satisfies ϕ.

(2.7). We added only the λ-functions symbols to the language to ensure
that if (L, σ) is an extension of (K,σ) then L is separable over K. In case
the degree of imperfection e is finite, this could have been achieved as well
by adding constant symbols for the elements of a p-basis, together with the
axioms expressing that these elements form a p-basis.

Theorem. Consider the language Lσ(b1, . . . , be), and the class of differ-
ence fields (K,σ) with p-basis {b1, . . . , be}. The existentially closed members
of this class form an elementary class, axiomatised by (ii) and (iii) above,
together with (i’): SCFe,b.

Proof. This follows easily from (2.6) and the following observations: a field
expands uniquely to a model of Tλ; if K ⊆ L are two difference fields with
the same p-basis, then K is an Lλ,σ-substructure of L.

(2.8). Let us denote this theory by SCFAe,b. Note that this gives a slightly
less general result than (2.6), as the p-basis is fixed by σ. However, the
advantage is that the theory SCFe,b of separably closed fields with p-basis
{b1, . . . , be} eliminates imaginaries. It is also model-complete but doesn’t
eliminate quantifiers as the λ-functions are only existentially definable. We
will see that it implies that any completion of SCFAe,b eliminates imaginaries
(in the language Lσ(b̄)).

(2.9). The case e = ∞ necessitates a few more lemmas. The problem
comes from the fact that quantifier-free Lλ-formulas are not equivalent mod-
ulo SCF∞,λ to existential L-formulas, because the λ-functions allow us to say
that elements are p-independent. Indeed, the formula

∧
i(λi,n(x1, . . . , xn; y) =

0)∧y 6= 0 says that either (x1, . . . , xn) are p-dependent, or that (x1, . . . , xn, y)
are p-independent. We have a first reduction:

Lemma. Let ϕ(x̄) be a quantifier-free Lλ-formula. Then, modulo SCF∞,λ,
ϕ(x̄) is equivalent to a finite disjunction of L-formulas of the form

∃ȳ ψ(x̄, ȳ) ∧ θ(x̄, ȳ),

where ψ(x̄, ȳ) is quantifier-free, and θ(x̄, ȳ) is a conjunction of universal for-
mulas expressing that some subtuples of x̄_ȳ are p-independent.

Proof. Unraveling the λ-functions appearing in ϕ, it is easy to see that
there are an integer m, a tuple ȳ = (y1, . . . , ym), a quantifier-free L-formula
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ψ0(x̄, ȳ), and a formula θ0(x̄, ȳ), which is a conjunction of formulas of the form
yi = λj,k(z̄; t) with (z̄, t) some (k + 1)-subtuple of (x̄, y1, . . . , yi−1), such that
ϕ(x̄) is equivalent to the formula

∃ȳ ψ0(x̄, ȳ) ∧ θ0(x̄, ȳ).

Modulo SCF∞,λ, the formula y = λj,k(z̄; t) is equivalent to a formula

(∃ū ψj(z̄, t, y, ū)) ∨ (y = 0 ∧ θj(z̄, t)),
where ψj(z̄, t, y, ū) is the quantifier-free L-formula

(t =
pk∑
i=1

upimi,k(z̄) ∧ uj = y) ∨ (y = 0 ∧ 0 =
pk∑
i=1

upimi,k(z̄) ∧
pk∨
i=1

ui 6= 0),

and θj(z̄, t) is the universal L-formula expressing that (z̄, t) is p-independent.
The result follows.

(2.10) Lemma. Let ā be transformally algebraic over the difference field
k. Assume that σ(ā) ∈ k(ā)alg, and that k(ā)σ is separable over k. For
some m, there are tuples b̄ ⊂ {ā, . . . , σm−1(ā)}, c̄ ⊆ {σ(ā), . . . , σm−1(ā)} and
d̄ ⊂ {σ(ā), . . . , σm(ā)}, such that

(a) b̄, c̄, d̄ is a separating transcendence basis of k(ā, . . . , σm(ā)).
(b) c̄ ∈ k(b̄p, d̄p, σ(c̄))s, and σ(c̄) ∈ k(b̄p, d̄p, c̄)s.
(c) σ−1(d̄) ∈ k(b̄p, c̄, d̄)s.

Proof. Let c̄ ⊆ {σi(ā) | i ∈ Z} be a p-basis of k(ā)σ over k. Replacing c̄ by
σi(c̄) for some i ∈ N and ā by ā_ · · ·_ σj(ā) for some j ∈ N, we may assume
that ā contains c̄∪σ−1(c̄), and that c̄ ∈ k(ā)p(σ−1(c̄)), σ−1(c̄) ∈ k(ā)p(c̄). Let
d = tr.deg(k(ā)σ/k), and consider the fields Kd,i, i = 0, . . . , d+ 1, defined in
(2.4). Let i be such that Kd,i+1 = Kd,i; then Kd,i+1 contains the tuple σd(c̄),
which is p-independent over k. Let d̄ ⊂ {σi+1(ā), . . . , σd(ā)} be such that
(σd(c̄), d̄) is maximal p-independent over k in Kd,0. Let b̄ ⊆ {ā, . . . , σi−1(ā)}
be such that b̄, c̄, d̄ is a p-basis of Kd,0 over k. Then σ−1(d̄) ∈ k(b̄p, c̄, d̄)s (see
(2.4)), and so (b̄, c̄, d̄) is our desired tuple.

(2.11) Lemma. Let U and V be varieties of dimension d, defined over
a difference field k. We assume that V ⊆ U × σ(U), and that V projects
generically onto U and σ(U). Let us write k(V ) = k(x1, . . . , xn, y1, . . . , yn).
We also assume that there are integers 1 ≤ r ≤ s ≤ d such that

• (x1, . . . , xr, yr+1, . . . , yd) is a separating transcendence basis of k(V )
over k.
• xr+1, . . . , xs are separably algebraic over k(xp1, . . . , x

p
r , yr+1, . . . , ys,

yps+1, . . . , y
p
d) and yr+1, . . . , ys are separably algebraic over k(xp1, . . . , x

p
r ,

xr+1, . . . , xs, y
p
s+1, . . . , y

p
d).

• xs+1, . . . , xd are separably algebraic over k(xp1, . . . , x
p
r , yr+1, . . . , yd).
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Then in some difference field extending k, there is a tuple ā such that k(ā)σ
is separable over k, (ā, σ(ā)) ∈ V and (ar+1, . . . , as) is p-independent over k
in k(ā)σ.

Proof. Choose in some difference field (K,σ) containing k (e.g., in a model
of ACFA), a tuple ā = (a1, . . . , an) such that (ā, σ(ā)) is a generic of the
algebraic set V . Our assumption on the dimensions of U and V implies
that σ(ā) is algebraic over k(ā), so that k(ā)σ ⊆ k(ā)alg. Let b̄ = (a1, . . . , ar),
c̄ = (σ(ar+1), . . . , σ(as)), and d̄ = (σ(as+1), . . . , σ(ad)). Then b̄∪ c̄∪ d̄ is a sep-
arating transcendence basis of k(ā, σ(ā)) over k, and σ−1(d̄) is separably alge-
braic over k(b̄p, c̄, d̄). Moreover, c̄ is separably algebraic over k(b̄p, σ−1(c̄), d̄p)
and σ−1(c̄) is separably algebraic over k(b̄p, c̄, d̄p), and therefore, for every
M ≥ 0, we have

(∗) k(āp, . . . , σM+m(ā)p)(c̄) = k(āp, . . . , σM+m(ā)p)(σM−1(c̄)).

As in (2.5), one shows that for all M :
(a) σ−1(d̄), . . . , σM−2(d̄) ∈ k(b̄p, σM−1(c̄), σM−1(d̄))s.
(b) b̄∪σM−1(c̄, d̄) is a separating transcendence basis of k(ā, . . . , σm+M (ā))

over k.
By (∗), if −1 ≤ j ≤M , then b̄, σj(c̄), σM−1(d̄) is also a separating transcen-

dence basis of k(ā, . . . , σm+M (ā)) over k. This implies that c̄ is p-independent
over k in all the fields k(σi(ā) | −n ≤ i ≤ n), and therefore is p-independent
over k in k(ā)σ.

(2.12) Theorem. The theory of difference fields models of Tλ has a model
companion SCFA∞,λ, which is axiomatised by expressing the following prop-
erties of the Lλ,σ-structure (K,σ):

(i) SCF∞,λ.
(ii) σ is an automorphism of K.
(iv) For all m, if U and V are varieties defined over K satisfying the

hypotheses of (2.11) (over K), then K satisfies:

∀z1, . . . , zm,∃x1, . . . , xn, (x̄, σ(x̄)) ∈ V
∧ ({z1, . . . , zm} p-independent

→ {z1, . . . , zm, xr+1, . . . , xs} p-independent).

Proof. As in Theorem (2.6), one shows that these axioms are indeed first-
order. We will first show that every difference field model of Tλ embeds in
a model of SCFA∞,λ. Let K be a difference field, and let U, V be varieties
satisfying the hypothesis of (2.11), let b̄ be a tuple of elements of K, which we
may assume p-independent in K. Consider the separable extension L = K(ā)σ
of K given by Lemma (2.11). Then ar+1, . . . , as are p-independent over K,
and therefore also over Fp(b̄). We conclude as in (2.6) that every difference
field embeds in a model of SCFA∞,λ.
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It remains to show that SCFA∞,λ is model complete. Let K be a model
of SCFA∞,λ, and L a difference field containing K and separable over K.
Let ϕ(x̄) be a quantifier-free Lλ,σ-formula with parameters in K, and assume
that it is satisfied in L by a tuple ā. By (2.9), enlarging ā if necessary, we
may replace ϕ(x̄) by a formula ψ(x̄) ∧ θ(x̄), where ψ(x̄) is a quantifier-free
positive Lσ(K)-formula, and θ(x̄) is an L(K)-formula expressing that certain
subtuples of (x̄, ē) are p-independent, for some ē in K.

