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NOTE ON H1 SPACES RELATED TO DEGENERATE
SCHRÖDINGER OPERATORS

JACEK DZIUBAŃSKI

Abstract. Let Lf(x) = − 1
w(x)

∑
i,j ∂i(aij( · )∂jf)(x) + V (x)f(x),

where w is a weight from the Muckenhoupt class A2, V is a nonnegative
potential that belongs to a certain reverse Hölder class with respect to

the measure w(x) dx, and C−1w(x)|ξ|2 ≤
∑
i,j aij(x)ξiξ̄j ≤ Cw(x)|ξ|2.

Let {Tt}t>0 be the semigroup of linear operators generated by −L. We
say that a function f is an element of the space H1

L if the maximal op-

eratorMf(x) = supt>0 |Ttf(x)| belongs to L1(Rd(w(x) dx)). A special

atomic decomposition of H1
L is proved.

1. Introduction

On Rd we consider a degenerate Schrödinger operator L having the form

Lf(x) = − 1
w(x)

∑
i,j

∂i(aij( · )∂jf)(x) + V (x)f(x),(1.1)

where aij(x) is a real symmetric matrix satisfying

C−1w(x)|ξ|2 ≤
∑
i,j

aij(x)ξiξ̄j ≤ Cw(x)|ξ|2,(1.2)

with w being a nonnegative weight from the Muckenhoupt class A2, and V ≥ 0
belonging to a reverse Hölder class with respect to the measure dµ(x) =
w(x) dx (cf. (2.5)). Denote by E(f, g) the Dirichlet form associated with L,
that is,

E(f, g) =
∫
Rd

∑
i,j

aij(x)∂jf(x)∂ig(x) dx+
∫
Rd

V (x)f(x)g(x) dµ(x).
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The operator −L is the infinitesimal generator of the semigroup {Tt}t>0 of
self-adjoint linear operators on L2(dµ) having the integral kernels kt(x, y),
that is,

Ttf(x) =
∫
Rd

kt(x, y)f(y) dµ(y).(1.3)

A perturbation formula asserts that

0 ≤ kt(x, y) ≤ ht(x, y),(1.4)

where ht(x, y) are the integral kernels of the semigroup {St}t>0 on L2(dµ)
generated by −L0, where

L0f(x) = − 1
w(x)

∑
i,j

∂i(aij( · )∂jf)(x).(1.5)

It is known that the kernels ht(x, y) satisfy the Gaussian estimates (3.3).
Since the measure µ satisfies the doubling condition (cf. (2.2)), the maximal
operator

Mf(x) = sup
t>0
|Ttf(x)|(1.6)

is bounded on the spaces Lp(dµ) for 1 < p <∞, and of weak type (1, 1).
In the present paper we study the space of all functions f for which the

maximal function Mf is exactly in L1(dµ). We shall denote this space by
H1
L. The corresponding H1

L norm is defined by

‖f‖H1
L

= ‖Mf‖L1(dµ).(1.7)

It turns out that, as in the classical theory of real Hardy spaces, every element
of H1

L can be written as a sum of certain basic elements called atoms (cf.
Section 2). Our aim is to prove the atomic decomposition of the members of
H1
L (see Theorem 2.1).
The operator L0 was studied in [7] and [8]. We refer the reader to these

articles for a detailed analysis of L0 and its fundamental solution.

2. Preliminaries and statement of the results

A nonnegative function w(x) is an element of the Muckenhoupt class A2 if
there exists a constant C > 0 such that(

1
|B|

∫
B

w(x) dx
)(

1
|B|

∫
B

w(x)−1 dx

)
≤ C(2.1)

for every ball B. Here and subsequently |B| denotes the volume of the ball B
with respect to the Lebesgue measure dx. It is well-known that (2.1) implies
that the measure dµ(x) = w(x) dx satisfies the doubling condition, that is,
there exists a constant C0 > 0 such that

µ
(
B(x, 2r)

)
≤ C0µ

(
B(x, r)

)
for every x ∈ Rd, r > 0.(2.2)
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Using the notation from [14], we say that w ∈ Dγ , γ > 0, if there is a constant
C > 0 such that

µ
(
B(x, tr)

)
≤ Ctγµ

(
B(x, r)

)
, for every t > 1.(2.3)

Let us note that (2.2) guarantees the existence of such a γ.
Similarly w ∈ (RD)ν if

tνµ
(
B(x, r)

)
≤ Cµ

(
B(x, tr)

)
for every t > 1.(2.4)

A nonnegative potential V belongs to the reverse Hölder class (RH)qµ,
q > 1, with respect to the measure dµ if there exists a constant C > 0 such
that for every Euclidean ball B one has(

1
µ(B)

∫
B

V (y)q dµ(y)
)1/q

≤ C
(

1
µ(B)

∫
B

V (y) dµ(y)
)
.(2.5)

From now on we shall assume that w ∈ A2 ∩ Dγ ∩ (RD)ν , 2 < ν ≤ γ,
dµ(x) = w(x) dx, V ∈ (RH)qµ, q > γ/2. We set

δ = 2− γ/2.

Following [18] (see also [14]) the auxiliary function m(x, V ) is defined by

r(x) = m(x, V )−1 = sup

{
r > 0 :

r2

µ
(
B(x, r)

) ∫
B(x,r)

V (y) dµ(y) ≤ 1

}
.

(2.6)

The function m(x, V ) satisfies 0 < m(x, V ) <∞ (cf. [14]).
We now are in a position to define a notion of H1

L atom. A function a is
an H1

L atom associated with a ball B(x, r) if

r ≤ r(x), supp a ⊂ B(x, r), and ‖a‖L∞ ≤ µ
(
B(x, r)

)−1
,(2.7)

if r ≤ r(x)
4
, then

∫
a(y) dµ(y) = 0.(2.8)

The atomic norm ‖ ‖H1
L−atom is defined by

‖f‖H1
L−atom = inf

∑
|λj |,

where the infimum is taken over all decompositions f =
∑
j λjaj , where aj

are H1
L atoms and λj are scalars.

One of the main results of the paper is the following theorem.

Theorem 2.1. Assume that w ∈ (RD)ν ∩ Dγ ∩ A2, 2 < ν ≤ γ, and
V ∈ (RH)qµ with q > γ/2. Then there exists a constant C > 0 such that

1
C
‖f‖H1

L−atom ≤ ‖f‖H1
L
≤ C‖f‖H1

L−atom.(2.9)
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The atomic decomposition stated in Theorem 2.1 is analogous to those ob-
tained in [3]–[6] for classical Schrödinger operators. The main idea of proving
it is based, like in [3]–[6], on an analysis of the local and global behavior of the
integral kernels kt(x, y) of the semigroup {Tt}t>0. The theorem below (proved
in Section 5) provides some control for the behavior of the global part (cf. [6],
[15], where estimates for the kernels of classical Schrödinger operators were
derived).

Theorem 2.2. There exists a constant c > 0 such that for every N ≥ 0
there exists a constant CN such that

kt(x, y) ≤ CN

µ
(
B(x,

√
t)
) (1 +

√
t

r(x)

)−N (
1 +

√
t

r(y)

)−N
exp(−c|x− y|2/t).

(2.10)

Remark 2.3. Since kt(x, y) = kt(y, x), the factor CN/µ(B(x,
√
t)) in

(2.10) can be replaced by

CN

µ(B(x,
√
t))1/2µ(B(y,

√
t))1/2

.

