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ON TORSION-FREE GROUPS IN O-MINIMAL
STRUCTURES

YA’ACOV PETERZIL AND SERGEI STARCHENKO

Abstract. We consider groups definable in the structure Ran and cer-
tain o-minimal expansions of it. We prove: If G = 〈G, ∗〉 is a definable

abelian torsion-free group, then G is definably isomorphic to a direct
sum of 〈R,+〉k and 〈R>0, ·〉m, for some k,m > 0. Futhermore, this
isomorphism is definable in the structure 〈R,+, ·,G〉. In particular, if G
is semialgebraic, then the isomorphism is semialgebraic.

We show how to use the above result to give an “o-minimal proof”
to the classical Chevalley theorem for abelian algebraic groups over al-
gebraically closed fields of characteristic zero.

We also prove: LetM be an arbitrary o-minimal expansion of a real

closed field R and G a definable group of dimension n. The group G is
torsion-free if and only if G, as a definable group-manifold, is definably
diffeomorphic to Rn.

1. Introduction

Throughout this paper we fix an o-minimal expansion M of a real closed
field R = 〈R,+, ·, 0, 1, <〉. By “definable” we always mean definable in M.

It is well-known that every abelian connected real Lie group is Lie isomor-
phic to a direct sum of copies of Ra and the circle group S1 (see, for example,
[2]). Here and everywhere below for a real closed field R we will denote by Ra
its additive group 〈R,+, 0〉, and by Rm the multiplicative group of positive
elements 〈R>0, ·, 1〉.

From a model-theoretical point of view it is natural to ask whether or not
this kind of decomposition holds in the category of groups definable in the
o-minimal structure M.

In general, the answer to the above question is negative. There are at least
two obstacles. First, in the polynomial bounded case, the multiplicative group
Rm is not definably isomorphic to the additive group of Ra, and one should
at least allow also copies of the multiplicative group.
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Secondly, there are examples of two-dimensional definable groups that are
not direct sums of one-dimensional definable subgroups. In [26] A. W. Strze-
bonski gave examples of abelian semialgebraic groups that are extensions of S1

and are not definably isomorphic to direct sums of one-dimensional definable
subgroups.

It seems that the presence of definably compact factors is essential in Strze-
bonski’s example and in all other known examples, and the following question
is open.

Question 1. Let G be an abelian torsion-free definable group. Is G
definably isomorphic to a direct sum of definable copies of Ra and Rm?

In fact, the above question consists of two sub-questions.

Question 1A. Let G be an abelian torsion-free definable group. Is G a
direct sum of definable one-dimensional subgroups?

Question 1B. Is every definable one-dimensional torsion-free group de-
finably isomorphic to Ra or Rm?

It is not hard to show (see Claim 2.10 below) that in Question 1A it is
sufficient to consider only definable groups of dimension 2. Also, since by Ed-
mundo’s Theorem every definably compact definable group has torsion points
(see [8] or [1]), Question 1A is just a restatement of a question asked by the
first author and C. Steinhorn in [16].

Question 1B was originally asked by the second author and C. Miller, and
in [12] they gave a positive answer to it in the polynomially bounded case.

We believe that Question 1B also has a positive answer in the polynomially
bounded case, and we state it here as a conjecture.

Conjecture 1. IfM is polynomially bounded, then every abelian torsion-
free definable group is a direct sum of definable one-dimensional subgroups.

We prove here Conjecture 1 for any o-minimal expansion of a real closed
field in which every definable function in one variable has a definable Puiseux-
like expansion at +∞ (see Theorem 4.10). In the case of the real field this
means that given a definable f : (d,+∞) → R, there are rk > rk−1 > · · · >
r1 > 0 in R, and c1, . . . , ck ∈ R such that the function f(x)−[c1xr1+· · ·+ckxrk ]
is ultimately bounded.

In the structures below, every definable function in one variable has a
definable Puiseux-like expansion at +∞:

(1) RRan, the expansion of Ran by the functions {x 7→ xr : r ∈ R} on the
positive real line (see C. Miller [11]). Definable functions in elemen-
tarily equivalent structures also have Puiseux-like expansions.
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(2) RG , the expansion of Ran by multisummable functions (see L. v.d. Dries
and P. Speissegger [6, Theorem A]).

(For other examples, see L. v.d. Dries and P. Speissegger [5, Remark 2, on
p. 4420].)

Thus, in particular, Conjecture 1 holds for semi-algebraic groups, i.e.,
groups definable in real closed fields. (It is possible that this last fact could
be also deduced from the work of A. Pillay and E. Hrushovski [9].) In the
Appendix we explain how one can use this fact to prove the classical Chevalley
theorem for abelian groups. Namely, every abelian algebraic group over an
algebraically closed field of characteristic zero has a linear algebraic subgroup
H ⊆ G, such that G/H is an abelian variety.

We would like to remark that Conjecture 1 was also considered by M. Ed-
mundo implicitly in [7], and we use here some of his results.

We thank Chris Miller for his useful suggestions.

1.1. The structure of the paper. In Section 2 we state known proper-
ties of torsion-free definable groups that we will need in this paper.

In Section 3 we consider definable abelian group extensions and give a
criterion for splitting definable group extensions in terms of growth rates of
definable global sections.

In Section 4 we consider the polynomially bounded case. Since in this
case every one-dimensional torsion-free group is definably isomorphic to Ra
or Rm, only extensions involving these groups need to be considered. We
first present Edmundo’s result that every definable extension of a definable
ordered group by Rm definably splits. It reduces Conjecture 1 to definable
extensions by Ra, which we prove for o-minimal structures in which every
definable function has a Puiseux-like expansion at +∞. We then use the
Expansion Theorem of L. v.d. Dries and C. Miller to show that the conjecture
holds in structures elementarily equivalent to RRan, and in reducts of these.
This implies that any abelian torsion-free group definable in these structures
is definably isomorphic to Rkm ×Rla (see Corollary 4.10).

As a corollary to the above we show (see Theorem 4.13) that for every
definable groups H ⊆ G in such a structure, if G/H is not a definably compact
space, then G contains a 1-dimensional torsion-free definable group H1 such
that H1 ∩H = {e}.

Let H be a definable subgroup of a definable group G and π : G → G/H
the natural projection. In Section 5 we consider the existence of definable
continuous and smooth sections of π. As in the classical case of Lie groups,
we show existence of a definable continuous section in the case of definably
contractible group H. We also consider the case when H is a normal subgroup
and G/H is torsion-free. In this case we prove the existence of a definable
smooth global section. It implies that every torsion-free definable group is
diffeomorphic to the affine space Rn (see Corollary 5.8).



