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PROBABILISTIC INVARIANT MEASURES FOR
NON-ENTIRE FUNCTIONS WITH ASYMPTOTIC VALUES

MAPPED ONTO ∞

JANINA KOTUS

Abstract. We study the dynamics of transcendental meromorphic func-
tions of the form f(z) = R ◦ exp(z), where R is a non-constant rational

map and both asymptotic values R(0) and R(∞) are eventually mapped
onto ∞. With each map f we associate its projection F on the cylin-

der P. Let JrF consist of all points whose trajectory returns infinitely
often to some compact set whose intersection with the postsingular set
is empty, and let h = HD(JrF ) be the Hausdorff dimension of JrF . We

prove that the h-dimensional Hausdorff measure Hh of JrF is positive
and finite, while the h-dimensional packing measure of JrF is locally in-
finite at every point of this set. We also prove that there exists a unique
F -invariant Borel probability measure µ on JrF that is absolutely con-

tinuous with respect to the Hausdorff measure Hh, and that µ is ergodic

and conservative.

1. Introduction

We consider the family R of transcendental meromorphic functions f(z) :
C→ C of the form

(1.1) f(z) = R ◦ exp(z),

where R is a non-constant rational map. The set of singularities Sing(f−1)
consists of finitely many critical values and two asymptotic values

ξ1 := R(0), ξ2 := R(∞) .

Let Q∗ be the class of non-entire functions from R such that both asymptotic
values are mapped onto infinity, i.e., there exist numbers qi > 1, i = 1, 2, such
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that fqi−1(ξi) =∞, and

(1.2) distχ(P ∗(f), Jf ) > 0,

where Jf is the Julia set of f , χ is a chordal metric, and

P ∗(f) := Θ+(Sing(f−1) \Θ+({ξ1, ξ2}) .

Through the entire paper we assume that the considered functions belong
to Q∗. Then there are Ni > 0, i = 1, 2, with the following properties: If i = 1,
then, for any z ∈ C with real part greater than N1,

fq1(z) = a0e
n1z + a1e

(n1−1)z + · · ·+ an1 + an1+1e
−z + · · ·(1.3)

=
∞∑
j=0

aje
(n1−j)z,

where n1 > 0 and a0 6= 0. If i = 2, then, for any z ∈ C with real part smaller
than −N2,

fq2(z) = b0e
−n2z + b1e

(−n1+1)z + · · ·+ an2 + bn2+1e
z + · · ·(1.4)

=
∞∑
j=0

bje
(−n2+j)z,

where n2 > 1 and b0 6= 0. We can assume without lost of generality that

n1 ≤ n2 .

Following [7] we consider the map Tf defined by

(1.5) Tf (z) :=

{
fq1(z) if Re(z) > N3,

fq2(z) if Re(z) < −N3,

where N3 := max{N1, N2}. The following result was proved in [7] (see
Lemma 2.2):

Proposition 1.1. There exist M1,M2 > 0 and M3 > N3 such that for
every z ∈ C with |Rez| > M3 the following conditions hold:

(i) M1e
n(z)|Re(z)| ≤ |Tf (z)| ≤M2e

n(z)|Re(z)|,
(ii) M1e

n(z)|Re(z)| ≤ |T ′f (z)| ≤M2e
n(z)|Re(z)|,

where

n(z) :=

{
n2 if Re(z) < 0,
n1 if Re(z) > 0 .

Since f(z) is 2πi-periodic, we consider it as a function on the cylinder
rather than on C. So let P be the quotient space (the cylinder)

P = C/ ∼ ,
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where z1 ∼ z2 if and only if z1 − z2 = 2kπi for some k ∈ Z. Let π : C → P
be the canonical projection. The function f projects down to a holomorphic
map

F : P \ π(f−1(∞)) 7→ P
so that F ◦ π = π ◦ f , i.e., the following diagram commutes:

(1.6)

C \B0
f−→ C

π
y yπ

P \B F−→ P

where B0 = f−1(∞) and B = π(B0). The Julia set JF of F is defined to be

JF := π(Jf ∩ C) .

Set TF = π(Tf ). The next remark follows directly from Proposition 1.1.

Remark 1.1. There exist M1,M2 > 0 and M3 > N3 such that for every
z ∈ P with |Rez| > M3 the following conditions hold:

(i) M1e
n(z)|Re(z)| ≤ |TF (z)| ≤M2e

n(z)|Re(z)|,
(ii) M1e

n(z)|Re(z)| ≤ |T ′F (z)| ≤M2e
n(z)|Re(z)|,

where n(z) is defined as in Proposition 1.1.

Let
ζji = π(f j−1(ξi))

for j = 1, . . . , qi − 1, i = 1, 2. Then for n > 0 we define the sets

Wn =
{
z ∈ P : |Re(z)| < n, |z − ζji | >

1
n
, j = 1, . . . , qi − 1, i = 1, 2

}
.