3. Dirichlet forms

Let E0(f, g) be the Dirichlet form on L2(dµ) associated with the operator
L0f(x), that is,

E0(f, g) =
∫
Rd

∑
i,j

aij(x)∂jf(x)∂ig(x) dx,(3.1)

with the domain D = {f ∈ L2(dµ) : |∇f | ∈ L2(dµ)}. The Dirichlet form is
regular, that is, there exists a subset C ⊂ D ∩Cc(Rd) which is dense in D for
the norm (‖f‖2L2(dµ) + E0(f, f))1/2 and dense in Cc(Rd) in the uniform norm
(cf. [10]). Moreover, it is strictly local, which means that E0(u, v) = 0 for any
u, v ∈ D such that u, v are supported on compact sets and v is constant in
a neighborhood of the support of u. Let us note that the “energy measure”
d(Γ(f, g)) =

∑
i,j aij∂jf(x)∂ig(x) dx for f, g ∈ D is absolutely continuous

with respect to µ, and the pseudo-distance

d(x, y) = sup
{
f(x)− f(y) : f ∈ C, dΓ(f, f)

dµ
≤ 1
}

is comparable to |x − y|. The Dirichlet space (E0,D, L2(dµ)) satisfies the
Poincaré inequality (cf. [8]), that is, there is a constant C > 0 such that for
every f ∈ D and every ball B = B(y, r) we have∫

B

|f − fB |2 dµ ≤ Cr2

∫
B

|∇f |2 dµ,(3.2)
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where

fB =
1

µ(B)

∫
B

f(x) dµ(x).

The doubling condition (2.2) and (3.2) imply that the kernels ht(x, y) of the
semigroup {St}t>0 associated with E0 are continuous and satisfy the following
estimates (cf., e.g., Theorems 2.7, 2.3, 2.4, and Corollary 3.4 of [13]):

c1

µ
(
B(x,

√
t)
) exp

(
−|x− y|

2

c2t

)
≤ ht(x, y)(3.3)

≤ C1

µ
(
B(x,

√
t)
) exp

(
−|x− y|

2

C2t

)
,

|ht(x, y)− ht(x, z)|(3.4)

≤ Cµ
(
B(x,

√
t)
)−1
(
|y − z|√

t

)α
exp

(
−(|x− y| − 2|y − z|)2

+/ct
)

with constants α > 0, c > 0, C > 0,

|∂kt ht(x, y)| ≤ Ck

tkµ
(
B(x,

√
t)
) exp

(
−|x− y|2

ct

)
.(3.5)

For detailed relations between Poincaré, Harnack and Sobolev-type inequali-
ties and Gaussian bounds we refer the reader to [13], [1], [17] and the references
therein.

4. Green’s functions related to L0 and L

At the beginning of this section we state some basic properties of the aux-
iliary function m(x, V ). For more details we refer the reader to [14]. The
second part of the section is devoted to the fundamental solutions to the op-
erators iτ +L and iτ +L0. The methods of the proofs of the estimates stated
in Proposition 4.9 are borrowed from [18].

Lemma 4.1 (cf. Lemma 2 of [14]). Assume that w ∈ Dγ , V ∈ (RH)q(µ)
with q > γ/2. Then there exists a constant C > 0 such that for every 0 < r <
R <∞, y ∈ Rd we have

r2

µ
(
B(y, r)

) ∫
B(y,r)

V (x) dµ(x) ≤ C
(
r

R

)δ
R2

µ
(
B(y,R)

) ∫
B(y,R)

V (x) dµ(x).

(4.1)

Lemma 4.2 (cf. Lemma 3 of [14]). Under the assumptions of Lemma 4.1,
for every constant C1 > 1 there exists a constant C2 > 1 such that if

1
C1
≤ r2

µ
(
B(x, r)

) ∫
B(x,r)

V (y) dµ(y) ≤ C1,
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then C2
−1 ≤ rm(x, V ) ≤ C2.

Lemma 4.3 (cf. Lemma 4 of [14]). Under the assumptions of Lemma 4.1,
for every constant C1 ≥ 1 there is a constant C2 ≥ 1 such that

1
C2
≤ m(x, V )
m(y, V )

≤ C2 for |x− y| ≤ C1r(x).

Moreover, there exists constants k0, C, c > 0 such that

m(y, V ) ≤ C
(
1 + |x− y|m(x, V )

)k0
m(x, V ),(4.2)

m(y, V ) ≥ cm(x, V )
(
1 + |x− y|m(x, V )

)−k0/(1+k0)
.(4.3)

Lemma 4.4. There exists constants l, C > 0 such that

R2

µ(B(x,R))

∫
B(x,R)

V (y) dµ(y) ≤ C
(
Rm(x, V )

)l provided R ≥ m(x, V )−1.

Proof. (See [18], Lemma 1.8.) Denote r0 = m(x, V )−1. Let j be such
that 2jr0 ≤ R < 2j+1r0. Since the measure V (x)dµ(x) satisfies the doubling
condition,∫

B(x,R)

V (y) dµ(y) ≤ Cj+1
0

∫
B(x,r0)

V (y) dµ(y) ≤ Cj+1
0

µ(B(x, r0))
r2
0

.

Thus
R2

µ(B(x,R))

∫
B(x,R)

V (y) dµ(y) ≤ Cj+1
0

R2

r2
0

µ(B(x, r0))
µ(B(x,R))

≤ 2(j+1) log2 C0
R2

r2
0

µ(B(x, r0))
µ(B(x,R))

≤ C
(
R

r0

)2+log2 C

. �

From Lemmas 4.1 and 4.4 we deduce:

Corollary 4.5. For any constants c, C ′ > 0 there exists a constant C >
0 such that∫

e−c|x−y|
2/tV (y)

µ
(
B(x,

√
t)
) dµ(y) ≤ Ct−1

(√
tm(x, V )

)δ for
√
t ≤ C ′m(x, V )−1.

The following lemma proved in [14] (see also [18]) is a weighted version of
the Fefferman-Phong inequality.

Lemma 4.6. If w ∈ A2 ∩ Dγ , V ∈ (RH)q, q > γ/2, then there exists a
constant C > 0 such that∫

|u(x)|2m(x, V )2 dµ(x) ≤ C
(
E(u, u) +

∫
|u(x)|2V (x) dµ(x)

)
.(4.4)
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Lemma 4.7. For every k ≥ 0 there is a constant Ck such that for every
R0, τ ∈ R, if (L+ iτ)u = 0 on B(x0, 4R0), then

sup{|u(x)| : x ∈ B(x0, R0)}

≤ Ck
(1 +R0|τ |1/2)k(1 +R0m(x0, V ))k

[
1

µ(B(x,R0))

∫
B(x0,2R0)

|u(x)|2dµ(x)
]1/2

.

Proof. The proof is modelled after [18]. For completeness we present the
details. Let us note that

− L0|u|2(x) = 2V (x)|u(x)|2 +
2

w(x)

∑
ij

aij(x)∂iu(x)∂ju(x) ≥ 0.

Therefore, by Lemma 8 of [14], for every 1 < κ < 2 and every R0 ≤ R ≤ 2R0

there is a constant Cκ such that

sup
x∈B(x0,R)

|u(x)|2 ≤ Cκ

µ
(
B(x0, κR)

) ∫
B(x0,κR)

|u(x)|2 dµ(x).(4.5)

The Caccioppoli inequality asserts that for every 1 < κ ≤ 2 there is a constant
Cκ such that for every R0 ≤ R ≤ 2R0 we have

∫
B(x0,R)

(
|∇u(x)|2 +

(
|τ |+ V (x)

)
|u(x)|2

)
dµ(x) ≤ Cκ

R2

∫
B(x0,κR)

|u(x)|2 dµ(x).