1302 Y. PETERZIL AND S. STARCHENKO

On notation. Frequently we will use ⊕ to denote the group operation.
We will use then 	x to denote the group inverse of x.

2. Preliminaries

If G is a definable group, then, by [17], for any p > 0 the group G has a
structure of a definable Cp group manifold. This structure is unique in the
following sense.

Fact 2.1 ([17]). Let G, H be definable groups and f : G→ H a definable
group homomorphism. Then f is Cp with respect to the definable Cp group
manifold structures on G and H.

If H is a definable subgroup of a definable group G, then the set G/H
of the left cosets of H can also be equipped with a structure of a definable
manifold so that the canonical action of G on G/H is Cp. (See [14, Theorem
2.11].) We will always view G and G/H as definable C1-manifolds, and all
references to topological and differentiable structures will be with respect to
these manifold structures.

2.1. Some facts about torsion-free definable groups. In this section
we list some basic facts about torsion-free definable groups.

Fact 2.2 ([25]). A definable group G is torsion-free if and only if the
o-minimal Euler characteristic of G is +1 or −1.

By definable choice, if H is a definable normal subgroup of a definable
group G, then there is a definable group K and a definable homomorphism
f : G → K whose kernel is H. Thus we can always consider G/H as a
definable group.

Corollary 2.3. Let G be a torsion-free definable group. If H is a normal
definable subgroup of G, then G/H is also torsion-free.

Corollary 2.4. If G is a torsion-free definable group, then G is definably
connected.

Recall that a definable group G is definably compact if for every definable
function f : (a, b)→ G the limit limx→b− f(x) exists in G.

Fact 2.5 ([16, Theorem 1.2]). If a definable group G is not definably
compact, then it has a definable one-dimensional torsion-free subgroup.

Using induction on dimension of G we obtain the following.

Fact 2.6. If G is an abelian definable group, then there are definable
subgroups G0 < G1 < · · · < Gn < G such that G/Gn is definably compact and
(Gi+1/Gi) = 1 is a torsion-free one-dimensional group for i = 0, . . . , n− 1.
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Since, by Edmundo’s Theorem, every definably compact group has a torsion
point, for torsion-free groups the above fact can be restated as follows.

Fact 2.7. If G = 〈G, ·, e〉 is an abelian torsion-free definable group of
dimension n, then there are definable subgroups {e} = G0 < G1 < · · · <
Gn = G such that dim(Gi+1/Gi) = 1 for i = 0, . . . , n− 1.

Recall that a definable ordered group is a definable group H together with
a definable order relation on H such that H with this ordering is an ordered
group. It is not hard to see that every definable one-dimensional ordered group
is definably isomorphic to a definable ordered group on R with continuous
group operations whose ordering is the ordering of R.

Fact 2.8 ([26], [20]). Let G be a torsion-free definable one-dimensional
group. Then there is a definable order relation < on G such that G with < is
a definable ordered group.

Fact 2.9 ([19]). Let H be a definable one-dimensional ordered group.
Then H is abelian, divisible and has no proper nontrivial definable subgroups.

2.2. Some preliminary results. We believe that all results in this sec-
tion are well-known. However we could not find precise references, and decided
to present them here with complete proofs.

Claim 2.10. Assume that every abelian torsion-free definable group of
dimension 2 is a direct sum of definable one-dimensional subgroups. Then
every abelian torsion-free definable group is a direct sum of definable one-
dimensional subgroups.

Proof. Let G be an abelian torsion-free definable group. We proceed by
induction on dim(G). There is nothing to prove if dim(G) 6 2.

Assume dim(G) > 2. Since G is torsion-free, it has a one-dimensional
definable subgroup H. Let K = G/H and π : G→ K be the projection map.
Since dim(K) < dim(G), by the induction hypothesis, K is a direct sum of
definable one-dimensional subgroups V1, . . . , Vk. Let Ui = π−1(Vi). Each Ui
has dimension 2, hence is a direct sum of H and a definable subgroup Hi.
Obviously, G is a direct sum of H,H1, . . . ,Hk. �

Claim 2.11. If G is a torsion-free definable group, then G is solvable.

Proof. Assume not, and let G be a torsion-free definable not solvable group
of the smallest possible dimension. Since all one-dimensional groups are
abelian by finite, dim(G) > 1.
G must be definably simple. Indeed, if H is a proper nontrivial definable

normal subgroup, then, by the induction hypothesis, both H and G/H must
be solvable. This implies that G is solvable as well.
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Every definably simple group definable in an o-minimal structure is elemen-
tarily equivalent to a simple centerless real Lie group [15, Theorem 5.1]. It is
well-known that every simple centerless real Lie group has torsion elements.
This is a contradiction. �

Fact 2.6 together with the previous claim yield:

Corollary 2.12. If G is a torsion-free definable group, then G has a
definable normal subgroup H such that dim(G/H) = 1.

3. Definable group extensions

Let H and K be groups. An extension of K by H is a group G, containing
H, together with a homomorphism π : G → K such that the sequence 0 →
H ↪→ G

π−→ K → 0 is exact, i.e., π is a surjective homomorphism and H is
the kernel of π. We will also call a surjective homomorphism π : G → K an
extension of K when we do not need to mention H explicitly. An extension
π : G→ K is an abelian extension if G is an abelian group.

An extension π : G → K is called a definable extension if G,K and π are
definable.

We say that a definable extension π : G → K definably splits if there is a
definable homomorphism h : K → G such that π◦h = idK .

Recall that for a surjective map π : A → B a global section of π is a map
h from B to A such that π◦h = idB . If U ⊆ B and h : U → A satisfies
π◦h = idU , then h is called a section of π over U . Thus a definable extension
π : G→ K definably splits if and only if π has a definable global section that
is also a group homomorphism.

The following is obvious.

Claim 3.1. Let π : G → K be a definable abelian extension of K by H.
The following are equivalent.

(1) G is a direct sum of H and a definable subgroup H1,
(2) The extension π : G→ K definably splits.

Consider a torsion-free abelian definable group G of dimension 2. Let
H < G be a definable subgroup of H of dimension 1, K = G/H and
π : G → K the natural projection. It is easy to see that G is a direct
sum of one-dimensional definable subgroups if and only if the projection
π : G → K definably splits. Since, by Fact 2.8, both K and H are defin-
able ordered groups, in order to answer Question 1A, we need to understand
when a definable abelian extension of a one-dimensional ordered group by a
one-dimensional ordered group splits. Below we give a criterion for such a
splitting in terms of growth rates of definable sections. We will follow ideas
from [12] and [16].
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For the rest of this section we fix a definable group G = 〈G, ∗, e〉 and an
ordered one-dimensional definable group K = 〈K,⊕, 0〉. We do not assume
that G is abelian.