We will show that there is d̄ in some elementary extension K∗ of K, such
that K∗ is a separable extension of K(d̄)σ, and such that the difference fields
K(ā)σ and K(d̄)σ are isomorphic by a K-isomorphism f sending ā to d̄.
Let ē ∈ K; if a subtuple of ā is p-independent over Fp(ē) in L, then it is
also p-independent over Fp(ē) in K(ā)σ, and therefore its image by f is p-
independent over Fp(ē) in K(d̄)σ, and also in K∗ as K∗ is separable over
K(d̄)σ. Finding such a d̄ will then finish the proof.

By (2.1), there is a tuple b̄ ⊆ ā such that b̄ is transformally transcendental
over K, K(ā)σ is separable and transformally algebraic over K(b̄)σ. The
saturation of K∗ implies that K∗ contains a tuple c̄ of the same length as
b̄, of elements transformally transcendental over K, and such that K∗ is a
separable extension of K(c̄)σ. Indeed, let n = |b̄|; then for any m, the partial
type saying that the elements σi(xj), i = 0, . . . ,m − 1, j = 1, . . . , n, are
distinct and p-independent over K (in K∗), is finitely consistent, and therefore
realised in K∗. Choose a tuple c̄ = (c1, . . . , cn) such that the elements σi(ci),
i ∈ Z, 1 ≤ j ≤ n, are p-independent over K. Then the tuple c̄ is transformally
transcendental over K, and K∗ is a separable extension of K(c̄)σ.

As in the proof of (2.6), we show that there is a K-isomorphism of difference
fields f : K(b̄)sσ → K(c̄)sσ ⊆ K∗. We use the saturation of K∗, (2.10) and
(2.11), axiom (iv), and reason as in the proof of (2.6) to get a tuple d̄ in K∗

and a difference field isomorphism extending f : K(b̄, ā)σ → K∗ and sending
ā to d̄. By axiom (iv) and (2.11), we may assume that the p-basis of K(d̄)σ
over K(c̄)σ stays p-independent in K∗, and this implies that K∗ is a separable
extension of K(d̄)σ. This finishes the proof.

(2.13). At first sight, the axiomatisations of SCFAe,λ are quite different
for e ∈ N and for e = ∞. We will show that SCFA∞,λ is nevertheless the
limit of the theories SCFAe,λ, e ∈ N.

Proposition. Let θ be an Lλ,σ-sentence, and assume that SCFA∞,λ |= θ.
There is e0 such that for all e ≥ e0, SCFAe,λ |= θ.

Proof. By compactness, it suffices to show the assertion for all sentences
occurring in the scheme of axioms given in (2.12). This is clear for axioms
of type (i) or (ii). Let K |= SCFAe,λ, let b̄ be an m-tuple of p-independent
elements of K, and U , V varieties defined over K and satisfying the hypothe-
ses of (2.11). Assume moreover that m + (s − r) ≤ e (in the notation of
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(2.11)). We will show that there is a tuple ā in K such that (ā, σ(ā)) ∈ V and
{b̄, ar+1, . . . , as} is p-independent.

Let θ(x̄, ȳ) be the Lλ,σ(K)-formula expressing this property of the tuple
(ā, b̄), and let K(ā)σ be the extension of K constructed in Lemma (2.11).
Then {ar+1, . . . , as} is contained in a p-basis C of K(ā)σ over K. Fix a p-
basis B of K containing the m-tuple b̄, and consider the extension M of K(ā)σ
constructed in Lemma 2.2(b). Then M is a separably algebraic extension of
a field M0 which is isomorphic to the field of fractions of K〈Xc | c ∈ C〉B .
Hence it is enough to show that the elements of {b̄, Xai | i = r + 1, . . . , s}
are p-independent in the field of fractions of K〈Xc | c ∈ C〉B . This will
immediately follow from the following claim:

Claim. Let c1, . . . , cn be distinct elements of B. Then B \ {c1, . . . , cn} ∪
{X1, . . . , Xn} is a p-basis of the field of fractions Kn of K〈X1, . . . , Xn〉B.

Proof. This is proved by induction on n. Assume first that n = 1. We
identify I(B) with I(B \ {c1}) × {0, . . . , p − 1}, by viewing a p-monomial in
B as the product of a p-monomial in B \ {c1} with a p-monomial in c1. This
allows us to write

X =
p−1∑
i=0

( ∑
j∈I(B\{c1})

Xp
i,jmj(B \ {c1})

)
ci1.

Hence c1 satisfies an equation of degree p − 1 over Kp
1 [B \ {c1}, X]; c1 is

also purely inseparable over this field, and hence is an element of this field.
As B is a p-basis of K1, so is B \ {c1} ∪ {X}, which proves the claim when
n = 1.

Assume the result proved for n and view Kn+1 as the field of fractions of
Kn〈Xn+1〉B . By induction, Bn = B \ {c1, . . . , cn} ∪ {X1, . . . , Xn} is a p-basis
of Kn, and by (1.11), Kn〈Xn+1〉B is naturally isomorphic to Kn〈Xn+1〉Bn by
a Kn[Xn+1]-isomorphism. Hence the case n = 1 gives us that Bn \ {cn+1} ∪
{Xn+1} = B \ {c1, . . . , cn+1} ∪ {X1, . . . , Xn+1} is a p-basis of Kn+1.

By the claim, M is a separable extension of K, of the same degree of
imperfection as K, and which satisfies ∃x̄ θ(x̄, b̄). By model completeness of
SCFAe,λ, K also satisfies this formula. Note that the integer e0 does not
depend on the parameters defining U and V but only on m + s − r. This
proves the proposition.

3. Elementary invariants and types

Recall that if K is separably closed and A ⊆ K, then the model-theoretic
algebraic closure of A inside the L-structure K is obtained by taking the
separable closure of the Lλ-substructure of K generated by A (see [D]). Let
K be a model of SCFAe,λ for some e. If A ⊆ K, we define aclσ(A) (or
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aclσ,K(A) if we need to specify in which field we take the λ-closure) to be
the smallest separably closed subfield of K that is closed under σ, σ−1 and
the λ-functions of K and which contains A. We know by results in [CP] that
any completion of SCFAe,λ is simple. We also know that if K |= SCFAe,λ,
then the theory of K is completely determined by the isomorphism type of
any difference separably closed subfield K0 of K of degree of imperfection e.
Thus, a priori, the theory of K might depend on the action of σ on a given
p-basis. We will show that this is not the case, and that Th(K) is completely
determined by the isomorphism type of its difference subfield Fsp. We will also
obtain a slight generalisation of the independence theorem, and show that
types over algebraically closed sets coincide with Lascar strong types. We
start with a description of p-bases when e ∈ N.

(3.1) Lemma. Let K |= SCFAe,λ, and assume that B is a finite p-
independent subset of K such that σ(B) ⊂ Kp[B]. Then there is a finite
set D of elements fixed by σ, such that Kp[D] = Kp[B].

Proof. Let e = |B|, fix an enumeration of the p-monomials mi(B) in B,
i = 1, . . . , pe, and let mi(σ(B)) = σ(mi(B)). As σ(B) is also p-independent
in K, we have that Kp[σ(B)] = Kp[B]. Let A = (aj,i) be the (pe × pe)-
matrix with entries in K defined by mi(σ(B)) =

∑
j a

p
j,imj(B). Then A is an

invertible matrix. Consider the following system of equations, in the unknown
X̄ = (X1, . . . , Xpe):

(1)

X1

...
Xpe

 = A

 σ(X1)
...

σ(Xpe)

 .

If (c1, . . . , cpe) is a solution of (1) in Ap
e

(K), then

σ

(
pe∑
i=1

cpimi(B)

)
=

pe∑
i=1

σ(ci)pmi(σ(B)) =
pe∑
i=1

σ(ci)p
pe∑
j=1

apj,imj(B)

=
pe∑
j=1

pe∑
i=1

(
σ(ci)aj,i

)p
mj(B) =

pe∑
j=1

cpjmj(B),

so that
∑pe

i=1 c
p
imi(B) is fixed by σ and belongs to Kp[B]. Let F = Fix(σ).

The set of solutions of (1) in Ap
e

(K) forms an F -vector space, and we will
first show that it generates a K-vector space of dimension pe. We prove by
induction on i ≤ pe that there are pe-tuples c̄1, . . . , c̄i which are solutions of
(1) and are (K-)linearly independent. Assume that we have already found the
elements c̄1, . . . , c̄i, and that i < pe. Consider the (pe × (i + 1))-matrix with
columns X̄, c̄1, . . . , c̄i. Since the vectors c̄1, . . . , c̄i are independent in Ap

e

(K),
this matrix has a submatrix of size (i+ 1)× (i+ 1) with non-zero determinant



714 ZOÉ CHATZIDAKIS

g(X̄) ∈ K[X̄]. Let U ⊆ Ape+1 be the variety defined by g(X̄)X ′ = 1, and let
V ⊆ U × σ(U) be defined by X̄ = AȲ . Then U and V satisfy the hypotheses
of axiom (iii) of SCFAe,λ (note that k(U) = k(V )), and therefore there is
(c̄, c′) in K such that c̄ = Aσ(c̄) and g(c̄)c′ = 1. Then c̄1, . . . , c̄i, c̄ are linearly
independent solutions of (1).