(4.6)

Hence ∫
B(x0,R)

|u(x)|2 dµ(x) ≤ Cκ
|τ |R2

∫
B(x0,κR)

|u(x)|2 dµ(x).(4.7)

An iteration of (4.7) leads to∫
B(x0,R)

|u(x)|2 dµ(x) ≤ Ck
(|τ |R2)k

∫
B(x0,2R)

|u(x)|2 dµ(x).(4.8)

For R0 < R ≤ 2R0 and 1 < κ < 2 let η ∈ C∞c (B(x0, κR)) be such that η = 1
on B(x,R), |∇η| ≤ CκR−1. Then applying Lemma 4.6 to the function uη, we
get ∫

B(x0,R)

m(x, V )2|u(x)|2 dµ(x)

≤ C
∫
B(x0,κR)

(
|∇u(x)|2 +

|u(x)|2

R2
+ |u(x)|2V (x)

)
dµ(x).

By (4.6) we have∫
B(x0,R)

m(x, V )2|u(x)|2 dµ(x) ≤ Cκ
R2

∫
B(x0,κR)

|u(x)|2 dµ(x).(4.9)
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Now, using (4.3) and (4.9), we obtain∫
B(x0,R)

|u(x)|2 dµ(x) =
∫
B(x0,R)

m(x, V )2|u(x)|2m(x, V )−2 dµ(x)

≤ Cκ
(1 +Rm(x0, V ))2k0/(1+k0)

m(x0, V )2R2

∫
B(x0,κR)

|u(x)|2 dµ(x).

Iterating this procedure, we get∫
B(x0,R)

|u(x)|2 dµ(x) ≤ Ck
(1 +Rm(x0, V ))k

∫
B(x0,2R)

|u(x)|2 dµ(x).(4.10)

Finally, Lemma 4.7 follows from (4.5), (4.8), and (4.10). �

For τ ∈ R let us denote by G0(x, y; τ) and G(x, y; τ) the fundamental
solutions of the operators L0 + iτ and L+ iτ = L0 + V + iτ . Obviously,

G0(x, y; τ) =
∫ ∞

0

e−itτht(x, y) dt,(4.11)

G(x, y; τ) =
∫ ∞

0

e−itτkt(x, y) dt.(4.12)

Lemma 4.8. Assume that w ∈ A2 ∩Dγ ∩ (RD)ν , γ ≥ ν > 2, V ∈ (RH)q,
q > γ/2. Then

0 ≤ G0(x, y; 0) ≤ C|x− y|2µ(B(x, |x− y|))−1,

0 ≤ G(x, y; 0) ≤ C|x− y|2µ(B(x, |x− y|))−1,

|G0(x, y; τ)|+ |G(x, y; τ)| ≤ C|x− y|2µ(B(x, |x− y|))−1.

Proof. The lemma is a consequence of (1.4), (4.11), (4.12), (2.3), (2.4), and
(3.3). �

Proposition 4.9. Assume that w ∈ A2 ∩ Dγ ∩ (RD)ν , 2 < ν ≤ γ,
V ∈ (RH)q, q > γ/2. Then for every k ≥ 0 there is a constant Ck such that

|G(x, y; τ)| ≤ Ck(
1 + |x− y||τ |1/2

)k(1 + |x− y|m(x, V )
)k |x− y|2

µ
(
B(x, |x− y|)

) .
Proof. For fixed y ∈ Rd let u(x) = G(x, y; τ). Then (L + iτ)u(x) = 0 for

x 6= y. Therefore, applying Lemma 4.7 (with R0 = |x0 − y|/8), we obtain

|G(x0, y; τ)| ≤ Ck
(
1 + |x0 − y||τ |1/2/8

)−k(1 + |x0 − y|m(x0, V )/8
)−k

×
(

1
µ
(
B(x0, |x0 − y|)

) ∫
B(x0,|x0−y|/4)

|u(x)|2 dµ(x)
)1/2

.

Using Lemma 4.8 we get the required estimate. �
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Remark 4.10. The above arguments can be applied to obtain the follow-
ing well-known estimate:

|G0(x, y; τ)| ≤ Ck|x− y|2(
1 + |x− y||τ |1/2

)k
µ
(
B(x, |x− y|)

) .(4.13)

5. Estimates for kt(x, y)

Proof of Theorem 2.2. The semigroup {Tt}t>0 has an extension to the holo-
morphic semigroup of contractions on L2(dµ). Therefore

‖∂kt Tt‖L2(dµ)→L2(dµ) ≤ Ckt−k.(5.1)

Let

k′t(x, y) =
d

dt
kt(x, y).

Since

k′2t(x, y) =
(
d

dt
Tt

)(
kt( · , y)

)
(x),

we have

‖k′t(x, y)‖L2(dµ(x)) ≤
C

t
‖kt(x, y)‖L2(dµ(x)) ≤

C

t
µ
(
B(y,

√
t)
)−1/2

,(5.2)

and, by the Schwarz inequality,

|k′t(x, y)| ≤ Ct−1µ
(
B(x,

√
t)
)−1/2

µ
(
B(y,

√
t)
)−1/2

.(5.3)

The functional calculus asserts that kt(x, y) = c
∫∞
−∞ eitτG(x, y; τ) dτ . Thus,

using Proposition 4.9, we obtain

kt(x, y) ≤ Ck
(
1 + |x− y|m(x, V )

)−k
µ
(
B(x, |x− y|)

)−1
.(5.4)

Hence

kt(x, y) ≤ Ck
(
1 +
√
tm(x, V )

)−k
µ
(
B(x,

√
t)
)−1 for

√
t ≤ |x− y|.(5.5)

Since kt(x, y) ≤ ht(x, y), applying (5.5) and (3.3), we conclude

kt(x, y) ≤ Ck exp(−c′|x− y|2/t)(
1 +
√
tm(x, V )

)k/2
µ
(
B(x,

√
t)
) for

√
t ≤ |x− y|.(5.6)

In order to complete the proof, it suffices to consider
√
tm(x, V ) ≥ 1 and√

t ≥ |x− y|.
Assume that there exists β ≥ 0 and constants Cβ , cβ > 0 such that for

every x, y ∈ Rd and t > 0 we have

kt(x, y) ≤ Cβ
(
1 +
√
tm(y, V )

)−β
µ
(
B(y,

√
t)
)−1 exp(−cβ |x− y|2/t),(5.7)

|k′t(x, y)| ≤ Cβ
t

(
1 +
√
tm(y, V )

)−β
µ
(
B(x,

√
t)
)−1/2

µ
(
B(y,

√
t)
)−1/2

.(5.8)
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By symmetry,

kt(x, y) ≤ Cβ
(
1 +
√
tm(x, V )

)−β
µ
(
B(x,

√
t)
)−1 exp(−cβ |x− y|2/t),(5.9)

|k′t(x, y)| ≤ Cβ
t

(
1 +
√
tm(x, V )

)−β
µ
(
B(x,

√
t)
)−1/2

µ
(
B(y,

√
t)
)−1/2

,(5.10)

for every x, y ∈ Rd, t > 0. Applying Proposition 4.9 and (5.8), we get

kt(x, y) =
∫
Rd

G(x, z; 0)k′t(z, y) dµ(z)

≤ Cβ
∫
Rd

Cl|z − x|2(
1 + |x− z|m(x, V )

)l
µ
(
B(x, |x− z|)

)
× t−1µ

(
B(y,

√
t)
)−1/2

µ
(
B(z,

√
t)
)−1/2(1 +

√
tm(y, V )

)−β
dµ(z)

≤ C
∑
n≥0

∫
2nr(x)<|z−x|≤2n+1r(x)

+C
∑
n<0

∫
2nr(x)<|z−x|≤2n+1r(x)

= S1 + S2.

Now,

S1 ≤ C
∑
n≥0

∫
2nr(x)<|z−x|≤2n+1r(x)

Cl22nr(x)2

(1 + 2n)lµ
(
B(x, 2nr(x))

)
× t−1µ

(
B(y,

√
t)
)−1/2

µ
(
B(z,

√
t)
)−1/2(1 +

√
tm(y, V )

)−β
dµ(z).