3.1. Growth rates of sections and definable splitting. We will follow
the approach from [12, Section 1.3-1.4] and will be brief.

For a function f : K → G and x, y ∈ K we define ∆yf(x) to be f(x⊕ y) ∗
f(x)−1. Obviously, if f is definable, then so is ∆yf(x).

For any f : K → G we have

∆y⊕zf(x) = ∆yf(x⊕ z) ∗∆zf(x),

∆	yx = [∆y(x	 y)]−1.
(1)

If f is a definable function from K → G, then it follows from (1) that
the set {y ∈ K : limx→+∞∆yf(x) ∈ G} is a subgroup of K. Since K is a
definable one-dimensional ordered group, it has no proper definable nontrivial
subgroup. Thus if for a definable f : K → G the limit limx→+∞∆yf(x) exists
for some y 6= 0, then the limit exists for all y ∈ K.

Assume now that f : K → G is a definable function such that the limit
limx→+∞∆yf(x) exists for all y ∈ K. It follows from (1) then that the
function y 7→ limx→+∞∆yf(x) is a definable homomorphism from K to G.

Let π : G→ K be a definable extension and h : K → G a definable global
section of π. It is easy to see that ∆yh(x) ∈ π−1(y) for all y, x ∈ K.

Thus we have the following claim.

Claim 3.2. Let π : G → K be a definable extension, and h : K → G a
definable global section of π. Then the set {y ∈ K : limx→∞∆yh(x) ∈ G} is
a subgroup of K. It is either trivial or the whole K. In the latter case the
function y 7→ limx→+∞∆yf(x) is a group homomorphism and also a global
section of π; in particular, π definably splits.

The following corollary to Claim 3.2 was first proved by M. Edmundo [7,
Lemma 5.1].

Corollary 3.3. If π : G → K is a definable extension of a definable
one-dimensional ordered group K by a definably compact group H, then π
definably splits.

Proof. Let f : K → G be a definable global section and d 6= 0 ∈ K. Since
∆df(x) ∈ π−1(d) for any x ∈ K, and the fiber π−1(d) is definably compact,
the limit limx→∞ f(x⊕ c) ∗ f(x)−1 exists in G �

Let π : G→ K be a definable extension of K by a group H, and f : K → G
a definable global section of π. If g : K → H is any definable function, then
f(x) ∗ g(x) is also a definable global section of π, and any definable global
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section can be obtained from f this way by choosing an appropriate g. Thus
we have the following result.

Corollary 3.4. Let π : G → K be a definable extension of a defin-
able one-dimensional ordered group K by a definable group H. The following
conditions are equivalent:

(1) π definably splits.
(2) There is a definable global section f of π and c 6= 0 ∈ K such that the

limit limx→∞ f(x⊕ c) ∗ f(x)−1 exists in G.
(3) For any definable global section f of π there is a definable function

g : K → H and c 6= 0 ∈ K such that the limit limx→∞ f(x⊕ c)∗g(x⊕
c) ∗ g(x)−1 ∗ f(x)−1 exists in G.

3.2. Abelian torsion-free definable extensions. In this section we as-
sume that G is an abelian torsion-free definable group of dimension 2, H < G
a definable subgroup of dimension 1, K = G/H and π : G → K the natu-
ral projection. We have that both H and K are definable one-dimensional
ordered groups.

Let f be a definable global section of π, g : K → H a definable function,
and c 6= 0 ∈ K. Consider the limit

lim
x→∞

f(x⊕ c) ∗ f(x)−1 ∗ g(x⊕ c) ∗ g(x)−1.

Obviously, the above limit exists in G if and only if the limit

lim
x→∞

f(x⊕ c) ∗ f(x)−1 ∗ f(c)−1 ∗ g(x⊕ c) ∗ g(x)−1

exists. Since f is a global section of π, both f(x ⊕ c) ∗ f(x)−1 ∗ f(c)−1 and
f(x ⊕ c) ∗ f(x)−1 ∗ f(c)−1 ∗ g(x ⊕ c) ∗ g(x)−1 are in H for any x ∈ K. Also,
since H and K are one-dimensional ordered groups, for any definable function
h : K → H the limit limx→+∞ h(x) exists in H if and only if h(x) is ultimately
bounded, i.e., there is C ∈ H such that C−1 < h(x) < C for all sufficiently
large x ∈ K. Thus we can restate Corollary 3.4 in the following way.

Claim 3.5. Let π : G → K be a definable abelian extension of a defin-
able one-dimensional ordered group K by a definable one-dimensional ordered
group H, and f : K → G a definable global section of π. The following
conditions are equivalent:

(1) The extension π : G→ K definably splits.
(2) There is a definable function h : K → H such that for some c 6= 0 ∈ K

the function

[f(x⊕ c) ∗ f(x)−1 ∗ f(c)−1] ∗∆ch(x)

is ultimately bounded (as a function from K to H).
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Remark. The criterion given in Claim 3.5 has also a geometric interpre-
tation. In [16] it was shown how to associate to every definable curve γ :
[0,+∞)→ G with no endpoint in G a definable, torsion-free one-dimensional
subgroup Hγ ⊆ G. (Hγ is the set of all limit points of γ(s) ∗ γ(t)−1, as s
and t tend to +∞.) In order for a definable abelian extension G of a defin-
able one-dimensional ordered group K by a definable one-dimensional ordered
subgroup H to split, it is necessary to find a definable curve γ so that Hγ is
different from H. If f : K → G and h : K → H satisfy clause (2) in Claim 3.5,
then for the curve γ(t) = f(t) ∗ h(t) the associated group Hγ will be different
from H.

4. The polynomially bounded case

Recall that M is polynomially bounded if for every definable function f :
R→ R there is n ∈ N such that |f(x)| < xn for all sufficiently large x.

The following was proved in [12].

Fact 4.1. IfM is polynomially bounded, then every definable one-dimen-
sional ordered group is definably isomorphic to Ra or Rm.

Thus, by Fact 2.7, in the polynomially bounded case, every abelian torsion-
free definable group of dimension 2 is a definable abelian extension of Ra or
Rm by Ra or Rm.

4.1. Abelian extensions by Rm. If M is polynomially bounded, then
the triviality of definable abelian extensions of any definable one-dimensional
ordered group by Rm follows from [7, Lemma 5.2]. We present its proof here
for the sake of completeness.