Fix linearly independent solutions c̄1 = (c1,j), . . . , c̄pe = (cpe,j) of (1), and
let di =

∑pe

j=1 c
p
i,jmj(B) for i = 1, . . . , pe. Then the elements d1, . . . , dpe are

linearly independent in the Kp-vector space K. We claim that {d1, . . . , dpe}
contains a p-independent subset of size e. This is again proved by induction
on i ≤ pe. Assume that j(1), . . . , j(i) are such that dj(1), . . . , dj(i) are p-
independent in K. Then Kp[dj(1), . . . , dj(i)] is a Kp-vector space of dimension
pi. If i < e then there is an n such that dn /∈ Kp[dj(1), . . . , dj(i)], i.e., such
that dj(1), . . . , dj(i), dn are p-independent in K, and we let j(i + 1) = n.
Hence Kp[B] ∩ F contains a p-independent set D of size e. This implies that
Kp[B] = Kp[D].

(3.2) Corollary. Let e ∈ N and let K be a model of SCFAe,λ. Then K
has a p-basis consisting of elements fixed by σ.

(3.3) Corollary. Let K |= SCFA∞,λ, and assume that K is transfor-
mally algebraic (over ∅). Then K has a p-basis contained in Fix(σ).

Proof. If ā is a tuple of elements of K, then the field Fp(ā)σ has finite
transcendence degree, and therefore Kp(ā)σ is a finite extension of Kp. By
(3.1), there is a finite tuple b̄ of elements of Fix(σ) such that Kp(ā)σ = Kp(b̄).
Hence we get that K ⊆ Kp(Fix(σ)), and therefore Fix(σ) contains a p-basis
of K.

(3.4) Lemma. Let k be a separably closed difference field, let K1 and K2

be difference fields containing k, which are linearly disjoint and separable over
k. Let B1 be a p-basis of K1 over k and B2 a p-basis of K2 over k, and assume
that there is an injection f : B1 → B2, and that the elements of B1 ∪ f(B1)
are fixed by σ. Then K1 and K2 are contained in a common difference field
L, which is separable over K1 and over K2, and in which B2 is a p-basis of
L over k. If f is onto, then B1 is also a p-basis of L over k.

Proof. As K1 and K2 are linearly disjoint over k, the field K1K2 has a
unique structure of a difference field extending those of K1 and K2; this result
is well-known but we will repeat the proof. To avoid confusion, let us denote
by σi the automorphism of Ki, for i = 1, 2. By assumption σ1 and σ2 agree
on k. Since K1 and K2 are linearly disjoint over k, their composite K1K2 is
separable over K1 and over K2, and is isomorphic to the field of fractions of
K1 ⊗k K2. Define σ on K1K2 by setting σ(a⊗ b) = σ1(a)⊗ σ2(b) for a ∈ K1

and b ∈ K2, and extending to K1K2. This is well-defined as K1 and K2 are
linearly disjoint over k and σ1 and σ2 agree on k.
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Let C = {b − f(b) | b ∈ B1} and L = K1K2[c1/p
n | c ∈ C, n ∈ N].

By assumption, the elements of C are fixed by σ, which implies that the
automorphism σ of K1K2 extends uniquely to an automorphism of L, with
σ(c1/p

n

) = c1/p
n

for c ∈ C, n ∈ N. Clearly we have L = kLp[B2], so it is
enough to show that B1 and B2 stay p-independent in L. This will ensure
that L is separable over K1 and over K2.

As K1 and K2 are linearly disjoint over k, we know that B1∪B2 is a p-basis
of K1K2 over k. Then B1 ∪C ∪ (B2 \ f(B1)) is also a p-basis of K1K2 over k.
Thus K1K2 is a separable extension of k(C), with p-basis B1 ∪ (B2 \ f(B1))
over k(C). Lemma (1.12) tells us that B1∪(B2\f(B1)) remains p-independent
over k(c1/p

n | c ∈ C, n ∈ N) in L. This proves the result for B1; the proof for
B2 is similar, using the fact that B2 ∪ C is a p-basis of K1K2 over k.

(3.5) Theorem. Let (K1, σ1) and (K2, σ2) be models of SCFAe,λ, with
a common difference subfield (A, σ), and let Ai =def aclσi,Ki(A) for i = 1, 2.
Then

(K1, σ1) ≡A (K2, σ2) ⇐⇒ (A1, σ1) 'A (A2, σ2).

Proof. The left-to-right implication is clear. For the reverse implication,
let f : (A1, σ1) → (A2, σ2) be an A-isomorphism of difference fields. Let
g be an A-automorphism of the field Ω which extends f−1. Because A1 is
separably closed and K1, g(K2) are separable over A1, we may choose g such
that the field g(K2) is linearly disjoint from K1 over A1; then g(A2) = A1 is a
substructure of the difference field (g(K2), gσ2g

−1), and it is enough to show
that (g(K2), gσ2g

−1) ≡A1 (K1, σ1). Hence we may assume that A = A1 = A2,
and that K1 and K2 are linearly disjoint over the separably closed field A.
Then there is a unique automorphism σ of K1K2 which extends σ1 and σ2

(see the proof of (3.4)).
Our assumption then implies that K1 and K2 are separable extensions of

A, and that they have the same degree of imperfection e ∈ N ∪ {∞}. If
e = ∞, then by (2.12) the Lλ,σ-structure (K1K2, σ) embeds in a model L of
SCFA∞,λ, separable over K1 and over K2.

If e ∈ N, then by (3.1) K1 and K2 have p-bases which are fixed by σ1 and
σ2, respectively. Let Ci ⊂ Ki ∩ Fix(σi) be a p-basis of Ki over A for i = 1, 2.
If B is a p-basis of A, then |B|+ |Ci| = e, and therefore |C1| = |C2|. By (3.4),
there is a difference field L0 containing K1K2, which is separable over A, and
in which C1 and C2 are p-bases over A. Thus L0 is a separable extension of
K1 and of K2, of degree of imperfection e. By (2.6), L0 embeds in a model L
of SCFAe,λ, separable over K1 and over K2.

In both cases, the model completeness of SCFAe,λ gives us that (Ki, σi) ≺
(L, σ) for i = 1, 2, and therefore that (K1, σ1) ≡A (K2, σ2).



716 ZOÉ CHATZIDAKIS

(3.6). This result has numerous consequences, which we now list. Most of
them already appear in [CP].

Corollaries. Let K be a model of SCFAe,λ.
(1) Let A = aclσ(A) and B = aclσ(B) be subfields of K. Any difference

field isomorphism f between A and B is elementary.
(2) Let K |= SCFAe,λ, let A ⊆ K, and let ā and b̄ be tuples from K.

Then tp(ā/A) = tp(b̄/A) if and only if there is a difference field iso-
morphism f : aclσ(A, ā) → aclσ(A, b̄) which fixes A and sends ā to
b̄.

(3) The completions of SCFAe,λ are obtained by describing the isomor-
phism type of the difference field Fsp.

(4) Let e ∈ N, b̄ = {b1, . . . , be}. The completions of SCFAe,b are obtained
by describing the isomorphism type of the Lσ(b̄)-structure
(Fp(b1, . . . , be)s, b1, . . . , be).

(5) Let A ⊆ K. Then aclσ(A) is the model theoretic algebraic closure of
A in K.

(6) Let ϕ(x̄) be a formula of Lσ. Then ϕ(x̄) is equivalent modulo SCFAe,λ

to a disjunction of formulas of the form

(∗) ∃ȳ ψ(x̄, ȳ),

where ψ(x̄, ȳ) is a positive quantifier-free Lλ,σ-formula. Moreover
there is a finite tuple F (x̄) of terms of the language Lλ,σ such that in
any difference field K, if (ā, b̄) is a tuple of K satisfying ψ, then b̄ is
separably algebraic over Fp(F (ā)).

(7) If b̄ = {b1, . . . , be}, then any completion of SCFAe,b eliminates imag-
inaries.

Proof. (1) Extend f to an automorphism of Ω, and consider the difference
field (L, τ) = (f(K), fσf−1). Then aclτ,L(B) = B; by (3.5) this implies that
(L, τ) ≡B (K,σ). As f defines an isomorphism between the difference fields
(K,σ) and (L, τ), this implies that f is elementary.

(2)–(4) are clear by (3.5).
(5) As aclσ(A) is separably closed, and K is a separable extension of

aclσ(A), there is an aclσ(A)-automorphism g of Ω such that the field g(K) is
linearly disjoint from K over aclσ(A). As in the proof of (3.5), there is a model
M of SCFAe,λ, containing the difference fields (K,σ) and (g(K), gσg−1), and
separable over K and g(K). Then K ≺M , g(K) ≺M , and every type over A
realised in K\aclσ(A) is realised anew in g(K), and is therefore non-algebraic.

(6) Let Σ be the set of formulas of the form given by (∗). Then Σ is closed
under finite conjunctions.

Let K be a model of SCFAe,λ, and let ā be a tuple of elements of K.
By (3.5), the type of ā (over ∅) is obtained by describing the isomorphism
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type of the difference field aclσ(ā) with distinguished constants the elements
of ā. Hence it is axiomatised by an infinite conjunction of formulas of Σ
(note that for any formula θ(ȳ) we always have θ(ȳ) ⇐⇒ θ(σ(ȳ)); this
allows us to describe the isomorphism type of aclσ(ā) without using σ−1).
Use compactness to deduce that each formula is equivalent modulo SCFAe,λ

to a disjunction of formulas of Σ.
(7) Let K |= SCFAe,b. Then any algebraically closed substructure of K

is a separably closed field of degree of imperfection e, because the language
contains symbols for elements of a p-basis. Thus Theorem (3.7) of [CP] (the
independence theorem) holds over any algebraically closed subset of (K, b̄).
The proof of (2.9) in [CP] then gives us the result.

(3.7) Definition of independence, and the independence theorem.
Let K |= SCFAe,λ, let A,B,C ⊆ K. We say that A and B are indepen-
dent over C iff the fields aclσ(C,A) and aclσ(C,B) are linearly disjoint over
aclσ(C), and if, moreover, K is a separable extension of aclσ(C,A) aclσ(C,B)
when e =∞.

