PROBABILISTIC INVARIANT MEASURES FOR NON-ENTIRE FUNCTIONS WITH ASYMPTOTIC VALUES MAPPED ONTO ∞

JANINA KOTUS

Abstract

We study the dynamics of transcendental meromorphic functions of the form $f(z)=R \circ \exp (z)$, where R is a non-constant rational map and both asymptotic values $R(0)$ and $R(\infty)$ are eventually mapped onto ∞. With each map f we associate its projection F on the cylin$\operatorname{der} \mathcal{P}$. Let J_{F}^{r} consist of all points whose trajectory returns infinitely often to some compact set whose intersection with the postsingular set is empty, and let $h=\operatorname{HD}\left(J_{F}^{r}\right)$ be the Hausdorff dimension of J_{F}^{r}. We prove that the h-dimensional Hausdorff measure H^{h} of J_{F}^{r} is positive and finite, while the h-dimensional packing measure of J_{F}^{r} is locally infinite at every point of this set. We also prove that there exists a unique F-invariant Borel probability measure μ on J_{F}^{r} that is absolutely continuous with respect to the Hausdorff measure H^{h}, and that μ is ergodic and conservative.

1. Introduction

We consider the family \mathcal{R} of transcendental meromorphic functions $f(z)$: $\mathbb{C} \rightarrow \overline{\mathbb{C}}$ of the form

$$
\begin{equation*}
f(z)=R \circ \exp (z), \tag{1.1}
\end{equation*}
$$

where R is a non-constant rational map. The set of singularities $\operatorname{Sing}\left(f^{-1}\right)$ consists of finitely many critical values and two asymptotic values

$$
\xi_{1}:=R(0), \quad \xi_{2}:=R(\infty)
$$

Let \mathcal{Q}^{*} be the class of non-entire functions from \mathcal{R} such that both asymptotic values are mapped onto infinity, i.e., there exist numbers $q_{i}>1, i=1,2$, such

[^0]that $f^{q_{i}-1}\left(\xi_{i}\right)=\infty$, and
\[

$$
\begin{equation*}
\operatorname{dist}_{\chi}\left(P^{*}(f), J_{f}\right)>0 \tag{1.2}
\end{equation*}
$$

\]

where J_{f} is the Julia set of f, χ is a chordal metric, and

$$
P^{*}(f):=\overline{\Theta^{+}\left(\operatorname{Sing}\left(f^{-1}\right) \backslash \Theta^{+}\left(\left\{\xi_{1}, \xi_{2}\right\}\right)\right.} .
$$

Through the entire paper we assume that the considered functions belong to \mathcal{Q}^{*}. Then there are $N_{i}>0, i=1,2$, with the following properties: If $i=1$, then, for any $z \in \mathbb{C}$ with real part greater than N_{1},

$$
\begin{align*}
f^{q_{1}}(z) & =a_{0} e^{n_{1} z}+a_{1} e^{\left(n_{1}-1\right) z}+\cdots+a_{n_{1}}+a_{n_{1}+1} e^{-z}+\cdots \tag{1.3}\\
& =\sum_{j=0}^{\infty} a_{j} e^{\left(n_{1}-j\right) z}
\end{align*}
$$

where $n_{1}>0$ and $a_{0} \neq 0$. If $i=2$, then, for any $z \in \mathbb{C}$ with real part smaller than $-N_{2}$,

$$
\begin{align*}
f^{q_{2}}(z) & =b_{0} e^{-n_{2} z}+b_{1} e^{\left(-n_{1}+1\right) z}+\cdots+a_{n_{2}}+b_{n_{2}+1} e^{z}+\cdots \tag{1.4}\\
& =\sum_{j=0}^{\infty} b_{j} e^{\left(-n_{2}+j\right) z}
\end{align*}
$$

where $n_{2}>1$ and $b_{0} \neq 0$. We can assume without lost of generality that

$$
n_{1} \leq n_{2}
$$

Following [7] we consider the map T_{f} defined by

$$
T_{f}(z):= \begin{cases}f^{q_{1}}(z) & \text { if } \operatorname{Re}(z)>N_{3} \tag{1.5}\\ f^{q_{2}}(z) & \text { if } \operatorname{Re}(z)<-N_{3}\end{cases}
$$

where $N_{3}:=\max \left\{N_{1}, N_{2}\right\}$. The following result was proved in [7] (see Lemma 2.2):

Proposition 1.1. There exist $M_{1}, M_{2}>0$ and $M_{3}>N_{3}$ such that for every $z \in \mathbb{C}$ with $|\operatorname{Re} z|>M_{3}$ the following conditions hold:
(i) $M_{1} e^{n(z)|\operatorname{Re}(z)|} \leq\left|T_{f}(z)\right| \leq M_{2} e^{n(z)|\operatorname{Re}(z)|}$,
(ii) $M_{1} e^{n(z)|\operatorname{Re}(z)|} \leq\left|T_{f}^{\prime}(z)\right| \leq M_{2} e^{n(z)|\operatorname{Re}(z)|}$,
where

$$
n(z):= \begin{cases}n_{2} & \text { if } \operatorname{Re}(z)<0 \\ n_{1} & \text { if } \operatorname{Re}(z)>0\end{cases}
$$

Since $f(z)$ is $2 \pi i$-periodic, we consider it as a function on the cylinder rather than on \mathbb{C}. So let \mathcal{P} be the quotient space (the cylinder)

$$
\mathcal{P}=\mathbb{C} / \sim,
$$

where $z_{1} \sim z_{2}$ if and only if $z_{1}-z_{2}=2 k \pi i$ for some $k \in \mathbb{Z}$. Let $\pi: \mathbb{C} \rightarrow \mathcal{P}$ be the canonical projection. The function f projects down to a holomorphic map

$$
F: \mathcal{P} \backslash \pi\left(f^{-1}(\infty)\right) \mapsto \mathcal{P}
$$

so that $F \circ \pi=\pi \circ f$, i.e., the following diagram commutes:

where $B_{0}=f^{-1}(\infty)$ and $B=\pi\left(B_{0}\right)$. The Julia set J_{F} of F is defined to be

$$
J_{F}:=\pi\left(J_{f} \cap \mathbb{C}\right)
$$

Set $T_{F}=\pi\left(T_{f}\right)$. The next remark follows directly from Proposition 1.1.
REMARK 1.1. There exist $M_{1}, M_{2}>0$ and $M_{3}>N_{3}$ such that for every $z \in \mathcal{P}$ with $|\operatorname{Re} z|>M_{3}$ the following conditions hold:
(i) $M_{1} e^{n(z)|\operatorname{Re}(z)|} \leq\left|T_{F}(z)\right| \leq M_{2} e^{n(z)|\operatorname{Re}(z)|}$,
(ii) $M_{1} e^{n(z)|\operatorname{Re}(z)|} \leq\left|T_{F}^{\prime}(z)\right| \leq M_{2} e^{n(z)|\operatorname{Re}(z)|}$,
where $n(z)$ is defined as in Proposition 1.1.
Let

$$
\zeta_{i}^{j}=\pi\left(f^{j-1}\left(\xi_{i}\right)\right)
$$

for $j=1, \ldots, q_{i}-1, i=1,2$. Then for $n>0$ we define the sets

$$
W_{n}=\left\{z \in \mathcal{P}:|\operatorname{Re}(z)|<n,\left|z-\zeta_{i}^{j}\right|>\frac{1}{n}, j=1, \ldots, q_{i}-1, i=1,2\right\}
$$

We also consider

$$
K_{n}=\bigcap_{j \geq 0} F^{-j}\left(W_{n}\right)
$$

It was shown in [7] (see Lemma 3.1) that for $z \in K_{n}$

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left|\left(F^{n}\right)^{\prime}(z)\right|=\infty \tag{1.7}
\end{equation*}
$$