We also consider
Kn =

⋂
j≥0

F−j(Wn) .

It was shown in [7] (see Lemma 3.1) that for z ∈ Kn

(1.7) lim
k→∞

|(Fn)′(z)| =∞.

Let mn be the tn-semiconformal measure supported on Kn, tn > 0, i.e.,

mn(F (A)) ≥
∫
A

|F (A)|tndmn

for every Borel set A ⊂ P such that f|A is 1-to-1. In [7] (see Lemma 5.4) the
following result was shown:
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Theorem 1.2. For every ε > 0 there exists N such that for all n > n0

(with a suitable n0)

mn({z ∈ JF : |Re(z)| > N}) < ε .

It follows that the sequence of measures {mn} is tight.

It was also shown in [7] that there exists s > 1 such that tn > s for all n
large enough. In view of Theorem 1.2, there exists a subsequence {nk} such
that the sequence {tnk} converges. Let h denote the limit of this sequence.
Then h ∈ (1, 2]. Passing to yet another subsequence we may assume that the
sequence {mnk} converges weakly to a measure m. This gives the next result,
which was also proved in [7] (cf. Proposition 4.2 and Theorem 5.6). Let

JrF (n) = {z ∈ JF : ω(z) ∩Kn 6= ∅} and JrF =
⋃
n≥N

JrF (n) .

Theorem 1.3. There exists an h-conformal measure m on JF such that
m is atomless and m(JrF ) = 1. If m′ is a t-conformal measure for some t > 1,
then m′ = m and 1 < h = HD(JrF ) < 2. Moreover, there exists n0 such that
m(JrF (n0)) = 1.

Let Hh and Ph denote, respectively, the h-dimensional Hausdorff measure
and the packing measure. In this paper we prove the following results.

Theorem A. There exists a unique Borel probability F -invariant measure
µ on JrF that is absolutely continuous with respect to a conformal measure m.
This measure is ergodic and conservative.

Theorem B. We have:
(i) 0 < Hh(JrF ) <∞.
(ii) Ph(JrF ) =∞. In fact, Ph(JrF ) is locally infinite at every point of JrF .

Corollary 1.4. Hh
|JF is equivalent to any measure with the properties in

Theorem 1.3.

Various versions of thermodynamic formalism and finer fractal geometry
of transcendental entire and meromorphic functions have been explored since
the mid 1990s, and more extensively since the year 2000. For an exposition
of the main results obtained so far the reader is referred to the survey article
[5].

2. An invariant measure equivalent to the conformal measure m

In this section we show the existence and uniqueness of an F -invariant
Borel probability measure equivalent to m.
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Analogously to Lemma 4.2 from [4] one can prove that for any open set
U ⊂ P we have

(2.1) lim sup
n→∞

m(Fn(U)) = 1.

Remark 2.1. The h-conformal measure m of Theorem 1.3 is ergodic and
conservative.

The proof of Remark 2.1 has a long history going back to the papers [8],
[9], [10]. The full proof carries over, with some obvious minor modifications,
from the proof of Theorem 4.23 in [3].

Lemma 2.1. Up to a multiplicative constant there exists a unique F -
invariant, σ-finite measure µ, which is conservative, ergodic and equivalent
to the h-conformal measure m.

The idea of the proof of Lemma 2.1 is to apply a general sufficient condi-
tion for the existence of a σ-finite absolutely continuous invariant measure,
obtained in [6]. In order to formulate this condition, suppose that X is a
σ-compact metric space, m is a Borel probability measure on X which is pos-
itive on open sets, and suppose that a measurable map T : X → X is given,
with respect to which the measure m is quasi-invariant, i.e., m ◦ T−1 � m.
Moreover, assume the existence of a countable partition α = {An : n ≥ 0} of
subsets of X which are all σ-compact and of positive measure m, and such
that m(X \

⋃
n≥0An) = 0. If, in addition, for all m,n ≥ 1 there exists k ≥ 0

such that

(2.2) m(T−k(Am) ∩An) > 0,

then the partition α is called irreducible. The result of Martens, comprising
Proposition 2.6 and Theorem 2.9 of [6], says the following:

Theorem 2.2. Suppose that α = {An : n ≥ 0} is an irreducible partition
for T : X → X. Suppose that T is conservative and ergodic with respect to
the measure m. If for every n ≥ 1 there exists Kn ≥ 1 such that for all k ≥ 0
and all Borel subsets A of An

(2.3) K−1
n

m(A)
m(An)

≤ m(T−k(A))
m(T−k(An))

≤ Kn
m(A)
m(An)

,

then T has a σ-finite T -invariant measure µ that is absolutely continuous with
respect to m. Additionally, µ is equivalent with m, conservative and ergodic,
and unique up to a multiplicative constant.