Since

µ
(
B(z,

√
t)
)−1 ≤ Cµ

(
B(x,

√
t)
)−1

(
1 +

2nr(x)√
t

)γ
for |z − x| ∼ 2nr(x), S1 is bounded by∑

n≥0

Cl22nr(x)2

t(1 + 2n)l
µ
(
B(y,

√
t)
)−1/2

µ
(
B(x,

√
t)
)−1/2

×
(

1 +
2nr(x)√

t

)γ/2(
1 +

√
t

r(y)

)−β
≤ C

(
r(x)√
t

)2

µ
(
B(x,

√
t)
)−1/2

µ
(
B(y,

√
t)
)−1/2(1 +

√
tm(y, V )

)−β
for
√
tm(x, V ) ≥ 1.

To deal with S2 we use the fact that if |z − x| ≤ 2n+1r(x) < 2r(x) < 2
√
t,

then µ(B(z,
√
t)) ∼ µ(B(x,

√
t)). Therefore,

S2 ≤ C
∑
n<0

(
r(x)√
t

)2

22nµ
(
B(y,

√
t)
)−1/2

µ
(
B(x,

√
t)
)−1/2(1 +

√
tm(y, V )

)−β
.
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Thus

kt(x, y) ≤
C
(
r(x)/

√
t
)2

µ
(
B(y,

√
t)
)1/2

µ
(
B(x,

√
t)
)1/2(1 +

√
tm(y, V )

)β .(5.11)

Taking the geometric mean of (5.7) and (5.11) we have

kt(x, y) ≤ C
(√
tm(x, V )

)−1
µ
(
B(y,

√
t)
)−3/4

µ
(
B(x,

√
t)
)−1/4

×
(
1 +
√
tm(y, V )

)−β exp(−cβ |x− y|2/2t).

It follows from Lemma 4.3 that for
√
t ≥ |x − y| and

√
tm(x, V ) ≥ 1 one

has (√
tm(x, V )

)−1 ≤ C
(
1 +
√
tm(y, V )

)−1/(1+k0)
.

This leads to

kt(x, y) ≤ C
(
1 +
√
tm(y, V )

)−β− 1
1+k0

exp(−c′β |x− y|2/t)

µ
(
B(y,

√
t)
)3/4(

B(x,
√
t)
)1/4

(5.12)

≤ C
(
1 +
√
tm(y, V )

)−β− 1
1+k0 µ

(
B(y,

√
t)
)−1 exp(−c′′β |x− y|2/t).

Similarly, using (5.12) and (5.8), we get

|k′t(x, y)| =
∣∣∣ ∫
Rd

k′t(x, z)kt(z, y) dµ(z)
∣∣∣

(5.13)

≤ C

t
µ
(
B(y,

√
t)
)−1/2

µ
(
B(x,

√
t)
)−1/2(1 +

√
tm(y, V )

)−β− 1
1+k0 .

Now (2.10) follows from (5.12) and (5.13) by the iteration process presented
above. �

We set qt(x, y) = ht(x, y)− kt(x, y). The perturbation formula asserts

qt(x, y) = ht(x, y)− kt(x, y) =
∫ t

0

∫
Rd

hs(x, z)V (z)kt−s(z, y) dµ(z) ds.

(5.14)

Proposition 5.1. There are constants C, c > 0 such that

0 ≤ qt(x, y) ≤ C
(√
tm(x, V )

)δ
µ
(
B(x,

√
t)
)−1 exp(−c|x− y|2/t).(5.15)
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Proof. Cf. [6]. We divide the integral in (5.14) into the sum of the following
four integrals:

qt(x, y) =
∫ t/2

0

∫
|z−x|>|y−x|/2

+
∫ t/2

0

∫
|z−x|<|y−x|/2

(5.16)

+
∫ t

t/2

∫
|z−x|>|y−x|/2

+
∫ t

t/2

∫
|z−x|<|y−x|/2

= I1 + I2 + I3 + I4.

Applying (3.4), (1.4), (2.2), and Corollary 4.5, we have

I1 ≤ C
∫ t/2

0

∫
|z−x|>|y−x|/2

e−c
′|x−y|2/te−c

′|x−z|2/sV (z)
µ
(
B(x,

√
s)
)
µ
(
B(y,

√
t)
) dµ(z) ds(5.17)

≤ Cµ(B(x,
√
t))−1e−c

′|x−y|2/t
∫ t/2

0

(√
sm(x, V )

)δ
s

ds

≤ C
(√
tm(x, V )

)δ
µ
(
B(y,

√
t)
)−1

e−c
′|x−y|2/t.

Now we turn to estimate I2. Since |z − y| ≥ |x− y|/2, using (3.4), (1.4), and
Corollary 4.5, we get

I2 ≤ Cµ
(
B(y,

√
t)
)−1

e−c
′|x−y|2/t

∫ t/2

0

∫
ps(x, z)V (z) dµ(z) ds(5.18)

≤ C
(√
tm(x, V )

)δ
µ(B(y,

√
t))−1e−c

′|x−y|2/t.

We continue in this fashion to obtain

I3 ≤ C
∫ t

t/2

∫
|z−x|>|y−x|2

e−c
′|y−x|2/t

µ(B(x,
√
t))
V (z)kt(z, y) dµ(z) ds(5.19)

≤ Cµ(B(x,
√
t))−1e−c

′|y−x|2/t(√tm(y, V )
)δ
.

The estimate of I4 is similar to that of I3. Indeed,

I4 ≤ C
∫ t

t/2

∫
|z−x|<|y−x|/2

e−c
′|z−y|2/(t−s)e−c

′|z−y|2/(t−s)V (z)
µ
(
B(x,

√
t)
)
µ(B

(
y,
√
t− s)

) dµ(z) ds

(5.20)

≤ C
∫ t

t/2

∫
|z−x|<|y−x|/2

e−c
′′|x−y|2/te−c

′|z−y|2/(t−s)V (z)
µ
(
B(x,

√
t)
)
µ
(
B(y,

√
t− s)

) dµ(z) ds

≤ Cµ(B(x,
√
t))−1e−c

′′|x−y|2/t(√tm(y, V )
)δ
.
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Now (5.15) is a consequence of (5.17)–(5.20) and the following inequalities:

µ(B(y,
√
t))−1e−c|x−y|

2/t ≤ Cµ(B(x,
√
t))−1e−c

′|x−y|2/t,

(
√
tm(y, V ))δ

µ
(
B(x,

√
t)
) e−c|x−y|2/t ≤ C (

√
tm(x, V ))δ

µ
(
B(x,

√
t)
) e−c′|x−y|2/t. �

6. Hardy spaces and local Hardy spaces on the space of
homogeneous type

At the beginning of this section we present basic results from the theory of
Hardy spaces on spaces of homogeneous type (cf. [2], [16], [19]). Then these
will be used to introduce the notion and properties of local Hardy spaces. The
local Hardy spaces on the spaces of homogeneous type that we consider here
are analogues of the classical local Hardy spaces studied originally on Rd by
D. Goldberg in [12].