Let m_{n} be the t_{n}-semiconformal measure supported on $K_{n}, t_{n}>0$, i.e.,

$$
m_{n}(F(A)) \geq \int_{A}|F(A)|^{t_{n}} d m_{n}
$$

for every Borel set $A \subset \mathcal{P}$ such that $f_{\mid A}$ is 1-to-1. In [7] (see Lemma 5.4) the following result was shown:

ThEOREM 1.2. For every $\epsilon>0$ there exists N such that for all $n>n_{0}$ (with a suitable n_{0})

$$
m_{n}\left(\left\{z \in J_{F}:|\operatorname{Re}(z)|>N\right\}\right)<\epsilon
$$

It follows that the sequence of measures $\left\{m_{n}\right\}$ is tight.
It was also shown in [7] that there exists $s>1$ such that $t_{n}>s$ for all n large enough. In view of Theorem 1.2, there exists a subsequence $\left\{n_{k}\right\}$ such that the sequence $\left\{t_{n_{k}}\right\}$ converges. Let h denote the limit of this sequence. Then $h \in(1,2]$. Passing to yet another subsequence we may assume that the sequence $\left\{m_{n_{k}}\right\}$ converges weakly to a measure m. This gives the next result, which was also proved in [7] (cf. Proposition 4.2 and Theorem 5.6). Let

$$
J_{F}^{r}(n)=\left\{z \in J_{F}: \omega(z) \cap K_{n} \neq \emptyset\right\} \quad \text { and } \quad J_{F}^{r}=\bigcup_{n \geq N} J_{F}^{r}(n)
$$

Theorem 1.3. There exists an h-conformal measure m on J_{F} such that m is atomless and $m\left(J_{F}^{r}\right)=1$. If m^{\prime} is a t-conformal measure for some $t>1$, then $m^{\prime}=m$ and $1<h=\operatorname{HD}\left(J_{F}^{r}\right)<2$. Moreover, there exists n_{0} such that $m\left(J_{F}^{r}\left(n_{0}\right)\right)=1$.

Let H^{h} and P^{h} denote, respectively, the h-dimensional Hausdorff measure and the packing measure. In this paper we prove the following results.

Theorem A. There exists a unique Borel probability F-invariant measure μ on J_{F}^{r} that is absolutely continuous with respect to a conformal measure m. This measure is ergodic and conservative.

Theorem B. We have:
(i) $0<\mathrm{H}^{h}\left(J_{F}^{r}\right)<\infty$.
(ii) $\mathrm{P}^{h}\left(J_{F}^{r}\right)=\infty$. In fact, $\mathrm{P}^{h}\left(J_{F}^{r}\right)$ is locally infinite at every point of J_{F}^{r}.

Corollary 1.4. $\mathrm{H}_{\mid J_{F}}^{h}$ is equivalent to any measure with the properties in Theorem 1.3.

Various versions of thermodynamic formalism and finer fractal geometry of transcendental entire and meromorphic functions have been explored since the mid 1990s, and more extensively since the year 2000. For an exposition of the main results obtained so far the reader is referred to the survey article [5].

2. An invariant measure equivalent to the conformal measure m

In this section we show the existence and uniqueness of an F-invariant Borel probability measure equivalent to m.

Analogously to Lemma 4.2 from [4] one can prove that for any open set $U \subset \mathcal{P}$ we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} m\left(F^{n}(U)\right)=1 \tag{2.1}
\end{equation*}
$$

Remark 2.1. The h-conformal measure m of Theorem 1.3 is ergodic and conservative.

The proof of Remark 2.1 has a long history going back to the papers [8], [9], [10]. The full proof carries over, with some obvious minor modifications, from the proof of Theorem 4.23 in [3].

Lemma 2.1. Up to a multiplicative constant there exists a unique F invariant, σ-finite measure μ, which is conservative, ergodic and equivalent to the h-conformal measure m.

The idea of the proof of Lemma 2.1 is to apply a general sufficient condition for the existence of a σ-finite absolutely continuous invariant measure, obtained in [6]. In order to formulate this condition, suppose that X is a σ-compact metric space, m is a Borel probability measure on X which is positive on open sets, and suppose that a measurable map $T: X \rightarrow X$ is given, with respect to which the measure m is quasi-invariant, i.e., $m \circ T^{-1} \ll m$. Moreover, assume the existence of a countable partition $\alpha=\left\{A_{n}: n \geq 0\right\}$ of subsets of X which are all σ-compact and of positive measure m, and such that $m\left(X \backslash \bigcup_{n \geq 0} A_{n}\right)=0$. If, in addition, for all $m, n \geq 1$ there exists $k \geq 0$ such that

$$
\begin{equation*}
m\left(T^{-k}\left(A_{m}\right) \cap A_{n}\right)>0 \tag{2.2}
\end{equation*}
$$

then the partition α is called irreducible. The result of Martens, comprising Proposition 2.6 and Theorem 2.9 of [6], says the following:

Theorem 2.2. Suppose that $\alpha=\left\{A_{n}: n \geq 0\right\}$ is an irreducible partition for $T: X \rightarrow X$. Suppose that T is conservative and ergodic with respect to the measure m. If for every $n \geq 1$ there exists $K_{n} \geq 1$ such that for all $k \geq 0$ and all Borel subsets A of A_{n}

$$
\begin{equation*}
K_{n}^{-1} \frac{m(A)}{m\left(A_{n}\right)} \leq \frac{m\left(T^{-k}(A)\right)}{m\left(T^{-k}\left(A_{n}\right)\right)} \leq K_{n} \frac{m(A)}{m\left(A_{n}\right)} \tag{2.3}
\end{equation*}
$$

then T has a σ-finite T-invariant measure μ that is absolutely continuous with respect to m. Additionally, μ is equivalent with m, conservative and ergodic, and unique up to a multiplicative constant.

Since in the sequel we will need a bit more than what is asserted in Lemma 2.1, namely a construction of the invariant measure claimed in Theorem 2.2, we briefly describe this construction. Following Martens, we consider
the sequences of measures

$$
\begin{equation*}
S_{k} m=\sum_{i=0}^{k-1} m \circ T^{-i} \quad \text { and } \quad Q_{k} m=\frac{S_{k} m}{S_{k} m\left(A_{0}\right)} \tag{2.4}
\end{equation*}
$$

It was shown in [6] that each weak limit μ of the sequence $Q_{k} m$ has the properties required in Theorem 2.2, where a sequence $\left\{\nu_{k}: k \geq 1\right\}$ of measures on X is said to converge vaguely if for all $n \geq 1$ the measures ν_{k} converge weakly on all compact subsets of A_{n}. In fact, it turns out that the sequence $Q_{k} m$ converges and

$$
\mu(F)=\lim _{n \rightarrow \infty} Q_{k} m(F)
$$

for every Borel set $F \subset X$. Making use of (2.2) and (2.3) one can show (see Lemma 2.4 in [6]) the following:

LEMmA 2.3. For every $n \geq 0$ we have $0<\mu\left(A_{n}\right)<\infty$. Furthermore, the Radon-Nikodym derivative $d \mu / d m$ is bounded above and below on A_{n}.

Now let us pass to the map $F: \mathcal{P} \backslash B \rightarrow \mathcal{P}$. The ergodicity and conservativity of the measure m follows from Remark 2.1. Thus, we only need to construct an irreducible partition α with the property (2.3). Indeed, set $Y=J(F) \backslash B$, and for every $y \in Y$ consider a ball $B(y, r(y)) \subset \mathcal{P}$ such that $r(y)>0, m(\partial B(y, r(y)))=0$, and $r(y)<(1 / 2) \min \{\pi / 2, \operatorname{dist}(y, B)\}$. The balls $B(y, r(y)), y \in Y$, cover Y, and since Y is a metric separable metric, one can choose a countable cover, say $\left\{\tilde{A}_{n}: n \geq 0\right\}$, from these balls. We may additionally require that the family $\left\{\tilde{A}_{n}: n \geq 0\right\}$ is locally finite, i.e., that each point $x \in Y$ has an open neighborhood intersecting only finitely many balls $\tilde{A}_{n}, n \geq 0$. We now define the family $\alpha=\left\{A_{n}: n \geq 0\right\}$ inductively by setting

$$
A_{0}=\tilde{A}_{0} \text { and } A_{n+1}=\tilde{A}_{n+1} \backslash \bigcup_{k=1}^{n} \overline{\tilde{A}_{n}}
$$

(and throwing away empty sets). Obviously, α is a disjoint family and

$$
\bigcup_{n \geq 1} A_{n} \supset J(F) \backslash B \backslash \bigcup_{n \geq 0} \partial \tilde{A}_{n}
$$

Hence $m\left(\bigcup_{n \geq 0} A_{n}\right)=1$. The distortion condition (2.3) follows now from Koebe's distortion theorem with all constants K_{n} equal to some K, and the irreducibility of the partition α follows from the openness of the sets A_{n} and Theorem 1.3.