The following result is a simple generalisation of (3.7) in [CP], and implies
that any completion of SCFAe,λ is simple, and that independence as defined
above is non-forking, provided aclσ(C) contains a p-basis of K if e is finite
(see [KP]). It also gives a description of the Lascar strong types: Lstp(ā/A) '
tp(ā/ aclσ(A)), provided aclσ(A) contains a p-basis of K when e ∈ N.

Theorem. Let K |= SCFAe,λ, let E = aclσ(E) ⊆ K. Let ā, b̄, c̄1 and c̄2
be tuples from K which satisfy:

(i) ā and b̄ are independent over E, ā and c̄1 are independent over E, b̄
and c̄2 are independent over E.

(ii) tp(c̄1/E) = tp(c̄2/E).
(iii) If e ∈ N, then E contains a p-basis of K.

Then in some elementary extension of K there is c̄ realising tp(c̄1/E ∪ ā) ∪
tp(c̄2/E ∪ b̄), which is independent from (ā, b̄) over E.

Proof. The proof is absolutely standard, and follows the lines of (3.7) in
[CP]. Below we will indicate some changes or remarks, which will allow the
reader to modify suitably (3.7) of [CP]. Let A = aclσ(E, ā), B = aclσ(E, b̄),
C = aclσ(E, c̄1), C2 = aclσ(E, c̄2), and T = SCFe.

(1) Note that our independence assumptions on A, B, C and C2 simply
mean that tpT (A/B), tpT (A/C) and tpT (B/C2) do not fork over E; see [D].

(2) Moving c̄1 by an A-automorphism, we may assume that C is indepen-
dent (in the sense of T ) from (A,B) over E: if e =∞, this is immediate; if e
is finite, this is because E contains a p-basis of K.

(3) dclT (−) will denote the λ-closure, and aclT (−) the separable closure
of dclT (−) (i.e., we are not working in T eq as in [CP]). In our case, the
independence assumptions give dclT (A,B) = AB, aclT (A,B) = (AB)s, etc.
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(4) The claim is replaced by the following:

Claim. (AB)s(AC)s and (BC)s are linearly disjoint over BC.

By Remark (1.9) in [CH], we know that (AB)s(AC)s ∩ (BC)s ⊆ BalgCalg.
As BalgCalg is purely inseparable over BC, this implies that (AB)s(AC)s ∩
(BC)s = BC, which gives the claim because (BC)s is a Galois extension of
BC.

(5) From this new claim, we deduce that σ ∪ σ2 defines an automorphism
of L = (AB)s(AC)s(BC)s. Since the degree of imperfection of L is ≤ e,
we can embed L into a model K∗ of SCFAe,λ. The result then follows from
(3.6)(2).

(3.8) Corollary. Independence as defined in (3.7) coincides with non-
forking.

(3.9) Corollary. Let A = aclσ(A) ⊆ K |= SCFAe,λ, and assume that
A contains a p-basis of K if e is finite. Then the Lascar strong type over A
of a tuple ā in K is implied by tp(ā/A).

Proof. We first recall the definition of the Lascar strong type. Let K∗ be
a large saturated elementary extension of K, and consider the group H of
automorphisms of K∗ generated by all groups Aut(K∗/M) where A ⊆ M ≺
K∗. Then two elements of K∗ have the same Lascar strong type over A if
they are conjugate by some element of H.

It is enough to show that if b̄ realises tp(ā/A) and is independent from
ā over A, then there is a difference field M containing A, such that M ≡A
K and tp(ā/M) = tp(b̄/M). Since A is separably closed, there is an A-
automorphism f of Ω such that f(K) is free from aclσ(A, ā, b̄) over A. Then
(K, fσf−1) ≡A (K,σ). Since ā and b̄ realise the same type over A, there
is an A-isomorphism g : aclσ(A, ā) → aclσ(A, b̄) which sends ā to b̄. By
the independence theorem (3.7), there is M realising tp(f(K)/ aclσ(A, ā)) ∪
g(tp(f(K)/ aclσ(A, ā)), and independent from aclσ(A, ā, b̄) over A. Then we
have M ≡A K, and tp(ā/M) = tp(b̄/M).

4. Properties of models of SCFAe,λ

In this section, we show how some of the results of [CH] generalise to the
theory SCFAe,λ. If K |= SCFAe,λ, we study Fix(σ), the difference fields
(K,σn), and the difference field Kp∞ when K is ω-saturated.

(4.1) Proposition. Let (K,σ) be a model of SCFAe,λ, and let n > 0.
Then (K,σn) |= SCFAe,λ. If (K,σ) is κ-saturated, so is (K,σn).
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Proof. The result will follow from the following claim:

Claim. Let (k, σ) be a separably closed difference field, let (K,σn) be a
separably closed difference field extending (k, σn), separable over k, and of
the same degree of imperfection as k if e ∈ N. Then there is a difference
field (L, σ) containing (k, σ) and such that (L, σn) extends (K,σn) and is a
separable extension of K.

The proof of this claim is identical to the proof of (1.12) of [CH], but we
will repeat it. For i = 1, . . . , n − 1, choose a field extension Ki of k, which
is isomorphic to K by an isomorphism fi : K → Ki which agrees with σi on
k, and let K0 = K, f0 = id. Since k is separably closed and the Ki’s are
separable extensions of k, we may assume that the Ki’s are linearly disjoint
over k, so that the composite L of K0 · · ·Kn−1 is the field of fractions of the
domain K0⊗kK1⊗k · · ·⊗kKn−1. Note that L is a separable extension of K0.
For i = 0, . . . , n−2, let σi = fi+1f

−1
i : Ki → Ki+1; then σi is an isomorphism

which agrees with σ on k. Let σn−1 = σnf−1
n−1 : Kn−1 → K; then σn−1

is an isomorphism which agrees with σ on k. Thus the isomorphisms σi,
i = 0, . . . , n− 1, extend to a unique automorphism σ′ of L, which agrees with
σ on k. It remains to show that σ′n agrees with σn on K. Let a ∈ K; then
σ′
n(a) = σn−1 · · ·σ1σ0(a) = (σnf−1

n−1)(fn−1 · · · f−1
1 )(f1f

−1
0 )(a) = σn(a).

Thus any instance of axiom (iii) or (iv) for (K,σn) has a solution in a
difference field (L, σ) containing (K,σ), separable over K and of the same
degree of imperfection. This shows that (K,σn) is a model of the scheme of
axioms (iii) and (iv) if e =∞. It is also clearly a separably closed σn-difference
field of degree of imperfection e, and is therefore a model of SCFAe,λ. The
statement about saturation is proved similarly.

(4.2) Proposition. Let (K,σ) be a model of SCFAe,λ, let τ = σn Frobm

for some n ≥ 1 and m ∈ Z, and let F = Fix(τ), the subfield of K fixed by
τ . Then F is a PAC field (i.e., every absolutely irreducible variety defined
over F has an F -rational point), and Gal(F s/F ) ' Ẑ. Furthermore, K is a
separable extension of F , and the degree of imperfection of F is e if m = 0,
and 0 otherwise.

Proof. Let us first do the case m 6= 0. Then F ⊆ k = Kp∞ , so that
F is perfect. Let V be a variety defined over F . Let (L, σ) be a model of
ACFA containing k, linearly disjoint from K over k and let F ′ be the subfield
of L fixed by σn Frobm. The composite field KL is then a difference field,
separable over K and of the same degree of imperfection, so that it embeds in
some elementary extension K∗ of K. Since V is defined over F ⊂ k, and L is a
model of ACFA the variety V has an F ′-rational point, and Gal(F ′s/F ′) ' Ẑ.
Hence, in K∗, if F ∗ = Fix(σn Frobm), then the same statements are true of
F ∗.
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If m = 0, then by (4.1) we may assume that τ = σ. Let V ⊆ Ωn be an
absolutely irreducible variety defined over F , and consider the subvariety W
of V ×V , intersection of V ×V with the diagonal of Ωn×Ωn. Then W satisfies
the assumptions of axiom (iii) or (iv), and so (K,σ) contains a tuple ā with
(ā, σ(ā)) ∈W . Then ā ∈ V (F ) by definition of W .

Fix n > 1, let t1, . . . , tn be algebraically independent over K, and extend
σ to K(t1, . . . , tn) by setting σ(ti) = ti+1 for i < n, and σ(tn) = t1. Then the
difference field K(t1, . . . , tn) is a separable extension of K, and satisfies the
sentence ∃x σn(x) = x∧

∧n−1
i=1 σ

i(x) 6= x. As K is existentially closed, K also
satisfies that sentence, and therefore F has at least one extension of degree n
for every n > 1. On the other hand, we know that Gal(F s/F ) is generated
by the restriction of σ to F s, which implies that F has at most one extension
of degree n for each n. Hence Gal(F s/F ) ' Ẑ.

As the λ-functions of K are definable, F is closed under the λ-functions of
K, and therefore K is a separable extension of F .

If e ∈ N, then (3.2) shows that F contains a p-basis of K. If e = ∞,
then axiom (iv) ensures that F contains infinitely many elements which are
p-independent in K.

Remark. The conclusion that Fix(σ) is PAC with absolute Galois group
isomorphic to Ẑ was also proved by Kudaibergenov; see [Ku].

(4.3) Proposition. Let (K,σ) be a model of SCFAe,λ for some e ∈ N,
let τ = σn Frobm for some n ≥ 1 and m ∈ Z, and let F = Fix(τ). Then every
definable subset D of F ` is definable using only parameters from F . If n = 1,
then D is definable in the pure field F .

Proof. Let D ⊆ F ` be definable in K. The automorphism σ fixes D, and
therefore, by elimination of imaginaries of SCFAe,b ((3.6)(7)), the set D is
definable by a formula of Lλ,σ with parameters in F .