Since in the sequel we will need a bit more than what is asserted in
Lemma 2.1, namely a construction of the invariant measure claimed in Theo-
rem 2.2, we briefly describe this construction. Following Martens, we consider
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the sequences of measures

(2.4) Skm =
k−1∑
i=0

m ◦ T−i and Qkm =
Skm

Skm(A0)
.

It was shown in [6] that each weak limit µ of the sequence Qkm has the
properties required in Theorem 2.2, where a sequence {νk : k ≥ 1} of measures
on X is said to converge vaguely if for all n ≥ 1 the measures νk converge
weakly on all compact subsets of An. In fact, it turns out that the sequence
Qkm converges and

µ(F ) = lim
n→∞

Qkm(F )

for every Borel set F ⊂ X. Making use of (2.2) and (2.3) one can show (see
Lemma 2.4 in [6]) the following:

Lemma 2.3. For every n ≥ 0 we have 0 < µ(An) <∞. Furthermore, the
Radon-Nikodym derivative dµ/dm is bounded above and below on An.

Now let us pass to the map F : P \ B → P. The ergodicity and con-
servativity of the measure m follows from Remark 2.1. Thus, we only need
to construct an irreducible partition α with the property (2.3). Indeed, set
Y = J(F ) \ B, and for every y ∈ Y consider a ball B(y, r(y)) ⊂ P such that
r(y) > 0, m(∂B(y, r(y))) = 0, and r(y) < (1/2) min{π/2,dist(y,B)}. The
balls B(y, r(y)), y ∈ Y , cover Y , and since Y is a metric separable metric, one
can choose a countable cover, say {Ãn : n ≥ 0}, from these balls. We may
additionally require that the family {Ãn : n ≥ 0} is locally finite, i.e., that
each point x ∈ Y has an open neighborhood intersecting only finitely many
balls Ãn, n ≥ 0. We now define the family α = {An : n ≥ 0} inductively by
setting

A0 = Ã0 and An+1 = Ãn+1 \
n⋃
k=1

Ãn

(and throwing away empty sets). Obviously, α is a disjoint family and⋃
n≥1

An ⊃ J(F ) \B \
⋃
n≥0

∂Ãn.

Hence m
(⋃

n≥0An

)
= 1. The distortion condition (2.3) follows now from

Koebe’s distortion theorem with all constants Kn equal to some K, and the
irreducibility of the partition α follows from the openness of the sets An and
Theorem 1.3.

Let µ be an F -invariant measure that is absolutely continuous with respect
to the measure m. Set

PM = {z ∈ P : Re(z) > M}
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and
P−M = {z ∈ P : Re(z) < −M}

for M ∈ R.

Proposition 2.4. There exists M > 0 such that

(2.5) µ(P−M ) <∞ and µ(PM ) <∞.

To prove Proposition 2.4, take k ∈ N such that k > M3, where M3 is as
defined in Remark 1.1, and consider the sets

X−k = {z ∈ JF : −(k + 1) ≤ Re(z) ≤ −k}

and
X+
k = {z ∈ JF : k ≤ Re(z) ≤ k + 1} .

Lemma 2.5. There exists a constant C1 > 0 such that for n large enough
and k > M3 we have

m(X+
k ) ≤ C1e

n1k(1−h) and m(X−k ) ≤ C1e
n2k(1−h) .

Proof. It follows from Remark 1.1 that there exist universal constants
D+, D− (independent of k) such that

(2.6) |Im(TF (z))− Im(TF (w))| ≤ D±en(z)|Re(z)|

for z, w ∈ X±k . This implies that if k > M3 then TF is B1e
n1k-to-1 on the

set X+
k , where B1 depends on D±, but is independent of k. Thus for every n

large enough and all k ≥M3 we have

1 ≥ mn(TF (X+
K) ≥ (B1e

n1k)−1

∫
X+
k

|T ′F |tndmn

≥ (B1e
n1k)−1(M1e

n1k)tnmn(X+
k )

≥ (B1)−1M tn
1 en1k(tn−1)mn(X+

k ) .

Hence there exists a constant C+ independent of k such that

mn(X+
k ) ≤ C+e

n1k(1−tn) ≤ C+e
n1k(1−h) .