Let μ be an F-invariant measure that is absolutely continuous with respect to the measure m. Set

$$
\mathcal{P}_{M}=\{z \in \mathcal{P}: \operatorname{Re}(z)>M\}
$$

and

$$
\mathcal{P}_{-M}=\{z \in \mathcal{P}: \operatorname{Re}(z)<-M\}
$$

for $M \in \mathbb{R}$.
Proposition 2.4. There exists $M>0$ such that

$$
\begin{equation*}
\mu\left(P_{-M}\right)<\infty \quad \text { and } \quad \mu\left(P_{M}\right)<\infty . \tag{2.5}
\end{equation*}
$$

To prove Proposition 2.4, take $k \in \mathbb{N}$ such that $k>M_{3}$, where M_{3} is as defined in Remark 1.1, and consider the sets

$$
X_{k}^{-}=\left\{z \in J_{F}:-(k+1) \leq \operatorname{Re}(z) \leq-k\right\}
$$

and

$$
X_{k}^{+}=\left\{z \in J_{F}: k \leq \operatorname{Re}(z) \leq k+1\right\} .
$$

Lemma 2.5. There exists a constant $C_{1}>0$ such that for n large enough and $k>M_{3}$ we have

$$
m\left(X_{k}^{+}\right) \leq C_{1} e^{n_{1} k(1-h)} \quad \text { and } \quad m\left(X_{k}^{-}\right) \leq C_{1} e^{n_{2} k(1-h)}
$$

Proof. It follows from Remark 1.1 that there exist universal constants D_{+}, D_{-}(independent of k) such that

$$
\begin{equation*}
\left|\operatorname{Im}\left(T_{F}(z)\right)-\operatorname{Im}\left(T_{F}(w)\right)\right| \leq D_{ \pm} e^{n(z)|\operatorname{Re}(z)|} \tag{2.6}
\end{equation*}
$$

for $z, w \in X_{k}^{ \pm}$. This implies that if $k>M_{3}$ then T_{F} is $B_{1} e^{n_{1} k}$-to- 1 on the set X_{k}^{+}, where B_{1} depends on $D_{ \pm}$, but is independent of k. Thus for every n large enough and all $k \geq M_{3}$ we have

$$
\begin{aligned}
1 & \geq m_{n}\left(T_{F}\left(X_{K}^{+}\right) \geq\left(B_{1} e^{n_{1} k}\right)^{-1} \int_{X_{k}^{+}}\left|T_{F}^{\prime}\right|^{t_{n}} d m_{n}\right. \\
& \geq\left(B_{1} e^{n_{1} k}\right)^{-1}\left(M_{1} e^{n_{1} k}\right)^{t_{n}} m_{n}\left(X_{k}^{+}\right) \\
& \geq\left(B_{1}\right)^{-1} M_{1}^{t_{n}} e^{n_{1} k\left(t_{n}-1\right)} m_{n}\left(X_{k}^{+}\right) .
\end{aligned}
$$

Hence there exists a constant C_{+}independent of k such that

$$
m_{n}\left(X_{k}^{+}\right) \leq C_{+} e^{n_{1} k\left(1-t_{n}\right)} \leq C_{+} e^{n_{1} k(1-h)} .
$$

Analogously, one can prove that for every n large enough

$$
m_{n}\left(X_{k}^{-}\right) \leq C_{-} e^{n_{2} k(1-h)}
$$

for some $C_{-}>0$ and $k>M_{3}$. Setting $C_{1}=\max \left\{C_{+}, C_{-}\right\}$, we obtain for the measure m

$$
m\left(X_{k}^{+}\right) \leq C_{1} e^{n_{1} k(1-h)} \quad \text { and } \quad m\left(X_{k}^{-}\right) \leq C_{1} e^{n_{2} k(1-h)}
$$

for $k>M_{3}$.

Proof of Proposition 2.4. Set $A_{0}=X_{M_{3}}^{+}$. Fix $k \geq M_{3}$, and let

$$
S_{k}=[u+2, k+2] \times[-k / 2, k / 2] \subset \mathbb{C}
$$

where $u=\max \left\{\left|\xi_{1}\right|,\left|\xi_{2}\right|\right\}$. The set $\{z \in \mathbb{C}: \operatorname{Im} z=\pi\}$ is canonically embedded into \mathbb{C}. Thus each holomorphic inverse branch $F_{*}^{-j}: \mathcal{P} \backslash \pi(\{z \in \mathbb{C}: \operatorname{Im} z=$ $\pi\}) \mapsto \mathcal{P}$ of $F^{j}, j \geq 1$, can be assumed to be defined on a subset of the complex plane \mathbb{C}. This map restricted to X_{k}^{+}extends holomorphically to a univalent function on S_{k}. By Koebe's theorem there exists a constant C_{2} such that, for every $j \geq 1$, every $x \in A_{0}$, and every $y \in X_{k}^{+}$, we have

$$
\frac{\left|\left(F_{*}^{-j}\right)^{\prime}(y)\right|}{\left|\left(F_{*}^{-j}\right)^{\prime}(x)\right|} \leq C_{2} k^{3}
$$

Therefore

$$
\frac{m\left(F_{*}^{-j}\left(X_{k}^{+}\right)\right)}{m\left(F_{*}^{-j}\left(A_{0}\right)\right)} \leq C_{2}^{h} k^{3 h} \frac{m\left(X_{k}^{+}\right)}{m\left(A_{0}\right)}
$$

Combining this with Lemma 2.5 we obtain

$$
\frac{m\left(F_{*}^{-j}\left(X_{k}^{+}\right)\right)}{m\left(F_{*}^{-j}\left(A_{0}\right)\right)} \leq C_{1} C_{2}^{h} m\left(A_{0}\right)^{-1} k^{3 h} e^{n_{1} k(1-h)}
$$

Hence

$$
\frac{m\left(F^{-j}\left(X_{k}^{+}\right)\right)}{m\left(F^{-j}\left(A_{0}\right)\right)} \leq C_{1} C_{2}^{h} m\left(A_{0}\right)^{-1} k^{3 h} e^{n_{1} k(1-h)}
$$

So, for every $n \geq 0$,

$$
\frac{\sum_{j=0}^{n} m\left(F^{-j}\left(X_{k}^{+}\right)\right)}{\sum_{j=0}^{n} m\left(F^{-j}\left(A_{0}\right)\right)} \leq C_{1} C_{2}^{h} m\left(A_{0}\right)^{-1} k^{3 h} e^{n_{1} k(1-h)}
$$

Thus, applying Theorem 2.2, we get

$$
\mu\left(X_{k}^{+}\right)=\lim _{n \rightarrow \infty} \frac{\sum_{j=0}^{n} m\left(F^{-j}\left(X_{k}^{+}\right)\right)}{\sum_{j=0}^{n} m\left(F^{-j}\left(A_{0}\right)\right)} \leq C_{1} C_{2}^{h} m\left(A_{0}\right)^{-1} k^{3 h} e^{n_{1} k(1-h)}
$$

Hence, if $M=M_{3}$, then

$$
\mu\left(\mathcal{P}_{M}\right) \leq \sum_{k=M_{3}}^{\infty} \mu\left(X_{k}^{+}\right) \leq \sum_{k=M_{3}}^{\infty} C_{1} C_{2}^{h} m\left(A_{0}\right)^{-1} k^{3 h} e^{n_{1} k(1-h)}<\infty
$$

Analogously, replacing n_{1} by n_{2} and taking $k>M_{3}$, we obtain that

$$
\mu\left(\mathcal{P}_{-M}\right) \leq \sum_{k=M_{3}}^{\infty} \mu\left(X_{k}^{-}\right) \leq \sum_{k=M_{3}}^{\infty} C_{1} C_{2}^{h} m\left(A_{0}\right)^{-1} k^{3 h} e^{n_{2} k(1-h)}<\infty
$$

This completes the proof.