If n = 1, then any field automorphism of F is an Lλ,σ-automorphism
(because σ|F = xp

−m
is definable in the pure field language, and because K is

a separable extension of F ). Fix a finite set of parameters c̄ in F over which D
is defined, and let F0 be a countable elementary substructure of F containing
c̄. By compactness, it suffices to show that SCFAe,b∪ tpF (ā/F0) ` tpK(ā/F0)
for any ā ∈ D. (Here, tpF (ā/F0) denotes the type of the tuple ā over F0 in the
pure field F , and tpK(ā/F0) the type of ā over F0 in the difference field K.)
Without loss of generality, we may assume that F is sufficiently saturated.

Let d̄ ∈ F realise tpF (ā/F0). Then there is a field automorphism f of F
which leaves F0 fixed and sends ā to d̄. Since F0 is an elementary substructure
of F , F and F s0 are linearly disjoint over F0, and F s0F = F s. Hence f
extends to an automorphism of F s which is the identity on F s0 . This implies
that f commutes with σ because Gal(F s/F ) ' Gal(F s0 /F0). By (3.6)(1),
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f is an elementary partial map of the difference field K, and this gives the
conclusion.

(4.4) Lemma. Let k ⊆ K be difference fields, and assume that K is sep-
arable over k. Let L be the subfield of K consisting of elements transformally
algebraic over k. Then K is a separable extension of L.

Proof. Let ā be a finite tuple of elements of L. By the definition of L,
the transcendence degree of k(ā)σ over k is finite. Hence there is a finite
tuple b̄ ⊆ {σi(ā) | i ∈ N}, that is maximal p-independent over k in K. Then
k(ā)σ ⊆ kKp[b̄]. As σ is an automorphism of K, we also have k(ā)σ ⊆
kKp[σn(b̄)] for any n. Also, there is a positive integer m such that k(ā)σ =
k(āp)σ[ā, . . . , σm(ā)].

We will show that there is a finite tuple ū of elements of K, such that
σn(ā) ⊆ k(āp)σ(b̄, ūp) for every n ∈ Z. Indeed, choose ū such that ā, . . . , σm(ā)
∈ k(b̄, ūp); then k(ā)σ ⊆ k(āp)σ[ā, . . . , σm(ā)] ⊆ k(āp)σ(b̄, ūp). As σ is an
automorphism of K, each σn(b̄) is also p-independent in K. Consider the
k(āp)σ(ūp)-vector space V generated by the p-monomials in b̄. It has di-
mension p|b̄|. The p-monomials in σn(b̄) are also linearly independent in V
because the elements of σn(b̄) are p-independent in K, and this implies that
k(āp)σ(b̄, ūp) = k(āp)σ(σn(b̄), ūp) for every n ∈ Z. Fix a p-basis B of k. Then
σn(B) is also a p-basis of k and k = kp[B] = kp[σn(B)]. Hence for every
n ∈ Z we have

(1) k(ā)σ ⊆ (k(ā)σ(ū))p[B, b̄] = (k(ā)σ(ū))p[σn(B), σn(b̄)].

Fix c ∈ k(ā)σ and a finite subset B0 of B such that c ∈ Kp[B0, b̄]. From
equation (1), we get that λi(B0 ∪ {b̄}; c) and λi(σn(B0) ∪ {σn(b̄)};σn(c)) ∈
k(ā)σ(ū) for every n ∈ Z (the λ-functions are those of K). As the latter is the
image of the former by σn, we obtain that the difference field generated by
the elements λi(B0 ∪ {b̄}; c), where c ∈ k(ā)σ and B0 is a finite subset of B,
has finite transcendence degree over k(ā)σ, and therefore is contained in L.

This shows that L is closed under the λ-functions of K, and therefore that
K is a separable extension of L.

(4.5) Proposition. Let e ∈ N ∪ {∞}, and let k be a difference field of
degree of imperfection ≤ e. Let (K,σ) be a model of SCFAe,λ, separable over
k. Let L be the set of elements of K which are transformally algebraic over
k. Then L ≺ K.

Proof. The difference field L is certainly separably closed; hence L satisfies
(i) and (ii). Any instance of axiom (iii) or (iv) is satisfied in a transformally
algebraic extension of L contained in K, and hence in L, by the definition of
L. If e ∈ N, then K has a p-basis consisting of elements fixed by σ (by (3.1)),
and these elements are therefore in L. If e =∞, then Fix(σ) ⊆ L has infinite
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degree of imperfection by (4.2). By Lemma (4.4), K is a separable extension
of L. The model-completeness of SCFAe,λ gives the result.

(4.6) Proposition. Let K be an ω-saturated model of SCFAe,λ, and let
k = Kp∞ . Then k |= ACFA.

Proof. Clearly k is a difference subfield of K and is algebraically closed. We
need to show that if U and V are varieties defined over k, with V ⊆ U×σ(U),
and such that V projects generically onto U and onto σ(U), then there is a
tuple ā in k such that (ā, σ(ā)) ∈ V . Let k0 be a countable algebraically closed
difference subfield of k over which U and V are defined. Choose, in some satu-
rated model of ACFA containing k0, an element ā satisfying (ā, σ(ā)) ∈ V , and
such that k0(ā)σ and K are linearly disjoint over k0. Consider k1 = k0(ā)alg

σ .
As k0 is algebraically closed, k1 is a separable extension of k0, and therefore
k1K is a separable extension of K, of the same degree of imperfection. Hence
there is an elementary extension L of K containing k1K, and ā ∈ Lp∞ . By
ω-saturation of K, tp(k1/k0) is realised in K.

(4.7) Proposition. Let k and K be as above. If D is a quantifier-free
definable subset of Kn, then D∩kn is quantifier-free definable in the difference
field (k, σ).

Proof. We will first show that we may assume that D is quantifier-free
definable by an Lσ-formula, and then that we can assume that its defining
parameters are in k. The first assertion follows from the fact that the value of
the λ-term λi,m(x1, . . . , xm;xm+1) at any tuple (a1, . . . , am+1) with aj ∈ Kp

is a1/p
j if j = m+ 1, a1, . . . , am are p-independent, and the p-monomial corre-

sponding to λi,m is the p-monomial 1, and is 0 otherwise. Hence there is an in-

teger ` such that a tuple (a1, . . . , an) is in D∩kn if and only if (a1/p`

1 , . . . , a
1/p`

n )
satisfies some Lσ(K)-quantifier-free formula, if and only if (a1, . . . , an) satis-
fies an Lσ(K)-quantifier-free formula. Hence we may assume that D is a
Boolean combination of σ-closed subsets of Kn.

For the second assertion we may therefore assume that D is a σ-closed
subset of Kn. Then D′ = D ∩ kn is a σ-closed subset of kn. If āi, i ∈ N,
is an infinite indiscernible sequence of tuples in D′, then D′ is defined over
aclσ(āi, i ∈ N); see [CH, (2.13)]. As aclσ(āi, i ∈ N) ⊆ k, we get the result.

Remark. There are, however, definable subsets of kn which need param-
eters from K. E.g., if the characteristic is 6= 2, let b ∈ K \ k be such that
σ(b) = b, and consider the set D defined by

σ(x) = x ∧ ∃y σ(y) = y ∧ y2 = x− b.
Then D ∩ k is not definable in the difference field (k, σ).
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5. Modularity

In this section we investigate modularity of definable subsets of models of
SCFAe,b (for a fixed e ∈ N). A word of warning on the terminology: our
notion of modularity does not coincide with the notion of modularity defined
on minimal sets; in the case of a stable theory, our notion agrees with one-
basedness. Recall that in models of ACFA we have the following results (see
[CHP]):

Let S be the set of realisations in a model of ACFA of a set of types over
some set E. If S is modular, then all elements of S are transformally algebraic
over E. Assume that all elements of S are transformally algebraic over E.
Then S is modular if and only if S is orthogonal to all formulas σn(x) = xp

m

,
with n ≥ 1, m ∈ Z.

We investigate how these results extend to models of SCFAe,b. We are not
able to show the first assertion in our case. Assume now that S is such that
any tuple of S is transformally algebraic over E. We are then able to show
that non-modularity of S implies that S is non-orthogonal to some formula
σn(x) = xp

m

as above; the converse only holds if S is definable, and we give
examples of modular ∞-definable subsets of Fix(σn Frob−m). It is also likely
that there are ∞-definable modular sets which contain elements not trans-
formally algebraic over E. We derive some consequences of modularity for
quantifier-free definable subsets of modular subgroups of an algebraic group.
We end the chapter with some questions and an example.

(5.1) Definition of modularity. Let T be a simple theory, M a large
saturated model of T and E = acl(E) a small subset of M . Let S ⊆Mn be a
set which is invariant under Aut(M/E). Thus, S is either a definable set, or
is the union of realisations of a set of types over E.

We say that S is modular if whenever ā and b̄ are finite tuples of members
of S and C = acleq

σ (E, ā) ∩ acleq
σ (E, b̄), then tp(ā/C, b̄) does not fork over C.

(5.2). We will consider the theories T = ACFA and T = SCFAe,b. Note
that any completion of either theory is simple and eliminates imaginaries.
Recall that in case T = ACFA, the algebraic closure of a subset of a model
of ACFA is simply the smallest algebraically closed difference field containing
that set (see [CH, (1.7)]). In case T = SCFAe,b, algebraic closure coincides
with aclσ; see (3.6)(5).

In both theories, independence of sets A, B over C is defined as linear
disjointness of acl(C,A) and acl(C,B) over acl(C), and the independence
theorem holds, thus showing that our notion of independence coincides with
non-forking. It follows that the modularity of S can be expressed as follows:
If ā and b̄ are finite tuples of members of S, then the fields acl(E, ā) and
acl(E, b̄) are linearly disjoint over acl(E, ā) ∩ aclσ(E, b̄).
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The following lemma is routine. Note that we are using here that if A =
acl(A) and ā, b̄ are independent over A, then acl(A, ā) ∩ acl(A, b̄) = A. The
corresponding statement with acleq may be false in an arbitrary simple theory.