The following lemma follows from [12, Proposition 3.2].

Lemma 4.2. Assume M is polynomially bounded. Let H = 〈H, ∗, e〉 be
a definable group definably isomorphic to Rm. If f(x, y) : R × R → H is a
definable function, then there is C ∈ R such that limx→+∞ f(x, y1)∗f(x, y2)−1

exists in H for all y1, y2 > C.

Theorem 4.3. Assume M is polynomially bounded. Let H be a definable
group definably isomorphic to Rm and π : G→ K a definable abelian extension
of a definable one-dimensional ordered group K by H. Then π definably splits.

Proof. We will denote the group operation of G by ∗, and the group oper-
ation of K by ⊕. Let f : K → G be a definable global section.

Since f(x ⊕ y) ∗ f(x)−1 ∗ f(y)−1 ∈ H for all x, y ∈ K, by Lemma 4.2, for
all sufficiently large y1, y2 ∈ K the limit

lim
x→+∞

(
f(x⊕ y1) ∗ f(x)−1 ∗ f(y1)−1 ∗ f(x) ∗ f(y2) ∗ f(x⊕ y2)−1

)
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exists in H. Therefore, for all sufficiently large y1, y2 ∈ K, the limit
limx→+∞(f(x⊕ y1) ∗ f(x⊕ y2)−1) exists in G. Hence, if z 6= 0 ∈ K, then, for
all sufficiently large y ∈ K, the limit limx→+∞(f(x⊕y⊕z)∗f(x⊕y)−1) exists
in G, and so does limx→+∞(f(x⊕z)∗f(x)−1). Theorem 4.3 now follows from
Corollary 3.4. �

Thus in order to establish Conjecture 1, it remains to prove that in the
polynomially bounded case every definable abelian extension of a definable
one-dimensional ordered group by a group definably isomorphic to the additive
group Ra definably splits.

4.2. On abelian extensions by Ra. Let G = 〈G, ∗, e〉 be a definable
abelian extension of a definable one-dimensional ordered group K = 〈K,⊕, 0〉
by a group H definably isomorphic to Ra. We fix a definable global section
f of this extension. In contrast to the case of Rm it is not true anymore that
for any c 6= 0 ∈ K the limit limx→+∞ f(x ⊕ c) ∗ f(x)−1 always exists in G.
(An elementary example is G = Ra×Ra with the global section x 7→ (x, x2).)
According to Claim 3.5, this extension splits if and only if there is a definable
function h : K → H such that

f(x⊕ c) ∗ f(x)−1 ∗ f(c)−1 ∗∆ch(x)

is ultimately bounded for some c 6= 0 ∈ K. Taking the group inverse of the
above expression we obtain that the extension splits if and only if there is a
definable function h : K → H such that

f(x⊕ c)−1 ∗ f(x) ∗ f(c) ∗∆ch(x)−1

is ultimately bounded for some c 6= 0 ∈ K.
It is not hard to see that for a given definable h : K → H the function

f(x⊕ y) ∗ f(x)−1 ∗ f(y)−1 ∗∆zh(x)−1

is ultimately bounded, as a function of x, for some y = z 6= 0 ∈ K if and
only if it is ultimately bounded for all nonzero y, z ∈ K if and only if it is
ultimately bounded for some nonzero y, z ∈ K.

Since in the polynomially bounded case every definable one-dimensional
ordered group is definably isomorphic to Ra or Rm, we have the following
claim.

Claim 4.4. Assume M is polynomially bounded. Suppose that for any
definable function g : R → R there are definable functions ha, hm : R → R
such that both g(x) − [ha(x + 1) − ha(x)] and g(x) − [hm(2x) − hm(x)] are
ultimately bounded. Then every definable abelian extension of a definable one-
dimensional ordered group by the additive group Ra splits, and Conjecture 1
holds for M.
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In the next section we will show that in many interesting cases, e.g., in the
semi-algebraic case, the assumptions of the above claim hold.

4.3. Power expansions at infinity. We recall some notions and results
from [11].

A definable power function is a definable group endomorphism of Rm. The
set of all power functions is an ordered field, with addition given by point-
wise multiplication, multiplication given by composition, and the positive
elements are precisely the strictly increasing functions. If f is a definable
power function, then f is differentiable with f ′(x) = f ′(1)f(x)/x.

The map f 7→ f ′(1) is an embedding of the ordered field of definable power
functions into R. We will denote by Λ the image of this map, called the field
of definable exponents. If r ∈ Λ, then the definable power function f with
f ′(1) = r will be denoted by xr, and instead of f(a) we will write ar. Note
that in general Λ is not a definable subset of R. The set Λ contains Q, and
for q ∈ Q the function xq coincides with the standard one. By Λfin we will
denote the set of all r ∈ Λ such that −n < r < n for some n ∈ N.

Let f(x) be a definable function from an unbounded interval (d,+∞) into
R. We say that f has a definable Puiseux-like expansion at +∞ if there are
rk > rk−1 > · · · > r1 > 0 in Λfin, and c1, . . . , ck ∈ R, such that the function
f(x)− [c1xr1 + · · ·+ ckx

rk ] is ultimately bounded.
It follows from [4] that in RRan and elementarily equivalent structures de-

finable functions have definable Puiseux-like expansions at +∞:

Fact 4.5 ([4, Expansion Theorem]). Let RRan be the expansion of Ran by
all power functions x 7→ xr, r ∈ R. Then every function f : R → R definable
in RRan has an RRan-definable Puiseux-like expansion at +∞, and the same is
true for all structures elementarily equivalent to RRan.

Claim 4.6. Let M = R
R

an, and M0 a reduct of M to a language con-
taining the language of ordered fields. Then every M0-definable function
f : R→ R has an M0-definable Puiseux-like expansion at +∞. The same is
true when M is elementarily equivalent to RRan.

Proof. Let M1 be a structure elementarily equivalent to M0. Passing to
an elementary extension, if necessary, we can assume that M is saturated.
Hence it has an expansion N elementarily equivalent to RRan.

Let f : R → R be an M1-definable function. By Fact 4.5, it has an
N -definable Puiseux-like expansion at +∞. Let xr1 , . . . , xrk be N -definable
power functions, with rk > rk−1 > · · · > r1 > 0 , and c1, . . . , ck ∈ R \ {0},
such that the function f(x) − [c1xr1 + . . . ckx

rk ] is ultimately bounded. We
need to show that xr1 , . . . , xrk are M1-definable.
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As was noted in [13], since limt→+∞ f(t)/trk = ck 6= 0, for any x > 0,
limy→+∞ f(xy)/f(y) = xrk . Hence xrk is M-definable. Considering the
function f(x)− ckxrk , we obtain that xrk−1 is M-definable, etc. �

Our goal is to show that the premise of Claim 4.4 holds in the case when
every definable function has a definable Puiseux-like expansion at +∞.