We recall that $\xi_{1}=R(0), \xi_{2}=R(\infty)$. By our assumptions there are $q_{i}>1, i=1,2$, such that $f^{q_{i}-1}\left(\xi_{i}\right)=\infty$. Let p_{i} denote the order of the pole $f^{q_{i}-2}\left(\xi_{i}\right)$. For every $k \geq 0$ let

$$
R_{k}=\left\{z \in \mathcal{P}: \eta e^{-(k+1)} \leq|z-R(0)| \leq \eta e^{-k}\right\}
$$

and

$$
Q_{k}=\left\{z \in \mathcal{P}: \eta e^{-(k+1)} \leq|z-R(\infty)| \leq \eta e^{-k}\right\}
$$

for some $\eta>0$, where $R(0) \neq \infty, R(\infty) \neq \infty$. If $R(0) \neq R(\infty)$, then we choose η small enough so that $B(R(0), \eta) \cap B(R(\infty), \eta)=\emptyset$.

Proposition 2.6. There exists $\epsilon>0$ such that

$$
\begin{equation*}
\mu(B(R(0), \epsilon))<\infty \quad \text { and } \quad \mu(B(R(\infty), \epsilon))<\infty \tag{2.7}
\end{equation*}
$$

First we prove the following lemma.
LEMmA 2.7. There exist constants $C_{3}>0, r>0$ and $p_{1}, p_{2} \in \mathbb{N}$ such that for n large enough and all k satisfying $e^{-k}<r$ we have

$$
m\left(R_{k}\right) \leq C_{3} e^{k\left[p_{1}-\left(p_{1}+1\right) h\right]} \quad \text { and } \quad m\left(Q_{k}\right) \leq C_{3} e^{k\left[p_{2}-\left(p_{2}+1\right) h\right]}
$$

Proof. Since $f^{q_{1}-2}\left(\xi_{1}\right)$ is a pole b_{1} of multiplicity p_{1}, there exists $r_{1}>0$ such that

$$
\begin{equation*}
F^{q_{1}-2}(z) \asymp \frac{\kappa_{1}}{\left(z-\xi_{1}\right)^{p_{1}}} \tag{2.8}
\end{equation*}
$$

for $z \in B\left(\xi_{1}, r_{1}\right) \subset \mathcal{P}, \kappa_{1} \neq 0$. The comparability sign \asymp means that

$$
\begin{aligned}
0 & <\inf \left\{\frac{\left|F^{q_{1}-2}(z)\right|}{\left|\left(z-\xi_{1}\right)^{p_{1}}\right|}: z \in B\left(\xi_{1}, r_{1}\right)\right\} \\
& \leq \sup \left\{\frac{\left|F^{q_{1}-2}(z)\right|}{\left|\left(z-\xi_{1}\right)^{p_{1}}\right|}: z \in B\left(\xi_{1}, r_{1}\right)\right\} \\
& <\infty
\end{aligned}
$$

This, in turn, implies the existence of a universal constant E_{1} (independent of k) such that

$$
\left|\operatorname{Im}\left(F^{q_{1}-2}(z)\right)-\operatorname{Im}\left(F^{q_{1}-2}(w)\right)\right| \leq E_{1} e^{k p_{1}}
$$

for $z \in R_{k}$. Take K large enough so that $e^{-K}<r_{1}$. From (2.8) we obtain that for $k>K$

$$
\left|\left(F^{q_{1}-1}\right)^{\prime}(z)\right| \geq F_{1} e^{k\left(p_{1}+1\right)}
$$

for some $F_{1}>0$. This implies that $F^{q_{1}-1}$ is $G_{1} e^{n_{1} k}$-to- 1 on the set R_{k}, where G_{1} depends on F_{1}, but is independent of k. Thus, for every n large enough
and all $k \geq K$,

$$
\begin{aligned}
1 & \geq m_{n}\left(F^{q_{1}-2}\left(R_{k}\right)\right) \geq\left(G_{1} e^{n_{1} k}\right)^{-1} \int_{R_{k}}\left|\left(F^{q_{1}-2}\right)^{\prime}\right|^{t_{n}} d m_{n} \\
& \geq\left(G_{1} e^{p_{1} k}\right)^{-1}\left(F_{1} e^{\left(p_{1}+1\right) k}\right)^{t_{n}} m_{n}\left(R_{k}\right) \\
& \geq\left(G_{1}\right)^{-1} F_{1}^{h} e^{k\left[-p_{1}+\left(p_{1}+1\right) h\right]} m_{n}\left(R_{k}\right) .
\end{aligned}
$$

Hence there exists a constant C^{\prime} independent of k such that

$$
m_{n}\left(R_{k}\right) \leq C^{\prime} e^{k\left[p_{1}-\left(p_{1}+1\right) h\right]}
$$

for $k>K$. Now let $f^{q_{1}-2}\left(\xi_{2}\right)$ be a pole b_{2} of multiplicity p_{2}. Then there exists $r_{2}>0$ such that

$$
\begin{equation*}
F^{q_{1}-1}(z) \asymp \frac{\kappa_{2}}{\left(z-\xi_{2}\right)^{p_{2}}} \tag{2.9}
\end{equation*}
$$

for $z \in B\left(\xi_{2}, r_{2}\right)$. Analogously one can prove that $m_{n}\left(Q_{k}\right) \leq C^{\prime \prime} e^{k\left[p_{2}-\left(p_{2}+1\right) h\right]}$ for every n large enough and k such that $e^{-k}<r_{2}$. Consequently

$$
m\left(R_{k}\right) \leq C_{3} e^{k\left[p_{1}-\left(p_{1}+1\right) h\right]} \quad \text { and } \quad m\left(Q_{k}\right) \leq C_{3} e^{k\left[p_{2}-\left(p_{2}+1\right) h\right]}
$$

where $C_{3}=\max \left\{C^{\prime}, C^{\prime \prime}\right\}$.
Let f_{0}^{-1} denote a branch of the inverse map f^{-1} such that $0 \leq \operatorname{Im}\left(f_{0}^{-1}\right)<$ 2π.

Lemma 2.8. There is a universal constant $D>0$ such that for all k large enough we have

$$
D^{-1} e^{-(k+1)} \leq\left|F^{\prime}(z)\right| \leq D e^{-k}
$$

if $z \in f_{0}^{-1}\left(R_{k} \cup Q_{k}\right)$.
Proof. First we estimate $f^{\prime}(z)$ for $z \in f_{0}^{-1}\left(R_{k}\right)$. For simplicity we assume that $\pi\left(\xi_{1}\right)=\xi_{1}$. If $R^{\prime}(0) \neq 0$, then

$$
\begin{aligned}
f_{0}^{-1}\left(R_{k}\right) \subset\left\{z \in \mathcal{P}: \log \left(L /\left|R^{\prime}(0)\right|\right)-(\right. & k+1) \leq|\operatorname{Re}(z)| \\
\leq & \left.-k-\log \left(\left|R^{\prime}(0)\right| L\right)\right\}
\end{aligned}
$$

where L denotes the distortion of R^{-1} on $B\left(\xi_{1}, r\right)$. Since $F^{\prime}(z)=f^{\prime}(z)=$ $R^{\prime}\left(e^{z}\right)\left(e^{z}\right)$, we obtain

$$
\begin{equation*}
\left|F^{\prime}(z)\right| \leq\left(\left|R^{\prime}(0)\right| L\right)^{-1}\left(\left|R^{\prime}(0)\right| L\right) e^{-k}=e^{-k} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|F^{\prime}(z)\right| \geq e^{-(k+1)}\left|R^{\prime}(0)\right|^{-1} L\left|R^{\prime}(0)\right| L^{-1}=e^{-(k+1)} \tag{2.11}
\end{equation*}
$$