Lemma. Let K |= SCFAe,b be sufficiently saturated, and let S be a set of
realisations of a set of types over some E = aclσ(E) ⊆ K. Assume that S is
modular. Let ϕ(x̄, ȳ) be a formula over E, and assume that for every ā ∈ S
the set defined by ϕ(ā, ȳ) is finite. Then the set U of tuples b̄ such that there
is ā ∈ S satisfying ϕ(x̄, b̄) is modular.

Proof. Assume that U is not modular, and let c̄ = (c̄1, . . . , c̄n) and d̄ =
(d̄1, . . . , d̄m) be tuples of elements of U such that c̄ and d̄ are not indepen-
dent over C = aclσ(E, c̄) ∩ aclσ(E, d̄). Choose tuples ā = (ā1, . . . , ān), b̄ =
(b̄1, . . . , b̄m) in S such that ϕ(āi, c̄i) and ϕ(b̄j , d̄j) hold for all i, j, and such
that ā and d̄ are independent over E ∪ c̄, and b̄ and ā are independent over
E ∪ d̄. Then aclσ(E, ā)∩ aclσ(E, b̄) = C, since our independence assumptions
imply that aclσ(E, ā)∩aclσ(E, b̄) ⊆ aclσ(E, d̄), and aclσ(E, ā)∩aclσ(E, c̄, d̄) ⊆
aclσ(E, c̄). This contradicts the modularity assumption on S.

(5.3) Lemma. Let K |= SCFAe,b, and let S ⊆ Kn be a set of realisations
of a set of types over E = aclσ(E) ⊆ K. If S is modular, then for any tuple
ā of elements of S and any tuple b̄ of elements of K, ā and b̄ are independent
over aclσ(E, ā) ∩ aclσ(E, b̄).

Proof. Let ā be a tuple of elements of S and b̄ a tuple of elements of K and
assume that ā and b̄ are not independent over C = aclσ(E, ā) ∩ aclσ(E, b̄).
Choose c̄ in aclσ(E, ā) and d̄ in aclσ(E, b̄) such that the fields C(c̄)σ and C(d̄)σ
are not linearly disjoint over C. Thus there is some algebraic set V defined
over C(d̄)σ and not over C, such that (c̄, . . . , σm(c̄)) is a generic of the variety
V over C(d̄)σ. Let (ān, c̄n), n ∈ N, be an infinite sequence of realisations of
tp(ā, c̄/ aclσ(E, b̄)) that is independent over aclσ(E, b̄), with (ā1, c̄1) = (ā, c̄).
Then aclσ(E, ā1) ∩ aclσ(E, āi | i > 1) = C, and the tuples (c̄i, . . . , σm(c̄i)),
i > 1, are generics of V and algebraically independent over aclσ(E, b̄). By a
classical result in algebraic geometry, a variety is defined over the algebraic
closure of a finite set of independent generic solutions, and this implies that V
is defined over the algebraic closure of Fp(c̄2, . . . , c̄n)σ for some n. This shows
that ā1 and (ā2, . . . , ān) are not independent over C, and therefore shows that
S is not modular.

(5.4) Definitions of orthogonality. We work in a model K of the theory
T , where T = ACFA or T = SCFAe,b.

(1) Recall that two complete types p over A and q over B are orthogonal
if, for any set C containing A ∪ B, if ā realises p and is independent from C
over A, and b̄ realises q and is independent from C over B, then ā and b̄ are
independent over C.
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(2) Let p be a complete type over A and S a set of realisations of a set
of types over E = acl(E). Then p is orthogonal to S if for any F = acl(F )
containing E and ā ∈ S, tp(ā/F ) is orthogonal to p.

(3) If S and T are two sets of realisations of sets of types over some E =
acl(E), then S and T are orthogonal if for any F = acl(F ) containing E and
ā ∈ S, b̄ ∈ T , the tuples ā and b̄ are independent over F .

(4) Let E = acl(E) be a subset of K, and let S ⊆ Kn be a set of realisations
of a set of types over E. We say that S is orthogonal to the fixed fields if S is
orthogonal to all formulas σn(x) = xp

m

where n ≥ 1, m ∈ Z. Similarly, we
say that a type p over E is orthogonal to the fixed fields if it is orthogonal to
all formulas σn(x) = xp

m

where n ≥ 1, m ∈ Z.

Remark. If tp(ā/E) is orthogonal to the fixed fields, and b ∈ acl(E, ā),
then tp(b/E) is orthogonal to the fixed fields.

(5.5). The following result should have been proved in [CHP], but was
somehow overlooked:

Proposition. Let L be a model of ACFA, let E = acl(E) ⊆ B =
acl(B) ⊆ L, let ā ∈ L be transformally algebraic over E, and assume that
acl(E, ā) ∩ B = E. If ā and B are not independent over E, then tp(ā/E) is
non-orthogonal to a fixed field.

Proof. Assume that B and ā are not independent over E, but that tp(ā/E)
is orthogonal to all fixed fields. Then E(ā)σ and B are not linearly disjoint
over E. By [CH] (2.13)(1), Cb(ā/B) is contained in the algebraic closure of
the difference field generated by finitely many realisations of tp(ā/E), and
therefore is transformally algebraic over E. Hence there is b̄ ∈ B, with
tr.deg(E(b̄)σ/E) < ∞, such that E(ā)σ and E(b̄)σ are not linearly disjoint
over E. We may therefore assume that B = acl(E, b̄). The proof is by induc-
tion on SU(b̄/F ), for all F and all ā′ such that tp(ā′/F ) is orthogonal to all
fixed fields, and acl(F, ā′) ∩ acl(F, b̄) = F .

Since b̄ has finite SU -rank over E, by (3.4)(1) of [CH], there is F = acl(F )
containing E and independent from b̄ over E, and c ∈ acl(F, b̄) such that
SU(c/F ) = 1. We may choose this F independent from (ā, b̄) over E, and this
implies that acl(F, ā)∩acl(F, b̄) = F . Note that c is independent from ā over F
because SU(c/F ) = 1 and c /∈ aclσ(F, ā). Hence tp(ā/F, c) is orthogonal to all
fixed fields and SU(b̄/F, c) < SU(b̄/E). To use the induction hypothesis and
prove the result, it is therefore enough to show that acl(F, ā, c) ∩ acl(F, b̄) =
acl(F, c).

Assume that this is not the case and let d ∈ acl(F, ā, c) ∩ acl(F, b̄), d /∈
acl(F, c). Using the semi-minimal analysis of tp(b̄/ acl(F, c)) (see [CHP] (7.3)
and [CH] (5.4)), we may assume that either tp(d/F, c) is modular of rank 1,
or that tp(d/F, c) is qf -internal to some fixed field defined by an equation
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σn(x) = xp
m

for some n ≥ 1 and m ∈ Z. Since tp(ā/F, c) is orthogonal to all
fixed fields, it will be orthogonal to anything which is qf -internal to a fixed
field. It follows that tp(d/F, c) is modular and of rank 1.

If tp(c/F ) is modular, then so is tp(c, d/F ) (see [CHP, (7.4)]), which gives
us a contradiction, as acl(F, c, d) ∩ acl(F, ā) = F and d ∈ acl(F, ā, c). If
SU(d/F ) = 1 and tp(c/F ) is non-modular, we also reach a contradiction,
since d ∈ acl(F, ā, c) implies d ∈ acl(F, ā). Hence we are left with the case
where SU(d/F ) = 2 and tp(c/F ) is non-modular. Note that c ∈ acl(F, d).
Let (c, d) = (c1, d1), . . . , (cn, dn), . . . , be an infinite sequence of independent
realisations of tp(c, d/ acl(F, ā)); because ā and (c, d) are not independent
over F , the sequence (cn, dn) is not independent over F , and there is a
largest i such that SU(c1, d1, . . . , ci, di/F ) = 2i. Then d1, . . . , di are inde-
pendent over F , and SU(di+1/F, d1, . . . , di) ≤ 1. By the choice of our se-
quence, ci+1 /∈ acl(F, d1, . . . , di), and di+1 ∈ acl(F, d1, . . . , di, ci+1). Hence
tp(d1/ acl(F, d2, . . . , di, ci+1)) does not fork over F , and is not almost or-
thogonal to the modular rank-1-type tp(di+1/ acl(F, ci+1)). This means that
tp(d/F ) is non-orthogonal to a modular type of rank 1. Hence there is
F ′ = acl(F ′), independent from (ā, b̄) over F , such that acl(F ′, d) contains
an element e realising a modular type of SU -rank 1 over F ′. By the first case,
we have that acl(F ′, ā, e) ∩ acl(F ′, b̄) = acl(F ′, e). By the induction hypothe-
sis on SU(b̄/F ′, e) < SU(b̄/F ′), we get that (ā, e) and b̄ are independent over
acl(F ′, e), and therefore that ā and b̄ are independent over F ′, which gives us
the desired contradiction. Hence this case cannot happen, which means that
acl(F, ā, c) ∩ acl(F, b̄) = acl(F, c), and we are done.

(5.6) Proposition. Let K |= SCFAe,b, E = aclσ(E) ⊆ K, and let S ⊆
Kn be the set of realisations of a set of types over E, and assume that all
elements of S are transformally algebraic over E. If S is non-modular, then
S is non-orthogonal to a fixed field.

Proof. Let L be a model of ACFA containing K, and assume that S is not
modular. Then there are ā1, . . . , ām ∈ S, and B = aclσ(B) ⊇ E such that
(ā1, . . . , ām) and B are not independent over C = aclσ(E, ā1, . . . , ām) ∩ B.
Let d̄ ∈ A = aclσ(E, ā1, . . . , ām) be such that the fields C(d̄)σ and B are not
linearly disjoint over C. We may assume that d̄ contains ā_1 · · ·_ ām. By
Lemma 4.4, d̄ is transformally algebraic over E, and therefore also over C.