Claim 4.7. Let r be a positive element of Λfin and n be the largest nonneg-
ative integer with r > n. Then (x+1)r has a definable Puiseux-like expansion
at +∞. More precisely,

(x+ 1)r −
[
rxr +

(
r

1

)
xr−1 + · · ·+

(
r

n

)
xr−n

]
is ultimately bounded. (Here, as usual,

(
r
i

)
= r(r − 1) · · · (r − i+ 1)/i!.)

Proof. Since r is positive and r 6 n + 1,we have 0 6 xr 6 xn+1 for all
x > 1. Hence 0 6 xr/xn+1 6 1 for all x > 1. Since the (n + 1)-th derivative
of xn+1 is 1, by L’Hôpital’s rule, the (n+ 1)-th derivative of xr is ultimately
bounded. The claim now follows from Taylor’s formula. (See [3, p. 114] for
L’Hôpital’s rule and Taylor’s formula.) �

Lemma 4.8. Let f be a definable function from an unbounded interval
(d,+∞) into R. Assume f has a definable Puiseux-like expansion at +∞.
Then the following hold.

(1) There is a definable ha(x) such that f(x) − [ha(x + 1) − ha(x)] is
ultimately bounded.

(2) There is a definable hm(x) such that f(x)− [hm(2x)− hm(x)] is ulti-
mately bounded.

Proof. (1) Choose the minimal subset S ⊆ Λfin such that:
(a) S consists of positive elements;
(b) if r ∈ S and r − 1 > 0, then r − 1 ∈ S;
(c) there are rk > rk−1 > · · · > r1 in S, such that f(x)−[c1xr1 +. . . ckxrk ]

is ultimately bounded for some c1, . . . , ck ∈ R.
We will denote this set by S(f). We will proceed by induction on the size

of S(f).
If S(f) is empty, then f is bounded and we can take ha ≡ 0.
Assume S(f) is non-empty, and let rk > rk−1 > · · · > r1 and c1, . . . , ck be

as in (c). Since S(f) is minimal satisfying (a)-(c), rk is the largest element of
S(f) and ck is not zero.

Consider the function g(x) = ck
rk+1x

rk+1. By Claim 4.7, the function u(x) =
f(x) − [g(x + 1) − g(x)] has a definable Puiseux-like expansion at +∞, and
it is not hard to see that S(u) $ S(f). By the induction hypothesis, there is
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a definable h0(x) such that u(x)− [h0(x+ 1)− h0(x)] is ultimately bounded.
We can take ha(x) = h0(x) + u(x).

(2) Let rk > rk−1 > · · · > r1 > 0 be in Λfin, and c1, . . . , ck ∈ R, such that
f(x) − [c1xr1 + . . . ckx

rk ] is ultimately bounded. It is easy to check that we
can take hm(x) = b1x

r1 + · · ·+ bkx
rk , where bi = ci/(2ri − 1). �

Theorem 4.9. Assume that every definable function f : R → R has
a definable Puiseux-like expansion at +∞. Then every abelian torsion-free
definable group is a direct sum of definable one-dimensional subgroups, each
definably isomorphic to Ra or Rm.

Proof. If every definable function has a definable Puiseux-like expansion at
+∞, then the structure is polynomially bounded. Thus Theorem 4.9 follows
from Claim 4.4 and Lemma 4.8. �

Corollary 4.10. Assume M is elementarily equivalent to RRan. Then
every abelian torsion-free M-definable group (G, ∗) is definably isomorphic to
Rkm ×Rla, and this isomorphism is definable in the structure 〈R,+, ·, (G, ∗)〉 .

Corollary 4.11. Every abelian, torsion-free, semilagebraic group is a
direct sum of one-dimensional semialgebraic subgroups.

The following is an immediate corollary to Fact 2.6 and Theorem 4.9.

Corollary 4.12. Assume that every definable function f : R → R has
a definable Puiseux-like expansion at +∞. If G is a definable abelian group,
then there is a definable torsion-free subgroup H ⊆ G, such that H a direct
sum of definable 1-dimensional torsion-free subgroups and G/H is definably
compact.

We finish this section with a corollary on definable homogeneous spaces.

Theorem 4.13. Assume that every definable function f : R → R has a
definable Puiseux-like expansion at +∞. Let G be a definable group, H ⊆ G
a definable subgroup and assume that G/H is not a definably compact space.
Then G has a 1-dimensional torsion-free definable subgroup whose intersection
with H is trivial.

Proof. Let us assume first that H is a normal subgroup. By Fact 2.5, there
is a 1-dimensional torsion-free subgroup A1 of G/H. The preimage of A1

under the quotient map is a definable subgroup H1 of G, containing H, whose
dimension equals dim(H) + 1, and H1/H is not definably compact.

Now take an element g in H1 which is not in H but has an infinite order.
Then g is contained in an infinite abelian subgroup A2 (e.g., the center of
the centralizer of g), and by dimension considerations we have A2 ·H = H1.



1312 Y. PETERZIL AND S. STARCHENKO

By Corollary 4.12, we have 1-dimensional, torsion-free definable subgroups
B1, . . . , Bk of A2 such that the quotient A2/(B1⊕ · · · ⊕Bk) is definably com-
pact. At least one of the Bi’s is not contained in H, for otherwise H1/H
would be definably compact.

We now return to the general case (i.e., we do not assume that H is nor-
mal in G). Assume towards a contradiction that all definable 1-dimensional,
torsion-free subgroups of G are contained in H. Then every conjugate of H
will also contain all definable 1-dimensional torsion-free subgroups. Consider
now the intersection, N , of all conjugates of H. This is a definable normal
subgroup of G which contains all 1-dimensional torsion-free subgroup of G.
By the lemma, G/N must be definably compact, contradicting the fact that
G/H was not definably compact. �

4.4. Groups definable in Ran. In the case when M = Ran we have a
stronger result.

Theorem 4.14. Let G be a connected abelian group, definable in Ran.
Then G is a direct sum of Ran-definable, one-dimensional groups.

Proof. By the analytic cell-decomposition in Ran, G can be equipped, de-
finably, with the structure of a real analytic group. As such, it is a direct sum
of real analytic 1-dimensional subgroups. Namely,

G = A1 ⊕ · · · ⊕Ak ⊕B1 ⊕ · · · ⊕Bl,

where the Ai’s are Lie isomorphic to the circle group S1, and the Bi’s are Lie
isomorphic to 〈R,+〉.