If $R^{\prime}(0)=0$, there are constants $A>0$ and $p \in \mathbb{N}$ such that

$$
A^{-1}|z-0|^{p} \leq|R(z)-R(0)| \leq A|z-0|^{p}
$$

and

$$
A^{-1}|z-0|^{p-1} \leq\left|R^{\prime}(z)\right| \leq A|z-0|^{p-1}
$$

In this case there exists a constant $A_{1}>0$, which depends on p and A, but is independent of k, such that

$$
f_{0}^{-1}\left(R_{k}\right) \subset\left\{z \in \mathcal{P}: \log A_{1}-\frac{(k+1)}{p} \leq|\operatorname{Re}(z)| \leq-\frac{k}{p}-\log A_{1}\right\}
$$

Moreover, for $z \in f_{0}^{-1}\left(R_{k}\right)$ we have

$$
\begin{equation*}
\left|F^{\prime}(z)\right| \leq A_{1}\left(e^{-k / p}\right)^{p-1} e^{-k / p}=A_{1} e^{-k} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|F^{\prime}(z)\right| \geq\left(A_{1}\right)^{-1}\left(e^{-(k+1) / p}\right)^{p-1} e^{-(k+1) / p}=\left(A_{1}\right)^{-1} e^{-(k+1)} \tag{2.13}
\end{equation*}
$$

Next, we estimate $f^{\prime}(z)$ for $z \in f_{0}^{-1}\left(Q_{k}\right)$. For simplicity we assume that $\pi\left(\xi_{2}\right)=\xi_{2}$. We know that $R(\infty) \neq \infty$ and suppose that $R^{\prime}(\infty)=0$. To count derivatives at $R^{\prime}(\infty)$, we have to consider $R_{1}(w)=R(u)$, where $u=1 / w$, for w close to 0 . Then $R_{1}^{\prime}(0)=0$. So there are constants $A_{2}>0$ and $p \in \mathbb{N}$ such that

$$
A_{2}^{-1}|w|^{p} \leq\left|R_{1}(w)-R_{1}(0)\right| \leq A_{2}^{-1}|w|^{p}
$$

and

$$
A_{2}^{-1}|w|^{p-1} \leq\left|R_{1}^{\prime}(w)\right| \leq A_{2}^{-1}|w|^{p-1}
$$

Substituting

$$
R_{1}^{\prime}(w)=R^{\prime}\left(\frac{1}{w}\right)\left(-\frac{1}{w^{2}}\right)
$$

we obtain

$$
A_{2}^{-1}|w|^{p-1} \leq\left|R^{\prime}\left(\frac{1}{w}\right)\left(-\frac{1}{w^{2}}\right)\right| \leq A_{2}|w|^{p-1}
$$

or equivalently

$$
A_{2}^{-1}|w|^{p+1} \leq\left|R^{\prime}\left(\frac{1}{w}\right)\right| \leq A_{2}|w|^{p+1}
$$

Since $w=1 / u$ the above inequalities can be rewritten as

$$
A_{2}^{-1}|u|^{-(p+1)} \leq\left|R^{\prime}(u)\right| \leq A_{2}|u|^{-(p+1)} .
$$

But $f(z)=R\left(e^{z}\right)$, so $f^{\prime}(z)=R^{\prime}\left(e^{z}\right) e^{z}$. Since $u=e^{z}$, we have

$$
\left|F^{\prime}(z)\right|=\left|R^{\prime}\left(e^{z}\right)\right|\left|e^{z}\right| \leq A_{2}\left|e^{z}\right|^{-(p+1)} \| e^{z} \mid=A_{2} e^{-p z}
$$

and

$$
\left|F^{\prime}(z)\right| \geq\left(A_{2}\right)^{-1}\left|e^{z}\right|^{-(p+1)}| | e^{z} \mid=\left(A_{2}\right)^{-1} e^{-p z}
$$

Then

$$
f_{0}^{-1}\left(Q_{k}\right) \subset\left\{z \in \mathcal{P}: \frac{k}{p}+\log A_{3}+\leq|\operatorname{Re}(z)| \leq \frac{(k+1)}{p}-\log A_{3}\right\}
$$

where A_{3} is a constant, which depends on p and A_{2}, but is independent of k. So for $z \in f_{0}^{-1}\left(Q_{k}\right)$,

$$
\begin{equation*}
\left(A_{3}\right)^{-1} e^{-(k+1)} \leq\left|F^{\prime}(z)\right| \leq A_{3} e^{-k} \tag{2.14}
\end{equation*}
$$

Analogously, if $R^{\prime}(\infty) \neq 0$, then

$$
f_{0}^{-1}\left(Q_{k}\right) \subset\left\{z \in \mathcal{P}: k+\log A_{4}+\leq|\operatorname{Re}(z)| \leq k+1-\log A_{4}\right\}
$$

where A_{4} depends on $R^{\prime}(\infty)$ and the distortion of R in a neighbourhood of $R(\infty)$. Considering as before $R_{1}(w)=R_{1}(u)$ with $u=1 / w$ for w close to zero, we get

$$
A_{4}^{-1}|u|^{-2} \leq\left|R^{\prime}(u)\right| \leq A_{4}|u|^{-2}
$$

Since $F^{\prime}(z)=R^{\prime}\left(e^{z}\right)\left(e^{z}\right)$, the last inequalities we can rewritten as

$$
\left(A_{4}\right)^{-1} e^{-z} \leq\left|F^{\prime}(z)\right| \leq A_{4} e^{-z}
$$

Thus for $z \in f_{0}^{-1}\left(Q_{k}\right)$ we have

$$
\begin{equation*}
\left(A_{4}\right)^{-1} e^{-(k+1)} \leq\left|F^{\prime}(z)\right| \leq A_{4} e^{-k} \tag{2.15}
\end{equation*}
$$

Combining (2.10), (2.12), (2.14), (2.15) and taking

$$
D=\max \left\{1, A_{2}, A_{3}, A_{4}\right\}
$$

we get the required estimate.
Proof of Proposition 2.6. Let $\epsilon_{0}=\min \left\{r_{1}, r_{2}\right\}$, where r_{1}, r_{2} are defined by (2.8) and (2.9). Choose k_{0} such that $\eta e^{-k_{0}}<\epsilon_{0}$ and set $A_{0}:=R_{k_{0}}$. Fix $j \geq 0$, and for all $l \in \mathbb{Z} \backslash\{0\}$ consider all holomorphic inverse branches $F_{*}^{-j}: B\left(\xi_{1}, \epsilon_{0}\right) \mapsto \mathcal{P}$ of F^{j} such that $f^{j}\left(F_{*}^{-j}\left(B\left(\xi_{1}, \epsilon_{0}\right)\right)\right)=B\left(\xi_{1}+2 l \pi i, \epsilon_{0}\right)$. Notice that $B\left(\xi_{1}+2 l \pi i, \epsilon_{0}\right)$ is far from the singularity ξ_{1}, since we assumed that $\pi\left(\xi_{1}\right)=\xi_{1}$. So we can take inverse branches of f^{j} composed in the last step with π. To all of these inverse branches F_{*}^{-j} we can apply Koebe's distortion theorem. Thus for $k>k_{0}$ we have

$$
\begin{equation*}
\frac{m\left(F_{*}^{-j}\left(R_{k}\right)\right)}{m\left(F_{*}^{-j}\left(A_{0}\right)\right)} \leq K \frac{m\left(R_{k}\right)}{m\left(A_{0}\right)} \tag{2.16}
\end{equation*}
$$

where K is a distortion constant. Applying Lemma 2.7, we obtain

$$
\begin{equation*}
m\left(R_{k}\right) \leq C_{3} e^{k\left[p_{1}-\left(p_{1}+1\right) h\right]} \tag{2.17}
\end{equation*}
$$