Analogously, one can prove that for every n large enough

mn(X−k ) ≤ C−en2k(1−h)

for some C− > 0 and k > M3. Setting C1 = max{C+, C−}, we obtain for the
measure m

m(X+
k ) ≤ C1e

n1k(1−h) and m(X−k ) ≤ C1e
n2k(1−h)

for k > M3. �
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Proof of Proposition 2.4. Set A0 = X+
M3

. Fix k ≥M3, and let

Sk = [u+ 2, k + 2]× [−k/2, k/2] ⊂ C ,

where u = max{|ξ1|, |ξ2|}. The set {z ∈ C : Imz = π} is canonically embedded
into C. Thus each holomorphic inverse branch F−j∗ : P \ π({z ∈ C : Imz =
π}) 7→ P of F j , j ≥ 1, can be assumed to be defined on a subset of the
complex plane C. This map restricted to X+

k extends holomorphically to a
univalent function on Sk. By Koebe’s theorem there exists a constant C2 such
that, for every j ≥ 1, every x ∈ A0, and every y ∈ X+

k , we have

|(F−j∗ )′(y)|
|(F−j∗ )′(x)|

≤ C2k
3 .

Therefore
m(F−j∗ (X+

k ))

m(F−j∗ (A0))
≤ Ch2 k3hm(X+

k )
m(A0)

.

Combining this with Lemma 2.5 we obtain

m(F−j∗ (X+
k ))

m(F−j∗ (A0))
≤ C1C

h
2m(A0)−1k3hen1k(1−h) .

Hence
m(F−j(X+

k ))
m(F−j(A0))

≤ C1C
h
2m(A0)−1k3hen1k(1−h) .

So, for every n ≥ 0,∑n
j=0m(F−j(X+

k ))∑n
j=0m(F−j(A0))

≤ C1C
h
2m(A0)−1k3hen1k(1−h) .

Thus, applying Theorem 2.2, we get

µ(X+
k ) = lim

n→∞

∑n
j=0m(F−j(X+

k ))∑n
j=0m(F−j(A0))

≤ C1C
h
2m(A0)−1k3hen1k(1−h) .

Hence, if M = M3, then

µ(PM ) ≤
∞∑

k=M3

µ(X+
k ) ≤

∞∑
k=M3

C1C
h
2m(A0)−1k3hen1k(1−h) <∞ .

Analogously, replacing n1 by n2 and taking k > M3, we obtain that

µ(P−M ) ≤
∞∑

k=M3

µ(X−k ) ≤
∞∑

k=M3

C1C
h
2m(A0)−1k3hen2k(1−h) <∞ .

This completes the proof. �
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We recall that ξ1 = R(0), ξ2 = R(∞). By our assumptions there are
qi > 1, i = 1, 2, such that fqi−1(ξi) =∞. Let pi denote the order of the pole
fqi−2(ξi). For every k ≥ 0 let

Rk = {z ∈ P : ηe−(k+1) ≤ |z −R(0)| ≤ ηe−k}

and
Qk = {z ∈ P : ηe−(k+1) ≤ |z −R(∞)| ≤ ηe−k}

for some η > 0, where R(0) 6= ∞, R(∞) 6= ∞. If R(0) 6= R(∞), then we
choose η small enough so that B(R(0), η) ∩B(R(∞), η) = ∅.

Proposition 2.6. There exists ε > 0 such that

(2.7) µ(B(R(0), ε)) <∞ and µ(B(R(∞), ε)) <∞.

First we prove the following lemma.

Lemma 2.7. There exist constants C3 > 0, r > 0 and p1, p2 ∈ N such that
for n large enough and all k satisfying e−k < r we have

m(Rk) ≤ C3e
k[p1−(p1+1)h] and m(Qk) ≤ C3e

k[p2−(p2+1)h] .

Proof. Since fq1−2(ξ1) is a pole b1 of multiplicity p1, there exists r1 > 0
such that

(2.8) F q1−2(z) � κ1

(z − ξ1)p1

for z ∈ B(ξ1, r1) ⊂ P, κ1 6= 0. The comparability sign � means that

0 < inf
{
|F q1−2(z)|
|(z − ξ1)p1 |

: z ∈ B(ξ1, r1)
}

≤ sup
{
|F q1−2(z)|
|(z − ξ1)p1 |

: z ∈ B(ξ1, r1)
}

<∞ .

This, in turn, implies the existence of a universal constant E1 (independent
of k) such that

|Im(F q1−2(z))− Im(F q1−2(w))| ≤ E1e
kp1

for z ∈ Rk. Take K large enough so that e−K < r1. From (2.8) we obtain
that for k > K

|(F q1−1)′(z)| ≥ F1e
k(p1+1)

for some F1 > 0. This implies that F q1−1 is G1e
n1k-to-1 on the set Rk, where

G1 depends on F1, but is independent of k. Thus, for every n large enough
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and all k ≥ K,

1 ≥ mn(F q1−2(Rk)) ≥ (G1e
n1k)−1

∫
Rk

|(F q1−2)′|tndmn

≥ (G1e
p1k)−1(F1e

(p1+1)k)tnmn(Rk)

≥ (G1)−1Fh1 e
k[−p1+(p1+1)h]mn(Rk).