Let X be a topological space endowed with a Borel measure µ and a quasi-
distance ρ satisfying

ρ(x, y) = ρ(y, x) ≥ 0, for x, y ∈ X,(6.1)

ρ(x, y) = 0 if and only if x = y,(6.2)

ρ(x, z) ≤ A
(
ρ(x, y) + ρ(y, z)

)
for x, y, z ∈ X,(6.3)

A−1r ≤ µ(Bρ(x, r)) ≤ r for x ∈ X, r > 0,(6.4)

with a constant A > 0, Bρ(x, r) = {y ∈ X : ρ(x, y) < r}. We also assume
that there exists a nonnegative continuous function K̃(r, x, y) on R+×X×X
that for some ξ > 0 satisfies

K̃(r, x, y) = 0 if ρ(x, y) > r,(6.5)

K̃(r, x, x) > A−1 > 0,(6.6)

K̃(r, x, y) ≤ A,(6.7)

|K̃(r, x, y)− K̃(r, x, z)| ≤ (ρ(y, z)/r)ξ.(6.8)

For later purposes it is convenient to consider a nonnegative continuous kernel
K(r, x, y) for which the condition (6.5) is relaxed to the condition (6.9) below,
that is, K(r, x, y) satisfies

K(r, x, y) ≤
(

1 +
ρ(x, y)
r

)−1−ξ

,(6.9)

K(r, x, x) ≥ A−1 > 0,(6.10)

|K(r, x, y)−K(r, x, z)| ≤
(
ρ(y, z)
r

)ξ(
1 +

ρ(x, y)
r

)−1−2ξ

(6.11)
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for

ρ(y, z) <
r + ρ(x, y)

4A
.

Set

Krf(x) =
∫
X

K(r, x, y)f(y)
dµ(y)
r

.

Following [19] we define the maximal function

f (+)(x) = sup
r>0
|Krf(x)| = sup

r>0

∣∣∣ ∫
X

K(r, x, y)f(y)
dµ(y)
r

∣∣∣,(6.12)

and the grand maximal function

f∗(x) = sup

{∣∣∣ ∫
X

f(y)ϕ(y)
dµ(y)
r

∣∣∣ : r > 0, suppϕ ⊂ Bρ(x, r),(6.13)

|ϕ(x)− ϕ(y)| ≤
(
ρ(x, y)
r

)ξ
, ‖ϕ‖L∞ ≤ 1

}
.

The following theorem was proved by A. Uchiyama (see [19], Theorem 1’).

Theorem 6.1. There exists 0 < p0 < 1 such that for p > p0

‖f∗‖Lp(X) ≤ Cp‖f (+)‖Lp(X),

where Cp is a positive constant depending only on p and X.

We shall denote by H1(X) the set of all functions f such that

‖f‖H1(X) = ‖f (+)‖L1(X) <∞.

We say that a function a is an atom for H1(X) associated with a ball Bρ(x, r)
if

supp a ⊂ Bρ(x, r), ‖a‖L∞ ≤ r−1,(6.14) ∫
X

a(x) dµ(x) = 0.(6.15)

The atomic norm in the space H1(X) is defined by

‖f‖H1
atom

= inf

∑
j

|λj |

 ,(6.16)

where the infimum is taken over all decompositions f =
∑
j λjaj , where λj

are scalars and aj are the H1(X) atoms.
The theorem below is a consequence of Theorem 6.1 and results of [16] and

[2] (see [19], Corollary 1’).
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Theorem 6.2. There exist constants C1, C2, C3 > 0 depending only on X
such that

‖f (+)‖L1(X) ≤ C1‖f‖H1
atom

≤ C2‖f∗‖L1(X) ≤ C3‖f (+)‖L1(X).(6.17)

For l > 0 we define the local maximal functions f (∗,l) and f (+,l) by

f (∗,l)(x) = sup

{∣∣∣ ∫
X

f(y)ϕ(y)
dµ(y)
r

∣∣∣ : l > r > 0, suppϕ ⊂ Bρ(x, r),(6.18)

|ϕ(x)− ϕ(y)| ≤
(
ρ(x, y)
r

)ξ
, ‖ϕ‖L∞ ≤ 1

}
,

f (+,l)(x) = sup
l>r>0

∣∣∣ ∫
X

K(r, x, y)f(y)
dµ(y)
r

∣∣∣.(6.19)

It turns out that the proof of Theorem 1’ of [19] can be easily adapted to
obtain the following theorem.

Theorem 6.3. There exists a constant 0 < p0 < 1 such that for p > p0

‖f (∗,l)‖Lp(X) ≤ Cp‖f (+,l)‖Lp(X).(6.20)

The constant Cp depends on p and X, but it is independent of l.

A function f is an element of the local Hardy space h1
l if

‖f‖h1
l

= ‖f (+,l)‖L1(X) <∞.

We say that a function a is an atom for the local Hardy space h1
l (X) associated

with a ball Bρ(x, r) if

supp a ⊂ Bρ(x, r), r < l,(6.21)

‖a‖L∞ ≤ r−1,(6.22)

if r <
l

4
, then

∫
X

a(x) dµ(x) = 0.(6.23)

The atomic norm ‖f‖h1
l ,atom

is given by

‖f‖h1
l ,atom

= inf
∑
|λj |,(6.24)

where the infimum is taken over all decompositions f =
∑
j λjaj , where λj

are scalars and aj are h1
l (X) atoms.

Lemma 6.4. Assume that the kernel K̃(r, x, y) additionally satisfies∫
K̃(r, x, y) dµ(x) = r.(6.25)

Then there exist constants C > 0, θ > 0 such that for every l > 0

‖f − K̃lf‖H1 ≤ C‖f (+,θl)‖L1(X).(6.26)
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Proof. The lemma will be proved if we show that, for constants C and θ
that are large enough and independent of l,∥∥∥∥ sup

0<r<l

∣∣K̃rf(x)
∥∥∥∥
L1(dµ(x))

+
∥∥∥∥ sup

0<r<l
|K̃rK̃lf(x)|

∥∥∥∥
L1(dµ(x))

+
∥∥∥∥sup
r≥l
|K̃rf(x)− K̃rK̃lf(x)|

∥∥∥∥
L1(dµ(x))

≤ C‖f‖h1
θl
.

It follows from Theorem 6.3 that the first two summands are bounded by
C‖f‖h1

θl
. The task is now to estimate the third one. Since

K̃rf(x)− K̃rK̃lf(x)

=
∫∫ (

K̃(r, x, z)− K̃(r, x, u)
)
K̃(l, u, z)

dµ(u)
r

f(z)
dµ(z)
l

,

it suffices to prove that

J =
∫ ∣∣∣ (K̃(r, x, z)− K̃(r, x, u)

)
K̃(l, u, z)

∣∣∣dµ(u)
r
≤ C

(
1 +

ρ(x, z)
l

)−1−ξ

,

with a constant C independent of r, l provided r ≥ l. We only need to consider
the case where ρ(x, z) > Cl. It follows from (6.5) and (6.8) that

J ≤


∫
ρ(z,u)<l

(
ρ(z,u)
r

)ξ
K̃(l, u, z)dµ(u)

r if ρ(x, z) < Cr,

0 if ρ(x, z) ≥ Cr,
(6.27)

≤ C lξ+1

ρ(x, z)ξ+1
,

which completes the proof. �

Remark 6.5. Let us note that if for K̃(r, x, y) (6.5)–(6.8) hold, then the
kernel rcr(y)K̃(r, x, y), where cr(y)−1 =

∫
X
K̃(r, x, y) dµ(x), satisfies (6.5)–

(6.8) and (6.25).