Combining this with (2.16), we get

$$
\begin{equation*}
\frac{m\left(F_{*}^{-j}\left(R_{k}\right)\right)}{m\left(F_{*}^{-j}\left(A_{0}\right)\right)} \leq K^{h} \frac{C_{3} e^{k\left[p_{1}-\left(p_{1}+1\right) h\right]}}{m\left(A_{0}\right)} \tag{2.18}
\end{equation*}
$$

Let now $F_{0}^{-j}: B\left(\xi_{1}, \epsilon_{0}\right) \mapsto \mathcal{P}$ be a holomorphic inverse branch of F^{j} such that $f^{j}\left(F_{0}^{-j}\left(R_{k}\right)\right)=R_{k}$. Then there exists $k_{1}>k_{0}$ such that

$$
F^{j-1}\left(F_{0}^{-j}\left(\bigcup_{l=k_{1}}^{k} R_{k}\right)\right) \subset\{z \in \mathcal{P}:-(k+1) \leq \operatorname{Re}(z) \leq \log u-2\}
$$

where $u=\max \left\{1,\left|\xi_{1}\right|,\left|\xi_{2}\right|\right\}$. As in the proof of Proposition 2.4 we can write

$$
\frac{m\left(F_{0}^{-j}\left(R_{k}\right)\right)}{m\left(F_{0}^{-j}\left(A_{0}\right)\right)} \leq C_{4}^{h} k^{3 h} \frac{m\left(F^{j-1}\left(F_{0}^{-j}\left(R_{k}\right)\right)\right)}{m\left(F^{j-1}\left(F^{-j}\left(A_{0}\right)\right)\right)}
$$

Using now Lemmas 2.7 and 2.8, we get for k large enough

$$
\begin{aligned}
\frac{m\left(F_{0}^{-j}\left(R_{k}\right)\right)}{m\left(F_{0}^{-j}\left(A_{0}\right)\right)} & \leq C_{4} k^{3 h} \frac{m\left(F^{j-1}\left(F_{0}^{-j}\left(R_{k}\right)\right)\right.}{m\left(F^{j-1}\left(F^{-j}\left(A_{0}\right)\right)\right)} \\
& \leq C_{4} k^{3 h} \frac{D e^{-k h} C_{3} e^{k\left[p_{1}-\left(p_{1}+1\right) h\right]}}{D^{-1} e^{-\left(k_{0}+1\right) h} m\left(A_{0}\right)} \\
& \leq C_{5} k^{3 h} e^{k\left[-2 h+p_{1}(1-h)\right]}
\end{aligned}
$$

for some $C_{5}>0$. This, together with (2.18), implies that for every $j \geq 0$ and every $k>k_{1}$ we have

$$
\frac{m\left(\left(F^{-j}\left(R_{k}\right)\right)\right.}{m\left(F^{-j}\left(A_{0}\right)\right)} \leq C_{5} e^{k\left[p_{1}-\left(p_{1}+1\right) h\right]}
$$

since $e^{k\left[-2 h+p_{1}(1-h)\right]}<e^{k\left[p_{1}-\left(p_{1}+1\right) h\right]}$. Summing over $k \geq k_{1}$, we get

$$
\frac{m\left(F^{-j}\left(B\left(\xi_{1}, \epsilon_{1}\right)\right)\right)}{m\left(F^{-j}\left(A_{0}\right)\right)} \leq C_{5} \sum_{k=k_{1}}^{\infty} k^{3 h} e^{k\left[p_{1}-\left(p_{1}+1\right) h\right]}<\infty
$$

where $\epsilon_{1}:=e^{-k_{1}} \eta$. Thus, for every $n \geq 0$,

$$
\frac{\sum_{j=0}^{n} m\left(F^{-j}\left(B\left(\xi_{1}, \epsilon_{1}\right)\right)\right.}{\sum_{j=0}^{n} m\left(F^{-j}\left(F^{-j}\left(A_{0}\right)\right)\right)} \leq C_{5} \sum_{k=k_{1}}^{\infty} k^{3 h} e^{k\left[p_{1}-\left(p_{1}+1\right) h\right]}<\infty
$$

Hence, applying Theorem 2.2,

$$
\mu\left(B\left(\xi_{1}, \epsilon_{1}\right)\right) \leq C_{5} \sum_{k=k_{1}}^{\infty} k^{3 h} e^{k\left[p_{1}-\left(p_{1}+1\right) h\right]}<\infty
$$

To prove the second part of this proposition we define ϵ_{0} as before. Let k_{0} be such that $\eta e^{-k_{0}}<\epsilon_{0}$, and set $A_{0}:=Q_{k_{0}}$. Fix $j \geq 0$, and for all $\lambda \in \mathbb{Z} \backslash\{0\}$ consider all holomorphic inverse branches $F_{*}^{-j}: B\left(\xi_{2}, \epsilon_{0}\right) \mapsto \mathcal{P}$ of F^{j} such that $f^{j}\left(F_{*}^{-j}\left(B\left(\xi_{2}, \epsilon_{0}\right)\right)\right)=B\left(\xi_{2}+2 l \pi i, \epsilon_{0}\right)$. To all of these inverse branches
F_{*}^{-j} we can apply Koebe's distortion theorem. Thus for $k>k_{0}$ we have, analogously to (2.16),

$$
\begin{equation*}
\frac{m\left(F_{*}^{-j}\left(Q_{k}\right)\right)}{m\left(F_{*}^{-j}\left(A_{0}\right)\right)} \leq K \frac{m\left(R_{k}\right)}{m\left(A_{0}\right)} \tag{2.19}
\end{equation*}
$$

where K is a distortion constant. By Lemma 2.7 we obtain

$$
\begin{equation*}
m\left(R_{k}\right) \leq C_{3} e^{k\left[p_{2}-\left(p_{2}+1\right) h\right]} \tag{2.20}
\end{equation*}
$$

This, together with (2.19), implies

$$
\frac{m\left(F_{*}^{-j}\left(Q_{k}\right)\right)}{m\left(F_{*}^{-j}\left(A_{0}\right)\right)} \leq K^{h} \frac{C_{3} e^{k\left[p_{2}-\left(p_{2}+1\right) h\right]}}{m\left(A_{0}\right)}
$$

Let now $F_{0}^{-j}: B\left(\xi_{2}, \epsilon_{0}\right) \mapsto \mathcal{P}$ be a holomorphic inverse branch of F^{j} such that $f^{j}\left(F_{0}^{-j}\left(Q_{k}\right)\right)=Q_{k}$. Then there exists $k_{1}>k_{0}$ such that

$$
F^{j-1}\left(F_{0}^{-j}\left(\bigcup_{l=k_{1}}^{k} R_{k}\right)\right) \subset\{z \in \mathcal{P}: \log u+2 \leq \operatorname{Re}(z) \leq k+1\}
$$

The remaining part of the proof is analogous to the above argument. We therefore conclude that for some $C_{6}>0$ and $\epsilon_{2}>0$

$$
\mu\left(B\left(\xi_{2}, \epsilon_{2}\right)\right) \leq C_{6} \sum_{k=k_{1}}^{\infty} k^{3 h} e^{k\left[p_{2}-\left(p_{2}+1\right) h\right]}<\infty .
$$

Proof of Theorem A. To complete the proof, we have to show that μ is finite at every point a of the forward trajectories of both asymptotic values ξ_{1}, ξ_{2}. We recall that both omitted values are eventually mapped onto ∞. In view of (1.2), $\operatorname{dist}_{\chi}\left(P^{*}(f), J_{f}\right)>0$, so the critical points do not belong to the preimages of the forward trajectories of ξ_{1}, ξ_{2}. Thus, as in Proposition 2.6, we see that there exists $\epsilon>0$ such that $\mu(B(a, \epsilon))<\infty$ for every a. This, together with Proposition 2.4 and Proposition 2.6, finishes the proof.