Now, each of the Ai’s is a compact real analytic submanifold of G, and
therefore it is definable in Ran.

On the other hand, by Fact 2.6, G contains a definable torsion-free sub-
group such that G/H is compact. By Corollary 4.10, H is a direct sum of
1-dimensional groups. Since every compact group must have a torsion point,
the intersection of H with the product of the Ai’s is trivial. It is now easy to
see that G is a direct sum of H and the Ai’s. �

Remark. The first part of the above argument works in any o-minimal
expansion of Ran, with an analytic cell decomposition. Namely, every de-
finable group in such a structure is a real analytic Lie group, and the Ai’s
above are definable in it. However, we do not know if this carries over to
elementarily equivalent structures.

5. On the existence of continuous and smooth global sections

We continue to work in an o-minimal expansionM of a real closed field R.
Given a definable group G with a definable subgroup H, one can ask if there

is a definable continuous or smooth global section of π, where π : G → G/H
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is the natural projection. (By “smooth” we will always mean C1 with respect
to R.) Obviously, the existence of a continuous (smooth) definable global
section of π is equivalent to the existence of a definable continuous (smooth)
bijection f : G→ H ×G/H such that the diagram

G
f //

α

��???????? H ×G/H

π2
zzuuuuuuuuuu

C

is commutative. (Here π2 is the projection map from H ×G/H onto G/H.)
Of course it is not true that such a definable continuous global section

exists for all definable H < G. A well-known example is G = SU(2,C) with
H consisting of all the diagonal matrices. In this case there is no continuous
global section of π : G → G/H. (SU(2,C) is homeomorphic to the 3-sphere
S3, H is homoeomorphic to the 1-sphere S1, SU(2,C)/H is homeomorphic
to the 2-sphere S2, and S3 is not homeomorphic to S1 × S2: The 3-sphere
S3 is simply connected, but S1 × S2 is not since it has a nontrivial 1-cycle
corresponding to S1.)

If H is a closed subgroup of a real Lie group G, then a continuous global
section of the projection π : G → G/H exists if H or G/H is contractible
(see, for example, [24, p. 56]).

We prove an analogous result in the category of definable groups and maps.
First we consider the case of a definably contractible definable subgroup H
of a definable group G, and we prove the existence of a definable continuous
global section.

We do not consider the general case when G/H is definably contractible,
even though one should be able to find a definable continuous global section
in this case as well. Instead we consider the case when H is a normal definable
torsion-free subgroup, and in this case we obtain the existence of a definable
smooth global section. It implies, in particular, that every definable torsion-
free group is definably diffeomorphic to Rn.

5.1. Extensions by definably contractible groups.

Theorem 5.1. Let H be a definably contractible definable subgroup of a
definable group G and π the projection map from G onto the set G/H of the left
cosets of H. Then there is a definable continuous global section α : G/H → G
of π.

Proof. We will need the following claim.

Claim 5.2. Let H be a definable subgroup of a definable group G and π the
projection map onto G/H. Then there is a finite cover U1, . . . , Uk of G/H
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by definable open sets U1, . . . , Uk such that for each i = 1, . . . , k there is a
definable continuous section ϕ : Ui → G of π over Ui.1

Proof. By definable choice, there is a definable global section σ : G/H → G
of π. Using o-minimality, we can find a definable open dense U ⊆ G/H such
that σ is continuous on U . By [14, Claim 2.12], finitely many translates of U
cover G/H. Let g1, . . . , gk ∈ G be such that G/H = g1U ∪ · · · ∪ gkU .

For i = 1, . . . , k we denote by Ui the set giU , and by σi the function
x 7→ giσ(g−1

i x). Obviously, each σi is a continuous section of π over Ui. �

Let k be the minimal positive integer such that G/H can be covered by k
definable open sets Ui with definable continuous sections ϕi : Ui → G of π
over Ui.

If k = 1, then there is a continuous definable global section and we are
done.

We will assume that k > 1 and derive a contradiction. Let Ui, i = 1, . . . , k,
be definable open subsets covering G/H and ϕi definable continuous sections
of π over Ui.

By [3, Chapter 6, Lemma 3.6], there are definable open V1 ⊆ U1, V2 ⊆ U2

such that cl(Vi) ⊆ Ui, i = 1, 2, and V1 ∪V2 ∪U3 · · · ∪Uk = G/H. To reduce k,
and obtain a contradiction, we will construct a definable continuous section
of π over V = V1 ∪ V2.

Let ϕ1,2 be the function x 7→ ϕ1(x)−1ϕ2(x) on the set U1 ∩ U2. Clearly,
ϕ1,2 : U1 ∩ U2 → H.

Let ψ : V → G be a definable section of π over V . For i = 1, 2 we will
denote by ψi the function x 7→ ϕi(x)−1ψ(x) on Vi. Clearly, ψi : Vi → H and

(2) ψ1(x) = ϕ1,2(x)ψ2(x) on V1 ∩ V2

The converse is also true: For any two definable functions ψi : Vi → H,
i = 1, 2, satisfying (2), we can define a section ψ : V → G of π over V by
setting ψ(x) = ϕi(x)ψi(x) on each Vi. This section ψ is continuous on V if
and only if both ψi are continuous.

Thus we need to find definable continuous functions ψi : Vi → H, i = 1, 2,
such that ψ1(x) = ϕ1,2(x)ψ2(x) on V1 ∩ V2. We take ψ2(x) ≡ e on V2, where
e is the identity element of H, and show that ϕ1,2 � V1 ∩ V2 has a definable
continuous extension to V1. Since the closure of V1∩V2 is contained in U1∩U2,
ϕ1,2 is continuous on cl(V1 ∩V2), and, since G is definably contractible, by [3,
Chapter 8, Corollary 3.10], ϕ1,2 � cl(V1 ∩ V2) has a continuous extension to
U1. �

1The conclusion of the claim states that π : G → G/H is a definable principal fiber
bundle with base G/H and bundle group H. In the rest of the proof of the theorem we
show that every definable principal fiber bundle with contractible bundle group is trivial.
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5.2. Extensions of torsion-free groups. We will need the following
technical claim. Although it should be well-known, we could not find a good
reference for it.

Claim 5.3. Let S be a definable smooth manifold definably homeomorphic
to an open interval I in R. Then S is definably diffeomorphic to I.