Proposition 6.6. There exists a constant C > 0 such that for every l > 0
one has

C−1‖f‖h1
l,atom

≤ ‖f‖h1
l
≤ C‖f‖h1

l,atom
.(6.28)

Proof. The second inequality in (6.32) follows by standard arguments. We
shall prove the first one. By Theorem 6.3 and Remark 6.5 there is no loss of
generality in assuming that K̃ satisfies (6.25). Assume that f ∈ h1

θl, f 6≡ 0.
Then, by Lemma 6.4,

‖f − K̃lf‖H1(X) ≤ C‖f‖h1
θl
.
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Consequently, f − K̃lf =
∑
λjbj ,

∑
|λj | ≤ C‖f‖h1

θl
, where bj are H1(X)

atoms (cf. Theorem 6.2). Let U ln be a family of subsets of X such that
U lj ∩ U ln = ∅ if n 6= j,

⋃
j U

l
j = X, and each of U lj is contained in a ball

Bρ(x
{l}
j , l). Since

‖K̃l(χU ljf)‖L∞ ≤ Cl−1‖χU ljf‖L1

and
supp K̃l(χU ljf) ⊂ Bρ(x{l}j , θl),

we get that
1

C‖χU ljf‖L1
K̃l(χU ljf)(x)

is an h1
θl atom. Hence

‖f‖h1
θl,atom

≤ C‖f‖h1
θl
.

Obviously,
‖f‖h1

l, atom
≤ C‖f‖h1

θl,atom
.

Thus the proposition is proved. �

Let X = R
d and dµ(x) = w(x) dx. We set

ρ(x, y) = C0 inf{µ(B) : B is a Euclidean ball, x, y ∈ B},

where C0 is the constant in (2.2). It is not difficult to check that

C−1
0 µ

(
B(x, |x− y|)

)
≤ ρ(x, y) ≤ C0µ

(
B(x, |x− y|)

)
.(6.29)

Moreover, X = R
d, µ, ρ satisfy (6.1)–(6.4). We put

K(r, x, y) =
1
C4
µ
(
B(x,

√
t)
)
ht(x, y), where r = µ

(
B(x,

√
t)
)
,(6.30)

K̃(r, x, y) =
1
C4
µ
(
B(x,

√
t)
)
ht(x, y)ϕx(y),(6.31)

where r = µ
(
B(x,

√
t)
)
, ϕx(y) = ϕ((x− y)/

√
t), ϕ ∈ C∞c (B(0, 1/C5)), ϕ ≥ 0,

ϕ(x) = 1 for |x| ≤ 1/(2C5).
We are going to show that for K̃(r, x, y), K(r, x, y) the estimates (6.5)–

(6.8) and (6.9)–(6.11), respectively, hold, provided the constants C4, C5 are
large enough. Let us note that

ρ(x, y)
r

∼
µ
(
B(x, |x− y|)

)
µ
(
B(x,

√
t)
) .(6.32)

Obviously (3.3) implies (6.10). In order to prove (6.9) it suffices, by (3.3)
and (6.32), to show that

exp(−|x− y|2/C2t) ≤ C

(
1 +

µ
(
B(x, |x− y|)

)
µ
(
B(x,

√
t)
) )−1−ξ

.
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But this is a consequence of (2.3).
We shall show that (6.11) holds with A being sufficiently large and ξ = α/γ

(see (2.3) and (3.4)). We assume (cf. (6.11)) that

ρ(y, z) ≤ r + ρ(x, y)
4A

, where r = µ
(
B(x,

√
t)
)
.(6.33)

Case 1: |x−y| < C
√
t, where C is a large constant. Let us note that in this

case µ
(
B(y,

√
t)
)
∼ µ

(
B(x,

√
t)
)
, and, by (6.29), (6.33), we have |y−z| ≤ C

√
t.

Applying (3.4) we get

|K(r, x, y)−K(r, x, z)| ≤ C

C4

(
|y − z|√

t

)α
.(6.34)

On the other hand, by virtue of (6.32), we obtain(
ρ(y, z)
r

)ξ (
1 +

ρ(x, y)
r

)−1−2ξ

(6.35)

≥ c
(
µ(B(y, |y − z|))
µ(B(y,

√
t))

)ξ (
1 +

µ(B(x, |x− y|))
µ(B(x,

√
t))

)−1−2ξ

≥ c

(
µ
(
B(y, |y − z|)

)
µ
(
B(y,

√
t)
) )ξ

≥ c
(
|y − z|√

t

)ξγ
.

Now (6.11) follows from (6.34) and (6.35).
Case 2: |x − y| > C

√
t. Then using (6.29) and (6.33), we have |y − z| <

|x− y|/4.
If |y − z| <

√
t, then, by (3.4),

|K(r, x, y)−K(r, x, z)| ≤ C

C4

(
|y − z|√

t

)α
exp(−|x− y|2/ct).(6.36)

Applying (6.32) and (2.3), we get(
ρ(y, z)
r

)ξ (
1 +

ρ(x, y)
r

)−1−2ξ

≥ c

(
µ
(
B(y, |y − z|)

)
µ
(
B(y,

√
t)
) )ξ (

µ
(
B(y,

√
t)
)

µ
(
B(x, |x− y|)

))ξ

×

(
1 +

µ
(
B(x, |x− y|)

)
µ
(
B(x,

√
t)
) )−1−2ξ

≥ c
(
|y − z|√

t

)ξγ ( |x− y|√
t

)−ξγ (
1 +

µ
(
B(x, |x− y|)

)
µ
(
B(x,

√
t)
) )−M

.

Thus (6.11) follows from (6.36) and (2.3).
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If |y − z| ≥
√
t, then from (3.3) we conclude

|K(r, x, y)−K(r, x, z)| ≤ |K(r, x, y)|+ |K(r, x, z)|(6.37)

≤ C

C4
exp(−|x− y|2/ct).

Using arguments similar to those above, we obtain(
ρ(y, z)
r

)ξ (
1 +

ρ(x, y)
r

)−1−2ξ

≥ c

(
µ
(
B(x, |y − z|)

)
µ
(
B(y,

√
t)
) )ξ (

1 +
µ
(
B(x, |x− y|)

)
µ
(
B(x,

√
t)
) )−1−2ξ

≥ c

(
µ
(
B(y,

√
t)
)

µ
(
B(x, |x− y|)

))ξ (1 +
µ
(
B(x, |x− y|)

)
µ
(
B(x,

√
t)
) )−1−2ξ

.

Since µ(B(x, |x−y|)) ∼ µ(B(y, |x−y|)) and C
√
t < |x−y|, we conclude (6.11)

from (2.3) and (6.37).
In the same manner we can see that K̃ satisfies (6.5)–(6.8).
It turns out that compactly supported elements of h1

l admit localized
atomic decomposition, that is, the following proposition holds.

Proposition 6.7. There exists constants C, c > 0 such that for every
l > 0, every x0 ∈ Rd, and every f ∈ h1

l such that supp f ⊂ Bρ(x0, l), one has

f =
∑
j

λjaj ,
∑
j

|λj | ≤ C‖f‖h1
l
,

where aj are h1
l atoms that are supported by the ball Bρ(x0, cl).

Proof. Let R be such that µ(B(x0, R)) = l. Then

B(x0,
R

A6
) ⊂ Bρ(x0, l) ⊂ B(x0, A6R).

Let ψ(x) = ψ0((x − x0)/A6R), where ψ0 ∈ C∞c (B(0, 2)), ψ0 = 1 on B(0, 1).
It suffices to prove that there is a constant C > 0 such that if a is an h1

l

atom associated with a ball Bρ(y0, r), r < l/4, then ψa =
∑N
j=0 λjaj , where

aj are h1
l atoms, supp aj ⊂ Bρ(x0, cl),

∑
j |λj | ≤ C. Let τ be such that

µ(B(y0, τ)) = r. Then

B(y0,
τ

A6
) ⊂ Bρ(y0, r) ⊂ B(y0, A6τ).
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We define

a(x)ψ(x) =
(
a(x)ψ(x)− α1χBρ(y0,2r)(x)

)
+

N∑
j=2

(
αjχBρ(y0,2jr)(x)− αj+1χBρ(y0,2j+1r)(x)

)
+ αN+1χBρ(y0,2N+1r)(x),

where N = [log2
l
r ],

α1 = µ(Bρ(y0, 2r))−1

∫
a(x)(ψ(x)− ψ(y0)) dµ(x),

αj = α1µ(Bρ(y0, 2r))µ(Bρ(y0, 2jr))−1.