3. Hausdorff and packing measures and dimensions

The results of this section provide, in some sense, a complete description of the geometrical structure of the sets J_{F}^{r} and J_{f}^{r}, and they also exhibit the geometrical meaning of the h-conformal measure m.

Theorem 3.1. We have $\mathrm{P}^{h}\left(J_{f}^{r}\right)=\mathrm{P}^{h}\left(J_{F}^{r}\right)=\infty$. In fact, $\mathrm{P}^{h}(G)=\infty$ for every open nonempty subset G of J_{f}^{r}.

Proof. Since $m\left(J_{F}^{r} \cap \mathcal{P}_{M}\right)>0$ for every $M \in \mathbb{R}$, it follows from the ergodicity and conservativity of the measure m (see Remark 2.1) that there exists a set $E \subset J_{F}^{r}$ such that $m(E)=1$ and

$$
\limsup _{k \rightarrow \infty} \operatorname{Re}\left(F^{k}(z)\right)=+\infty
$$

for every $z \in E$. Fix $z \in E$. The above relation means that there exists an unbounded increasing sequence $\left\{k_{n}\right\}_{k=1}^{\infty}$, depending on z, such that $\left\{F^{k_{n}}(z)\right\}_{k=1}^{\infty} \subset \mathcal{P}_{M}$ for some large $M>0$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \operatorname{Re}\left(F^{k_{n}}(z)\right)=+\infty \tag{3.1}
\end{equation*}
$$

Fix $k_{n} \geq 1$ and consider the ball $B\left(z, K^{-1}\left|\left(F^{k_{n}}\right)^{\prime}(z)\right|^{-1}\right)$. Then

$$
B\left(z,\left.K^{-1}\left|\left(F^{k_{n}}\right)^{\prime}\right|(z)\right|^{-1}\right) \subset F_{z}^{-k_{n}}\left(B\left(F^{k_{n}}(z), 1\right)\right)
$$

where $F_{z}^{-k_{n}}: B\left(F_{n}^{k}(z), 1\right) \rightarrow \mathbb{C}$ is the analytic inverse branch of $F^{k_{n}}$ mapping $F^{k_{n}}(z)$ to z. Applying Koebe's distortion theorem and using the conformality of the measure m, we obtain

$$
\begin{aligned}
m\left(B\left(z, K^{-1}\left|\left(F^{k_{n}}\right)^{\prime}(z)\right|^{-1}\right)\right. & \leq K^{h}\left|\left(F^{k_{n}}\right)^{\prime}(z)\right|^{-h} m\left(B\left(F^{k_{n}}(z), 1\right)\right) \\
& \leq K^{2 h}\left(K^{-1}\left|\left(F^{k_{n}}\right)^{\prime}(z)\right|^{-1}\right)^{h} m\left(\mathcal{P}_{\operatorname{Re} F^{k_{n}}(z)+1}\right)
\end{aligned}
$$

Since, by (3.1), $\lim _{k \rightarrow \infty} m\left(\mathcal{P}_{\operatorname{Re}^{k_{n}}(z)+1}\right)=0$, we see that

$$
\liminf _{r \rightarrow 0} \frac{m(B(z, r)}{r^{h}}=0
$$

Since $m\left(G \cap J_{F}^{r}\right)>0$ for every non-empty open subset of J_{F}^{r}, this implies that $\mathrm{P}^{h}(G)=\infty$. Since $J_{f}^{r}=\bigcup_{k \in \mathbb{Z}}\left(J_{F}^{r}+2 \pi i k\right)$, we are done.

Theorem 3.2. We have $0<\mathrm{H}^{h}\left(J_{r}(F)\right)<\infty$.
Proof. Let $n_{0}>0$ be the number defined in Theorem 1.3. Fix an integer $l \geq 1$ and a point $z \in J_{F}^{r}(n)$. Consider the holomorphic inverse branches $F_{z}^{-k_{n}(z)}: B\left(y(z),(2 l)^{-1}\right) \rightarrow \mathcal{P}$ sending $F^{k_{n}(z)}(z)$ to z. By Koebe's (1/4)distortion theorem and the standard version of Koebe's distortion theorem,

$$
\begin{aligned}
F_{z}^{-k_{n}(z)}\left(B\left(y(z), \frac{1}{2 l}\right)\right) & \supset F_{z}^{-k_{n}(z)}\left(B\left(F^{k_{n}(z)}(z), \frac{1}{3 l}\right)\right) \\
& \supset B\left(z, \frac{1}{12 l}\left|\left(F^{k_{n}(z)}\right)^{\prime}(z)\right|^{-1}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
F_{z}^{-k_{z}(z)}\left(B\left(y(z), \frac{1}{24 K l}\right)\right) & \subset F_{z}^{-k_{n}(z)}\left(B\left(F^{k_{n}(z)}(z), \frac{1}{12 K l}\right)\right) \\
& \subset B\left(z, \frac{1}{12 l}\left|\left(F^{k_{n}(z)}\right)^{\prime}(z)\right|^{-1}\right)
\end{aligned}
$$

Using the conformality of the measure m along with the standard version of Koebe's distortion theorem, and the fact that $\inf \left\{m\left(B\left(w,(12 K l)^{-1}\right): w \in\right.\right.$ $\left.W_{2 l}\right\}>0$, we deduce that

$$
\begin{equation*}
B_{l}^{-1} r_{k}(z)^{h} \leq m\left(B\left(z, r_{k}(z)\right)\right) \leq B_{l} r_{k}(z)^{h} \tag{3.2}
\end{equation*}
$$

where $r_{k}(z)=(12 l)^{-1}\left|\left(F^{n_{k}(z)}\right)^{\prime}(z)\right|^{-1}$ and B_{l} is independent of z and k. It follows from (3.2) that $\left.\mathrm{H}^{h}\right|_{J_{F}^{r}(l)}$ is absolutely continuous with respect to m for every $l \geq 1$ and that $\mathrm{H}^{h}\left(J_{F}^{r}\left(n_{0}\right)\right)<\infty$. Since

$$
m\left(J_{F}^{r}(l) \backslash J_{F}^{r}\left(n_{0}\right) \leq m\left(J_{F}^{r} \backslash J_{F}^{r}\left(n_{0}\right)\right)=0\right.
$$

and $J_{r}(F)=\bigcup_{n=0}^{\infty} J_{F}^{r}\left(n_{0}+n\right)$, we conclude that $\mathrm{H}^{h}\left(J_{F}^{r}\right)=\mathrm{H}^{h}\left(J_{F}^{r}\left(n_{0}\right)\right)<\infty$.
We now prove that $\mathrm{H}^{h}\left(J_{F}^{r}\right)>0$. Let ϵ be such that

$$
0<\epsilon<\frac{1}{D e}
$$

where D is the constant defined in Lemma 2.8. Fix $z \in J_{F}^{r}$. Take $r \in$ $B\left(0, \epsilon\left(2^{8} K\right)^{-1}\right)$. Since, by (1.7), $\lim _{\sup _{n \rightarrow \infty}}\left|\left(f^{n}\right)^{\prime}(z)\right|=+\infty$, there exists a minimal $n=n(z, r) \geq 1$ such that

$$
\begin{equation*}
r\left|\left(f^{n+1}\right)^{\prime}(z)\right|>\epsilon\left(2^{8} K\right)^{-1} \tag{3.3}
\end{equation*}
$$

Thus

$$
r\left|\left(f^{n}\right)^{\prime}(z)\right| \leq \epsilon\left(2^{8} K\right)^{-1}
$$