Proof. Let ϕ : I → S be a definable homeomorphism. By o-minimality, ϕ
is smooth outside of finitely many points a1, . . . , an ∈ I. Since S is a definable
smooth manifold, for every k = 1, . . . , n, we can choose a definable open in S
subset Jk, containing ϕ(ai), such that Jk is definably diffeomorphic to an open
interval J ′k via a definable map ψk, and the intervals J1, . . . , Jn are pairwise
disjoint. Working in these charts we can assume Jk = J ′k and ψk = id.

For each k we pick a definable open interval J0
k containing ϕ(ak) such that

Jk contains the closure of J0
k . Let I0

k = ϕ−1(J0
k ). To prove the claim it is

sufficient to find for each k a definable bijection ϕk : I0
k → J0

k such that the
function

x 7→

{
ϕk(x) if x ∈ I0

k ,

ϕ(x) if x ∈ Ik \ I0
k ,

is C1. The proof of the existence of such functions is elementary and is left
to the reader. �

Corollary 5.4. If G is a definable one-dimensional ordered group, then
G is definably isomorphic to an ordered group G1 on R whose group operation
is smooth as a function from R×R to R.

Proof. By the previous claim G is diffeomorphic to R as a smooth manifold.
�

Lemma 5.5. Let K = 〈K,⊕〉 be an abelian torsion-free definable one-
dimensional group. Then for any definable extension α : G → K of K there
is a definable smooth global section h : K → G of α.

Proof. We can assume that the universe of K is R, the neutral element of
K is 0, and ⊕ is smooth on R×R.

We will denote the group operation of G by ∗ and the identity element of
G by e.

By definable choice, there is a definable global section g : R→ G of α. Since
g is piece-wise smooth, there is r ∈ R such that g is smooth on (r,+∞). Fix
a > r and consider the map g1(x) : x 7→ g(a⊕x)∗g(a)−1. It is easy to see that
g1 is also a global section of α, g1(0) = e, and g1(x) is smooth on [0,+∞), i.e.,
it has a definable smooth extension on an open interval containing [0,+∞).
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Let h(x) be the map

x 7→

{
g1(x) if x > 0,
g1(	x)−1 if x < 0.

Clearly, h(x) is a global section of α, h(0) = e, h is continuous on R and
smooth on R \ {0}. The function h(x) has also one-sided derivatives at 0,
and we are left to show that h′(0−) = h′(0+), i.e., we need to show that the
differential at zero of g1(	x)−1 equals the differential at zero of g1(x). Since
g1(0) = e, this follows from the Chain Rule and the fact that for any definable
group 〈H, ·, e〉 the differential of the map x 7→ x−1 at e is − Id 2. �

Theorem 5.6. Let K be a torsion-free definable group. Then for any
definable extension α : G→ K of K there is a definable smooth global section
of α.

Proof. We proceed by induction on dim(K). The one-dimensional case is
covered in Claim 5.5. Thus we can assume that dim(K) > 1.

Let α : G → K be a definable extension of K by H. By Corollary 2.12,
there is a definable normal subgroup K1 of K such that the dimension of
K0 = K/K1 is one. Let G1 = α−1(K1) and β be the restriction of α to
G1. Then β : G1 → K1 is a definable extension of K1, and by the induction
hypothesis, it has a definable smooth global section f : K1 → G1.

Let π : K → K0 be the projection map and γ = π◦α. Then γ : G → K0

is a definable extension of K0. Since dim(K0) = 1 it has a smooth definable
global section g : K0 → G.

Consider the function h : K → K defined as h : x 7→ α(g(π(x))). It is not
hard to see that h is a definable smooth global section of π, and xh(x)−1 ∈ K1.

The function x 7→ g(π(x)) ·f(xh(x)−1) is a definable smooth global section
of α. �

Corollary 5.7. Let G be a definable torsion-free group of dimension n.
Then G is definably diffeomorphic to Rn.

Proof. We proceed by induction on dim(G). If G has dimension 1, then it
is a definable one-dimensional ordered group and is definably diffeomorphic
to R.

Assume dim(G) = n + 1. Then, by Corollary 2.12, G has a definable
normal subgroup H with dim(H) = n. By the induction hypothesis, both H
and G/H are definably diffeomorphic to Rn and R, respectively. Now we can
apply Theorem 5.6. �

2 Since e ·x = x · e = x, we have that the differential of the x · y at (e, e) is dx+dy. Now
apply the implicit function theorem.
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Corollary 5.8. Let G be a definable group. The following conditions
are equivalent.

(1) G is torsion-free.
(2) G is definably diffeomorphic to Rn.
(3) The Euler characteristic of G is +1 or −1.

Appendix A. A theorem of Chevalley

We will now show how the results of Section 4 yield “a semialgebraic proof”
to the classical theorem of Chevalley for abelian algebraic groups over fields
of characteristic zero (see [21]).

We believe that the method suggested below could be applied in other
cases as well to translate semi-algebraic information into the algebraic cat-
egory. (Note that usually one deduces real algebraic information from the
semi-algebraic one but this is not our point of view here.) We begin with
some preliminaries.

Let K be an algebraically closed field of characteristic zero. We fix a
maximal real closed subfield R ⊆ K, a square root of −1, which we denote
by i, and identify K with R2 in an obvious way: z = a+ bi, for a, b ∈ R. We
assume that R is ω+-saturated.

Every subset of R2n can now be identified with a subset of Kn via the
map (a1, . . . , an, b1, . . . bn) 7→ (a1 + ib1, . . . , an + ibn). For (ā, b̄) = (a1, . . . , an,
b1, . . . , bn) ∈ R2n and A ⊆ R, we write dimR(ā, b̄)/A for its semialgebraic
dimension (i.e., tr.deg(Q(ā, b̄)/Q(A))) and dimK(a1 + ib1, . . . , an+ ibn)/A for
its algebraic dimension (i.e., tr.deg(Q(a1 + ib1, . . . , an + ibn)/Q(A)).

For a semi-algebraic set S ⊆ R2n, we write dimR(S) for its semi-algebraic
dimension. If S happens to be also an algebraic (or constructible) subset of
Kn, we write dimK S for its dimension in the sense of the algebraically closed
field K. Notice that since R is assumed to be sufficiently saturated, if S ⊆ R2n

is semialgebraic and definable over A ⊆ R, then

dimR(S) = max{dimR(ā, b̄)/A : (ā, b̄) ∈ S}

and if S ⊆ Kn is constructible and definable over A, then

dimK(S) = max{dimK(a1 + ib1, . . . , an + ibn)/A : ā+ ib̄ ∈ S}.