One can check that this is the required decomposition, since |α1| ≤ Cτr−1R−1,
log2 l/r ≤ C log2R/τ . �

7. Proof of Theorem 2.1

We set Qtf(x) =
∫
qt(x, y)f(y) dµ(y); see (5.14).

Lemma 7.1. For every θ > 0 there exists a constant Cθ such that for every
x0 ∈ Rd we have ∥∥∥∥∥ sup

0<t≤θr(x0)2
|Qt
(
χB(x0,r(x0))f

)
(x)|

∥∥∥∥∥
L1(dµ(x))

(7.1)

≤ Cθ
∥∥|(χB(x0,r(x0))f

)
(x)|

∥∥
L1(dµ(x))

.

Proof. There is no loss of generality in assuming that θ ≥ 2. Since qt(x, y) =
qt(y, x) it follows from (2.3), (2.4), Lemma 4.3 and Proposition 5.1 that for
x ∈ B(x0, θr(x0)), y ∈ B(x0, r(x0)) one has

|qt(x, y)| ≤ Ce−c|x−y|
2/t

µ
(
B(y, |x− y|)

) ( √
t

|x− y|

)δ
×
[(
|x− y|√

t

)ν
+
(
|x− y|√

t

)γ ]( |x− y|
r(y)

)δ
≤ C

µ
(
B(x, |x− y|)

)( |x− y|
r(x0)

)δ
.
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Therefore∥∥∥∥∥ sup
0<t≤θr(x0)2

|Qt(χB(x0,r(x0))f)(x)|

∥∥∥∥∥
L1(B(x0,θr(x0),dµ(x))

≤ C
‖χB(x0,r(x0))f‖L1(dµ)

r(x0)δ
sup

y∈B(x0,r(x0))

∫
B(x0,θr(x0))

|x− y|δ

µ
(
B(x, |x− y|)

) dµ(x)

≤ C
‖χB(x0,r(x0))f‖L1(dµ)

r(x0)δ
sup

y∈B(x0,r(x0))

∫
B(y,2θr(x0))

|x− y|δ

µ
(
B(x, |x− y|)

) dµ(x)

≤ C
‖χB(x0,r(x0))f‖L1(dµ)

r(x0)δ
∑
j≥0

∫
|y−x|∼2−jθr(x0)

(
2−jθr(x0)

)δ
µ
(
B(x, 2−jθr(x0)

) dµ(x)

≤ Cθ‖χB(x0,r(x0))f‖L1(dµ).

If x /∈ B(x0, θr(x0)), then, by Proposition 5.1, we get∣∣Qt(χB(x0,r(x0))f
)
(x)
∣∣

≤ C
∫
B(x0,r(x0))

e−c|x−y|
2/t

µ
(
B(y,

√
t)
)f(y) dµ(y)

≤ C
∫
B(x0,r(x0))

µ
(
B(y,

√
θr(x0))

)
e−c|x−y|

2/tf(y)

µ
(
B(y,

√
t)
)
µ
(
B(y,

√
θr(x0))

) dµ(y).

Using (2.3) and the fact that 0 < t ≤ θr(x0)2, we have∣∣Qt(χB(x0,r(x0))f
)
(x)
∣∣

≤ C

(√
θr(x0)√
t

)γ
e−c

′|x−x0|2/t

µ
(
B(x0,

√
θr(x0))

) ∥∥χB(x0,r(x0))f
∥∥
L1(dµ)

≤ C e
−c′′|x−x0|2/(θr(x0)2)

µ
(
B(x0,

√
θr(x0))

) ∥∥χB(x0,r(x0))f
∥∥
L1(dµ)

.

Thus ∥∥∥∥∥ sup
0<t≤θr(x0)2

|Qt(χB(x0,r(x0))f)(x)|

∥∥∥∥∥
L1(B(x0,2r(x0))c)

(7.2)

≤ Cθ‖χB(x0,r(x0))f‖L1(dµ).

This completes the proof of Lemma 7.1. �

Lemma 7.2. Under assumptions of Theorem 2.1 we have

‖f‖H1
L
≤ C‖f‖H1

L−atom
.(7.3)
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Proof. It suffices to show (7.3) for the case when f is an H1
L atom. Let a

be an H1
L atom associated with a ball B(y0, r0). Then r0 ≤ r(y0). Obviously,

by (2.10),
sup
t>0
|Tta(x)| ≤ Cµ

(
B(y0, r0)

)−1
.

Thus ∫
B(y0,4r0)

|Ma(x)| dµ(x) ≤ C.

It remains to estimateMa(x) onB(y0, 4r0)c. Assume first that
∫
a(x) dµ(x) =

0. Fix θ > 2 (large enough). Using (5.14) we have

Ma(x) ≤ sup
0<t<θr(y0)2

|Tta(x)|+ sup
t≥θr(y0)2

|Tta(x)|

≤ sup
0<t<θr(y0)2

|Qta(x)|+ sup
0<t<θr(y0)2

|Sta(x)|+ sup
t≥θr(y0)2

|Tta(x)|

= M1(x) +M2(x) +M3(x).

Lemma 7.1 yields ∫
Rd

M1(x) dµ(x) ≤ C.(7.4)

Applying (3.4), we obtain

|Sta(x)| =

∣∣∣∣∣
∫
Rd

(
ht(x, y)− ht(x, y0)

)
a(y) dµ(y)

∣∣∣∣∣
≤ C

∫
Rd

(
|y − y0|√

t

)α
e−c|x−y|

2/t

µ
(
B(x,

√
t)
) |a(y)| dµ(y)

≤ C rα0
tα/2

e−c|x−y0|2/t

µ
(
B(x,

√
t)
) ≤ C rα0

|x− y0|αµ
(
B(y0, |x− y0|)

) .
Thus ∫

B(y0,4r0)c
M2(x) dµ(x) ≤ C.(7.5)

We turn to estimate M3. If t ≥ θr(y0)2, then, by (2.10) and Lemma 4.3, we
get

|Tta(x)| ≤
CNµ

(
B(y0, r(y0))

)
e−c|x−y0|2/t

µ
(
B(y0, r(y0))

)
µ
(
B(y0,

√
t)
)(√

tm(y0, V )
)N .

Hence,

|Tta(x)| ≤ Cµ
(
B(y0, r(y0))

)−1 for x ∈ B(y0, 4r(y0)) \B(y0, 4r0),

|Tta(x)| ≤ CN
(
m(y0, V )|x− y0|

)−N
µ
(
B(y0, r(y0))

)−1 for x /∈ B(y0, 4r(y0)).
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Consequently,∫
|x−y0|>4r0

M3(x) dµ(x) ≤
∫

4r0<|x−y0|<4r(y0)

+
∫
|x−y0|≥4r(y0)

≤ C.(7.6)

It remains to consider the case where
∫
a(x) dµ(x) 6= 0. Then, by the definition

of H1
L atoms, r0 ∼ r(y0). If x /∈ B(y0, 4r0), then (2.10), (2.3), (2.4) imply

|Tta(x)| ≤ C
∫
kt(x, y)|a(y)| dµ(y)(7.7)

≤ CN
(
m(y0, V )|x− y0|

)−N
µ
(
B(y0, r(y0))

)−1
.

This leads to ∫
|x−y0|>4r0

Ma(x) dµ(x) ≤ C. �

Now we turn to the proof of the atomic decomposition. It is not difficult
to prove using Lemma 4.3 that there is a sequence xj ∈ Rd and a family of
smooth functions ϕj such that

suppϕj ⊂ Bj = B(xj , rj), rj = r(xj),

0 ≤ ϕj ≤ 1, |∇ϕj | ≤ Cr−1
j ,(7.8) ∑

j

ϕj = 1,
∑
j

χB(xj ,4rj) ≤ C.