Assume the holomorphic inverse branch of f^{n} defined on $B\left(f^{n}(z), 32 r\left|\left(f^{n}\right)^{\prime}(z)\right|\right)$ and sending $f^{n}(z)$ to z, does not exist. Then $n \geq 1$. Let $1 \leq k \leq n$ be the largest integer such that the holomorphic inverse branch of $f^{n-(k-1)}$ defined on $B\left(f^{n}(z), 32 r\left|\left(f^{n}\right)^{\prime}(z)\right|\right)$ and sending $f^{n}(z)$ to $f^{k-1}(z)$ does not exist. This implies that at least one of the asymptotic values $\xi_{i}, i=1,2$, satisfies

$$
\xi_{i} \in f_{k}^{-(n-k)}\left(B\left(f^{n}(z), 32 r\left|\left(f^{n}\right)^{\prime}(z)\right|\right)\right),
$$

where $f_{k}^{-(n-k)}: B\left(f^{n}(z), 32 r\left|\left(f^{n}\right)^{\prime}(z)\right|\right) \rightarrow \mathbb{C}$ is the holomorphic inverse branch of f^{n-k} sending $f^{n}(z)$ to $f^{k}(z)$. In addition, we have $n=k$ since $\xi_{i} \notin$ $f^{-1}(\overline{\mathbb{C}}), i=1,2$. Hence there is an i such that $\left|f^{n}(z)-\xi_{i}\right|<32 K r\left|\left(f^{n}\right)^{\prime}(z)\right| \leq$ ϵ. We assume that $i=1$. So there exists $k \in \mathbb{N}$ such that

$$
\begin{equation*}
e^{-(k+1)}<\left|f^{n}(z)-\xi_{1}\right|<e^{-k} \tag{3.4}
\end{equation*}
$$

By Lemma 2.8 it follows that there exist constants $A_{1}>0$ and $p \in \mathbb{N}$ such that

$$
-\frac{k+1}{p}-\log A_{1}<\operatorname{Re}\left(f^{n-1}(z)\right)<-\frac{k}{p}-\log A_{1}
$$

and

$$
\left|f^{\prime}\left(f^{n-1}(z)\right)\right| \leq D e^{-k}
$$

Combining this with (3.4), we get

$$
\begin{equation*}
\left|f^{\prime}\left(f^{n-1}(z)\right)\right| \leq D e^{-k} \leq D e\left|f^{n}(z)-\xi_{1}\right| . \tag{3.5}
\end{equation*}
$$

Consequently, since $r\left|\left(f^{n-1}\right)^{\prime}(z)\right|<\epsilon\left(2^{8} K\right)^{-1}$, we conclude that

$$
\begin{aligned}
32 K r\left|\left(f^{n}\right)^{\prime}(z)\right| & =32 K r\left|\left(f^{n-1}\right)^{\prime}(z)\right| \cdot\left|f^{\prime}\left(f^{n-1}(z)\right)\right| \\
& \leq 32 K r\left|\left(f^{n-1}\right)^{\prime}(z)\right| \cdot D e\left|f^{n}(z)-\xi_{1}\right| \\
& \leq \epsilon D e\left|f^{n}(z)-\xi_{1}\right| \\
& <\left|f^{n}(z)-\xi_{1}\right| .
\end{aligned}
$$

This contradiction shows that the holomorphic inverse branch

$$
f_{z}^{-n}: B\left(f^{n}(z), 32 r\left|\left(f^{n}\right)^{\prime}(z)\right|\right) \rightarrow \mathbb{C}
$$

of f^{n} sending $f^{n}(z)$ to z is well-defined. Now, the map f restricted to $B\left(f^{n}(z), 32 r\left|\left(f^{n}\right)^{\prime}(z)\right|\right)$ is 1-to-1, and by Koebe's (1/4)-distortion theorem,

$$
f\left(B\left(f^{n}(z), 32 r\left|\left(f^{n}\right)^{\prime}(z)\right|\right)\right) \supset B\left(f^{n+1}(z), 8 r\left|\left(f^{n+1}\right)^{\prime}(z)\right|\right) .
$$

Hence there exists a unique holomorphic inverse branch

$$
f_{z}^{-(n+1)}: B\left(f^{n+1}(z), 8 r\left|\left(f^{n+1}\right)^{\prime}(z)\right|\right) \rightarrow \mathbb{C}
$$

of f^{n+1} mapping $f^{n+1}(z)$ to z. Applying Koebe's (1/4)-distortion theorem again, we see that

$$
\begin{equation*}
f_{z}^{-(n+1)}\left(B\left(f^{n+1}(z), 4 r\left|\left(f^{n+1}\right)^{\prime}(z)\right|\right)\right) \supset B(z, r) \tag{3.6}
\end{equation*}
$$

Since the ball $B\left(f^{n+1}(z), 4 r\left|\left(f^{n+1}\right)^{\prime}(z)\right|\right)$ intersects at most

$$
\frac{1}{\pi} 4 r\left|\left(f^{n+1}\right)^{\prime}(z)\right|+2 \preceq r\left|\left(f^{n+1}\right)^{\prime}(z)\right|
$$

horizontal strips of the form $2 \pi i j+(\mathbb{R} \times[0,2 \pi)), j \in \mathbb{Z}$, using (3.6), Koebe's distortion theorem, the h-conformality of the measure m and, in the final step, (3.3), we get

$$
\begin{aligned}
r^{-h} & (m(B(z, r)) \\
& \preceq r^{-h} K^{h} \frac{\left(r\left|\left(f^{n+1}\right)^{\prime}(z)\right|\right)}{\left|\left(f^{n+1}\right)^{\prime}(z)\right|^{h}} m\left(\pi\left(B\left(f^{n+1}(z), 4 r\left|\left(f^{n+1}\right)^{\prime}(z)\right|\right)\right)\right) \\
& \leq r^{-h} K^{h}\left|\left(f^{n+1}\right)^{\prime}(z)\right|^{-h}\left(r\left|\left(f^{n+1}\right)^{\prime}(z)\right|\right) \\
& =K^{h}\left(r\left|\left(f^{n+1}\right)^{\prime}(z)\right|\right)^{1-h} \\
& <K^{h}\left(2^{8} K\right)^{h-1}
\end{aligned}
$$

The comparability sign \preceq appearing in the above formulas means that the constants depend on z, but are independent of n. Thus we are done.

References

[1] P. Billingsley, Convergence of probability measures, Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley \& Sons Inc., New York, 1999. MR 1700749 (2000e:60008)
[2] J. Kotus and M. Urbański, Conformal, geometric and invariant measures for transcendental expanding functions, Math. Ann. 324 (2002), 619-656. MR 1938460 (2003j:37072)
[3] , Geometry and ergodic theory of non-recurrent elliptic functions, J. Anal. Math. 93 (2004), 35-102. MR 2110325 (2005j:37065)
[4] , Geometry and dynamics of some meromorphic functions, Math. Nachr. to appear.
[5] , Fractal measures and ergodic theory of transcendental meromorphic functions, preprint, available at http://www.math.unt.edu/~urbanski.
[6] M. Martens, The existence of σ-finite invariant measures, applications to real onedimensional dynamics, preprint, available at http://front.math.ucdavis.edu/math. DS/9201300.
[7] B. Skorulski, The existence of conformal measures for some transcendental meromorphic functions, Comtemp. Math., to appear.
[8] M. Urbański, On the Hausdorff dimension of a Julia set with a rationally indifferent periodic point, Studia Math. 97 (1991), 167-188. MR 1100686 (93a:58146)
[9] , Rational functions with no recurrent critical points, Ergodic Theory Dynam. Systems 14 (1994), 391-414. MR 1279476 (95g:58191)
[10] , Geometry and ergodic theory of conformal non-recurrent dynamics, Ergodic Theory Dynam. Systems 17 (1997), 1449-1476. MR 1488329 (99j:58178)

Faculty of Mathematics and Information Sciences, Warsaw University of Technology, Warsaw 00-661, Poland

E-mail address: janinak@impan.gov.pl

[^0]: Received April 25, 2005; received in final form November 7, 2005.
 2000 Mathematics Subject Classification. 37F35, 37F10, 30D05.
 The research was supported in part by the Polish KBN Grant No. 2 PO3A 034 25, the Warsaw University of Technology Grant No. 504G 11200043000, and by NSF/PAN grant INT-0306004.