Hence there exists a constant C ′ independent of k such that

mn(Rk) ≤ C ′ek[p1−(p1+1)h]

for k > K. Now let fq1−2(ξ2) be a pole b2 of multiplicity p2. Then there
exists r2 > 0 such that

(2.9) F q1−1(z) � κ2

(z − ξ2)p2

for z ∈ B(ξ2, r2). Analogously one can prove that mn(Qk) ≤ C ′′ek[p2−(p2+1)h]

for every n large enough and k such that e−k < r2. Consequently

m(Rk) ≤ C3e
k[p1−(p1+1)h] and m(Qk) ≤ C3e

k[p2−(p2+1)h],

where C3 = max{C ′, C ′′}. �

Let f−1
0 denote a branch of the inverse map f−1 such that 0 ≤ Im(f−1

0 ) <
2π.

Lemma 2.8. There is a universal constant D > 0 such that for all k large
enough we have

D−1e−(k+1) ≤ |F ′(z)| ≤ De−k

if z ∈ f−1
0 (Rk ∪Qk).

Proof. First we estimate f ′(z) for z ∈ f−1
0 (Rk). For simplicity we assume

that π(ξ1) = ξ1. If R′(0) 6= 0, then

f−1
0 (Rk) ⊂

{
z ∈ P : log(L/|R′(0)|)− (k + 1) ≤ |Re(z)|

≤ −k − log(|R′(0)|L)
}
,

where L denotes the distortion of R−1 on B(ξ1, r). Since F ′(z) = f ′(z) =
R′(ez)(ez), we obtain

(2.10) |F ′(z)| ≤ (|R′(0)|L)−1(|R′(0)|L)e−k = e−k

and

(2.11) |F ′(z)| ≥ e−(k+1)|R′(0)|−1L|R′(0)|L−1 = e−(k+1).

If R′(0) = 0, there are constants A > 0 and p ∈ N such that

A−1|z − 0|p ≤ |R(z)−R(0)| ≤ A|z − 0|p
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and
A−1|z − 0|p−1 ≤ |R′(z)| ≤ A|z − 0|p−1 .

In this case there exists a constant A1 > 0, which depends on p and A, but is
independent of k, such that

f−1
0 (Rk) ⊂

{
z ∈ P : logA1 −

(k + 1)
p

≤ |Re(z)| ≤ −k
p
− logA1

}
.

Moreover, for z ∈ f−1
0 (Rk) we have

(2.12) |F ′(z)| ≤ A1

(
e−k/p

)p−1

e−k/p = A1e
−k

and

(2.13) |F ′(z)| ≥ (A1)−1
(
e−(k+1)/p

)p−1

e−(k+1)/p = (A1)−1e−(k+1).

Next, we estimate f ′(z) for z ∈ f−1
0 (Qk). For simplicity we assume that

π(ξ2) = ξ2. We know that R(∞) 6=∞ and suppose that R′(∞) = 0. To count
derivatives at R′(∞), we have to consider R1(w) = R(u), where u = 1/w, for
w close to 0. Then R′1(0) = 0. So there are constants A2 > 0 and p ∈ N such
that

A−1
2 |w|p ≤ |R1(w)−R1(0)| ≤ A−1

2 |w|p

and
A−1

2 |w|p−1 ≤ |R′1(w)| ≤ A−1
2 |w|p−1 .

Substituting

R′1(w) = R′
(

1
w

)(
− 1
w2

)
,

we obtain

A−1
2 |w|p−1 ≤

∣∣∣∣R′( 1
w

)(
− 1
w2

)∣∣∣∣ ≤ A2|w|p−1,

or equivalently

A−1
2 |w|p+1 ≤

∣∣∣∣R′( 1
w

)∣∣∣∣ ≤ A2|w|p+1 .

Since w = 1/u the above inequalities can be rewritten as

A−1
2 |u|−(p+1) ≤ |R′(u)| ≤ A2|u|−(p+1) .

But f(z) = R(ez), so f ′(z) = R′(ez)ez. Since u = ez, we have

|F ′(z)| = |R′(ez)||ez| ≤ A2|ez|−(p+1)||ez| = A2e
−pz

and
|F ′(z)| ≥ (A2)−1|ez|−(p+1)||ez| = (A2)−1e−pz .

Then

f−1
0 (Qk) ⊂

{
z ∈ P :

k

p
+ logA3+ ≤ |Re(z)| ≤ (k + 1)

p
− logA3

}
,
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where A3 is a constant, which depends on p and A2, but is independent of k.
So for z ∈ f−1

0 (Qk),

(2.14) (A3)−1e−(k+1) ≤ |F ′(z)| ≤ A3e
−k.