We will denote by aclL(−) the algebraic closure in the sense of L, and
by tpL types in the sense of Th(L). Recall that A = aclL(A) if and only
if A is an algebraically closed difference field. Hence, if A = aclσ(A), then
aclL(A) = Aalg = Ap

−∞
.

Our assumption on A,B,C implies that aclL(A)∩ aclL(B) = aclL(C), and
that d̄ is not independent from B over C (in the sense of L). By (5.5), this
implies that tpL(d̄/C) is non-orthogonal to a formula σn(x) = xp

m

for some
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n ≥ 1 and m ∈ Z, and we may assume that (n,m) = 1. Let Fix(τ) be the
subfield of L fixed by τ = σn Frob−m.

Claim. There are independent realisations d̄1, . . . , d̄k of tp(d̄/C) in K
such that C(d̄1, . . . , d̄k)σ ∩ Fix(τ) contains an element not in C.

Indeed, since tpL(d̄/C) is non-orthogonal to σn(x) = xp
m

, there are in-
tegers k, `, and independent realisations d̄1, . . . , d̄k of tpL(d̄/Calg) in L, el-
ements b1, . . . , b` of Fix(τ) that are independent over C and such that the
fields aclL(C, d̄1, . . . , d̄k) and aclL(C, b1, . . . , b`) are not linearly disjoint over
Calg (see Remark (3.1)(1) in [CH]). Now aclL(C, b1, . . . , b`) is algebraic over
C(b1, . . . , b`, . . . , σn−1(b`)), and hence we obtain that (b1, . . . , σn−1(b`)) are
not algebraically independent over C(d̄1, . . . , d̄k)σ. Let V be the algebraic
locus of (b1, . . . , σn−1(b`)) over C(d̄1, . . . , d̄k)σ; then (b1, . . . , σn−1(b`)) is a
generic of V , is fixed by τ , and therefore is also a generic of τ(V ). Hence
τ(V ) = V , the field of definition of V is fixed by τ , contained in the per-
fect hull of C(d̄1, . . . , d̄k)σ, and not contained in Calg. This implies that
C(d̄1, . . . , d̄k)σ contains an element of Fix(τ) not in C.

The above result depends only on the isomorphism type of the differ-
ence field C(d̄1, . . . , d̄k)σ, and so one may furthermore impose that the tuples
d̄1, . . . , d̄k realise independent realisations of tp(d̄/C) in K. This proves the
claim.

Hence we have ā1, . . . , āmk in S, such that aclσ(E, ā1, . . . , āmk) ∩ Fix(τ)
contains an element b not in C, and hence not in E. Thus there is i such that
b ∈ aclσ(E, ā1, . . . , āi), b /∈ aclσ(E, ā1, . . . , āi−1), and we have shown that S is
non-orthogonal to a fixed field.

(5.7) Proposition. Let K |= SCFAe,b, let S be a definable modular
subset of Kn, defined over E = aclσ(E). Then S is orthogonal to the fixed
fields.

Proof. By (5.2) it suffices to show that any infinite definable subset S of
a fixed field k = {x | σn(x) = xp

m}, n ≥ 1, m ∈ Z, (n,m) = 1 if m 6= 0, is
non-modular.

We first assume that m = 0. By (4.3), we know that S is definable in
the pure field language within k. Let B be the p-basis of k (which is also a
p-basis of K). By Theorem 3.5 and Proposition 4.1, the type of a tuple ā of
k is determined by the isomorphism type of its algebraic closure, which is the
relative separable closure in k of the closure of Fp(B, ā) under the λ-functions
λi(B;−), i ∈ I(B). Hence, using compactness, it follows that S = π(W (k))
for some algebraic set W and algebraic morphism π, which is finite-to-one on
W (k). By (5.2), we may therefore replace S byW (k), whereW is a (absolutely
irreducible) variety defined over k. Then the function field k(W ) is a regular
extension of k. Let x ∈ k(W ) be an element of a separating transcendence
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basis of k(W ) over k, and let y ∈ k(W ) be such that k(W ) ∩ k(x)s = k(x, y).
Then k(W ) is a regular extension of k(x, y). If f(x, Y ) ∈ k(x)[Y ] is the
minimal polynomial of y over k(x), then the equation f(X,Y ) = 0 defines
an absolutely irreducible curve C, and we have a rational map g : W → C,
defined over k; then, for all but finitely many (a, b) ∈ C(kalg), g−1(a, b) is
absolutely irreducible. Hence, since k is PAC, g(W (k)) is a cofinite subset
of the infinite set C(k). Thus we have reduced the problem to showing that
C(k) is not modular.

The proof now uses a trick already used for pseudo-finite fields. Observe
first that k(x1/pn , y | n ∈ N) is a separable extension of k, because k(x, y) is
separably algebraic over k(x). Let k1 be a saturated extension of k, and let
(a1, a2), (b1, b2) ∈ C(k1), with a1, b1 ∈ kp

∞

1 , transcendental and algebraically
independent over k. Consider (k1)alg(x, y). By 11.7 and 12.9 of [FJ], there
is a Zariski open subset U of A2 such that if a, b ∈ U , then the polynomial
f(a + bx, Y ) is irreducible over (k1)alg(x, y); since f has its coefficients in k,
the Zariski open set U is defined over k, and therefore contains a1 and b1.

This shows that the algebraic set defined by f(x, y) = 0 = f(a1 +b1x, y
′) is

absolutely irreducible, and defined over k1. Hence it has a solution (c1, c2, d2)
in k1, and we may assume that c1 belongs to kp

∞

1 and is transcendental
over k(a1, b1). Let d1 = a1 + b1c1. Then (c1, c2), (d1, d2) ∈ C(k1). Since
a1, b1, c1, d1 ∈ kp

∞

1 , we have aclσ(k, a1, b1) ⊆ k(a1, b1)alg and aclσ(k, c1, d1) ⊆
k(c1, d1)alg, and therefore aclσ(k, a1, b1)∩aclσ(k, c1, d1) ⊆ kalg∩k1 = k. How-
ever, (a1, b1) and (c1, d1) are not independent over k, and this shows that
C(k) is not modular.

If m 6= 0, then k ⊆ Kp∞ . Proposition (7.1)(1) of [CHP] gives that if E
is a difference field, and a ∈ k, a /∈ E, then tr.deg(a/E) = n. This implies
that in K, any element of k is either in E or independent from E, so that
SU(k) = 1. Hence SU(S) = SU(k) = 1, and the non-modularity of the field
k implies the non-modularity of S. Observe that this also proves the result
for an ∞-definable S.

(5.8) Proposition. Let K |= SCFAe,b, let S be a definable modular sub-
set of Kn, defined over E = aclσ(E). Then every tuple ā ∈ S is transformally
algebraic over E.

Proof. By (5.2) and (3.6)(6), we may assume that S is defined by a quan-
tifier-free Lσ-formula. Assume by way of contradiction that there is ā =
(a1, . . . , an) ∈ S which is not transformally algebraic over E. By Lemma 2.1,
ā contains an element, say a1, which is transformally transcendental over E
and such that E(ā)σ is a separable extension of E(a1)σ. If S1 is the projection
of S on the first coordinate, then S1 is also modular by (5.2), and because
S is defined by a quantifier-free formula of Lσ, S1 contains all elements of
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K which are transformally transcendental over E. Then E(ā, ap
n

1 | n ∈ N)σ
is a separable extension of E, and we may therefore assume that a1 ∈ Kp∞ .
Let b = σ(a1) − a1; then a1 /∈ aclσ(E, b), and aclσ(E, b) ⊆ E(b)alg

σ because
b ∈ Kp∞ . Hence the set S2 defined by x ∈ S1 ∧ σ(x)− x = b contains a1, and
is infinite, and hence is modular and orthogonal to the fixed fields by (5.2)
and (5.7). But the set of solutions of σ(x)− x = b equals a1 + Fix(σ), and we
get a contradiction.

(5.9) Remark. Proposition 5.7 does not generalise to ∞-definable sub-
sets of Kn if e > 0. Indeed, let k = Fix(σ). Hrushovski has shown the
following result (see 2.15, 2.16 and 5.6 in [H]):

Let L be a separably closed field, let G be a simple abelian variety defined
over L but not isomorphic to one defined over Lp

∞
. Then Γ =

⋂
n[pn]G(L) is

modular.
Assume that L = ks, and that G is defined over k. Observe that if A ⊆ k,

then aclL(A) (the model-theoretic algebraic closure of A in the sense of the
separably closed field L) equals aclσ(A). Indeed, aclL(A) is obtained by taking
first the λ-closure of the field generated by A under the λ-functions of L, and
then its separable closure. On k, the λ-functions of K, k and L agree (as they
have a common p-basis B), and this shows the assertion.

This implies that if A,B ⊆ k, then A and B are independent over C =
aclσ(A)∩ aclσ(B) if and only if they are independent over C in the separably
closed field L. Hence Γ ∩G(k) is a modular subgroup of G(K).

(5.10) Two questions.
(1) Let S be an∞-definable subset of Kn, and assume that S is modular.

Does this imply that every element of S is transformally algebraic over
the set over which S is defined?

(2) Is there a criterion analogous to (5.6) for modular subsets of models
of SCFA∞,λ ? Recall that by (3.7), forking may arise at the level of
p-independence and so we may have aclσ(E, ā) and aclσ(E, b̄) linearly
disjoint over E = aclσ(E), but ā and b̄ not independent over E. We
also do not have a good description of imaginaries in SCF∞,λ.

(5.11). Modularity is an important tool in the study of definable sets, and
in our context, modular subgroups of algebraic groups have good properties.