Given S ⊆ R2n, we write ZK(S) for the Zariski closure of S inside Kn. For
example, if S ⊆ R2 is any semialgebraic infinite set, then ZK(S) = K.

The following lemma will be needed in order to transfer results from the
semi-algebraic context into the algebraic one:

Lemma A.1. Let K be an algebraically closed field, R a maximal real
closed subfield of K.
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(1) Let S ⊆ R2n be a semi-algebraic set, ZK(S) ⊆ Kn. Then

1
2

dimR(S) 6 dimK(ZK(S)) 6 dimR(S).

(2) Let V be an algebraic variety over K, and let S ⊆ V (K) be a semi-
algebraic subset of the K-points of V (namely, a subset of V (K) which
is definable in 〈R,+, ·〉). Then

1
2

dimR(S) 6 dimK(ZK(S)) 6 dimR(S).

Proof. First notice that this lower bound is really optimal. Indeed, consider
a semi-algebraic subset of R2 of R-dimension 2. Then, ZK(S) is equal to K
and thus has K-dimension 1.

(1) Consider now a semi-algebraic S ⊆ R2n, dimR S = k, and assume
that it is definable over A ⊆ R. Let (ā, b̄) be a generic element in S over
A. Let F be the field generated by A. Then the transcendence degree of
F (a1, . . . , an, b1, . . . , bn) over F equals k.

Consider now S as a subset ofKn. Its elements are {(x1+iy1, . . . , xn+iyn) :
(x̄, ȳ) ∈ S}. Since the field F (a1+ib1, . . . , an+ibn) is contained in the algebraic
closure of F (a1, . . . , an, b1, . . . , bn), we have dimK(a1 + ib1, . . . , an + ibn)/F 6
k.

Let L ⊆ Kn be the smallest Zariski closed subset of Kn which contains
(a1 + ib1, . . . , an + ibn), and is defined over A (sometimes called the locus of
(a1 + ib1, . . . , an + ibn) over A). We have dimK L = dimK(a1 + ib1, . . . , an +
ibn/A) 6 k.

We therefore showed that every element of S whose R-dimension is k, is
contained in a Zariski closed subset of Kn whose K-dimension is not greater
than k.

By the compactness theorem, we can find finitely many Zariski closed sub-
sets of Kn, defined over A, each of K-dimension not greater than k, which
cover S, up to a subset of S of R-dimension less than k. Applying induction
on dimR(S) we obtain a Zariski closed subset of Kn which contains S and its
K-dimension is not greater than k.

As for the other direction, we point out that if V ⊆ Kn is an algebraic (or
even constructible) set, then we have dimK V = 2 dimR V . Since S ⊆ ZK(S),
we must clearly have 2 dimK(ZK(S)) > dimR(S).

(2) follows from (1), by working in the charts which make up V . �

Let us now consider the consequences of the above observation for algebraic
groups. We denote by Ka the group 〈K,+〉 and by Km the group 〈K∗,×〉.

Lemma A.2. Let G be an algebraic group over K, and let H be a semi-
algebraic, definably connected subgroup of G such that dimRH = 1. Then:
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(i) ZK(H) is an algebraic abelian subgroup of G whose algebraic dimen-
sion is 1.

(ii) If H is (semi-algebraically) isomorphic to Ra, then ZK(H) is (alge-
braically) isomorphic to Ka.

(iii) If H is (semi-algebraically) isomorphic to Rm, then ZK(H) is alge-
braically isomorphic to Km.

Proof. (i) Follows immediately from Lemma A.1.
(ii) Assume that f is a semi-algebraic isomorphism between Ra or Rm

and H. The graph of f , call it Sf , is a semi-algebraic abelian subgroup of
the algebraic group G1, where G1 = Ka × G or G1 = Km × G. We have
dimR(Sf ) = 1. Therefore, by the above lemma, its Zariski closure in G1,
denoted by S1, is an abelian subgroup of G1 whose K-dimension is 1 as well.
Furthermore, S1 must be a connected algebraic group, since otherwise Sf
will be contained in S0

1 , its algebraic connected component. Let H1 be the
projection of S1 onto G. H1 is an abelian connected subgroup of G containing
H, such that dimK H1 = 1. It is easy to see that H1 = ZK(H).

Assume first that dom(f) = Ra. The intersection of S1 with Ka × {e} is
trivial and its projection on K must equal K. The intersection of S1 with
{0} × H1 is finite (by dimension considerations), hence S1 is a surjective,
finite-to-one homomorphism from H1 onto Ka. Since Ka has no torsion, and
H1 is connected, S1 is an isomorphism between H1 and Ka.

Assume now that dom(f) = Rm. The intersection of S1 with Km × {e}
is a finite group F . We may replace Km by Km/F , which is again isomor-
phic, as an algebraic group, to Km. As before, we now have an algebraic,
surjective, finite-to-one homomorphism from H1 onto Km. It follows that H1

is isomorphic to Km. �

Before turning to Chevalley’s Theorem, we need one more lemma.

Lemma A.3. Let X be an algebraic variety over K. If X is definably
compact (in its o-minimal group topology), then X is a complete variety. In
particular, if G is an algebraic group which is definably compact, then G is an
abelian variety.

Proof. The following is easy to verify:
If X is a definably compact set in an o-minimal structure and Y is any

other definable set, then the projection map π : X × Y → Y is a closed map
(with respect to the o-minimal topology).

Consider now any algebraic variety. It follows from quantifier elimination
that if X ⊆ V is a constructible set (i.e., definable in 〈K,+, ·〉) and X is
relatively closed in V , in the o-minimal topology, then X is Zariski closed in
V .
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The above two observations imply that if X is an algebraic variety which
is definably compact, then it is a complete variety. �

Theorem A.4. Let G be an abelian algebraic group over an algebraically
closed field K of characteristic zero. Then there is an algebraic subgroup H
which is isomorphic to a linear group over K, such that G/H is an abelian
variety.

Proof. We may assume that G is a connected algebraic group. (Applying
the theorem to the connected component of G will yield the general result.)

Let L be the algebraic subgroup of G generated by all algebraic subgroups
of G which are isomorphic to Ka or Km. We claim that G/L is definably
compact, and thus, by Lemma A.3, is an abelian variety. Indeed, if not, then
by Theorem 4.13 there is a 1-dimensional semi-algebraic subgroup of G which
is semi-algebraically isomorphic to Ra or Rm and has trivial intersection with
L. Applying Lemma A.2 to this subgroup we obtain an algebraic copy of Ka

or Km which is not contained in L.
Since G is abelian, it is not hard to see that L is linear (it is only here that

we need to use the commutativity of G). �
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