Analogously, if R′(∞) 6= 0, then

f−1
0 (Qk) ⊂ {z ∈ P : k + logA4+ ≤ |Re(z)| ≤ k + 1− logA4} ,

where A4 depends on R′(∞) and the distortion of R in a neighbourhood of
R(∞). Considering as before R1(w) = R1(u) with u = 1/w for w close to
zero, we get

A−1
4 |u|−2 ≤ |R′(u)| ≤ A4|u|−2 .

Since F ′(z) = R′(ez)(ez), the last inequalities we can rewritten as

(A4)−1e−z ≤ |F ′(z)| ≤ A4e
−z .

Thus for z ∈ f−1
0 (Qk) we have

(2.15) (A4)−1e−(k+1) ≤ |F ′(z)| ≤ A4e
−k.

Combining (2.10), (2.12), (2.14), (2.15) and taking

D = max{1, A2, A3, A4},

we get the required estimate. �

Proof of Proposition 2.6. Let ε0 = min{r1, r2}, where r1, r2 are defined
by (2.8) and (2.9). Choose k0 such that ηe−k0 < ε0 and set A0 := Rk0 .
Fix j ≥ 0, and for all l ∈ Z \ {0} consider all holomorphic inverse branches
F−j∗ : B(ξ1, ε0) 7→ P of F j such that f j(F−j∗ (B(ξ1, ε0))) = B(ξ1 + 2lπi, ε0).
Notice that B(ξ1 + 2lπi, ε0) is far from the singularity ξ1, since we assumed
that π(ξ1) = ξ1. So we can take inverse branches of f j composed in the
last step with π. To all of these inverse branches F−j∗ we can apply Koebe’s
distortion theorem. Thus for k > k0 we have

(2.16)
m(F−j∗ (Rk))
m(F−j∗ (A0))

≤ Km(Rk)
m(A0)

,

where K is a distortion constant. Applying Lemma 2.7, we obtain

(2.17) m(Rk) ≤ C3e
k[p1−(p1+1)h].

Combining this with (2.16), we get

(2.18)
m(F−j∗ (Rk))
m(F−j∗ (A0))

≤ KhC3e
k[p1−(p1+1)h]

m(A0)
.
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Let now F−j0 : B(ξ1, ε0) 7→ P be a holomorphic inverse branch of F j such
that f j(F−j0 (Rk)) = Rk. Then there exists k1 > k0 such that

F j−1

(
F−j0

(
k⋃

l=k1

Rk

))
⊂ {z ∈ P : −(k + 1) ≤ Re(z) ≤ log u− 2}

where u = max{1, |ξ1|, |ξ2|}. As in the proof of Proposition 2.4 we can write

m(F−j0 (Rk))
m(F−j0 (A0))

≤ Ch4 k3hm(F j−1(F−j0 (Rk)))
m(F j−1(F−j(A0)))

.

Using now Lemmas 2.7 and 2.8, we get for k large enough

m(F−j0 (Rk))
m(F−j0 (A0))

≤ C4k
3h m(F j−1(F−j0 (Rk))
m(F j−1(F−j(A0)))

≤ C4k
3hDe

−khC3e
k[p1−(p1+1)h]

D−1e−(k0+1)hm(A0)

≤ C5k
3hek[−2h+p1(1−h)],

for some C5 > 0. This, together with (2.18), implies that for every j ≥ 0 and
every k > k1 we have

m((F−j(Rk))
m(F−j(A0))

≤ C5e
k[p1−(p1+1)h],

since ek[−2h+p1(1−h)] < ek[p1−(p1+1)h]. Summing over k ≥ k1, we get

m(F−j(B(ξ1, ε1)))
m(F−j(A0))

≤ C5

∞∑
k=k1

k3hek[p1−(p1+1)h] <∞ ,

where ε1 := e−k1η. Thus, for every n ≥ 0,∑n
j=0m(F−j(B(ξ1, ε1))∑n
j=0m(F−j(F−j(A0)))

≤ C5

∞∑
k=k1

k3hek[p1−(p1+1)h] <∞ .

Hence, applying Theorem 2.2,

µ(B(ξ1, ε1)) ≤ C5

∞∑
k=k1

k3hek[p1−(p1+1)h] <∞ .

To prove the second part of this proposition we define ε0 as before. Let k0

be such that ηe−k0 < ε0, and set A0 := Qk0 . Fix j ≥ 0, and for all λ ∈ Z\{0}
consider all holomorphic inverse branches F−j∗ : B(ξ2, ε0) 7→ P of F j such
that f j(F−j∗ (B(ξ2, ε0))) = B(ξ2 + 2lπi, ε0). To all of these inverse branches
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F−j∗ we can apply Koebe’s distortion theorem. Thus for k > k0 we have,
analogously to (2.16),

(2.19)
m(F−j∗ (Qk))
m(F−j∗ (A0))

≤ Km(Rk)
m(A0)

,

where K is a distortion constant. By Lemma 2.7 we obtain

(2.20) m(Rk) ≤ C3e
k[p2−(p2+1)h].