Theorem. Let K |= SCFAe,λ, let G be an algebraic group definable over
K and let S be a subgroup of G(K) which is ∞-definable by quantifier-free
Lλ,σ-formulas and which is modular. Let U ⊆ G(K) be quantifier-free defin-
able. Then U ∩S is a Boolean combination of cosets of definable subgroups of
S. If S is defined over E = aclσ(E), then so are these subgroups.

Proof. We assume K sufficiently saturated, and let B be the p-basis of K
(which is fixed by σ and contained in E because the elements of B are in the
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language). Consider the set ∆ of quantifier-free Lλ,σ-formulas. Then over
any subset E = aclσ(E) of K, there are at most |E|ℵ0 ∆-types. Indeed, the
∆-type of a tuple ā over E is determined by the Lλ-type of the countable
tuple (σi(ā))i∈Z over E. Since the theory SCFe,b is stable, there are at most
|E|ℵ0 Lλ-types of countable tuples over E, and hence at most |E|ℵ0 ∆-types
over E. The result now follows by a result of Pillay [P], because the formulas
of ∆ are stable and witness forking. Since Pillay’s result is unpublished, we
will give an alternate proof of the result in our particular case, using the
underlying topology on Cartesian powers of K. Since we will be dealing with
integers which are powers of p, we will use the notation Am(K) to denote the
Cartesian product of m copies of K.

We put two topologies on Am(K): the σ-topology and the λσ-topology.
The σ-topology is the topology whose basic closed sets are defined by positive
quantifier-free Lσ-formulas, and we call these sets σ-closed. This topology is
Noetherian (see [C]), and therefore any σ-closed set X is the union of finitely
many irreducible σ-closed sets, called the irreducible components of X. Note
that Am(K) is compact and Hausdorff.

The λσ-topology on Am(K) is generated by the closed sets X ⊆ Am(K) de-
fined by positive ∆-formulas; we call these sets basic λσ-closed. The λσ-tology
is not Noetherian, but every λσ-closed set is the intersection of countably
many basic λσ-closed sets. Again, each Am(K) is compact and Hausdorff.

For each n ∈ N, we identify K with A
pen(K) via the map ψn : x 7→

(λµ(B;x))µ∈I(B)n . Then the algebraic group G gives rise to an algebraic
group Gn = ψn(G) defined over K, of dimension pen dim(G).

If X is a basic λσ-closed subset of Am(K), there is an integer n such that
Xn = ψn(X) is σ-closed in Amp

ne

(K), and then X = ψ−1
n (Xn). Thus the λσ-

topology on Am(K) is the smallest topology such that all maps ψn : Am(K)→
A
mpen(K) are continuous, where Amp

en

(K) is equipped with the σ-topology.
We call a λσ-closed set X irreducible if it is not the proper union of two

closed subsets. We say that a λσ-closed set X is defined over C if it is
defined by positive ∆-formulas with parameters in C. If X is defined over
C = aclσ(C), and a ∈ X, we say that a is a generic of X over C if X is the
smallest λσ-closed set defined over C and containing a. By the saturation of
K, any (non-empty) irreducible λσ-closed set has a generic.

If H is an ∞-∆-definable subgroup of G(K), then H is λσ-closed, and H
is the intersection of definable λσ-closed subgroups of G(K). Indeed, H =⋂
n ψ
−1
n (H̃n), where H̃n is the σ-closure of ψn(H) in Gn(K). We define the

connected component H0 of H as the intersection of all λσ-closed subgroups
of H of finite index in H. Then H0 is irreducible. Indeed, if H0 is not
irreducible, then for some n the σ-closure H̃0

n of ψn(H0) is not irreducible in
the σ-topology. Since the σ-topology is Noetherian, H̃0

n has a σ-closed proper
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subgroup of finite index H ′, and ψ−1
n (H ′) ∩ H0 is then a proper λσ-closed

subgroup of H0 of finite index in H0.
Note that if H is defined over A = aclσ(A) ⊇ E, then so are the groups H̃n

and H̃0
n, and therefore so is H0. Moreover, [H̃n : H̃0

n] <∞, and by elimination
of imaginaries, this implies that all cosets of H̃0

n in H̃n are defined over A.
Hence all cosets of H0 in H are defined over A.

The proof of the theorem follows the line of the classical proof, using the
λσ-topology. Let a be a tuple in S0, let E ⊆ A = aclσ(A) ⊆ K, and let X be
the λσ-closure of the set of realisations of the quantifier-free type of a over A.
We will show that X = Ha, where H is an ∞-definable subgroup of S, and
that H is defined over E.

By definition, X is λσ-closed, defined over A, and is an irreducible λσ-
closed set, since A = aclσ(A). Let H = {g ∈ S | gX = X}. Then H is a
λσ-closed subgroup of S, and Ha ⊆ X, by the definition of H.

Let g ∈ S be a generic of S0 over A ∪ a. Then b = ga is independent from
a over A. [Proof: If V is a basic λσ-closed set defined over aclσ(A, a) and
containing b, then V a−1 contains g, and therefore also S0, and is defined over
A. Hence V contains S0a, and this shows that b is a generic of S0a over A∪a;
as S0a is defined over A = aclσ(A), this implies that b is independent from a
over A.] Consider the λσ-closed set Y = gX. Then b is a generic of Y over
A ∪ g.

Claim. The fields of definition of Y and of gH have the same algebraic
closure over A.

Let τ be an automorphism of (K,σ) which fixes A. Then τ(X) = X
and τ(H) = H, as X is defined over A; hence τ(Y ) = Y if and only if
τ(gX) = gX if and only if τ(g)X = gX if and only if g−1τ(g) ∈ H if and
only if τ(gH) = gH. Let C1 = aclσ(C1), resp. C2 = aclσ(C2), be the smallest
algebraically closed subsets of K containing A over which Y , resp. gH, is
defined. Assume C1 6⊆ C2. By (3.6)(5), there is some A-automorphism τ of
(K,σ) which fixes C2 and moves C1; then τ(Y ) 6= Y and τ(gH) = gH, which
gives us a contradiction. Similarly, we cannot have C2 6⊆ C1, and therefore
C1 = C2 = C.

Note that b is a generic of Y over A ∪ g, and Y is defined over C and
over A ∪ g. This implies that b and g are independent over C, and that
C ⊆ aclσ(A, b) ∩ aclσ(A, g). (Here we are using the fact that modularity is
preserved under addition of constants.)

From the independence of a and b over A, we deduce that a is independent
from b over C, and therefore the set of realisations of qftp(a/C, b) is dense
in X. Note that if a′ realises qftp(a/C, b), then ba′

−1 realises qftp(g/C, b),
and is therefore an element of gH. Since gH is λσ-closed, this implies that
bX−1 ⊆ gH. From Ha ⊆ X we deduce that

b(a−1H) ⊆ bX−1 ⊆ gH,



732 ZOÉ CHATZIDAKIS

and therefore that bX−1 = gH, and X = Ha.
The proof of the theorem now follows by compactness. We may assume

that U is defined by positive quantifier-free formulas. If a ∈ U , then Ha ⊆ U ,
and this implies that H ′a ⊆ U for some quantifier-free definable subgroup H ′

of G(K) containing H. Thus U ∩S is a finite union of translates of quantifier-
free definable subgroups of S.

Remark. In the particular case that the subgroup S is contained in
G(Kp∞), there is a direct proof of this result. By (4.7), S = G(Kp∞) ∩ S′,
where S′ is ∞-definable in the language Lσ. As any descending sequence
of σ-closed subsets of a difference field stabilises, this implies that S is a
quantifier-free definable subgroup of the difference field (Kp∞ , σ). Hence, by
(4.6) the results of [CHP] apply and give us the desired conclusion.

(5.12) An example and some questions. The criterion for modularity
given in (5.6) is very impractical. Even in simple cases, it is quite difficult
to determine whether a set is modular or not. We will illustrate this with an
example. Assume p 6= 2, and consider the subgroup S of Gm(K) defined by
σ(x) = x2. We do not know whether this group is modular (but we conjecture
that it is).

The “generic” of S is the type specifying that σ(x) = x2 and that for each
n ∈ N, the elements λµ(B;x), µ ∈ I(B)n, are algebraically independent. At
the other extreme, we have the type σ(x) = x2 ∧ x ∈ Kp∞ . The set of its
realisations is the group Gm(Kp∞) ∩ S, which is modular by (7.4) in [CHP]
(since the multiplicity of x over σn(x) is 2n, and hence unbounded).

In order to prove that S is modular, one needs to solve the following prob-
lem: Let a ∈ S, let E = aclσ(E) contain a p-basis, and show that there is no
element b ∈ aclσ(E, a)\E satisfying σn(x) = xp

m

for some n ≥ 1. In fact (see
[CHP] (7.1)(2)), it suffices to show that there is no such b in the λ-closure of
the field E(a). From the equation σ(a) = a2, we deduce equations relating
the elements λi(B; a), i ∈ I(B), and the elements σ(λi(B; a)) = λi(σ(B); a2),
i ∈ I(B). However, determining which additional algebraic relations are al-
lowed is quite complicated.

Of independent interest would be to describe the quantifier-free definable
subgroups of S. The first difficulty here is to determine the quantifier-free
Lλ-definable subgroups of Gm(K). Note that these are λ-closed (i.e., defined
by Lλ-equations). Examples of such groups are the following: Let n be an
integer, and c1, . . . , cm ∈ K; then Kpn [c1, . . . , cm] is a subfield of K definable
in K, and all definable subfields of K are of this form (Messmer [Me]). Then
Gm(Kpn [c1, . . . , cm]) is a λ-closed definable subgroup of Gm(K). The first
question we need to answer is the following: Is every λ-closed subgroup of
Gm(K) of this form? Then one needs to investigate the λ-closed subgroups of
Gm(K)n for n ∈ N in order to describe the quantifier-free definable subgroups
of S. Such a subgroup is defined by (g, σ(g), . . . , σn−1(g)) ∈ U for some n and
λ-closed subgroup U of Gm(K)n.
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