Moreover, there exists a constant N > 0 such that

sup
y∈Rd

∑
j

(
1 +
|xj − y|
rj

)−N <∞.(7.9)

Set

Mjf(x) = sup
0<t<θr2

j

|ϕj(x)Ttf(x)− Tt(ϕjf)(x)|.(7.10)

Lemma 7.3. There exists a constant Cθ > 0 such that∑
j

‖Mjf‖L1(dµ) ≤ Cθ‖f‖L1(dµ).

Proof. Write B∗j = B(xj , 2rj), B∗∗j = B(xj , 4rj). Then

|ϕj(x)Ttf(x)− Tt(ϕjf)(x)| ≤
∫
Rd

∣∣(ϕj(x)− ϕj(y)
)
kt(x, y)f(y)

∣∣ dµ(y)

=
∫

(B∗j )c
+
∫
B∗j

= It,j(x) + Jt,j(x).
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Since t < θr2
j , applying (7.8), (2.3) and (2.10), we have

|It,j(x)| ≤ Cθϕj(x)
µ
(
B(xj , rj)

) ∫
(B∗j )c

e−cθ|xj−y|
2/r2

j |f(y)| dµ(y).(7.11)

Observe that∫
ϕj(x)

µ(B(xj , rj))
e−cθ|xj−y|

2/r2
j dµ(x) ∼ e−cθ|xj−y|

2/r2
j .

Therefore, by (7.9), we get∑
j

∥∥∥ sup
0<t<θr2

j

|It,j |
∥∥∥
L1
≤ Cθ‖f‖L1(dµ).(7.12)

To estimate Jt,j(x) for x ∈ B∗∗j , we apply (7.8), (2.3), (2.4) and get

|Jt,j(x)| ≤ C
∫
B∗j

|x− y|
rj

e−c|x−y|
2/t

µ(B(x,
√
t))
|f(y)| dµ(y)

≤ C
∫
B∗j

|x− y|
rj

((
|x− y|√

t

)γ
+
(
|x− y|√

t

)ν )

× e−c|x−y|
2/t|f(y)|

µ
(
B(y, |x− y|)

) dµ(y).

Thus ∥∥∥∥∥ sup
0<t<θr2

j

|Jt,j |

∥∥∥∥∥
L1(B∗∗j ,(dµ))

(7.13)

≤ Cθ‖f‖L1(B∗j ,(dµ)) sup
y∈B∗j

∫
B∗∗j

|x− y|
rjµ(B(y, |x− y|))

dµ(x)

≤ Cθ‖f‖L1(B∗j ,(dµ)).

Recall that t < θr2
j . Thus, if x /∈ B∗∗j , then, by (2.3), we get

|Jt,j(x)| ≤ C
∫

1
µ
(
B(x,

√
t)
)e−c|x−xj |2/tϕj(y)|f(y)| dµ(y)(7.14)

≤ C
(
rj√
t

)γ ∫
e−c|x−xj |

2/t

µ(B(x, rj))
ϕj(y)|f(y)| dµ(y)

≤ Cθ
1

µ
(
B(x, rj)

) ∫ e−cθ|x−xj |
2/r2

jϕj(y)|f(y)| dµ(y)

≤ Cθ‖ϕjf‖L1(dµ)
e−cθ|x−xj |

2/r2
j

µ
(
B(x, rj)

) .
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Finally, (7.8), (7.13), and (7.14) imply

∑
j

(
sup

0<t<θr2
j

|Jt,j(x)|

)
dµ(x) ≤ Cθ

∑
j

(
‖ϕjf‖L1(dµ) + ‖f‖L1(B∗j ,dµ)

)
(7.15)

≤ Cθ‖f‖L1(dµ).

This combined with (7.12) ends the proof of Lemma 7.3. �

The proof of the atomic decomposition will be complete if we show

Lemma 7.4. There exists a constant C > 0 such that

‖f‖H1
L−atom

≤ C‖Mf‖L1(dµ).(7.16)

Proof. Assume that Mf ∈ L1(dµ). From Lemma 7.1 we conclude∥∥∥ sup
0<t<θr2

j

|St(ϕjf)(x)|
∥∥∥
L1(dµ(x))

(7.17)

≤
∥∥∥ sup

0<t<θr2
j

|Qt(ϕjf)(x)|
∥∥∥
L1(dµ(x))

+
∥∥∥ sup

0<t<θr2
j

|Tt(ϕjf)(x)|
∥∥∥
L1(dµ(x))

≤ C
(
‖ϕjf‖L1(dµ) + ‖ϕj(Mf)‖L1(dµ) + ‖Mjf‖L1(dµ)

)
.

Hence, by (7.8) and Lemma 7.3,∑
j

∥∥∥ sup
0<t<θr2

j

|St(ϕjf)(x)|
∥∥∥
L1(dµ(x))

≤ Cθ‖Mf‖L1(dµ).(7.18)

According to the definitions of atoms for H1
L and h1

l spaces Lemma 7.4 will
be proved, by using (7.18), (6.29), and Propositions 6.6, 6.7, 6.3, if we show
that there exist constants C > 0, θ > 2 such

‖(ϕjf)(+,l)‖L1(dµ) ≤ C

∥∥∥∥∥ sup
0<t<θr2

j

|St(ϕjf)(x)|

∥∥∥∥∥
L1(dµ(x))

+ ‖ϕjf‖L1(dµ)

 ,

(7.19)

where l = µ
(
B(xj , rj)

)
. For x ∈ B∗j = B(xj , 2rj) and r ≤ l, we have

K(r, x, y) = µ(B(x,
√
t))ht(x, y), where µ

(
B(x,

√
t)
)

= r ≤ µ
(
B(xj , rj)

)
.

Thus
√
t ≤ Crj , and, consequently,∥∥∥(ϕjf)(+,l)

∥∥∥
L1(B∗j ,dµ)

≤ C
∥∥∥ sup

0<t<θr2
j

|St(ϕjf)(x)|
∥∥∥
L1(dµ(x))

,(7.20)
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with a constant θ > 2 independent of j. If x /∈ B∗j and r ≤ l, then, as above,
K(r, x, y) = µ

(
B(x,

√
t)
)
ht(x, y), where µ

(
B(x,

√
t)
)

= r ≤ l. Set

τj(x) = rj
(
|x− xj |/rj

)(γ−ν)/γ
.

One can prove using (2.3) and (2.4) that t1/2 ≤ Cτj(x) ≤ C|x−xj |. Therefore,
by (2.3),

|(ϕjf)(+,l)(x)| ≤ C sup
0<t≤Cτ(x)2

∫
Rd

|(ϕjf)(y)| e
−c|x−xj |2/t

µ
(
B(x,

√
t)
) dµ(y)

≤ C‖ϕjf‖L1(dµ) sup
0<t≤Cτ(x)2

µ
(
B(x, |x− xj |)

)
e−c|x−xj |

2/t

µ
(
B(x,

√
t)
)
µ
(
B(x, |x− xj |)

)
≤ C‖ϕjf‖L1(dµ) sup

0<t≤Cτ(x)2

(
|x− xj |√

t

)γ
e−c|x−xj |

2/t

µ
(
B(x, |x− xj |)

)
≤ C‖ϕjf‖L1(dµ)

e−(c′|x−xj |2/r2
j )ν/γ

µ
(
B(x, |x− xj |)

) .
This leads to

‖(ϕjf)(+,l)‖L1((B∗j )c,dµ) ≤ C‖ϕjf‖L1(dµ).(7.21)

This finishes the proof of Lemma 7.4. �
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