This, together with (2.19), implies

m(F−j∗ (Qk))
m(F−j∗ (A0))

≤ KhC3e
k[p2−(p2+1)h]

m(A0)
.

Let now F−j0 : B(ξ2, ε0) 7→ P be a holomorphic inverse branch of F j such
that f j(F−j0 (Qk)) = Qk. Then there exists k1 > k0 such that

F j−1

(
F−j0

(
k⋃

l=k1

Rk

))
⊂ {z ∈ P : log u+ 2 ≤ Re(z) ≤ k + 1}

The remaining part of the proof is analogous to the above argument. We
therefore conclude that for some C6 > 0 and ε2 > 0

µ(B(ξ2, ε2)) ≤ C6

∞∑
k=k1

k3hek[p2−(p2+1)h] <∞ . �

Proof of Theorem A. To complete the proof, we have to show that µ is
finite at every point a of the forward trajectories of both asymptotic values
ξ1, ξ2. We recall that both omitted values are eventually mapped onto ∞. In
view of (1.2), distχ(P ∗(f), Jf ) > 0, so the critical points do not belong to the
preimages of the forward trajectories of ξ1, ξ2. Thus, as in Proposition 2.6,
we see that there exists ε > 0 such that µ(B(a, ε)) < ∞ for every a. This,
together with Proposition 2.4 and Proposition 2.6, finishes the proof. �

3. Hausdorff and packing measures and dimensions

The results of this section provide, in some sense, a complete description
of the geometrical structure of the sets JrF and Jrf , and they also exhibit the
geometrical meaning of the h-conformal measure m.

Theorem 3.1. We have Ph(Jrf ) = Ph(JrF ) =∞. In fact, Ph(G) =∞ for
every open nonempty subset G of Jrf .

Proof. Since m(JrF ∩ PM ) > 0 for every M ∈ R, it follows from the ergod-
icity and conservativity of the measure m (see Remark 2.1) that there exists
a set E ⊂ JrF such that m(E) = 1 and

lim sup
k→∞

Re(F k(z)) = +∞
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for every z ∈ E. Fix z ∈ E. The above relation means that there ex-
ists an unbounded increasing sequence {kn}∞k=1, depending on z, such that
{F kn(z)}∞k=1 ⊂ PM for some large M > 0 and

(3.1) lim
n→∞

Re(F kn(z)) = +∞.

Fix kn ≥ 1 and consider the ball B(z,K−1|(F kn)′(z)|−1). Then

B(z,K−1|(F kn)′|(z)|−1) ⊂ F−knz (B(F kn(z), 1)),

where F−knz : B(F kn (z), 1)→ C is the analytic inverse branch of F kn mapping
F kn(z) to z. Applying Koebe’s distortion theorem and using the conformality
of the measure m, we obtain

m(B(z,K−1|(F kn)′(z)|−1) ≤ Kh|(F kn)′(z)|−hm(B(F kn(z), 1))

≤ K2h(K−1|(F kn)′(z)|−1)hm(PReFkn (z)+1).

Since, by (3.1), limk→∞m(PReFkn (z)+1) = 0, we see that

lim inf
r→0

m(B(z, r)
rh

= 0 .

Since m(G∩JrF ) > 0 for every non-empty open subset of JrF , this implies that
Ph(G) =∞. Since Jrf =

⋃
k∈Z(JrF + 2πik), we are done. �

Theorem 3.2. We have 0 < Hh(Jr(F )) <∞.

Proof. Let n0 > 0 be the number defined in Theorem 1.3. Fix an integer
l ≥ 1 and a point z ∈ JrF (n). Consider the holomorphic inverse branches
F
−kn(z)
z : B(y(z), (2l)−1) → P sending F kn(z)(z) to z. By Koebe’s (1/4)-

distortion theorem and the standard version of Koebe’s distortion theorem,

F−kn(z)
z

(
B

(
y(z),

1
2l

))
⊃ F−kn(z)

z

(
B

(
F kn(z)(z),

1
3l

))
⊃ B

(
z,

1
12l
|(F kn(z))′(z)|−1

)
and

F−kz(z)
z

(
B

(
y(z),

1
24Kl

))
⊂ F−kn(z)

z

(
B

(
F kn(z)(z),

1
12Kl

))
⊂ B

(
z,

1
12l
|(F kn(z))′(z)|−1

)
.

Using the conformality of the measure m along with the standard version of
Koebe’s distortion theorem, and the fact that inf{m(B(w, (12Kl)−1) : w ∈
W2l} > 0, we deduce that

(3.2) B−1
l rk(z)h ≤ m(B(z, rk(z))) ≤ Blrk(z)h,
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where rk(z) = (12l)−1|(Fnk(z))′(z)|−1 and Bl is independent of z and k. It
follows from (3.2) that Hh|JrF (l) is absolutely continuous with respect to m for
every l ≥ 1 and that Hh(JrF (n0)) <∞. Since

m(JrF (l) \ JrF (n0) ≤ m(JrF \ JrF (n0)) = 0

and Jr(F ) =
⋃∞
n=0 J

r
F (n0 +n), we conclude that Hh(JrF ) = Hh(JrF (n0)) <∞.

We now prove that Hh(JrF ) > 0. Let ε be such that

0 < ε <
1
De

,

where D is the constant defined in Lemma 2.8. Fix z ∈ JrF . Take r ∈
B(0, ε(28K)−1). Since, by (1.7), lim supn→∞ |(fn)′(z)| = +∞, there exists a
minimal n = n(z, r) ≥ 1 such that

(3.3) r|(fn+1)′(z)| > ε(28K)−1.

Thus

r|(fn)′(z)| ≤ ε(28K)−1.

Assume the holomorphic inverse branch of fn defined onB(fn(z),32r|(fn)′(z)|)
and sending fn(z) to z, does not exist. Then n ≥ 1. Let 1 ≤ k ≤ n be the
largest integer such that the holomorphic inverse branch of fn−(k−1) defined
on B(fn(z), 32r|(fn)′(z)|) and sending fn(z) to fk−1(z) does not exist. This
implies that at least one of the asymptotic values ξi, i = 1, 2, satisfies

ξi ∈ f−(n−k)
k (B(fn(z), 32r|(fn)′(z)|)) ,

where f
−(n−k)
k : B(fn(z), 32r|(fn)′(z)|) → C is the holomorphic inverse

branch of fn−k sending fn(z) to fk(z). In addition, we have n = k since ξi /∈
f−1(C), i = 1, 2. Hence there is an i such that |fn(z)−ξi| < 32Kr|(fn)′(z)| ≤
ε. We assume that i = 1. So there exists k ∈ N such that

(3.4) e−(k+1) < |fn(z)− ξ1| < e−k.

By Lemma 2.8 it follows that there exist constants A1 > 0 and p ∈ N such
that

−k + 1
p
− logA1 < Re(fn−1(z)) < −k

p
− logA1

and

|f ′(fn−1(z))| ≤ De−k.

Combining this with (3.4), we get

(3.5) |f ′(fn−1(z))| ≤ De−k ≤ De|fn(z)− ξ1|.
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Consequently, since r|(fn−1)′(z)| < ε(28K)−1, we conclude that

32Kr|(fn)′(z)| = 32Kr|(fn−1)′(z)| · |f ′(fn−1(z))|
≤ 32Kr|(fn−1)′(z)| ·De|fn(z)− ξ1|
≤ εDe|fn(z)− ξ1|
< |fn(z)− ξ1|.

This contradiction shows that the holomorphic inverse branch

f−nz : B(fn(z), 32r|(fn)′(z)|)→ C

of fn sending fn(z) to z is well-defined. Now, the map f restricted to
B(fn(z), 32r|(fn)′(z)|) is 1-to-1, and by Koebe’s (1/4)-distortion theorem,

f(B(fn(z), 32r|(fn)′(z)|)) ⊃ B
(
fn+1(z), 8r|(fn+1)′(z)|

)
.

Hence there exists a unique holomorphic inverse branch

f−(n+1)
z : B

(
fn+1(z), 8r|(fn+1)′(z)|

)
→ C

of fn+1 mapping fn+1(z) to z. Applying Koebe’s (1/4)-distortion theorem
again, we see that

(3.6) f−(n+1)
z

(
B
(
fn+1(z), 4r|(fn+1)′(z)|

))
⊃ B(z, r).

Since the ball B
(
fn+1(z), 4r|(fn+1)′(z)|

)
intersects at most

1
π

4r|(fn+1)′(z)|+ 2 � r|(fn+1)′(z)|

horizontal strips of the form 2πij + (R× [0, 2π)), j ∈ Z, using (3.6), Koebe’s
distortion theorem, the h-conformality of the measure m and, in the final step,
(3.3), we get

r−h(m(B(z, r))

� r−hKh (r|(fn+1)′(z)|)
|(fn+1)′(z)|h

m
(
π
(
B
(
fn+1(z), 4r|(fn+1)′(z)|

)))
≤ r−hKh|(fn+1)′(z)|−h(r|(fn+1)′(z)|)

= Kh(r|(fn+1)′(z)|)1−h

< Kh(28K)h−1.

The comparability sign � appearing in the above formulas means that the
constants depend on z, but are independent of n. Thus we are done. �
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